Repository logo
 

Bayesian data assimilation for CFD modeling of turbulent combustion

dc.contributor.authorWang, Yijun, author
dc.contributor.authorGao, Xinfeng, advisor
dc.contributor.authorZupanski, Milija, committee member
dc.contributor.authorGuzik, Stephen, committee member
dc.contributor.authorWindom, Bret, committee member
dc.contributor.authorKoslovsky, Matthew, committee member
dc.date.accessioned2022-05-30T10:22:45Z
dc.date.available2022-05-30T10:22:45Z
dc.date.issued2022
dc.description.abstractAchieving accurate CFD prediction of turbulent combustion is challenging due to the multiscale nature of the dynamical system and the need to understand the effect of the small-scale physical features. Since direct numerical simulation (DNS) is still not feasible even for today's computing power, Reynolds-averaged Navier-Stokes (RANS) or large-eddy simulation (LES) is commonly used as the practical approach for turbulent combustion modeling. Nevertheless, physical models employed by RANS or LES for describing the interactions between the turbulence, chemical kinetics, and thermodynamic properties of the fluid are often inadequate because of the uncertainties in the dynamical system, including those in the model parameters, initial and boundary conditions, and numerical methods. Understanding and reducing these uncertainties are critical to the CFD prediction of turbulence and chemical reactions. To achieve this, this dissertation is focused on the development of a Bayesian computational framework for the uncertainty estimation of the dynamical system. In the framework, a data assimilation (DA) algorithm is integrated to obtain a more accurate solution by combining the CFD model and available data. This research details the development, verification, and validation of a multi-algorithm system (referred to as DA+CFD system) that aims to increase the predictability of CFD modeling of turbulent and combusting flows. Specifically, in this research, we develop and apply a Bayesian computational framework by integrating our high-order CFD algorithm, Chord, with the maximum likelihood ensemble filter to improve the CFD prediction of turbulent combustion in complex geometry. The verified and validated system is applied to a time-evolving, reacting shear-layer mixing problem and turbulent flows in a bluff-body combustor with and without C3H8-air combustion. Results demonstrate the powerful capability of the DA+CFD system in improving our understanding of the uncertainties in model and data and the impact of data on the model. This research makes novel contributions, including (i) the development of a new alternative approach to improve the predictability of CFD modeling of turbulent combustion by applying data assimilation, (ii) the derivation of new insights on factors, such as where, what, and when data should be assimilated and thus providing potential guidance to experimental design, and (iii) the demonstration of data assimilation as a potentially powerful approach to improve CFD modeling of turbulent combustion in engineering applications and reduce the uncertainties with data. Future work will focus on a performance study of the present DA+CFD system for turbulent combustion of high Reynolds numbers and understanding the uncertainty in model parameters for developing and assessing physical models based on available information.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierWang_colostate_0053A_17118.pdf
dc.identifier.urihttps://hdl.handle.net/10217/235317
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2020-
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectdata assimilation
dc.subjectturbulent combustion
dc.subjectmaximum likelihood ensemble filter
dc.subjectCFD with data assimilation
dc.titleBayesian data assimilation for CFD modeling of turbulent combustion
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineMechanical Engineering
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wang_colostate_0053A_17118.pdf
Size:
17.77 MB
Format:
Adobe Portable Document Format