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ABSTRACT 
 
 
 

IN-VEHICLE VALIDATION OF ENERGY CONSUMPTION MODELING AND 

SIMULATION 

 
 
 

The Colorado State University (CSU) Vehicle Innovation Team (VIT) participated in the 

first Department of Energy (DOE) Advanced Vehicle Technology Competitions (AVTC) in 

1988. Since then, it has participated in the next iterations of the competition as well as other 

advanced vehicle technology projects. This study aims to validate the mathematical modeling 

and simulation of electrical energy consumption of the EcoCAR 3 competition (academic years 

2014-2018) as well as the testing methods used for validation. First, baseline simulation results 

are obtained by simulating a 0-60 mph wide open throttle (WOT, or 100% APP) acceleration 

event (AE) with the product being the electrical energy economy in Wh/mi. The baseline model 

(representing the baseline control strategy and vehicle parameters) is also simulated for 0-40 

mph and 0-20 mph AEs. These tests are replicated in the actual vehicle, a 2016 P2 PHEV 

Chevrolet Camaro entirely designed and built by CSU’s VIT. Next, the same AEs are again 

tested with a changed acceleration rate due to the APP being limited to 45%. The velocity 

profiles from these tests are used as feedback for the model and the tests are replicated in 

simulation. Finally, the baseline model is altered in 3 additional ways in order to understand their 

effect on electrical energy consumption: the mass is increased, then the auxiliary low voltage 

(LV) load is increased and then the transmission is restricted to only 1 gear. These simulations 

are again replicated in-vehicle in order to validate the model’s capability in predicting changes in
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 electrical energy consumption as certain vehicle parameters are changed. This study 

concludes that model can predict these changes within 6.5%, or ±30.2 Wh/mi with 95% 

confidence.     
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1.0 Introduction 
 
 
 

Battery Electric and Hybrid Electric Vehicles (BEV, HEV respectively) have the 

potential to consume less energy and emit less pollution compared to a traditional internal 

combustion engine (ICE) powered vehicle [6]. This technology is important for reducing the 

end-user greenhouse gas emissions within the transportation sector [20]. End-user energy 

consumption within the transportation sector contributes 23% of the US CO2 emitted each year 

[8] and 60% of these emissions come from light duty vehicles [13].  

 Colorado State University (CSU) spent 2014-2018 designing and building a Plug-in 

HEV (PHEV) using a stock 2016 Chevrolet Camaro as part of the EcoCAR intercollegiate 

competition. This competition, part of a series funded and managed by the U.S. Department of 

Energy, is the next iteration of the Advanced Vehicle Technology Competitions (AVTCs) [4]. Its 

focus is to drive innovation in electrified vehicle technologies, provide education to students who 

are considering a career in the automotive industry and provide a platform for further automotive 

research. The EcoCAR competition requires extensive system modelling and simulation for the 

purpose of control system development as well as predicting performance changes given changes 

to that control system. One of the primary performance metrics that is evaluated is the energy 

consumption of the system.  

The vehicle CSU designed is a P2 parallel PHEV. It is rear wheel driven. The fuel used in 

the internal combustion engine (ICE) is ethanol (E85). The electrical energy used to power the 

electric motor (EM) is stored in the Energy Storage System (ESS), which is mounted at the rear 

of the vehicle. The ESS is a battery with a nominal voltage of 348 V, a capacity of 12.6 kWh 

with 7 modules arranged with 2 parallel strings of 15 cells in series. The ESS serves to power the 
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electrical propulsion system. The electrical propulsion system is comprised of a Remy HVH-250 

3-phase permanent magnet electric motor rated for 150 kW which is controlled by a Rinehart 

Motion Systems PM250DZ inverter. This propulsion system is upstream of the transmission 

which allows it to potentially take advantage of the torque multiplying advantages of the 

transmission in lower gears.  

This study focuses on the electrical energy consumption and does not consider the fuel 

use of the engine. Figure 1 demonstrates the vehicle architecture for this platform. In order to 

focus on the high voltage (HV) electrical system, all simulations and in-vehicle tests are 

executed with the Tilton Engine to Motor Clutch unlocked (or open) such that the electric motor 

is the only torque source driving the wheels of the vehicle. This operating mode is referred to as 

the Charge Depleting (CD) mode.  

 

Figure 1: Propulsion system architecture of CSU's 2016 PHEV Chevrolet Camaro 
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The Vehicle Development Process (VDP) utilized during the acquisition cycle of this 

platform includes the development of the Hybrid Supervisory Controller (HSC) and all related 

control software. The vehicle is modeled using software developed in the Matlab Simulink 

simulation environment. The control software runs in real-time on a Woodward MotoHawk 

SECM112 automotive controller. This paper examines the validation of this model and considers 

the sensitivity of the platform’s in-vehicle energy consumption to various vehicle parameters.  

1.1 Background  

1.1.1 Contributing Factors of Energy Consumption in Electric Vehicles  

There are a wide variety of parameters, both physical and operational, that contribute to 

energy consumption within these systems. There are complex physical factors such as tire 

dynamics and aerodynamic efficiency that play a role in energy consumption regardless of the 

vehicle architecture [14]. There are simpler physical parameters such as vehicle mass and 

transmission gearing that also play a large role.  These parameters are included in the existing 

vehicle model while tire characteristics and aerodynamic efficiency are highly simplified for 

modeling efficiency.  

There are also operational and control parameters that affect the energy consumption of 

the vehicle. Examples that have been shown to have a large impact include the acceleration rate 

(or tip-in rate) AEs, the state of charge (SOC) of the ESS and the power electronic efficiencies of 

the inverter’s conversion of DC current to AC as well as the EM itself [3].  

Previous studies have shown that the propulsion control system itself also has a notable 

effect on energy consumption. One strategy is called optimal energy management (OEM) in 

which the HSC is constantly evaluating the efficiency of the ICE based on a mapping of engine 

speed and torque vs. known efficiency. This evaluation is executed using feedback via the 



4 
 

vehicle’s controller area network (CAN) bus, which is being updated with data from various 

sensors at varying rates, and reference to an onboard brake specific fuel consumption (BSFC) 

map [24]. The controller chooses the most efficient point (given the desired velocity based on 

accelerator pedal position, or APP) and commands that combination of torque/speed of the 

engine. This system is also applicable to systems without an ICE such as that utilized in this 

investigation. However, the power electronics have an efficiency of 90% or greater and generally 

have less variation in efficiency vs. torque and speed compared to ICEs, which generally have an 

efficiency of 17-30% [10].  

A potential improvement to the OEM control strategy adds AE prediction as an input to 

the control system. This predictive optimal energy management (POEM) control strategy 

requires classification of AEs based on the desired end velocity. This strategy has previously 

shown potential for further reducing fuel consumption in HEVs when compared to an OEM 

control strategy [24]. Given that the foundation of the optimization remains the same, a POEM 

strategy is also expected to result in energy consumption improvements in an electrical 

propulsion system (although by smaller margins).  

1.1.2 In-Vehicle Data Acquisition  

With the rise in popularity of electronic controllers for various vehicle systems, most new 

vehicles sold in the U.S. since 1991 utilize a communication protocol called CAN-II [5]. This 

protocol was originally standardized by the Society of Automotive Engineers (SAE) in 1986 and 

also adopted by the International Organization of Standardization (ISO) in 1993. The primary 

driver for manufacturers to adopt this standard was its compatibility with the on-board 

diagnostics (OBD) standard which was made mandatory for all new vehicle sales in 1995 [29].  
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The specific architecture for a vehicle’s CAN bus is left up to the manufacturer and is 

generally proprietary information. The standardized architecture includes factors such as number 

of nodes, length of nodes, bit size, baud rates and serial function [19]. Other factors, such as 

message identification and transmission rates, are controlled by the manufacturer and requires a 

database of identifying information to inform the controller how to interpret each signal. The 

signals contain important information for the function, development or diagnosis of the vehicle.  

For example, the transmission control module (TCM) is constantly recording parameters 

such as input shaft rotational velocity, output shaft rotational velocity and temperature. The TCM 

uses these values to perform functions such as automated shifting, torque converter clutch 

control or cooling [7]. This investigation utilizes information on the CAN bus to evaluate the 

energy consumed during controlled AEs.  

1.2 Purpose  

The purpose of this investigation is ultimately to evaluate the validity of vehicle energy 

efficiency simulations compared to data collected in-vehicle. The desired product is a quantified 

confidence level regarding modeling results as well as a list of parameters that are shown to a 

have significant impact on energy consumption. This information is useful because it helps the 

development team to validate simulation results, identify parameters with high potential for 

optimization and identify confidence bounds such that modeling results within a certain 

confidence interval can be reliably replicated in-vehicle [22].   

The model that has been developed to date is practical but of relatively low fidelity. For 

example, the transient nature of torque flow during gear changes is not modeled. Figure 2 

illustrates this simplification. In reality, a gear shift takes roughly 0.25 seconds and during that 

time the torque and rotational velocity at the wheels is changing [1]. Those gear changes are 
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simulated in the model as instantaneous step changes. This paper aims to determine whether this 

level of fidelity is sufficient for future control system development projects. The model is 

simulated using AEs of varying tip-in rates and final velocities. These tests are replicated in-

vehicle.  The results are then analyzed and compared.  

  

Figure 2: Close-up of the transient torque and speed response of a shift in-vehicle (left) vs. the instantaneous shifts simulated by 
this vehicle model 

CSU VIT is currently involved with another advanced vehicle technology project called 

the Toyota Test Vehicle Platform (TVP). This project aims to implement a POEM control 

strategy in order to evaluate its impact on energy consumption when compared to an OEM 

control strategy. The results of this study are intended to inform future control system modeling 

and simulation activities as well as in-vehicle testing methods.  

1.2.1 Research Questions  

The products of this investigation will be useful during future development activities as 

will be better informed about what parameters actually have an effect on energy consumption, 

the extent of that effect as well as the extent such results can be replicated in-vehicle. The 

products are intended to answer the following questions:  
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1. Does the system model accurately predict the electrical energy consumption of the 

vehicle across a variety of AE scenarios?  

2. Is the system model sufficiently sensitive to physical and operational changes such 

that its simulation can accurately predict changes in electrical energy consumption?  

3. Are the testing methods and facilities of the CSU VIT adequate for consistently 

measuring the electrical energy consumption of a BEV or a PHEV/HEV in CD 

mode?  

1.3 Novel Aspects of this Research  

This study aims to validate the energy consumption model that was developed entirely by 

graduate and undergraduate members of CSU’s VIT. This model, and further iterations of it, will 

be used for further control system development in the future as well as predicting the energy 

consumption of the system. Furthermore, this study validates this student-developed model using 

a student-developed vehicle. This vehicle arrived at CSU as a stock vehicle (ICE only) and was 

retrofitted with an all new powertrain (including numerous custom student designed parts) and 

control system [9].  

With the results of this study CSU VIT will better understand the team’s capability to 

model electrical energy consumption, collect in-vehicle electrical energy consumption data and 

quantify the uncertainties in the team’s ability to predict electrical energy consumption via 

control system modeling and simulation. These results are intended to improve the team’s 

modeling and testing methods for use in future AVTCs as well as other advanced vehicle 

technology projects, including the Toyota TVP.  
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1.4 Thesis Outline  

This section outlines the structure of this thesis. Section 2 describes the simulation 

methodology, including the simulation environment as well as the team’s confidence in the 

existing model. Section 3 discusses in-vehicle testing methodology, including replicating the 

simulation environment and the confidence in the data collected. The results of both the 

simulations and in-vehicle tests are recorded in Section 4 and further discussed in Section 5. 

Section 6 summarizes the conclusions that can be made from the acquired results as well as 

recommendations for future work.  
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2.0 Simulation Methods 
 
 
 

This section defines the simulation environment, justifies the simulation results, identifies 

simplifications and shortcomings of the model, defines the scope of these specific simulations 

and gives an overview of the actual simulation methods.  

2.1 Simulating Electrical Energy Consumption  

The model requires the following values in order to simulate electrical energy 

consumption such that the simulation can be replicated in-vehicle:  

 Vehicle velocity   APP  

 Current gear   Vehicle mass  

 Auxiliary load   Distance driven  

 ESS current   ESS voltage  

 The model uses the desired velocity profile, called a drive cycle, as an input. Using data 

previously collected and validated, a subsystem of the model called the Driver Model determines 

the corresponding APP. This APP is then used as an input to the Controller Model of the inverter 

for the purpose of longitudinal propulsion, which is a typical application of driver modelling 

[28]. The output of this subsystem is a torque request that is calculated based on an efficiency 

map provided by the inverter manufacturer. The torque request is in turn used as an input to the 

Plant Model of the EM. The Plant Model is physics based and must obey relevant physical laws 

(such as the energy required to accelerate a mass at a certain rate) as well as limits of the 

modeled components (such as the maximum torque output of the EM). The resulting output is a 

torque command and is then used as an input to the Plant Model of the transmission in order to 
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simulate gear changes. The resulting power is used as an input to the Plant Model of the ESS in 

order to calculate the required output current. The actual voltage of the ESS changes with the 

magnitude and duration of output current. This change is modeled using the output current of the 

ESS Plant Model, ESS impedance and the time steps of the simulation compared to a map of the 

voltage drop provided by the ESS module manufacturer [15]. This process is summarized by 

Figure 3 below.  

 

Figure 3: Electrical energy consumption overview 

 These all work in parallel with the rest of the physics-based model. The Plant Model also 

includes physical parameters such as the mass of the vehicle. This value is obtained by weighing 

the vehicle in its completed state, a process that is overseen by competition officials. It also 

includes wheel parameters such as total radius (with tire) and coefficient of friction but does not 

include dynamic characteristics such as the dynamic coefficient of friction with heating or tire 

pressure. The transmission is also simply modeled with the manufacturer specified gear ratios 

and manufacturer provided shift schedule. Finally, minor losses such as aerodynamic drag and 

shaft inertias are simply modeled using the manufacturer provided frontal area (which was not 

changed during the retrofit) and estimated inertial values.  

2.1 Definition of Simulation Environment  

Tables 1-3 define the initialization parameters of the model prior to simulation. Some of 

these parameters, such as vehicle mass or the transmission gear ratios, are relevant because these 
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parameters can also be feasibly varied in-vehicle and thus replicated to validate the predicted 

change in energy consumption [16]. Others, such as the frontal area or component parameters, 

are not as feasibly varied in-vehicle but may still result in energy consumption changes and are 

required for successful execution of the model [21].  

Table 1: Physical vehicle parameters considered in the system model  

Vehicle Parameter Value 

Vehicle Mass 1805 kg 

Frontal Area 2.56 m2 

Tire Radius 0.35 m 

Coefficient of Drag 0.35 

Final Drive Ratio 2.77 

Transmission Gear Ratios 
4.615, 3.007, 2.065, 1.671, 

1.265, 1.00, 0.845, 0.652 

Driveshaft Inertia 0.0015 kg-m2 

Half-shaft Inertia(s) 0.0015 kg-m2 

Auxiliary Load 1250 A 
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Table 2: Specifications and limits of the electric motor 

Component Parameter Value 

EM Continuous Power 100 kW 

EM Peak Power (30 sec.) 150 kW 

EM Continuous Torque 215 Nm 

EM Peak Torque (30 sec.) 400 Nm 

EM Continuous Speed 4400 rpm 

EM Peak Speed (30 sec.) 3500 rpm 

  

Table 3: Specifications and limits of the energy storage system 

Component Parameter Value 

Nominal Voltage 350 V 

Capacity 12.6 kWh 

Internal Resistance 0.242 Ohm 

Initial State of Charge 

(SOC) 
100% 
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2.2 Reliability of Simulation Results  

It is important to establish a baseline model and baseline vehicle state in order to reliably 

compare changes to the system’s energy consumption as vehicle parameters are varied [30]. For 

this purpose, the baseline model is the model initialized as described above. Simulation results 

from this model are compared to data recorded in-vehicle in order to justify the utility of this 

model.  

Figure 4 compares the simulated velocity results of the first 505 seconds of the Urban 

Dynamometer Drive Schedule (UDDS) drive cycle with the desired velocity [12]. The difference 

between the simulated velocity and the desired velocity is, on average, -0.6%. The maximum 

difference is 0.22 mph. This result verifies that the model executes as expected.  

 

Figure 4: Comparison of the desired velocity from the drive trace (red) and the simulated velocity (blue) 

The model is verified using only simulation results, but an in-vehicle comparison is 

required for validation. Ideally, the comparison is between a standard drive cycle that is 

simulated and executed in a highly controlled environment, such as on a chassis dynamometer in 

an environmentally controlled chamber [11]. However, this investigation focuses only on the 

vehicle when operating in CD mode and there is no historical in-vehicle data collected on a 

chassis dynamometer for the purpose of validation. Instead, the baseline results are a 0-60 mph 
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AE executed with the same initialization parameters described above. Figure 5 compares this 

simulated AE to in-vehicle data collected on a closed course.   

 

Figure 5: 0-60 mph AE and energy consumption, simulated (blue) vs. in-vehicle data (red)   

The simulation predicts that the vehicle achieves 60 mph (in CD mode) in 20.1 seconds. 

In-vehicle data support this result, achieving 60 mph in 18.9 seconds on average.  This instills 

confidence that the simulation is executed as expected and sufficiently models the real system. 

This model confidence is further validated by comparing the energy consumed during the same 

0-60 mph AE. These differences are attributed to both modeling deficiencies and the 

environmental conditions under which the in-vehicle test was executed.  

2.3 Simulation Simplifications  

There are several factors that explain the difference of 1.2 seconds (about 6%) described 

in Section 2.2. The model does not account for ambient air temperature whereas the in-vehicle 
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test was executed in southern California at temperatures above room temperature. The increased 

ambient air increases the power required to cool the HV components (EM, inverter and ESS). 

The cooling system itself is a low voltage (LV) system that includes 2 pumps, 3 large fans as 

well as 2 radiators fitted with 2 temperature sensors each. The power for these components is 

supplied by the 12V battery in the vehicle. The 12V battery is not supported by an alternator but 

by an Auxiliary Power Module (APM). The APM drives DC current from the HV ESS to the 

12V battery after stepping the voltage down from the open circuit voltage to about 14V [27].   

The model of the vehicle does account for the auxiliary load on the 12V battery that must 

be supported by the APM. The model uses a constant value of 1250 A to simulate this load. This 

value was selected after conducting an analysis on the LV auxiliary systems in order to 

determine the in-vehicle consumption of the major LV components (pumps, fans, controllers, 

etc.). The analysis shows that the in-vehicle auxiliary load is not a constant value. The HSC is 

programmed to turn certain pumps and fans on/off in order to keep cooled components within a 

range of temperatures. However, using a constant value within the model is sufficient for the 

purpose of controls development. This is because in order to accurately model a dynamic 

auxiliary load it would also be necessary to model each individual pump, fan, controller, actuator 

and sensor (every component powered by the 12V battery). This is another example where the 

baseline fidelity of the model is found to be sufficient and practical for controls development and 

trend level validation.  

Other limitations of the model that may lead to discrepancies between simulation results and in-

vehicle results include (but are not limited to) simplified tire slip models, an assumed 50/50 

weight distribution and a static low voltage auxiliary load. The platform itself also offers reasons 

as to why in-vehicle results may differ from simulation results. Since it is running in real-time, 
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data collection and the timing of serial communication is very important whereas this concern is 

absent in the modeling environment. For example, CAN messages are required to execute the 

control system in real-time but not when simulating the model. Messages that get dropped, are 

prone to noise or that are getting bad sensor information could all cause discrepancies in the 

results [2]. This investigation seeks to both identify and limit such problems.  

There are other simplifications made in the model that can explain discrepancies between 

simulation and in-vehicle results. The vehicle is modeled using the Simple Tire block available 

in Matlab Simulink [25]. This model does not account for tire dynamics, material or pressure. 

Tires are well-known to have significant effects on a vehicle’s acceleration performance and fuel 

economy [26]. This simplification is acceptable because the goal of controls development is to 

optimize energy consumption through the powertrain. If the in-vehicle tires are simply kept as a 

constant then a simple tire model still allows for trend level validation. Changes in energy 

consumption can be directly attributed to changes to the control system. There is no chance of 

dynamic tire conditions causing a change.  

 2.4 Scope Definition  

This investigation aims to evaluate the utility of the mathematical model of the system in 

predicting the electrical energy consumption of the system during physical testing. The ability of 

the model to sufficiently predict energy consumption instills confidence in its utility for 

automotive controls development. This investigation focuses solely on the electrical energy 

consumption and disables the vehicle system that consumes chemical energy through the 

combustion of E85 fuel. Furthermore, traditional fuel economy and emissions are also outside of 

this investigation’s scope.  
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WOT AEs are considered the baseline results of this investigation. Drive cycles are 

readily repeatable in-vehicle without the use of a dynamometer or professionally trained driver 

by using either WOT scenarios- the driver depresses the accelerator pedal as far as possible as 

quickly as possible- or a pedal block. The pedal block allows the driver to depress the pedal at 

the same rate as WOT but limits the level of actuation to 45% APP. This limit is considered ECO 

AEs. The AEs are of the following categories:  

• 0-20-0 mph  

• 0-40-0 mph  

• 0-60-0 mph  

Once baseline results are established each 0-60 mph test is additionally executed with the 

rate of acceleration held constant at WOT while changing the following parameters:  

• Vehicle mass  

• Available transmission gears (all gears or only 4th gear)  

• Auxiliary load  

A simple Design of Experiments (DOE) defines the iterations required to test each 

variable described above. Table 4 defines each run of this investigation. Each run is simulated 1 

time and repeated in-vehicle 3-6 times. In-vehicle tests are executed at least 3 times and analyzed 

for normality.  If the data is normal and falls within the determined confidence interval then 

testing of that category ends, otherwise testing continues until reasonably consistent results are 

obtained. The purpose of this procedure is to ensure a statistically meaningful sample result.  
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Table 4: Simplified DOE of acceleration events for evaluation 

Acceleration 

Category 
Run 

Tip-in 

Rate 
Mass 

Available 

Gears 

Auxiliary 

Load 

0-20 mph 

1 WOT 1805 kg All 1250 W 

2 Eco 1805 kg All 1250 W 

0-40 mph 

3 WOT 1805 kg All 1250 W 

4 Eco 1805 kg All 1250 W 

0-60 mph 

5 WOT 1805 kg All 1250 W 

6 Eco 1805 kg All 1250 W 

7 WOT 1936 kg All 1250 W 

8 WOT 1805 kg 4th 1250 W 

9 WOT 1805 kg All 1308 W 

2.5 Modeling Environment  

  The model is developed using Matlab Simulink, a visual programming language 

which automatically generates the C code that is ultimately uploaded to the HSC. As a VPL, 

programming is done by connecting various “blocks” that each serve a unique function. There 

are blocks that are intended to be used within the system plant, such as the simple tire blocks 
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which include tire radius and friction, the vehicle body itself which allows the user to define 

parameters such as frontal area or drag, clutches, torque sources, voltage sources and many 

others. Figure 6 shows an annotated diagram of the EM. The plant is responsible for 

mathematically representing the actuators and components that require control. The plant 

includes the ICE, EM, transmission, ESS and vehicle body.  

 

Figure 6: Snapshot of the Plant Model, developed in Matlab Simulink 

There are other blocksets that are intended for use specifically in the system controller. 

The most important of these blocks is the StateFlow block. StateFlow allows the user to define 

system (or subsystem) states. One example of StateFlow within this simulation is the Vehicle 

Operating Mode (VOM) function. This function determines whether the vehicle should be off, 

on but in accessory mode (torque is not available) or run mode. Run mode also includes several 

sub-states, including the CD mode required for this investigation. The VOM StateFlow is 

illustrated in Figure 7. The controllers are responsible for actuating the various components as 

desired. Controllers request a certain amount of torque from torque sources, limit component 

outputs for safety and evaluate the driver’s requests based on the desired velocity and a reverse 

lookup table to determine the appropriate APP.  
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Figure 7: Model StateFlow diagram defining vehicle operational state 

The driver of the vehicle is also considered part of the system. Lateral control is not 

accounted for as part of the model- every drive cycle is assumed to be driven in a perfectly 

straight line. The driver model uses a function that maps pedal position and instantaneous vehicle 

velocity to a desired velocity, and thus the energy required to achieve that velocity. The drive 

trace (such as the UDDS or a 0-60 mph AE) serves as the desired velocity and the model uses 

that value to determine the requisite APP.  
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3.0 In-Vehicle Methods 
 
 
 

In-vehicle testing requires both a control algorithm and data acquisition (DAQ) tools that 

operate in real-time. In-vehicle testing differs from simulation in that regard. Simulations are not 

concerned with signal send rates, CAN timing or errors or the processing power available to the 

HSC. A simulation can execute a 60 minute drive trace in a matter of seconds whereas the drive 

trace would take the full 60 minutes to execute in-vehicle. This is an advantage of controls 

development in the Matlab Simulink environment but a challenge when validating the model. 

Another advantage of developing in both time domains is the ability to incorporate knowledge 

gained during real time in-vehicle testing to the controls development in software. This 

development process creates a feedback loop that allows for safe software integration to the 

vehicle and then software development calibration using in-vehicle results. This process 

increases confidence in the model without having to invest unnecessary resources to improving 

model fidelity for the same result.  

3.2 Definition of Closed Course Environment  

In-vehicle data is collected on a closed course. The closed course is Christman Airfield in 

Fort Collins, CO. This facility is a decommissioned take off/landing strip for small aircraft. It is 

approximately 0.75 miles in length, in a straight line that mimics the lack of lateral control within 

the model and is outdoors. It is exposed to the variable ambient temperature, pressure and 

humidity. The runway experiences a slight road grade, approximately 0.7% in the Southern 

direction, as demonstrated by Figure 8 [18]. In order to ensure that the road grade does not affect 
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results, tests are only executed driving in the Northern direction, starting from a permanently 

marked starting line on the Southern end of the runway.  

 

Figure 8: Elevation change along the runway at Christman Airfield 

3.2 In-Vehicle Data Collection  

As stated in Section 2.1, the software baseline is the vehicle model as it existed at the end 

of the EcoCAR 3 competition. Similarly, the baseline vehicle is the state of the vehicle exactly as 

it existed at the end of the EcoCAR 3 competition. No modifications to the vehicle mass, shift 

schedule or APP map exist in the baseline vehicle (or model). This investigation inserts changes 

to these parameters in order to determine the effects on both the model and the physical system.   

In-vehicle DAQ is executed using a Vector GL1000 CAN Logger. This device logs every 

transmitted and received CAN signal as they occur in real time to a memory card for post 

processing. All the relevant data (velocities, current, voltage, speed, torque, etc.) are reported on 

the CAN bus from various sensors and controllers. There are 2 relevant CAN channels for the 
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purpose of this investigation: one channel facilitates communication between all the hybrid 

components and the other channel facilitates communication between the transmission and other 

stock vehicle controllers. It is the responsibility of the HSC to facilitate this communication and 

the responsibility of the Vector GL1000 to log all of this communication.  

Data analysis follows EPA methods originally developed for the analysis of particulate 

matter in 1999. This study aims to achieve Data Validation Level I. This includes proper data file 

identification, the inclusion of field notes, instrument performance checks as well as the review 

of unusual events and the identification of atypical values (when compared to the rest of the 

dataset) [23]. Data analysis and post-processing is done using Vector CANoe software and 

Matlab. Vector CANoe is used for data management, performance checks and the review of 

unusual events. Matlab is used for statistical analysis to identify atypical values (in addition to all 

calculations required).  

3.3 In-Vehicle Methods  

Closed course testing begins with closing the course from bystanders and potential 

hazards. This course is closed by scheduling the airfield for use as well as signage and barriers to 

prevent entry by unintended personnel. Aggressive driving is defined as a WOT scenario. The 

APP is thus limited to 100%. The driver is expected to tip-in from 0% to the requisite APP as 

fast as possible during the aggressive driving style testing. ECO driving follows the same tip-in 

rate but actuation is limited to 45%. The remaining parameter variations are discussed in detail in 

the following section.  

3.3.1 Inserting Parameter Changes  

The parameters intended for evaluation regarding predicting changes in electrical energy 

consumption are acceleration rate, vehicle mass, auxiliary load and available gears. Inserting 
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these changes in the model is as simple as changing a single number within the model, 

respectively. This section outlines how these changes are replicated in-vehicle.  

The baseline acceleration rate is a WOT scenario where the APP is immediately 100% in 

order to request the most torque as possible from the electrical propulsion system throughout the 

AE. In order to predict a change in electrical energy consumption caused by the acceleration rate, 

an ECO AE is defined as acceleration to the desired velocity at 45% APP. Achieving this 

controlled APP is accomplished by using a simple pedal block. The pedal block is constructed 

out of a piece of wood of the same width as the accelerator pedal itself and taped to the underside 

of the pedal using abrasion resistant Tesa tape. Each test is executed in succession so that 

differences in position or attachment method do not cause unintended changes to results. Before 

starting each test, the APP limit of 45% is verified using real-time CAN monitoring software 

Vector CANoe. The resulting drive trace is then fed back to the model so that the same velocity 

profile can be simulated.  

The increase in vehicle mass is achieved by loading bags of sand into the rear seat of the 

vehicle. The sandbags are weighed and found to be 21.8 kg each. With 6 bags used, the total 

increase in mass is rounded to 131 kg. The downside of this method is that there is nowhere 

besides the rear seat of the vehicle to load this mass. As a rear wheel drive vehicle, increasing the 

mass at the front of the vehicle rather than the wheel could affect the tractive power available at 

the wheel. This simplification is accepted because the system model does not include front-to-

rear weight ratios within its physics so the in-vehicle location of the added mass is still 

comparable.  

The auxiliary load is increased by 58 W by turning every available auxiliary load to its 

highest setting (which were all turned off in baseline and subsequent testing). The vehicle’s stock 
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alternator was removed and replaced with an APM. This component takes HV power from the 

ESS, reduces the voltage to 14 V and uses the current to keep the LV battery charged. The 

systems that are turned on include:  

• Headlights, set on the bright setting  

• AC fans, set to the highest setting  

• Seat warmer, set to the warmest setting  

• Steering wheel warmer  

• Front and rear windshield defrosters  

• Radio, set to the highest volume  

• Hazard lights  

Finally, the gear ratios are controlled by inserting a communication fault between the 

TCM and the Engine Control Module. By limiting communication between these two controllers 

a diagnostic trouble code (DTC) is triggered which limits the transmission to only using 4 th gear. 

This gear is the closest to 1:1 available in this transmission and is meant to protect the 

transmission in the event of a larger problem such that the driver can get the car to a mechanic 

for repairs. Since the rest of the electrical propulsion system is on the custom CAN channel it is 

acceptable that a DTC is active on the second CAN channel.  

3.3 Scope Definition  

The scope of in-vehicle testing and evaluation is limited by the closed course 

requirement. Standard drive cycles are not an option. The scope of the simulation investigation is 

limited to tests that are reliably repeatable at Christman Airfield. The 9 categories of AEs 

outlined in Section 2.4 are repeated until the results are verified as normal. A DOE is useful for 

defining each VIL test that must be executed [17]. The resolution of this DOE is coarse. Trend 
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level validation requires results from at least 2 extremes in variability. As such, each variable and 

AE scenario will only have 2 states: high and low. Table 4 in Section 2.4 illustrates the details of 

this DOE.  
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4.0 Results 
 
 
 

This section summarizes the results of both simulation and in-vehicle testing. Simulation 

results include both the raw electrical energy consumption and energy economy, which is 

electrical energy consumption per mile. However, the in-vehicle results are truncated to only 

energy economy.   

4.1 Simulation Results  
Table 5: Simulation results from the DOE outlined in Section 2.4 

Category Simulation EC (Wh) Simulation EC (Wh/mi) 

0-60 mph WOT 190.4 906.7 

0-60 mph ECO 192.7 856.4 

0-60 mph +MASS 242.6 1102.7 

0-60 mph +AUX 193.2 772.8 

0-60 mph 

+TRANS 
185.8 807.8 

0-40 mph WOT 82.7 1333.2 

0-40 mph ECO 83.7 1288.2 

0-20 mph WOT 33.1 4141.3 

0-20 mph ECO 30.1 3344.4 
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4.2 In-Vehicle Results  

4.2.1 Wide Open Throttle  

In-vehicle results from WOT testing of each category are summarized and compared to 

simulation results in Table 6. The percent error (calculated using the simulation EC as the 

expected value) are categorized as less than 10% (green), between 10% and 20% (yellow).  
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Table 6: WOT results for 0-60, 0-40, 0-20 mph AEs  

Category 
SIL EC 

[Wh/mi] 

VIL EC 

[Wh/mi] 

Error 

(%) 

CI 

[Wh/mi] 

Mean EC 

[Wh/mi] 

%Error of 

the Mean 

Abs. Error 

[Wh/mi] 

0-60mph 

WOT 
906.7 

996.3 9.9% 

(885.9, 

1040.5) 

 

968.2 6.8% 
61.6 (+72.3, 

-82.4) 

892.3 -1.6% 

954.8 5.3% 

991.4 9.3% 

911.9 0.6% 

0-40mph 

WOT 
1333.2 

1302.7 -2.3% 

(1258.3, 

1491.2) 

 

1400.1 5.0% 
66.9 (+91.1, 

-141.8) 

1378.9 3.4% 

1471.5 10.4% 

1396.7 4.8% 

1450.9 8.8% 

0-20 WOT 4141.3 

4078.0 -1.5 
(3856.0, 

4200.1) 

 

4028.0 -2.7% 

-113.2 

(+172.1, 

-172.0) 

4141.9 0.0 

4001.7 -3.4 
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4.2.2 ECO-Driving  

In-vehicle results from eco-driving testing of each category are summarized and 

compared to simulation results in Table 7. Eco-driving for these tests is defined as an aggressive 

tip-in to 45% APP. A constant 45% APP is achieved using a pedal block calibrated such that the 

accelerator pedal cannot be depressed beyond the desired APP. The percent error (calculated 

using the simulation EC as the expected value) are categorized as less than 10% (green) and 

between 10% and 20% (yellow).   

  



31 
 

Table 7: ECO results for 0-60, 0-40, 0-20 mph AEs 

Category 
SIL EC 

[Wh/mi] 

VIL EC 

[Wh/mi] 

Error 

(%) 

CI 

[Wh/mi] 

Mean EC 

[Wh/mi] 

%Error of 

the Mean 

Abs. Error 

[Wh/mi] 

0-60 

ECO 
856.4 

778.7 -9.1% 

(745.5, 

844.4) 
802.0 -6.4% 

-54.4 

(+42.4, 

-56.6) 

826.2 -3.5% 

770.6 -10.0% 

840.9 -1.8% 

793.7 -7.3% 

0-40 

ECO 
1288.2 

1223.2 -5.0% 

(1219.2, 

1450.5) 
1338.6 3.9% 

50.4 

(+111.9, 

-119.4) 

1403.9 9.0% 

1370.6 6.4% 

1355.8 5.3% 

1339.4 4.0 

0-20 

ECO 
3344.4 

3405.3 1.8 

(3204.5, 

3550.9) 
3330.2 -0.4% 

-14.2 

(+220.7, 

-125.7) 

3288.2 -1.7 

3297.1 -1.4 

4.2.3 Driving Under Parameter Variation  

In-vehicle results indicate that the data gathered follows a normal distribution and that 

each AE category can successfully be executed in-vehicle such that the mean percent error is less 

than 10%. Given the standard deviation between percent error of WOT testing (5.3%) and ECO 
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testing (0.7%), the results from each AE category are considered valid. For this reason, further 

VIL testing of the remaining variables (mass, auxiliary load and available transmission gears) is 

only executed in the 0-60 mph AE category. The data from each additional 0-60 mph AE test is 

truncated to both 0-40 mph and 0-20 mph in order to minimize time spent testing in-vehicle. 

Results from these tests are summarized in Table 8.  

Table 8: In-vehicle results using physical parameters of mass, auxiliary load and available gears as variables 

Category 
SIL EC 

[Wh/mi] 

VIL EC 

[Wh/mi] 

Error 

(%) 

CI 

[Wh/mi] 

Mean EC 

[Wh/mi] 

%Error of 

the Mean 

Abs. Error 

[Wh/mi] 

0-60 mph 

+mass 
1102.7 

1020.7 -7.4% 

(996.59, 

1063.7) 
1030.1 -6.6% 

-72.6 

(+33.6, 

-33.5) 

1024.1 -7.1% 

1045.6 -5.2% 

0-60 mph 

+aux 
772.8 

762.4 -1.3% 

(573.6, 

837.6) 
705.6 -8.7% 

-67.2 

(+132.0, 

-132.0) 

697.4 -9.8% 

657.1 -15.0% 

0-60 mph 

+trans 
807.8 

697.5 -13.7 

(659.2, 

712.3) 
685.8 -15.1% 

-122.1 

(+26.5, 

-26.6) 

683.2 -15.4 

676.6 -16.2 

4.2.4 Model Error  

  The model error for each AE category is summarized in Table 9. The model 

overestimates energy consumption for 6 of the 9 AE categories. The minimum absolute total 
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error is 14.2 Wh/mi for the 0-20 mph ECO category which also has the largest confidence 

interval. The maximum total error is 122.1 which also has the smallest confidence interval.  

Table 9: Model error and associated confidence interval (95% confidence) 

Category 
Model Abs. 

Error [Wh/mi] 

Confidence Interval 

[Wh/mi] 
Model %Error 

0-60 mph WOT 61.6 
+133.8 

-20.8 
-6.4% 

0-60 mph ECO -54.4 OUT 6.8% 

0-60 mph +MASS -72.6 OUT 7.0% 

0-60 mph +AUX -67.2 
+64.8 

-199.2 
9.5% 

0-60 mph +TRANS -122.1 OUT 17.8% 

0-40 mph WOT 66.9 
+158.0 

-74.9 
-4.8% 

0-40 mph ECO 50.4 
+162.3 

-69.0 
-3.8% 

0-20 mph WOT -113.2 
+58.9 

-285.3 
2.8% 

0-20 mph ECO -14.2 
+206.5 

-139.9 
0.4% 
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4.2.5 Experimental Error  

It is also important to consider the experimental error in order to validate the testing 

methods. Table 9 summarizes these experimental errors. The overall average relative error is 

2.8%, or 40.7 Wh/mi. The average relative error for baseline tests is 3.0% (62.9 Wh/mi). The 

average relative error for all ECO tests is 2.7% (40.5 Wh/mi). This result agrees with the WOT 

vs. ECO error compared to simulation. The standard deviation of relative error between the 

remaining parameter variations (2.5%) further reinforces that the in-vehicle data collected for 

these categories are considered valid and the main source of error compared to simulation results 

is modeling shortcomings. These results are summarized in Table 10.  
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Table 10: Average experimental error of each AE testing category 

Category 
Avg. Experimental 

Error [Wh/mi] 

CI 

[Wh/mi] 

Avg. Relative Error 

[%] 

0-60 mph WOT 39.4 
+72.3 

-82.4 
4.1 

0-60 mph ECO 25.2 
+42.4 

-56.6 
3.1 

0-60 mph +MASS 31.3 
+33.6 

-33.5 
3.0 

0-60 mph +AUX 37.8 
+132.0 

-132.0 
5.4 

0-60 mph +TRANS 7.8 
+26.5 

-26.6 
1.1 

0-40 mph WOT 48.8 
+91.1 

-141.8 
3.5 

0-40 mph ECO 46.2 
+111.9 

-119.4 
3.4 

0-20 mph WOT 81.9 
+172.1 

-172.0 
2.5 

0-20 mph ECO 50.1 
+220.7 

-125.7 
1.5 
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4.2.6 Total Error  

Total error encapsulates both the model error (Sections 4.2.1-4.2.3) and experimental 

error (Section 4.2.4). The function of the total error is to determine the bounds within which 

results can be considered valid as well as inform the tester whether a simulation result can be 

replicated in-vehicle. The total error is summarized in Table 11:  

Table 11: Total error, from both model and experimental error 

Category 
Total Error 

[Wh/mi] 

0-60 mph WOT ±90.1 

0-60 mph ECO ±74.8 

0-60 mph +MASS ±99.5 

0-60 mph +AUX ±91.0 

0-60 mph +TRANS ±160.1 

0-40 mph WOT ±96.8 

0-40 mph ECO ±72.6 

0-20 mph WOT ±157.0 

0-20 mph ECO ±19.5 
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5.0 Discussion 

 
 
 
5.1 Comparing Simulation and In-Vehicle Results  

On average, across all evaluation categories, the vehicle model and simulation results are 

able to predict the electrical energy consumption of the vehicle within 6.5%, ignoring 

experimental error. These results indicate that the model is sufficient for predicting electrical 

energy consumption changes that are within ±30.2 Wh/mi. Changes to the system that result in a 

modeled change in electrical energy consumption that is less than ±30.2 Wh/mi cannot be 

reliably replicated in-vehicle. These results are summarized in Figure 9.  

 

Figure 9: Energy consumption per mile, with standard error bars 
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Results indicate a trend showing that low speed simulated AEs are more reliably 

replicated in-vehicle. The average error for 0-20 mph AEs, between WOT and ECO scenarios, is 

2.3%, or ±54.2 Wh/mi. The average errors for 0-40 mph and 0-60 mph AEs (WOT and ECO 

scenarios) are 5.9% (±38.3 Wh/mi) and 5.3% (±21.4 Wh/mi), respectively. The increase in error 

at greater velocities can be explained by the closed course testing facility available to the VIT 

and the increase in error as ∆Elevation increases. However, it is important to also consider the 

error caused by in-vehicle experimentation in the model’s ability to predict electrical energy 

consumption to fully comprehend the model’s ability to predict changes in electrical energy 

consumption.    

5.2 Sources of Model Error  

Chirstman Airfield has an upward grade of roughly 0.7%, or a change in elevation of 26.2 

ft. over 0.7 miles, when traveling in the Southern direction. The 0-20 mph AEs cover a distance 

of roughly 2-5% of a mile, or a maximum of 264 ft. The 0-20 mph AE experiences a change in 

elevation of only 0.21 - 0.24 ft. In contrast, a 0-40 mph AE experiences an elevation change of 

1.41 - 1.65 ft. and a 0-60 mph AE experiences a change of 5.24 - 6.55 ft. The vehicle model is 

simulated at 0% grade. This means that the model does not account for the increased energy 

required to travel up a hill or the reduced energy required to travel down a hill. The relative lack 

of elevation change experienced during 0-20 mph AEs corresponds to lower average model 

error. Accordingly, the AE categories that require a longer distance to travel correspond to a 

greater average error between simulation and experiment. The outlier is AEs executed in a single 

gear (0-60 mph +trans). These conclusions are summarized in Table 12.  
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Table 12: Error between simulation and experimentation compared to change in elevation caused by travel distance 

Category ΔElevation (ft) 
Average %Error 

of the Mean 

0-60 MPH 1.29 6.6% 

0-40 MPH 0.51 4.5% 

0-20 MPH 0.03 1.6% 

0-60 mph 

+mass 
1.57 6.6% 

0-60 mph 

+aux 
1.58 8.7% 

0-60 mph 

+trans 
0.26 15.1% 

Across all evaluation categories, the average model error in prediction of energy 

consumption is 6.5%, or a standard error of ±30.2 Wh/mi. However, the results show that 

modeling and simulation struggles more to predict changes in EC with changes to physical 

vehicle parameters. The baseline results show that the model predicts EC, with 95% confidence, 

within 4.8%. Modeling the driver in ECO driving scenarios results in an average error of 4.98%. 

However, the average model error increases when varying the physical parameters considered in 
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this study. The average error when the mass is increased is 6.6%, when the auxiliary load is 

increased, is 9.2%. When the transmission is limited to 1 gear the model error is 15.1%.    

This study confirms the model is capable of predicting the change in electrical energy 

consumption when mass is increased. The baseline 0-60 mph WOT test resulted in an average 

consumption of 968.2 Wh/mi. Increasing the mass by 130.6 kg correlates to an increase invehicle 

of 61.9 Wh/mi. The model is able to predict this increase within 6.6%, or ±8.6 Wh/mi. This 

result is in line with the standard error of the model as well. This is useful for the TVP project 

because the mass of the vehicle is expected to increase as the vehicle is electrified because 

additional components outweigh those that may be removed.   

The model is also adequate in predicting the change in electrical energy consumption as 

the auxiliary load increases, although with slightly greater error than the other AE categories. 

This category shows that the model predicts this electrical energy consumption to within 9.2%, 

or ±53.1 Wh/mi. While this result is still in line with the overall standard error found in the 

model, the increased error indicates the Plant Model of the accessory power module could be 

improved.  

Finally, the model shows the most error in predicting electrical energy consumption when 

the vehicle is limited to a single gear. On average, the model predicts a change in energy 

consumption that is 15.1% greater than what is recorded in-vehicle, or 122 Wh/mi. While the 

error is greatest in this category, the data collected in-vehicle is normal and resulted in the 

smallest standard deviation across all AE categories tested. These results indicate that this error 

may be due to a shortcoming of the model. Since the Controller Model of the TCM simply 

models the shift schedule and gear ratios of the transmission, it is most likely that this error stems 

from the Plant Model of the transmission itself. The Plant Model is more complex with models 
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of each transmission clutch, inertial losses and it interacts with the efficiency map of the EM. It 

is plausible that such losses are overestimated when only operating in a single gear or that the 

efficiency map itself is slightly inaccurate. However, experimental error must also be considered 

with context to fully understand how well the model is able to predict in-vehicle changes to 

electrical energy consumption.  

5.2 Experimental Error  

Average experimental error across all AE categories is 3.0%, or ±41.2 Wh/mi. The 

primary drivers of experimental error in this study are test execution and environmental factors 

such as headwind or temperature. Test execution includes the starting location of each AE, the 

direction of travel, the tip-in rate of the APP and the amount of lateral control of the vehicle. In 

order to minimize this error each test must begin at the same location and travel in the same 

direction. The tip-in rate must also be consistent. Finally, the ideal test is executed in a perfectly 

straight line. This methodology should improve the consistency of energy consumed and 

distance traveled for each AE.  

Environmental factors are harder to control. A headwind (wind blowing in the opposite 

direction as travel) increases energy consumption compared to no wind or a tailwind (wind 

blowing in the same direction as travel). A higher ambient temperature also increases the burden 

on component cooling systems. As discussed in Section 2.3, increasing this burden increases 

total overall energy consumption because the APM is required to supply more 14V current to the 

LV battery. In order to better control this source of error it is important to include environmental 

measurements in the field notes of each test (Section 3.2). Doing so allows the tester to identify 

environmental conditions that may cause abnormal results and to select when environmental 

conditions are appropriate for testing.   
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Average experimental error is smallest when executing the 0-60 WOT +TRANS AE 

category at 1.1%. This is most likely because of the dynamic nature of executing transmission 

shifts in-vehicle. The model simulates these shifts consistently (shifts consistently occur at nearly 

the exact same time and vehicle velocity under baseline conditions). However, in-vehicle the 

shifting is not as consistent. The shift from 1-2 occurs between 8-14 mph, 2-3 occurs between 

23-28 mph, 3-4 occurs between 35-43 mph and the shift between 4-5 may not occur until 57 

mph. Restricting the transmission to 1 gear eliminates this variability, thus minimizing 

experimental error.  

Testing with increased mass results in the next greatest average experimental error under 

parameter variation at 3.0%. The mass of the vehicle, when properly secured, is not dynamic. 

Even though the model does not account for front/rear mass ratio the mass of the vehicle as a 

system does not change during an AE. Executing tests with increased mass can be executed 

repeatedly in-vehicle with little variability.   

Experimental error is greatest, however, when executing the 0-60 mph +AUX AE 

category with 5.4% error. This is most likely caused by the dynamic nature of an auxiliary load. 

Auxiliary components- such as fans, heaters or the radio- are inherently reactionary to the current 

voltage of the battery. The APM controller aims to keep the LV battery at a certain voltage 

(13.5V in this study). As the auxiliary load changes during any given AE, especially with an 

increased load on the LV battery, the APM must react via PID control. Imperfect PID control, or 

lacking CAN transmission rates, leads to increased variability in APM functionality [27].  

5.3 Total Error  

The total error gives a final view as to how well the model can predict electrical energy 

consumption given both the errors driven by discrepancies between modeling and in-vehicle 
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results as well as errors driven by experimental factors. Across all AE categories the average 

total error is 95.7 Wh/mi. This result indicates that, when considering both modeling and 

experimental errors, simulated changes to electrical energy changes less than |95.7 Wh/mi| 

cannot be reliably replicated in-vehicle.  

The results when considering both sources of error as total error paint a different picture. 

The greatest sources of total error are the vehicle parameters that are varied for testing (mass, 

auxiliary load and available gears). The 0-60 mph +TRANS AE category results in the greatest 

total error at 17.8%. This error is primarily driven by simulation shortcomings in dynamically 

modelling shifts. Results from 0-60 mph +MASS testing results in the next greatest total error at 

7.7%. Testing 0-60 mph +AUX results in the greatest total error, 10.9%. This error is, again, 

driven by the lack of dynamic auxiliary load modelling.   

The next greatest total error results from executing the baseline WOT tests (5.6%). This 

error is most likely attributed to the variability noted in Section 2.2. Variations in the total 

distance traveled directly result in errors of electrical energy consumed per mile. This variation is 

also a result of variation in shift timing. This explains why ECO tests result in less error (4.7%). 

ECO tests showed a smaller window for executing gear changes, more closely matching what is 

simulated.  

5.4 Implications for Toyota Test Vehicle Platform and Future Work  

This study is intended to inform future development of an ongoing project by the VIT. 

This project, the Toyota TVP, is aimed at implementing predictive propulsion control of a P3 

PHEV 2018 Toyota Tacoma in order to reduce energy consumption during AEs. The results of 

this study indicate that the most efficient manner of reducing energy consumption can be 

achieved by controlling the acceleration rate of the vehicle via the APP. If the TVP is 



44 
 

approaching a known AE the best way to reduce electrical energy consumption is to limit the 

APP to a less aggressive position no matter how the physical APP as actuated by the driver. On 

average, ECO driving saves 308.5 Wh/mi compared to WOT scenarios. The model is able to 

predict this change within 2.7%.  

The methodology discussed in this investigation is also applicable to the Toyota TVP 

project. This project will also use Christman Airfield for closed course testing and, as shown in 

Table 8, the road grade of the runway introduces greater error to the ability of the model to 

predict energy consumption. For Toyota TVP testing, it is important for the team members to 

begin each test from the same location and execute them in the same direction. It also indicates 

that including road grade in the system model could help to reduce model error.  

The greatest amount of error resulted from the Plant Model of the transmission and 

propulsion through the transmission using only 1 gear. Predicting electrical energy consumption 

during this AE scenario results a total error of 122.3 Wh/mi. Further work in modeling 

transmission dynamics and shift schedules could reduce this error. This would be beneficial 

moving forward with advanced vehicle technologies as electrification becomes more prominent. 

Furthermore, the Toyota TVP involves a P3 propulsion system architecture in which the EM is 

downstream of the transmission. As such, the EM’s torque and speed will not be changing the 

same way a torque source upstream of the transmission does.   

Improved modeling of power losses through the powertrain could also help to improve 

the validity of the model, especially when modeling changes to the physical parameters 

discussed in these studies. Among the AEs tested with increased mass, increased auxiliary load 

and limited available gears all results showed that the model over-predicted the change in 

electrical energy consumption. All data from these in-vehicle tests resulted in energy 
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consumption lower than that predicted by the simulations. Improving the Plant and Controller 

modeling of these subsystems (such as the vehicle body, accessory power module and 

transmission) could help to reduce the overall error of the model and reduce the value of change 

in energy consumption required to confidently replicate the change in-vehicle. In order to 

accomplish this, the model could include front/rear mass distribution in order to more accurately 

represent the tractive force at the driving wheel or include dynamic auxiliary loads as various 

auxiliary components (primarily cooling pumps and fans) turn on or off. This work is relevant to 

the Toyota TVP project because this study showed an increase in model error when testing 

increased auxiliary loads when compared to baseline, ECO and increased mass results. Having a 

clear understanding of the effects of the auxiliary load on energy consumption is vital for the 

TVP as that is one possible parameter that could be optimized when AEs are predicted.  

More work in automating testing would also be beneficial for the workflow of the team, 

both in simulation and in-vehicle. Automating simulation testing will decrease the total time 

required to simulate control strategy and parameter changes. Instead of manually changing the 

desired parameters or subsystems, a script can be written to automatically do so and minimize 

the need for simulation downtime. Automating in-vehicle testing can be accomplished by giving 

the HSC control of the APP. This strategy eliminates the need for a pedal block as well as the 

testing issue of tip-in rate while conducting more complex testing of acceleration rate. This 

method also reduces the need for operator training or inconsistent execution of tests as it is not 

necessary for the operator to watch/memorize a velocity trace while executing a test. Future 

work on the Toyota TVP will include naturalistic driving scenarios, which are difficult to 

reliably and consistently replicate with a human driver. Automating in-vehicle testing would 
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result in more consistent execution of complex drive cycles, more reliable data and less work or 

resources lost.   
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6.0 Conclusions 
 
 
 

The vehicle modeling, simulation and testing methodologies discussed in this study are 

sufficient for practical control system development for CSU’s VIT in future AVTCs and the 

Toyota TVP project. The vehicle testing methodology employed and resulting better 

understanding of the limitations in predicting energy consumption through modeling and 

simulation will improve the team’s future VDPs.   

The modeling and simulation methods discussed result in an average total error of 5.2%, 

or ±83.4 Wh/mi. This result indicates that simulation results that do not result in a change of 

greater or less than 83.4 Wh/mi then the team cannot say with 95% confidence that the change 

can be reliably replicated in-vehicle. Understanding this limitation allows the team to streamline 

the workflow such that unnecessary and unfeasible in-vehicle tests can be omitted.  

Furthermore, the in-vehicle testing methodology is better informed for obtaining 

consistent and statistically relevant results. It is feasible to measure changes in electrical energy 

consumption without the use of expensive equipment such as chassis dynamometers or 

additional sensors such as high resolution current measurement systems. It is important for the 

team to begin tests at a consistent starting point and travel in a consistent direction. It is also 

important for the team to understand the limitations of the testing facility available to them, 

Christman Airfield. This facility has a slight positive grade in the Southern direction and has 

limited availability. Understanding these limitations allows the team to more efficiently execute 

tests in-vehicle such that the resulting data is reliable and relevant.  

This study is also useful for many other automotive engineering projects with access to 

an in-vehicle CAN bus. This method of communication and data acquisition is adequate for 
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relaying all necessary sensor information and reliably logging such data. Even without access to 

the manufacturer’s CAN database, it is feasible to construct a custom CAN channel for control 

and data acquisition of non-stock electrical propulsion systems.  
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LIST OF ABBREVIATIONS 
 
 
 

AE  Acceleration Event  

APP  Accelerator Pedal Position  

AVTC  Advanced Vehicle Technology Competition  

APM  Auxiliary Power Module  

BEV  Battery Electric Vehicle  

BSFC  Brake Specific Fuel Consumption  

CD  Charge Depleting  

CSU  Colorado State University  

CAN  Controller Area Network  

DAQ  Data Acquisition  

DOE  Design of Experiments  

DTC  Diagnostic Trouble Code  

EM  Electric Motor  

ECO  Energy Economic Driving  

ESS  Energy Storage System  

HV  High Voltage  

HEV  Hybrid Electric Vehicle  

HSC  Hybrid Supervisory Controller  
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ICE  Internal Combustion Engine  

ISO  International Organization of Standardization  

LV  Low Voltage  

OBD  On-board Diagnostics  

OEM  Optimal Energy Management  

PHEV  Plug-in Hybrid Electric Vehicle  

PID  Proportional, Integral, Derivative  

POEM  Predictive Optimal Energy Management  

SAE  Society of Automotive Engineers  

SOC  State of Charge  

TVP  Test Vehicle Platform  

TCM  Transmission Control Module  

UDDS  Urban Dynamometer Drive Schedule  

VDP  Vehicle Development Process  

VIT  Vehicle Innovation Team  

VOM  Vehicle Operating Mode  

WOT  Wide Open Throttle (100% APP)  

 


