Repository logo
 

In-vehicle validation of energy consumption modeling and simulation

Date

2020

Authors

DiDomenico, Gabriel, author
Bradley, Thomas, advisor
Quinn, Jason, committee member
Pasricha, Sudeep, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

The Colorado State University (CSU) Vehicle Innovation Team (VIT) participated in the first Department of Energy (DOE) Advanced Vehicle Technology Competitions (AVTC) in 1988. Since then, it has participated in the next iterations of the competition as well as other advanced vehicle technology projects. This study aims to validate the team's mathematical modeling and simulation of electrical energy consumption of the EcoCAR 3 competition (academic years 2014-2018) as well as the testing methods used for validation. First, baseline simulation results are obtained by simulating a 0-60 mph wide open throttle (WOT, or 100% APP) acceleration event (AE) with the product being the electrical energy economy in Wh/mi. The baseline model (representing the baseline control strategy and vehicle parameters) is also simulated for 0-40 mph and 0-20 mph AEs. These tests are replicated in the actual vehicle, a 2016 P2 PHEV Chevrolet Camaro entirely designed and built by CSU's VIT. Next, the same AEs are again tested with a changed acceleration rate due to the APP being limited to 45%. The velocity profiles from these tests are used as feedback for the model and the tests are replicated in simulation. Finally, the baseline model is altered in 3 additional ways in order to understand their effect on electrical energy consumption: the mass is increased, then the auxiliary low voltage (LV) load is increased and then the transmission is restricted to only 1 gear. These simulations are again replicated in-vehicle in order to validate the model's capability in predicting changes in electrical energy consumption as certain vehicle parameters are changed. This study concludes that model is able to predict these changes within 6.5%, or ±30.2 Wh/mi with 95% confidence.

Description

Rights Access

Subject

hybrid electric vehicle
systems engineering
electrification
validation
simulation

Citation

Associated Publications