Repository logo

A comparison of the use of sodium iodide and lanthanum bromide scintillation crystals for airborne surveys




Bailey, Derek M., author
Johnson, Thomas, advisor
Brandl, Alexander, committee member
Milton, Stephen, committee member

Journal Title

Journal ISSN

Volume Title


The Environmental Protection Agency (EPA) Aerial Spectral Environmental Collection Technology (ASPECT) program performs aerial radiological and chemical characterization of geographical regions of interest. Airborne surveys are performed to characterize environmental radionuclide content, for mineral exploration, as well as for emergency scenarios such as major releases or lost sources. Two radiological detection systems are used by the ASPECT team for gamma-ray detection and characterization: lanthanum bromide [LaBr3(Ce)] and sodium iodide [NaI(Tl)] scintillation systems. An aerial survey of a uranium mine in the western United States was performed using both NaI(Tl) and LaBr3(Ce) detection systems. Analyses of the survey data were performed with RadAssist software and applying International Atomic Energy Agency (IAEA) airborne gamma ray mapping guidelines. The data for the survey were corrected for cross-over, which is spectral interference from higher energy photons as a result of Compton scattering, height attenuation, cosmic ray contribution to signal, and Radon contribution to signal. Two radiation survey contours were generated from each discrete data set. Based on analysis of the uranium mine survey results, LaBr3(Ce) produced a product comparable to that of NaI(Tl). The LaBr3(Ce) detection system contained 1/16th the scintillating volume and had a total system weight that was 1/4th that of the NaI(Tl) system. LaBr3(Ce) demonstrated a clear advantage over NaI(Tl) detectors in system mobility, and weight factors in airborne gamma ray spectroscopy.


Rights Access


environmental survey
health physics


Associated Publications