Repository logo
 

Integration of task-attribute based access control model for mobile workflow authorization and management

dc.contributor.authorBasnet, Rejina, author
dc.contributor.authorRay, Indrakshi, advisor
dc.contributor.authorAbdunabi, Ramadan, advisor
dc.contributor.authorRay, Indrajit, committee member
dc.contributor.authorVijayasarathy, Leo R., committee member
dc.date.accessioned2019-06-14T17:06:10Z
dc.date.available2019-06-14T17:06:10Z
dc.date.issued2019
dc.description.abstractWorkflow is the automation of process logistics for managing simple every day to complex multi-user tasks. By defining a workflow with proper constraints, an organization can improve its efficiency, responsiveness, profitability, and security. In addition, mobile technology and cloud computing has enabled wireless data transmission, receipt and allows the workflows to be executed at any time and from any place. At the same time, security concerns arise because unauthorized users may get access to sensitive data or services from lost or stolen nomadic devices. Additionally, some tasks and information associated are location and time sensitive in nature. These security and usability challenges demand the employment of access control in a mobile workflow system to express fine-grained authorization rules for actors to perform tasks on-site and at certain time intervals. For example, if an individual is assigned a task to survey certain location, it is crucial that the individual is present in the very location while entering the data and all the data entered remotely is safe and secure. In this work, we formally defined an authorization model for mobile workflows. The authorization model was based on the NIST(Next Generation Access Control) where user attributes, resources attributes, and environment attributes decide who has access to what resources. In our model, we introduced the concept of spatio temporal zone attribute that captures the time and location as to when and where tasks could be executed. The model also captured the relationships between the various components and identified how they were dependent on time and location. It captured separation of duty constraints that prevented an authorized user from executing conflicting tasks and dependency of task constraints which imposed further restrictions on who could execute the tasks. The model was dynamic and allowed the access control configuration to change through obligations. The model had various constraints that may conflict with each other or introduce inconsistencies. Towards this end, we simulated the model using Timed Colored Petri Nets (TCPN) and ran queries to ensure the integrity of the model. The access control information was stored in the Neo4j graph database. We demonstrated the feasibility and usefulness of this method through performance analysis. Overall, we tended to explore and verify the necessity of access control for security as well as management of workflows. This work resulted in the development of secure, accountable, transparent, efficient, and usable workflows that could be deployed by enterprises.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierBasnet_colostate_0053N_15363.pdf
dc.identifier.urihttps://hdl.handle.net/10217/195323
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectattribute based access control
dc.subjectTCPN analysis
dc.subjectworkflow security
dc.subjectpolicy machine
dc.subjectaccess control
dc.subjectworkflow management
dc.titleIntegration of task-attribute based access control model for mobile workflow authorization and management
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineComputer Science
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Basnet_colostate_0053N_15363.pdf
Size:
2.02 MB
Format:
Adobe Portable Document Format