Environmental controls and aerosol impacts on tropical sea breeze convection
dc.contributor.author | Park, Jungmin, author | |
dc.contributor.author | van den Heever, Susan C., advisor | |
dc.contributor.author | Cooley, Daniel S., committee member | |
dc.contributor.author | Kreidenweis, Sonia M., committee member | |
dc.contributor.author | Miller, Steven D., committee member | |
dc.contributor.author | Rasmussen, Kristen L., committee member | |
dc.date.accessioned | 2021-01-11T11:20:51Z | |
dc.date.available | 2021-01-11T11:20:51Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Nearly half of the world's human population resides within 150 km of the ocean, and this coastal population is expected to continue increasing over the next several decades. The accurate prediction of convection and its impacts on precipitation and air quality in coastal zones, both of which impact all life's health and safety in coastal regions, is becoming increasingly critical. Thermally driven sea breeze circulations are ubiquitous and serve to initiate and support the development of convection. Despite their importance, forecasting sea breeze convection remains very challenging due to the coexistence, covariance, and interactions of the thermodynamic, microphysical, aerosol, and surface properties of the littoral zone. Therefore, the overarching goal of this dissertation research is to enhance our understanding of the sensitivity of sea breeze circulation and associated convection to various environmental parameters and aerosol loading. More specifically, the objectives are the following: (1) to assess the relative importance of ten different environmental parameters previously identified as playing critical roles in tropical sea breeze convection; and (2) to examine how enhanced aerosol loading affects sea breeze convection through both microphysical and aerosol-radiation interactions, and how the environment modulates these effects. In the first study, the relative roles of five thermodynamic, one wind, and four land/ocean-surface properties in determining the structure and intensity of sea breeze convection are evaluated using ensemble cloud-resolving simulations combined with statistical emulation. The results demonstrate that the initial zonal wind speed and soil saturation fraction are the primary controls on the inland sea breeze propagation. Two distinct regimes of sea breeze-initiated convection, a shallow and a deep convective mode, are also identified. The convective intensity of the shallow mode is negatively correlated by the inversion strength, whereas the boundary layer potential temperature is the dominant control of the deep mode. The processes associated with these predominant controls are analyzed, and the results of this study underscore possible avenues for future improvements in numerical weather prediction of sea breeze convection. The sea breeze circulation and associated convection play an important role in the transport and processing of aerosol particles. However, the extent and magnitude of both direct and indirect aerosol effects on sea breeze convection are not well known. In the second part of this dissertation, the impacts of enhanced aerosol concentrations on sea breeze convection are examined. The results demonstrate that aerosol-radiation-land surface interactions produce less favorable environments for sea breeze convection through direct aerosol forcing. When aerosol-radiation interactions are eliminated, enhanced aerosol loading leads to stronger over-land updrafts in the warm-phase region of the clouds through increased condensational growth and latent heating. This process occurs irrespective of the sea breeze environment. While condensational invigoration of convective updrafts is therefore robust in the absence of aerosol direct effects, the cold-phase convective responses are found to be environmentally modulated, and updrafts may be stronger, weaker, or unchanged in the presence of enhanced aerosol loading. Surface precipitation responses to aerosol loading also appear to be modulated by aerosol-radiation interactions and the environment. In the absence of the aerosol direct effect, the impacts of enhanced aerosol loading may produce increased, decreased, or unchanged accumulated surface precipitation, depending on the environment in which the convection develops. However, when aerosols are allowed to interact with the radiation, a consistent reduction in surface precipitation with increasing aerosol loading is observed, although the environment once again modulated the magnitude of this aerosol-induced reduction. | |
dc.format.medium | born digital | |
dc.format.medium | doctoral dissertations | |
dc.identifier | Park_colostate_0053A_16275.pdf | |
dc.identifier.uri | https://hdl.handle.net/10217/219584 | |
dc.language | English | |
dc.language.iso | eng | |
dc.publisher | Colorado State University. Libraries | |
dc.relation.ispartof | 2020- | |
dc.rights | Copyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright. | |
dc.title | Environmental controls and aerosol impacts on tropical sea breeze convection | |
dc.type | Text | |
dcterms.rights.dpla | This Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). | |
thesis.degree.discipline | Atmospheric Science | |
thesis.degree.grantor | Colorado State University | |
thesis.degree.level | Doctoral | |
thesis.degree.name | Doctor of Philosophy (Ph.D.) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Park_colostate_0053A_16275.pdf
- Size:
- 11.61 MB
- Format:
- Adobe Portable Document Format