
THESIS

INTEGRATION OF TASK-ATTRIBUTE BASED ACCESS CONTROL MODEL FOR MOBILE

WORKFLOW AUTHORIZATION AND MANAGEMENT

Submitted by

Rejina Basnet

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2019

Master’s Committee:

Advisor: Dr. Indrakshi Ray

Co-Advisor: Dr. Ramadan Abdunabi

Dr. Indrajit Ray

Dr. Leo R. Vijayasarathy

Copyright by Rejina Basnet 2019

All Rights Reserved

ABSTRACT

INTEGRATION OF TASK-ATTRIBUTE BASED ACCESS CONTROL MODEL FOR MOBILE

WORKFLOW AUTHORIZATION AND MANAGEMENT

Workflow is the automation of process logistics for managing simple everyday to complex

multi-user tasks. By defining a workflow with proper constraints, an organization can improve

its efficiency, responsiveness, profitability, and security. In addition, mobile technology and cloud

computing has enabled wireless data transmission, receipt and allows the workflows to be executed

at any time and from any place. At the same time, security concerns arise because unauthorized

users may get access to sensitive data or services from lost or stolen nomadic devices. Additionally,

some tasks and information associated are location and time sensitive in nature. These security

and usability challenges demand the employment of access control in a mobile workflow system

to express fine-grained authorization rules for actors to perform tasks on-site and at certain time

intervals. For example, if an individual is assigned a task to survey certain location, it is crucial

that the individual is present in the very location while entering the data and all the data entered

remotely is safe and secure.

In this work, we formally defined an authorization model for mobile workflows. The autho-

rization model was based on the NIST(Next Generation Access Control) where user attributes,

resources attributes, and environment attributes decide who has access to what resources. In our

model, we introduced the concept of spatio temporal zone attribute that captures the time and lo-

cation as to when and where tasks could be executed. The model also captured the relationships

between the various components and identified how they were dependent on time and location. It

captured separation of duty constraints that prevented an authorized user from executing conflicting

tasks and dependency of task constraints which imposed further restrictions on who could execute

the tasks. The model was dynamic and allowed the access control configuration to change through

ii

obligations. The model had various constraints that may conflict with each other or introduce in-

consistencies. Towards this end, we simulated the model using Timed Colored Petri Nets (TCPN)

and ran queries to ensure the integrity of the model. The access control information was stored in

the Neo4j graph database. We demonstrated the feasibility and usefulness of this method through

performance analysis. Overall, we tended to explore and verify the necessity of access control for

security as well as management of workflows. This work resulted in the development of secure,

accountable, transparent, efficient, and usable workflows that could be deployed by enterprises.

iii

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my advisors, Dr. Indrakshi Ray and

Dr. Ramadan Abdunabi, for their constant and long-enduring support. I have learned a great deal

from them through their guidance and supervision. Their immense knowledge in the field has been

of great help during this thesis work.

I want to extend my special thanks to my thesis committee members, Dr. Indrajit Ray and

Dr. Leo R. Vijayasarathy, for providing me with their insightful comments and encouragement

throughout my research work. Furthermore, I would also like to express my sincere thanks to all

members of my research lab for their collaboration and continual assistance.

All my friends at CSU have been an indispensable part of my academic life as well as my

personal life. Especially, Wendy Stevenson, Administrative Assistant for the Department of Com-

puter Science, who has supported me with her wise opinions and assistance during different events

throughout the process. I heartily thank them for all their ever-lasting love and care.

Last but not least, I would like to thank my family and friends from Nepal, for having faith

in me and supporting my higher studies despite all the odds. I would not have become who I am

today without their love and encouragement.

iv

DEDICATION

To my parents

v

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF TABLES . ix

LIST OF FIGURES . x

Chapter 1 Introduction . 1

1.1 Underlying Problem . 1

1.2 Our Approach . 3

1.3 Thesis Organization . 4

Chapter 2 Literature Review . 5

2.1 Information System and Management . 5

2.2 Access Control Mechanism . 6

Chapter 3 Motivation Example:Dengue Decision Support System (DDSS) 10

Chapter 4 System Architecture . 12

4.1 Workflow Formulation Module . 12

4.1.1 Example Workflow model . 16

4.2 Workflow Management Module . 17

4.2.1 Example Workflow Instantiation: . 19

4.3 Access Control Module . 20

Chapter 5 Location and Time Models . 23

5.1 Location Model . 23

5.2 Time Model . 26

Chapter 6 Task-Attribute Based Workflow Authorization Model 27

6.1 Entities . 29

6.1.1 Users . 29

6.1.2 Objects . 29

6.1.3 User Attributes . 30

6.1.4 Object Attributes . 30

6.1.5 Spatio-temporal Zones . 31

6.1.6 Tasks . 32

6.1.7 Operations . 32

6.1.8 Policy Classes . 33

6.1.9 Policy Elements . 33

6.2 Relationships . 33

6.2.1 Assignment . 34

6.2.2 Attribute Hierarchy . 36

vi

6.2.3 Attribute Enabling-usage . 38

6.2.4 Association . 39

6.2.5 Processing . 40

6.2.6 Prohibitions . 41

6.2.7 Obligations . 41

6.3 Constraints . 42

6.3.1 Separation of Duty . 43

6.3.2 Trigger Constraint . 45

6.3.3 Dependency of Activities . 45

6.3.4 Cardinality Constraint . 46

6.4 Check Access . 47

6.4.1 Relation derivation . 48

6.5 Authorization Graph . 49

Chapter 7 Analysis of Workflow with Authorization Constraints 58

7.1 Background: Timed Colored Petri Nets(TCPN) 59

7.2 Formal Definition: TCPN . 60

7.3 TCPN based model for mobile Workflow System 62

7.3.1 Workflow Control Flow in TCPN . 66

7.3.2 Special Cases . 68

7.3.3 Hierarchical Model . 69

7.3.4 Model Simulation . 71

7.4 Model Analysis . 71

7.4.1 State Space (Reachability) Graph . 73

7.4.2 Analysis of Hierarchical TCPN . 76

7.4.3 State-Space Verification Queries . 79

7.4.4 Hierarchical Model After application of Correction measures identified

from analysis of Sliced Model . 88

7.4.5 Model Performance . 91

Chapter 8 The Enforcement Mechanism . 93

8.1 Solution Architecture . 93

8.2 Protocols for secure communication . 95

8.2.1 Assumptions on the system . 95

8.2.2 Steps of the Protocol . 96

8.3 Specifications of Authorization Graph in Neo4j 97

8.4 Experimental Setup . 101

8.4.1 Algorithm for Processing of Authorization Graph 101

8.4.2 Correctness of the algorithm . 101

8.4.3 Performance of the algorithm . 103

8.4.4 Experimental Evaluation . 104

Chapter 9 Conclusion and Future Work . 109

9.1 Conclusion . 109

9.2 Future Work . 111

vii

Bibliography . 113

viii

LIST OF TABLES

6.1 Input Data Structure for authorization graph . 51

6.2 Input Data Structure for Example Authorization Graph 53

7.1 Standard State Space report for Sliced Model . 79

7.2 Table for Standard Report (Hierarchical Model) After all corrections are performed . . 89

7.3 Table for Comparison of performance between two models 92

ix

LIST OF FIGURES

4.1 System Architecture . 13

6.1 Task-Attribute Based Access Control Model . 28

6.2 Example of Authorization Graph from Algorithm . 53

6.3 Authorization graph for DDSS . 57

7.1 Example TCPN . 63

7.2 ControlFlow in TCPN model . 67

7.3 Special cases in TCPN model . 68

7.4 Hierarchical Structure for TCPN Model . 70

7.5 Hierarchical TCPN model . 72

7.6 UAHierarchySOD with Initial markings . 74

7.7 State Space Graph:UAHierarchySOD . 75

7.8 Hierarchical TCPN model after Slicing . 78

7.9 Output to Deadlock Detection Query for UAHierarchySOD 82

7.10 State Information of Partial Graph . 83

7.11 Improved nets from Hierarchical MOdel . 90

8.1 System Architecture . 95

8.2 Neo4j Authorization Graph . 100

8.3 Experimental Setup . 104

8.4 Performance Result using NetworkX . 105

8.5 Performance Result . 106

x

Chapter 1

Introduction

Work Flow Management is a fast-evolving technology which is increasingly being exploited

by businesses in a variety of industries. Its primary characteristic is the automation of processes

involving combinations of human and machine-based activities, particularly those involving inter-

action with IT applications and tools [1]. A workflow consists of a set of partially ordered tasks

designed to achieve a goal. Tasks represent the logical unit of work that is executed in a workflow

via one or more authorized users. A participant (a human being or machine agent) assigned to

execute a task requires access to system resources. Workflow provides the required resources on

required time to proper participants through a set of authorization rules that govern the relation-

ship between users, tasks, and resources. A workflow management system defines, manages and

executes “workflow” through the execution of software whose order of execution is driven by a

computer representation of the workflow logic [1].

The growth of mobile technology has benefited numerous workflow domains including e-

commerce, electronic government, health care, and power control systems. For example, mobile

health care applications [2] can detect and alert medical professionals of a patient’s fall anytime

and anywhere. Also, iMedik [3] is a mobile telemedicine application accessible by handheld

devices that are integrated with Global Positioning System (GPS).

Through proper specification and execution of a workflow, business processes can improve

their productivity and accountability. The addition of mobile technologies makes it more flexible

and reachable. Therefore, the mobile workflow along with a proper management system aids the

development of the organization.

1.1 Underlying Problem

To ensure proper execution of the workflow task, the dependencies between the task needs to

be addressed. The task dependencies can be static as well as dynamic. Dynamic dependencies

1

might occur due to certain chances after the workflow has been executed. Also, there can be con-

straints related to a specific task itself. Considering mobile workflow, some task might need to be

performed on a certain location and time. The mobility also requires the availability of the infor-

mation; therefore stored in the ubiquitous cloud. This creates security and usability challenges.

The valuable information is stored as well as risk for breaches. Intruders might get access to the

system through stolen or lost nomadic devices causing controversial updates: infesting deadlocks,

obstructing time-sensitive task, jeopardizing the schedule, and so on.

We believed that the authorization rules could be utilized to control the execution of tasks

while ensuring task execution by legitimate actors and, therefore, the data security, efficiency,

and productivity in a workflow would be preserved. To prevent fraudulent actions, rules must be

expressed for the control flow, assignment, execution, and separation of the duties of tasks. Previ-

ously Role-Based Access control (RBAC) model [4] was used to formally define and implement

the authorization rules of a workflow. It controls access based on the roles that users have within

the system and on rules stating what access was allowed for what users in given roles. The concept

of roles is useful in reducing administrative work and maximizing operational efficiency. Further-

more, researchers have advocated RBAC with spatial and temporal constraints. To the best of our

knowledge, the most known and detailed spatio-temporal RBAC extensions are in [5–9]. However,

the RBAC model is not appropriate for complex workflows applications involving inter industries

(have different role structure) communication.

Existing works have authorized access based on the present environmental conditions related

to a user but did not provide mechanisms for persistent spatio-temporal control enforcement after

resources have been accessed. Neither did they consider the impact of spatio-temporal constraints

on user-role assignment or permission-role assignment [4]. In situations where organizations have

a huge set of roles, RBAC could encounter the role explosion problem which could be a major

drawback of the RBAC model [10].

2

1.2 Our Approach

To avoid RBAC’s “role explosion” and to provide higher agility, Attribute-Based Access Con-

trol (ABAC) model was introduced [11]. In this model, access could be determined based on

various attributes presented by a subject. The ABAC controls access based on three different at-

tribute types: user attributes, attributes associated with the application or system to be accessed,

and current environmental conditions. Also, ABAC model provides dynamic, fine-grained and

context-aware access control to resources allowing access control policies that include specific at-

tributes from many different information systems to be defined to resolve authorization and achieve

efficient regulatory compliance, allowing enterprises flexibility in their implementations based on

their existing infrastructures [12].

In this work, we tended to merge the essential aspects from both RBAC and ABAC to extend

the earlier work on workflows along several dimensions. Firstly, we provided a multi-modular

architecture that represented and executed ordered tasks to fulfill the business needs. It improved

the adaptability and helped in risk management. Not only did it enforced the process logistics but

enforces the access control, control flow, and the constraints. Information required was shared

between the modules among which the authoritative decisions were made by an access control

module based on our proposed dynamic, spatio-temporal access control model introduced as Task-

Attribute Based Access Control (T-ABAC).

In our model, we introduced the concept of spatio-temporal zone attribute that captured the time

and location as to when and where tasks could be executed. Abstracting location and time into a

single STZone also reduced the number of entities in the model, making it easier to understand,

manage, and verify. The ability of the model to represent the real-life relationship between the

entities help to address all the major components required for the workflows. It explicitly modeled

the resources and, therefore, handled the workflow situation where access to the object may be

contingent on its location as mentioned in [13].

The access-control components were entered in a formal verification tool for the automaton

checkers to detect any contradiction of policy rules or incompleteness. Researchers have proposed

3

automated analysis approaches for existing formal method notations and tools. Examples included

UML/OCL [14, 15], Alloy [16, 17], and Colored Petri Nets [18, 19]. Due to the presence of hard

real-time properties, we simulated the model using Time Colored Petri Nets(TCPN).

Finally, we introduced a platform-independent architecture model for designing mobile work-

flow applications enforcing an access control policy from an abstract perspective to the context of

the real-life application. For the analysis, the policies were represented as the authorization graph

using the policy machine constructs and enforced with Neo4j (an open source graph database sys-

tem) and extended by the inclusion of a graph algorithm to traverse the authorization graph. We

analyzed the efficacy of the algorithm in terms of the time required to answer the queries. In addi-

tion, we also analyzed the correctness of the authorization graph or policy representation. Hence,

the analysis helped us explore the usability of our implementation in real-time systems and helped

discover the factors to increase efficiency and performance.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents a few previous works and

a brief comparison with our work. Chapter 3 presents the real-world mobile workflow which

served as problem reference that was being solved through this work. In Chapter 4 we show an

architecture to create and enforce a well-managed workflow system. It is followed by Chapter 5

where we describe our location and time model and further continue with Task-Attribute Based

Access Control Model in Chapter 6. We introduce all the components, their relationships, and

mathematical derivation of access in this chapter. Next, we talk about the model checking, its

challenges and our approaches to overcome it in section 7. Finally, we describe the enforcement

architecture and the performance of the enforced system in Chapter 8. We conclude with Chapter

9 by briefing our work and findings. We also point towards the extension of our work that we are

looking forward to.

4

Chapter 2

Literature Review

The contribution of this work was to provide a complete framework that dealt not only with

the access control but also the management and processing of a workflow. There was no prior

work addressing all the problems, therefore, in this section, we consider the similar problems like

information systems (including workflows) and their management, access control, and integration

of access control into real-world systems.

2.1 Information System and Management

Current work of Christopher Yang et al. [20] on health care informatics envisioned that the

integration of different disciplines to healthcare would advance the services and well-being of our

society would accelerate. They further stated that the research activities in this sector of interdis-

ciplinary was broadly classified into three major tracks, (i) system, (ii) analytics, and (iii) human

factors. In sum, Christopher Yang et al. indicated challenges in architecture, management, and

security which held for another information system as well. Shortly after, Suruchi Deodhar et

al. [21] implemented integrated, high-performance computing oriented epidemic modeling envi-

ronment named DISimS (Distributed Interactive Simulation System) which focused on improving

user productivity and ease of use, supporting interactive modeling and pervasive web-based ac-

cess to the models. The work showed the importance of integration of computing and information

system to solve real-life scenarios. It also highlighted the perks of the ubiquitous availability of

the information. In contrast to these works, we focused on management and security of the whole

process such that we could enjoy all these services and yet preserve the information from breaches.

In a single workflow, there could be multiple security scenarios to be considered, each with

multiple protection choices and implementation locations to address confidentiality, integrity, and

availability concerns. Erik Rolland et al. [22] tried to solve the flow risk reduction and con-

trol placement decision problem and showed important connections between security investment

5

decisions and information risk management outcomes using integer programming methods and

heuristics. Doug Vogel et al. [23] included business process integration as business crosses orga-

nizational boundaries which raised the issue of protecting organizations’ competitive knowledge

and private information while enabling Business to Business (B2B) collaboration. This research

presented a dataflow perspective using workflow management and mathematical techniques to ad-

dress the data exchange problem in independent multi-stakeholder business process integration in

dynamic circumstances. In contrast to our work, researchers did not mention access control con-

straint. In contrast to these works, we modeled the control flow of the workflow into our access

control model itself.

Basit Shafiq et al. [24] proposed that tasks in a workflow need to be performed in a certain

order and often would be subject to real-time constraints and dependencies. Real-time constraints

may be in the form of strict deadlines that must be met by the system to operate safely. Violations

of these deadlines may cause malfunctioning of the system and, in some cases, may imply the loss

of human life and health. A key requirement for real-time workflow systems has been to provide

the right data to the right person at the right time. This requirement would motivate dynamic

adaptations of workflows. However, in the context of mobile workflow domain, deadlocks may

take place which occurred in case of no participants were available to perform a task while some

tasks were waiting for the completion of the tasks in first place. This problem could arise due to

an error in the business rules specification. Our proposed mobile workflow model along with the

task-attribute based access control model governs user access to tasks, data, and services such that

it complied with control flow and access policies. That is, tasks, objects, and applications were

associated with attributes that defined where and when a user could perform the access.

2.2 Access Control Mechanism

Role Based Access Control models have been a primary preference to represent the policy

needs due to its efficiency in administrative management. However, the basic role-based concept

was not sufficient to handle all the real-life scenarios. The RBAC model got additional features

6

and, therefore, contained many open-ended unresolved problems [4]. Additionally, while role-

based access control was popular as a generalized approach to access control, Bertino et. al. [25]

pointed out that the roles might not always be available. Bertino et. al. [25] extended the basic

RBAC to include the temporal factor and called it TRBAC: A temporal Role based access control.

In 2000 G.J Ahn and team, brought to attention that the web-based workflow systems, due to

their heterogeneous computing environment, required a strong security mechanism but relied on

basic authentication and network security. Therefore, in their work [26] they simplified the existing

basic RBAC model to build an architecture that could incorporate access control into the web-based

workflow system. The RBAC was incorporated to ensure that each task could only be executed

by users belonging to a specific role. However, implementing the simplified RBAC would not be

sufficient. In our model, we included the constraints like separation of duty, the dependency of

activities, and so on to handle all the requirements of a workflow system. Former research work

of James Shook et al. [27] considered the problem of insiders having access to more data than

necessary to perform their job function, exacerbating the impact of leaking sensitive information.

A solution to this problem was to enable the instantiation of multiple security policies within a

single access control system which was best described by our Task-Attribute based access control

model. Our efforts employed access control in mobile workflow systems to expresses fine-grained

authorization rules for actors to perform tasks on-site and at certain time intervals.

In the RBAC model, access rights were associated with role and users were assigned to an

appropriate role. In the real-world, a role could be defined as a job function that described authority

and responsibility. Arindam Roy et al. [28] used the RBAC model for a commercial information

system and focused on the problem of employee assignment. The objective was to identify an

employee to role assignment such that it permitted the maximum flexibility in assigning a task

by using 0-1 integer linear programming. To determine the optimum assignment, it assumed that

the set of roles and employees in an organization was completely known. Therefore, the model

was not suitable if a workflow application cross-cuts several organizations having different role

structure. Our model was based on Next Generation Access Control(NGAC) and followed the

7

policy machine constructs [29] and, therefore, could handle the inter-organizational access control

policies.

Companies today manage business information with computer systems and need a security

mechanism to effectively protect important information. Moreover, they need to minimize in-

terruptions from security mechanisms that cause delays in the execution of business activities.

Task-Role based access control model (TRABC) is an integration of role-based access control and

activity-based access control model [30]. Sejong Oh and Seog Park [31] proposed a methodology

for access control to enable support for task level access control, partial inheritance, active and

passive access control to address the enterprise business better. At the same time, they struggled to

provide fine-grained access control and did not consider the effect of location and time which was

very crucial. To address this problem, our model was based on attribute based access control and,

therefore, could get as fine-grained as required. We also modeled location and time as one of the

several attributes and considered the effects to make an access decision.

There are Workflow management systems (WFMS) which allow the execution of tasks using

mobile devices like Personal Digital Assistants(PDAs) with the ability of wireless data transmis-

sion. However, the employment of workflow systems, as well as mobile technologies, could come

along with special security challenges. Michael Decker, in his paper [13] has indicated the neces-

sity of location aware and workflow aware access control model to solve the problem. In our work,

we defined such access control model and provide an architecture to integrate with the workflow.

The work by Guoping Zhang and Jing Liu [32] was similar to the access control model part of

our work. In their work, they had made an attempt to integrate physical infrastructure and network

infrastructure of “Internet of thing” into unified infrastructure and implement workflow-oriented

attribute based access control. The model granted permission to a subject based on attributes and

the current task. They also had similar concepts of freezing the subject’s permissions once a task

was completed successfully. Furthermore, they purposed use of eXtensible Access Control Markup

Language (XACML) to represent the policies and Security Assertion Markup Language(SAML)

for access decisions. However, they did not provide an enforcement technique. In contrast, we pro-

8

vided all the features with the addition of other features like separation of duty. We also provided a

model to represent location and time attribute as a single component which aided the management

of attributes. We preserved the enabling and disabling feature from RBAC to work with attribute

and made it more flexible and dynamic. Additionally, we chose policy machine constructs to rep-

resent the policy information which allowed graphical visualization of policies and made it more

meaningful. We also provided performance analysis as a proof of concept for applicability of our

access control model.

Another research model of James BD Joshi et al. [33] (Generalized Temporal Role-based

Access Control) provided a temporal framework for specifying an extensive set of temporal con-

straints and used a language-based framework. Generalized Temporal Role-based Access Con-

trol (GTRBAC) model allowed various types of temporal constraints such as temporal constraints

on role enabling/disabling, temporal constraints on user-role and role-permission assignments/de-

assignments, role activation-time constraints, etc. However, this research work did not include

location constraint to grant access. In the mobile workflow application domain, workflow manage-

ment systems were influenced by location and time information, making them very sensitive. We

tended to solve the problem in our work by modeling location and time as a special purpose envi-

ronment attribute, use it as a constraint in authorization and provide spatio-temporal based access

control.

To sum up, in our work we attempted to provide a complete picture of a solution to a workflow

management problem. The integration of access control model to the management system alone

addressed a critical issue which had not been done in previous works. Additionally, the access

control model was devised considering most of the constraint required for proper functioning of

a workflow within or in between organization. We also investigated the verification using the

formal analysis tools to ensure the reliability of the model as described. Furthermore, we added

performance analysis to provide a feasible way to enforce the model into the system. Therefore,

as opposed to previous work, our work covered more ground and presented effective ways.

9

Chapter 3

Motivation Example:Dengue Decision Support

System (DDSS)

The workflow being used in this work is a representation of real-world Dengue Decision Sup-

port System(DDSS). It was initially deployed in Mexico and aimed to improve prevention, surveil-

lance and control of the dengue vector-borne disease. It aided end-users in the prediction and quick

response to outbreaks of the dengue disease. The workflow consisted of several types of tasks with

certain execution order adhering to predefined control flow. Also, authorization rules did not allow

a direct assignment of tasks to users, the activity/task types that could only be performed by a

collaborating user depending on the attributes that the user owned, such as a job title attribute.

The DDSS has helped state-level public health officers respond to local outbreaks of dengue.

The response consisted of vector control and vector surveillance, namely spraying for mosquitoes

(control) and investigating locations where they might be breeding and living (surveillance) in ar-

eas where the level of confirmed dengue cases had increased above a prescribed threshold. Public

health officials were organized in jurisdictions, based on population, and multiple jurisdictions

were included in a single state. When the threshold was reached, officials at both levels responded.

The jurisdiction officer enabled vector control and surveillance teams that were local to the juris-

diction, with instructions regarding the specific control and surveillance protocols to follow and

the locations where they were to be performed. The state officer released materials for control to

the team, and the local team then performed the controls and surveillance ordered. The jurisdic-

tion and state vector control officials were often located in different buildings, although the vector

control team was co-located with the jurisdiction officer. All control materials were located in

warehouses elsewhere, and for coordination reasons, were controlled by the state officer. Infor-

mation about specific cases of dengue was retained in what was called an epidemiological study.

This data included information about the patient, the location where the patient lived (the premise),

10

the case, and control and surveillance actions performed at the premise. The patient and case data

were considered private information and were only available to epidemiologists at the jurisdiction

and state levels.

The workflow dealt with mobile teams. After completing the job, a mobile worker entered

a report (e.g., what had to be done during the course of control or surveillance mosquito vector,

this should be done at the target location). The workflow database was remotely accessed by

mobile works to process dengue data via smartphones while they were working in the surveillance

areas. Also collected were samples that needed to be taken to a state lab where the experiment was

performed by a lab technician. All this information was updated in the workflow data center on

regular basis. Laboratory technicians collected laboratory test data including the type of samples,

method(s) used to test the samples, framework for interpreting test results, and interpreted results.

The confirmation of work done would be in the form of updates to the database that had to be done

from the specified location. The success of the activity was determined by analyzing the database

records. In other words, updating the database with all the required information would be the end

state of the workflow process.

With the legacy DDSS, vector control and surveillance teams went house-to-house and col-

lected data in paper-based forms, and then data were entered into the system. However, entering

data from paper sheets had many disadvantages. Paper-based data collection was time-consuming,

error-prone, degraded the system performance (i.e., late responses), and these forms might easily

get lost or damaged. Furthermore, much of the collected information was never entered into the

system and, henceforth, the analysis precision was lost. Mobile workflows could solve the paper-

based forms problem; it expedited emergency responses and tracking the disease evolution. With

the help of cell phones, data were instantaneously collected and transmitted to the workflow data

center in a reliable manner. In case network access was not available, data were stored locally

in cell phones and transmitted later. However, mobile workflows has had their own security and

usability challenges to which we discussed the solution in the following chapters.

11

Chapter 4

System Architecture

The workflow management system needs to ensure the correct representation, instantiation,

and execution of the business processes while considering the authorization rules and control flow.

In this chapter, we introduce an architecture that helped us to obtain the constructs and the objec-

tives of a mobile workflow. Through the architecture, we were able to generate a fully functional

workflow assigned to appropriate users and processed following all the constraints. Also, we re-

quired instant management of dynamic situations where the configuration to predefined workflow

changed.

The system architecture was composite from collaborative modules responsible for the defini-

tion, execution, and management of business processes as well as the implementation of access

control, control flows, and constraints. The architecture is shown in Figure 4.1 is composed of

three major components: Workflow Formulation Module (WFM), WorkFlow Management Mod-

ule (WMM), and Access Control Module (ACM).

4.1 Workflow Formulation Module

The Workflow Formulation Module (WFM) formulates the essential components of a work-

flow, using its authoring and analyzer tools. The authoring tool would allow to state required

workflow tasks and define the constraints between those tasks. The analyzer would re-evaluate the

specification and allow improvements. Therefore, the WFM would helped us create a functional

representation of the desired goal.

Through the WFM module, an application user could form a graphical representation of well-

ordered activities of a business process along with business rules for collaborative users to pro-

cess and to invoke necessary documents and services required to perform those activities. Each

task/activity would be represented by a node in the workflow graph as shown in Figure 4.1. Di-

rected arcs in Figure 4.1 represent the flow of control (and information) and have two properties,

12

Figure 4.1: System Architecture

13

arc “previous node" and “subsequent node". A workflow node may have one or more input and

output points. An input point would be connected with a previous node by an arc while output

point would be connected with a subsequent node via another arc.

Module WFM defined three types of nodes in a workflow model denoted by a source node,

sink node, and task node. The source node would be the start node of a business process, which

might have multiple source nodes. A source node would have one output point and no input point.

When a workflow reached the sink node, the business process would be ended. A business process

would have one or more sink nodes, which would represent the end of the business process. A

sink node would be one or more input points and no output point; it would represent the process

termination. The task node would depict a task that forms one logical step in the business process;

it would have a particular “task name”. The task node would have one or more input and output

points.

The WFM module would allow one to formulate the control flow, which defines the depen-

dencies between task nodes in a workflow graph. Task dependencies would depict the execution

order of tasks in a workflow. The execution order of tasks could be sequential, mutually exclusive

split, and split, joins, or conditional repeats. Two tasks could be sequential if one task was bound

to be done before or after the other. For example, task of spraying the houses (T6) would need

to be done before any changes to the database were made (T9). Therefore, T6 and T9 would be

sequential. If the tasks could be performed independently of each other and either of them were

sufficient to reach the goal, they were ordered as mutually exclusive split. In our example, this kind

of split was not shown. However, if the Manager of the system decided that spraying houses and

mosquito sample were not required from all the areas but only some predefined areas than the split

between the task T6 (spray houses) and T7 (collect mosquito) would be a mutually exclusive split

for those areas where only one of the actions was required, because execution of one path would

be sufficient for the completion of workflow. The tasks that could be performed independently but

both were required to reach the goal were ordered as the and split. The task T4 (Release Material)

and T5 (Activate VC and VS team) underwent the and split. Joins contributed in ordering the tasks

14

where a task would depend on the completion of two or more tasks. Similarly, conditional repeats

were the cases where the same task would need to be performed repeatedly until some conditions

were satisfied. For example, the subtask T11 to T1n (selecting a public health officer to form

jurisdiction) was the repetition until all the required teams were formed with the required number

of members. Also, the task T2 (check threshold) was repeated until the threshold was exceeded.

Finally, the authoring tool would allow the specification of the authorization rules.It should

support the specification of spatio-temporal constraints that may be required for various purposes

like accessing workflow resources or execution of business process tasks. With WFM, spatio

temporal constraints could be associated with different components of a workflow like the col-

laborating users, the assigned tasks, the access to sensitive objects. The WFM would make sure

that the tasks were being operated by authorized users and in accordance to spatio-temporal con-

ditions, through the help of access control model. For example, the task of updating the condition

of the lab should only be done from the lab or should only be done by someone who knows how

to analyze the lab. Access control model would provide the information to maintain authorized

access to resources and follow the constraints like separation of duty (SoD). It would do nothing

to implement the rules but simply states the requirements of the system. Due to the presence of

all these elements,the template produced by incorporating all the feasible task, their dependencies,

and the authorization specifics might not be the final workflow. The consistency analyzer, would,

thereafter, verify that the template was consistent and correct. The analyzer unit would be able to

point out any kind of deadlocks, irregularity, and ensure the completeness upon instantiation. For

example, the analyzer would be able to tell if there existed an infinite repeats in the template due to

the condition specified or splits and the joins together obstruct the achievement of workflow goal.

The WFM could improve the initial template by switching between two of its component:

authoring unit and the analyzer and returns a workflow that fulfilled the business requirement.

Figure 4.1 shows a workflow with tasks, control flow, and spatio-temporal constraints in it. A

workflow model is formally defined as below.

15

• A workFlow (W), W = [id, T, C,A], has one start node and one sink node, is a 4-tuple of

elements:

– id is the unique identification for the workflow

– T is the set of tasks

– C is the control flow or the dependencies between the tasks. The orders of C belong to

{sequential, mutually-exclusive-split, and-split, join, triggered sequence, conditional

repeats }. Therefore C is defined as subset of (T × order × T). The control flow is

defined between two tasks, whereas, there could be a relationship between more than

two tasks in a workflow. Therefore, there might exist more orders related to the same

task. For example, if task (A) splits into B and C, and the split is an and-split, we would

represent such a scenario by defining multiple orders. Here, we would say, B comes

after A, C comes after A, and B and C are and-split.

– A is the set of authorization rules. Set A also includes other constraints required for the

workflow like spatio-temporal. Mobile workflow authorization rules and constraints in

the context of spatio-temporal attributes are discussed in section 4.2.1.

4.1.1 Example Workflow model

Following is the workflow model of mobile workflow based on our motivation example in 3

• Mobile Workflow for DDSS (mWDDSS) = {W1, T, C,A}, where,

– W1 = id of the workflow

– T = {FormJurisdiction(T1), SelectPublicHealthOfficers(T1s),

CheckThreshold(T2), ActivateResponse(T3), ReleaseMaterial(T4),

ActivateV ectorControlAnd SurveillanceTeam(T5), SprayHouses (T6),

CollectMosquito(T7), P erformTests(T8), UpdateDatabase(T9)}

– C = {CR(CR(T1s, n >= 2), N), (T1, S, T2), CR(T2, infection > threshold),

(T2, S, T3), (T2, ES, T3)(T3, S, T4), (T3, S, T5), (T4, AS, T5), (T5, S, T6),

16

(T5, S, T7), (T6, AS, T7), (T4, S, T9),(T6, S, T9), (T7, S, T8), (T8, S, T9)},

where, S = Sequential, CR = ConditionalRepeat, EX = MutuallyExclusive

Split, AS = AndSplit

– A ={(Manager needs to handle T1, T2, and T3 from the head office), (State officer

releases the material from the warehouse), (Jurisdiction officer activates the Vector

Control and Surveillance Team), (Vector Control Team sprays houses at the home ad-

dress), (Vector surveillance Team collect the mosquito sample from the infected area),

(Lab technician perform the test inside the lab),(Everyone is allowed to update the

database from their designated location),(single person cannot activate both vector

control and surveillance team attribute within the same instance) }

According to the mobile workflow model, the workflow model consisted of 9 tasks, where,

T1 was the collection of subtasks (the task that was repeated for completion of another task) rep-

resented by T1s. For, completion of T1, T1s was repeated until a team of two or more mobile

participants was formed from all the available public health officers. T2 continuously monitors the

threshold and, therefore, was repeated until the infection was known to be greater than the thresh-

old. Here, T2 underwent mutually exclusive split to T2 and T3. T2 either continued or expanded

to T3. The split after T3 could be done in parallel and every task would independently update the

information to the database. Each task had its spatio-temporal restriction and required attributes as

described in the set A.

4.2 Workflow Management Module

The WorkFlow Management Module (WMM) was responsible for the implementation and

management of the workflow. To execute the workflow, WMM allowed administrators to create

an instance of the workflow model by assigning authorized users to tasks. A workflow could have

different instances. Different instances could be executed by different sets of users, subject to

their availability and as permitted by their authorization policies. Different instances may execute

different sets of tasks. A workflow instance could be formalized as follows.

17

• WorkFlow Instance(WI) = {id,Wid, T I, UTA} where,

– id is the unique identification for the workflow instance

– Wid is the id of the workflow which was instantiated to create this instance

– TI is the instance of the task. TI includes a subset of task in Wid . i.e. TI ⊂

T,where T ∈ W ∧W.id = Wid

– UTA is the user to task activation. The task activation is done considering the access

control model and requires a proper user attribute set assigned to the user before hand.

Since only authorized users could be assigned to any task, WMM communicated with the

Access Control Module (ACM) to make access decisions. The access decision was based on the

workflow instance, spatio-temporal constraints, and access constraints. For example, we might

have two instances of the mWDDSS workflow model for two different states. The user assigned to

the task would be authorized only if they belonged to the same state. Similarly, all other location

constraints like the infected area or the warehouse would be based on the state. After the instance

had all its tasks assigned to authorized users, the user was notified about their tasks via the event

notification unit within WMM.

During the runtime, there might occur changes which might require attention for it to continue.

For example, A vector control team might not get enough supplies from a particular warehouse

or might not reach the destination at the exact time due to some unforeseen disturbances. In such

cases, the WMM should be able to reconfigure the assignment and allow the workflow to execute

by performing suitable changes in the configuration. Any changes to the execution plan during

the runtime would be monitored by the status monitor. It would maintain the record for execution

status and notify the configuration and adaptation unit with the changes that triggered the process.

Similarly, the State Context Monitor would continuously monitor the changes in environmental

factors. The changes that would affect the execution of the workflow would again trigger the con-

figuration and adaptation unit. For example, when the lab technician left the lab the address would

change and thus would the access right. Therefore, the adaptation unit might have to communicate

18

with ACM and might have to assign another lab technician to the workflow task. At the same time,

the previous lab technician should not have the access right to any of the information within the

lab. It would be the responsibility of the configuration and adaptation unit to determine the most

optimal solution to complete the workflow goal whenever there was a requirement of changes in

the former workflow. The changes would be done in either of task instances or the activation and

the ids would remain the same.

4.2.1 Example Workflow Instantiation:

Here we assigned the task to the authorized users by careful consideration of their attributes

including spatio-temporal conditions. The workflow instance is,

• WorkflowInstanceforDDSS(WIDDSS) = {WI1,W1, T I, UUATA}, where,

– WI1 = id of the instance

– W1 = id of the workflow

– TI = {T1, T2, T3, T4, T5, T6, T7, T8, T9}, here the task instance consists of all the

task from the workflow. The task would have been instantiated with just two tasks ini-

tially, T1, T2, since T2 and T3 have mutually exclusive split. And the configuration and

adaptation unit would make appropriate changes when the infection rate is more than

the threshold. Here we have considered having infection rate more than the threshold.

– UUATA = {(T1, Alice), (T2, Alice), (T3, Alice), (T4, Bob), (T5, Dave),

(T6, Shan), (T6, T im), (T6, Shelly), (T7, Phil), (T7, Lara), (T8, Evan),

(T9, Bob)(T9, Evan), (T9, Shan), (T9, T im), (T9, Shelly), (T9, Phil),

(T9, Lara)}

Access Control Module was being reached to address the constraints during the activation of a

task. All the rules specified on workflow definition was addressed during workflow instantiation. In

the mWDDSS workflow, for example, Alice was the Vector Manager who formed the jurisdiction

from public health officers and dispatched the state officer if the infection was severe. The state

19

officer (Bob) would release the material and Dave (who is the jurisdiction officer) would assign

a task to each vector control and surveillance team member. The control team consisted of three

members (for this instantiation–Shelly, Tim, and Shan) who were responsible for spraying the

houses. After the process was concluded, they would update the database. The surveillance team

was composed of Phil and Lara who would collect mosquito samples. The sample was tested by

Evan who updated the database with the results.

Throughout the process, there existed many constraints. A few of which were: all the attributes

were activated within the state, Manager must be in the head office within the state during the

daytime, the state officer was mobile, would be able to activate the release from his office but

update the database only from the warehouse where he would inspect the material being used at

daytime. Similarly, the vector control team and surveillance team were mobile and would be able

to activate their attributes and update the database at an infected area and during the assigned

control and surveillance work period only. These dynamic constraints were looked into during the

activation of the task or during the runtime. There also existed the separation of duties constraints

between the control and surveillance tasks. Since, both the teams were formed by public health

officers, a single person might belong to multiple teams in different instances. Therefore, T6 and

T7 could not be assigned to the same user within an instance of the mWDDSS workflow, which

was followed in this instance by the assignment of a different user. All these decisions were made

by intervening the Access Control Module. The WMM would only communicate with ACM to

make the appropriate decision during each step of the workflow execution.

4.3 Access Control Module

The Access Control Module(ACM) was responsible for making authorization decisions either

during the assignment of the workflow tasks, workflow model, or during the execution of the tasks,

workflow instances. Authorizations were triggered by the changes in the active user attributes and

the mobile data objects required to execute tasks. User attributes represented a user of the work-

flow attempting to execute tasks such as current location and time, user health, user ID, job title,

20

department, etc. Since mWDDSS workflow was accessed by nomadic devices from diverse geo-

graphical locations and during different time intervals, spatiality and temporality were important

security measures that must be considered. Healthcare information on dengue patients should be

protected from unauthorized access. Public health professionals should be allowed to access their

patients’ records only in the same areas where the dengue case occurred and during the course of

dengue. In mWDDSS workflow, a spatio-temporal evidence that VC and VS teams performing

their tasks in the right place and time was also mandatory for the credibility of data and disease

control.

With mWDDSS workflow, the spatio-temporal constraints could be used at different levels for

different scenarios. Constraints on task assignments expressed that a task could be activated only

on that location and at certain time intervals. Constraints on user expressed that a workflow col-

laborative user was granted access to protected resources and services only from a certain location

and time. Constraint on user task assignment expressed that the task could be performed by the

user having some attributes only on a particular location and during the course of dengue. Spatial-

temporal constraints were also applied to workflow instances which was the case of having the

same instances on different states.

Therefore, ACM was responsible for the proper execution of the workflow. It played a very

important role from the very beginning (i.e., instantiation of the workflow). The decision made by

the access control module allowed the WMM to select and assign collaborating users to particular

tasks. The use of ACM was also prominent for the dynamicity (mobility) of workflows. Without

ACM, it would not have been possible to handle the situations where location and time constraint

changed for a workflow user. It made workflow operational in very critical situations. For example,

a mobile user having harmful chemicals should not be allowed to use it in all the locations and the

ACM ensured that, by revoking the access authorization from the users whenever s/he is not within

the allowable location-time zone. At the same time, the workflow continued by activation of some

other user for the same task.

21

ACM was composited from three components to achieve its functionalities. The ACM con-

sisted of the Policy Enforcement Point (PEP) which was the point of contact with any other module

in the system. It received requests from other modules and delivered the access decision. How-

ever, it did not have any capability to process the request itself, therefore, it parsed the input data

to acquire user credentials along with any other useful information. This information was trans-

ferred to the Attribute Extractor Point (AEP) which determined the user environment and requested

object attributes. To determine the environment attribute, AEP received information about the en-

vironmental context which was provided by the state context monitor. All this information was

further provided to Policy Decision Point (PDP). PDP was where all the evaluation of the access

request took place. PDP took in the information and evaluated it for the decision-making process

of whether or not the user should be given the queried access. The PDP would have all the required

information for the job (i.e., the attribute based policy, the attributes of the users and objects). The

input to the PDP would have the user and object environment attributes, location-time information.

The AEP and PDP collaboration would determine the access decision and forwards it to the PEP.

The access control module, as a whole, was a black box for other modules, which took the input

query and returned the appropriate access decision. The specification of the attribute-based autho-

rization policy and the processing of the queries (access requests) by the module is described in

Chapter 6.

22

Chapter 5

Location and Time Models

In mobile workflow systems, each entity and relation was constrained by location and time

information; we now introduce how spatio-temporal information was modeled in our workflow

system.

5.1 Location Model

The capability to determine the position of a user nomadic device (UND) has enabled applica-

tion developers and wireless network operators to provide location and time aware services. The

Global Positioning System (GPS), has been a celestial-based navigation system that uses at least

24 satellites for determining a position, getting from one location to another, monitoring object

or personal movement, creating maps of the world, and getting precise time measurements [34].

Nowadays, GPS sensors are almost available on all modern handheld computing devices. Some

examples of GPS applications include safety application that alerts drivers for exceeding the speed

limit in school zones during the day, 8:00 am - 4:00 pm [35]. iFall is another GPS application in

the area of mobile-healthcare that detects and alerts medical professionals of a patient’s fall [36].

Kupper [37] provided an overview of many available techniques for the determination of the

mobile user’s position (locating a user nomadic device). Two methods are currently available for

location determination, namely self-locating and remote-locating. The self-locating method per-

mits the client mobile to present the location information to the workflow server using “Global

Positioning System" (GPS), while the remote-locating method determines the device location by

the network via the CellID-approach of mobile telephony like GSM or UMTS. It was worth men-

tioning that GPS and CellID approaches lack positioning inside buildings. Indoor localization

technologies that could be used which included Active Badge and Bat, WIPS and CRICKET, or

WiFi-based systems (for both self- or remote-locating) [38, 39]. We did not consider the trustwor-

23

thiness of the location determination system in our mobile workflow model, so we recommended

using mixed positioning methods.

Self-locating methods do not guarantee the enforcement of location sensitive systems under the

assumption a user or malicious attacker of a client mobile could invent arbitrary location informa-

tion, such as “GPS Spoofing", to the workflow server allotting access to location and time-sensitive

resources. This kind of access control attack would be hard to prevent and the countermeasures

would not be practical for authenticated positioning systems [40], spoofing countermeasure could

add substantial overhead and degrade the client mobile performance. The GPS Spoofing attack

could cause GPS receivers to provide false information about position and time by broadcasting

counterfeit signals similar to original GPS signal or by recording original GPS signal captured

somewhere else in some other time and then retransmitting the signal [41].

The remote-locating method was more suitable for our workflow model as it was almost im-

possible to tamper with the positioning information. Examples of CellID based remote-locating in

commercial services were guiding systems, friend finder, shopping assistance, presence services,

community and communication services, information services giving the mobile user information

about their surroundings, etc. Governments also put requirements on the network operators to be

able to determine the position of an emergency caller. For instance, USA government mandates

(FCC E-911) network operators to determine the position of a certain percentage of all emergency

calls, with high accuracy and within a pre-specified maximum time, especially when the celestial

positioning method (GPS) was not available or the UND was not capable of celestial positioning

methods.

However, cell identity positioning was not sufficiently accurate compared to GPS. Therefore,

we recommended mixed positioning methods, which combined the identity positioning method

that made use of CellID and celestial positioning method employing GPS to define every posi-

tioning unit cell. That meant workflow server could verify the position information reported by

the client mobile GPS to find out if it actually lied in the cell positioning obtained by the CellID

method.

24

The mobile workflow presented in this paper implemented the following location represen-

tation model. There were two types of locations: physical (i.e., provided by GPS or CellID

systems)and logical. All users and objects were associated with physical locations that corre-

sponded to the physical world. A physical location was formally defined by a set of points in

a three-dimensional geometric space. A physical location ploci was a non-empty set of points

{pi, pj, . . . , pn} where a point pk was represented by three coordinates. The granularity of each

coordinate was dependent upon the application.

Physical locations were grouped into symbolic representations that would be used by applica-

tions. We refered to these symbolic representations as logical locations. A logical location was

viewed as a non-empty area (e.g., a polygon, circle) within the reference space points. Logical

locations could be categorized, e.g., “city", “state", “country" or “building". Examples of logical

locations of category “city" and “state" were Fort Collins and Colorado, respectively. A logical lo-

cation was an abstract notion for one or more physical locations. Mapping function m was defined

to convert a physical location to a corresponding logical one.

Definition 1. [Mapping Function m] m is a function that converts a physical location into a

logical one. Formally, m : P −→ L, where P is the set of all possible physical locations and L is

the set of all logical locations.

All location instances of a given category may not cover the whole reference space points.

Therefore, two locations from different classes may overlap in space points or one location may

contain another one (i.e., “city" Denver is in “state" Colorado). We defined the containment ⊆ and

equality = on physical locations. A physical location plocj was said to be contained in another

physical location plock if plocj ⊆ plock. Two physical locations plocr and plocs were equal if

plocr ⊆ plocs and plocs ⊆ plocr.

We defined a logical location called anywhere that contained all other locations. Each appli-

cation could describe logical locations at different granularity levels. For example, some autho-

rization rules may be applicable to the entire state, whereas, others were only applicable to people

in the class “city". Let us denote the logical locations that were of interest to the application by

25

the set L. Let the physical locations corresponding to these logical locations be denoted by P.

The size of the smallest location in P corresponded to the minimal location granularity of the ap-

plication. For example, in the organization Software Development Corporation, we may have L

= {MainBuilding, TestingOffice, DirectorOffice, DevelopmentOffice}. The MainBuilding houses

the three offices on separate floors of the building. In this case, the minimal location granularity

was one floor.

5.2 Time Model

GPS and CeLLID report to the system the current client mobile location and time. Our work-

flow model used two kinds of temporal information. The first was known as time instant and the

other was a time interval. A time instant was one discrete point on the timeline. A time interval

was a set of consecutive time instants which could be represented in the form of d = [ts − te],

where ts, te represent time instants and ts precedes te on the time line if ts 6= te. We use the

notation ti ∈ d to mean that ti is a time instant in the time interval d. The exact granularity of a

time instant was application dependent. Suppose the granularity of time instant in an application

was one minute. In this case, time interval [3:00 a.m. - 4:00 a.m.] consisted of the set of time

instants {3 : 00a.m., 3 : 01a.m., 3 : 02a.m., . . . , 3 : 59a.m., 4 : 00a.m.}.

Two time intervals may overlap as well in some instances depending on the system time gran-

ularity. Now we defined the containment ⊆ and equality = on time intervals. A time interval dj

is said to be contained in another time interval dk if dj ⊆ dk. Two time intervals ds and dr were

said to be equal if dr ⊆ ds and ds ⊆ dr. We defined a time interval called always that included

all other time intervals. The set of all time intervals of interest to the application was defined

by I. The minimal time granularity of an application referred to the size of the smallest time in-

terval used by the application. For example, in the Software Development Corporation, we may

have the following intervals that were of interest: I = {i1, i2, i3, i4}, where i1 = [8a.m. − 5p.m.],

i2 = [8a.m. − 12p.m.], i3 = [12p.m. − 1p.m.], and i4 = [1p.m. − 5p.m.]. The minimal time

granularity pertaining to this application was one hour.

26

Chapter 6

Task-Attribute Based Workflow Authorization

Model

Access control ensures that enterprises could deploy security policies that met their most strin-

gent business needs to protect their sensitive data. Thereby, our objective was to introduce a

dynamic access control model capable of expressing a wide set of spatio-temporal policies that en-

sured users had the appropriate access to the correct systems, resources, and workflow applications.

Our proposed spatio-temporal access control model, denoted by Task-Attribute Based Access con-

trol (TABAC), embodied the essential aspects of the “next generation" authorization model known

as Attribute Based Access Control Model (ABAC) to provide task-based authorizations model ca-

pable of expressing dynamic security policies. Users perform tasks on workflow based on their

attributes as well as the current time and location information. Thus, spatio-temporal constraints

determined when workflow tasks could be enabled or disabled. Although a user acquired all the

required attributes to perform a workflow task, the user could only operate on that task only if the

user attributes had been enabled by location-time constraints, which made the model inherently

dynamic in nature.

Attribute based access control defined a logical relationship between requesting entity “sub-

jects" (i.e., Individuals or Autonomous Entities) and sensitive information asset “objects" (i.e.,

Protected Resources) in terms of the attributes associated with each of them, the attributes could

be about anything and anyone. The model defined three attribute categories: (i) user attributes

– characteristics of the user that are important from the access control point of view. These in-

cluded user identity, job title, workflow task (activity), age, gender, clearance, department, com-

pany, competencies, etc. (ii) object attributes – these describe characteristics of the protected

resources. Examples included the classification, sensitivity, location, type (bank account, medical

record, reimbursement form, vacation document), mode, etc. (iii) environment attributes described

27

Figure 6.1: Task-Attribute Based Access Control Model

environmental conditions of access request scenario such as time and location. An access control

policy brought together those attributes to express access was allowed or denied. For example, an

access control policy may mandate a user with job title “department manager" attribute to approve

a reimbursement document if the document was in the same department as the user and during the

daytime, 8:00 am - 5:00 pm. The latter attribute may be represented as part of the user and object

attributes as well.

We now discuss the formalism of integrating environmental conditions into ABAC for express-

ing access control policies to protect mobile Information Systems. This model allowed one to

express policies where access to sensitive resources depended on the associated attributes with

subjects and objects as well as the current location of the subject and time of access. We defined

our model in terms of a standardized set of relations and functions of policy entities capable of

expressing and enforcing a wide range of security policies. The model defined key relations of

assignments, that were a many-to-many mapping of policy entities in a meaningful authorization

structure, associations specified the user authorizations on objects, prohibitions defined the inverse

of association, and obligations defined a set of automatic administrative actions taken in response

to events. Model key functions assisted in examining the prerequisite constraints on access rights

of users to objects and policy enforcement. Figure 6.1 shows entities, relations, and functions

interpreting a system policy in our access control model.

28

6.1 Entities

The basic policy elements to express in the model included authorized users (U), objects (O),

user attributes (UA), object attributes (OA), operations (OP) and policy classes (PC).

6.1.1 Users

Users were the entities that would access to sensitive resources in accordance with policy and

require guidance for the efficient and safe use of the resources. A user represented an authenticated

individual or an autonomous agent who directly interacted with a system. Users in our model could

be mobile or static, and each user had a unique identification in the system.

• Users (U) : A finite set of authorized users which we denote as; {u1, u2, u3,}.

For mobile users, our assumption was that the users would have some mechanism to give

away their location, and the user location changed with time. The spatio-temporal zone provided

the user’s current location and time. For example, if a user was responsible for releasing some

materials from a warehouse located in some city and the head office was located in some other city,

we had to ensure that the user had traveled from the head office to the warehouse location before

allowing him to actually release the material from the warehouse. The current spatio-temporal

zone of the user was returned by function currentzone. This function was formally defined as

follows:

• currentzone : U → STZones

6.1.2 Objects

Objects were the system’s sensitive resources that required protection from unauthorized ac-

cess. The object may be the file systems, database systems (cells in fine grained representation)

or devices like sensors, actuators. As users, each object had a unique system-wide identifier and it

could be mobile. Additionally, access to the object may be restricted to a certain location and time.

Such factors would be represented as their attributes.

• Objects (O): A finite set of protected objects denoted as; {o1, o2, o3,}.

29

6.1.3 User Attributes

Access control policy decisions about permitting or denying certain types of access were reg-

ulated by attributes of users and objects of a system. User attributes (UA) allowed a logical cat-

egorization of users. The important user attributes for the model were their job title as well as

the spatio-temporal zone if the user was mobile. For example, a user could be a manager to an

organization located at Fort Collins but would not remain a manager in his home at Loveland.

The spatio-temporal zone attribute as one of the user attributes would be describing the particular

environmental conditions for a user to achieve a particular attribute adequately satisfying policy.

Another important attribute of a user was the task assigned to them with respect to the workflow

instance.

• User Attributes (UA): A finite set of user attributes denoted by; {ua1, ua2, ua3,}.

6.1.4 Object Attributes

User and object attributes played a similar role in policy. Like user attributes (UA), object

attributes (OA) objects had object attributes in order to govern access to objects, represent al-

lowed and denied access modes to specific users. Objects may also be mobile as the user, thereby

spatio-temporal attributes could be a property for each object of a system as well. Spatio-temporal

attributes designated the locations and time when and where an object could be accessed. Here,

again, we had to locate devices that tracked the location of an object. For example, a file which

was a part of information related to organization “A” would have an attribute “A”. It might also

have an attribute location and time, which was the location of the organization itself and during the

daytime, if the file was to be accessed only inside the organization. As a user attribute, a workflow

task was not an object attribute. The relation between the workflow task and the objects would be

represented through the association relationship between the user and object attributes

• Object Attributes (OA): A finite set of object attributes that is denoted as; {oa1, oa2, oa3,}.

30

6.1.5 Spatio-temporal Zones

STZone was one of the core components of the authorization model, which was linked to model

entities and restricted relationships. A spatio-temporal zone abstracted location and time represen-

tation into a single unit. STZone was one of the core components of the authorization model,

which was linked to model entities and restrict relationships. This meant the entity availability was

proportional to spatio-temporal zones that defined where and when the an entity was accessible.

Definition 2. [Spatio-temporal Zone] A spatio-temporal zone STZone is a pair of the form <

l, d > where l and d represent the logical location and the time interval, respectively.

An example of a spatio-temporal zone could be z = (HomeOffice, [6:00 p.m. to 8:00 a.m]).

The set of spatio-temporal zones was denoted by STZones which represented a set of pairs for

locations and intervals in an organization that defined where and when some resources were avail-

able. An example of a spatio-temporal zone set would be {(HomeOffice,[6:00 p.m. to 8:00 a.m.]),

(DeptOffice, [8:00 a.m. to 6:00 p.m.])}. The set (STZones) appeared in the model as object

attributes and/or user attributes.

• Spatio-Temporal Zones (STZones): A finite set of user spatio-temporal zones that is de-

noted by,

{z1, z2, z3,}, where STZones ⊆ UA ∪OA.

A spatio-temporal zone < l, d > were specified at minimal granularity if l and d are specified

at minimal location granularity and minimal temporal granularity, respectively. In other words,

STZone < l, d > had the location and time interval that did not contain other location or interval,

respectively, in the context of the applications. Formally, in STZone < l, d >, location l is minimal

iff ¬∃ l′ ∈ P, l′ 6= l such that l′ ⊆ l, and time interval d is minimal iff ¬∃ d′ ∈ I, d′ 6= d such that

d′ ⊆ d.

STZone contents may be defined as special classes (types) of constraints, such as temporal,

spatial, and strong constraints. The universal zones content defined strong constraints that should

hold at any time and in any locations, (i.e., zu =< anywhere, anytime >). The second content of

31

zones was temporal zones that expressed temporal constraints that should hold at any location but

during a certain period of time i, (i.e., zi =< anywhere, i >). The location zones content specified

the location constraints that should hold at any time but in location l, (i.e., zl =< l, anytime >).

Functions ZInt and ZLoc were defined to return the interval and location in a zone, respectively.

These functions were important to elaborate on the content of a zone in order to define granular

constraints. STZones, ZInt, and ZLoc were formally defined as following:

- STZones ⊆ L× I

- ZInt : STZones → I

- ZLoc : STzones → L

6.1.6 Tasks

Tasks were special purpose entities introduced into the model to incorporated access control

for the workflows. Tasks represented the workflow tasks and in the model were represented as one

of the user attributes. In other words, a set of tasks were the subset of user attributes set. The

presence of a task as a user attribute would signify that the user had all other attributes necessary

to perform the task. It was because a user would qualify to have the task as its attribute if and only

if it had all the attributes required to perform the task. For example, in the mWDDSS workflow

system, if a task ’T’ of forming a VC and VS teams was to be performed by a Control Manager,

then task ’T’ would be an attribute of the user who already had the Control Manager as one of its

attributes.

• Tasks(T): A finite set of workflow tasks denoted as , {T1, T2, T3,} where , T ⊆ UA

6.1.7 Operations

The operations represented the entire set of system actions that could be performed on the ob-

ject resources and data by authorized users. The operations set comprised administrative operations

that could be performed on policy elements and relations as well. Some operations relative to the

32

model could be read, write, update, execute, and so on. A resource operations example could be a

bank teller reading and updating a piece of account information during working hours and inside

a bank branch. An administrative operations example, on the other hand, could be a policy officer

creating or deleting some policy data elements and relations in accordance to meet organizational

security objectives.

• Operations (OP): A finite set of operations that is denoted by; {OP1, OP2, OP3,}.

6.1.8 Policy Classes

The policy class was the container for all other entities. It helped to organize and distinguish

different types of policies. When the system had more than one policy class, each class was a

specific policy and permissions were granted only if it was allowable with respect to all the related

policy classes. For example, a user who was a doctor for some hospital could also be a patient for

some other hospital. If policies of two hospitals were represented as separate policy classes, any

privilege given to the user should satisfy both the policy classes.

• Policy Class (PC) : A finite set of policy classes; {PC1, PC2, PC3,}.

6.1.9 Policy Elements

We defined the set of all policy elements as a set PE, which helped to render access control

decisions. Policy elements set PE not only included the users and objects of a system, but also

attributes of those elements as well as policy classes to represent the authorization structure. The

way in which policy elements could be structured and utilized to express policy is covered in

subsequent sections.

• Policy Element (PE) : A finite set of policy elements; PE = (U ∪ UA ∪O ∪OA ∪ PC)

6.2 Relationships

Relationships bound the entities together to form a meaningful authorization structure. Thus,

formed structure was analyzed to derive the access decision. Following are the relationships in our

model and their features.

33

6.2.1 Assignment

The assignment relationship represented the container-ship between the entities. It entailed that

the contained entity inherited properties from the container. The assignments were the means to

represent the relationship between the entities [29]. For example, a user who was a student and

lived in Denver would be assigned attribute student and Denver. The assignment implied that the

user would have the functional properties of student and location properties of Denver. Based on

the policy entities, various assignments existed in the access control model.

User-Attribute Assignment

A user may be assigned to one or more user attributes. The UAAssign assignment was rep-

resented by (u, ua) ∈ UAAssign to indicate that the user u was assigned to the user attribute ua.

The UAAssign assignment was location and time-dependent. That is, a user could be contained

by a spatio-temporal zone as a user attribute. For example, a user could be the on-campus student

only when he was on the campus during the semester. This requirement was expressed using the

STZone attribute. Similarly, UAAssign was also responsible for the assignment of a workflow task

to a user. As with all other attributes, a single task could be assigned to multiple users and vice

versa.

- UAAssign ⊆ U × UA

We defined the function assignua which mapped each user to a set of attributes, noted that

each user must be mapped to at least one attribute in a workflow template, otherwise the user had

no access. Also, function assignu gave the set of users assigned for a given attribute.

- assignua : U → 2UA

- assignu : UA → 2U

Object-Attribute Assignment

Like the UAA assignment, an object may be assigned to one or more object attributes repre-

sented as a binary relation (o, oa) ∈ OAAssign to express that object o was assigned to the object

34

attribute oa. An object attribute may be contained by one or more spatio-temporal zones to govern

access to the contained objects by authenticated users only in specific locations and time. The

spatio-temporal zone of an object gave the location and time from which operations on that object

could be performed by users. For example, a permission to perform a backup of servers could be

executed only from the department after 10:00 p.m. on Friday nights.

- OAAssign ⊆ O ×OA

User Attribute-Policy Class Assignment

A user attribute was assigned to or contained by one or more policy classes to express and

enforce distinct types of policies. The (ua, pc) ∈ UAPCAssign assignment meant that the user

attribute ua was assigned to or contained by the policy class pc, where ua ∈ UA and pc ∈ PC.

This assignment also derivatively signified that user access was controlled by the container policy

class and the object access was protected by the container policy class. For example, a public

health officer for some locality could also be a resident of that locality. If we had two organizations

governing the policies of that locality, the officer might be bound by both the policy classes and,

thus, assigned to both the policy classes. Here, the attribute public health officer could be assigned

to policy class by organization A and resident could be assigned to policy class by organization B

since the individual was the same.

- UAPCAssign ⊆ UA× PC

Object Attribute-Policy Class Assignment

Like the UAPCAssign assignment, an object attribute may be assigned to or contained by

several policy classes, we expressed this assignment by (oa, pc) ∈ OAPCAssign, where oa ∈ OA

and pc ∈ PC. For example, the house to be sprayed might be the information of DDSS system

and, thus, might have attribute infected houses and member of some policy class. At the same

time, the house could also be a record of government information with different policy class, and,

therefore, could be contained by the policy class maintained by the government as well.

35

- OAPCAssign ⊆ OA× PC

Now, assignment A was the set of all the aforementioned assignment relationships,

A = {UAAssign ∪OAAssign ∪ UAPCAssign ∪OAPCAssign}

6.2.2 Attribute Hierarchy

In many cases, two attributes might have some of the privileges in common. In other words, an

individual might have some additional privilege than another individual with similar (but not the

same) attribute. For example, a state-level clinician could have all the privilege that a city level

clinician would have but the state-level clinician would be able to use his right throughout the state,

whereas the city-level clinician would be bound to the particular city only. In other words, if a user

was a state-level clinician, s/he by default would be a city-level clinician. Such a relationship

was defined to be hierarchy and was handled by an assignment relationship in our model. The

attribute hierarchy could be called dominance, the relation was partial order transitive, reflexive,

anti-symmetric relation on attributes denoted by �.

In a hierarchy between attributes, the contained attribute inherited all the properties of the

container attribute, the relationship was represented as contained � container. When a1 � a2 was

defined in the attribute hierarchy relation, it was either a1 = a2 or a1 ≻ a2 which meant attribute

a1 inherited attribute a2. If a1 6� a2 it meant there is no inheritance relationship between these two

attributes.

The spatio-temporal zones would almost always be the container of other attributes, since,

the existence of other attributes might depend on the zone. The later condition in the attribute

hierarchy was true for the task as well. It was because there were spatio-temporal constraints with

each task. For example, the task of testing the mosquito sample could only be performed within a

lab. Therefore, to represent the containment of the task with the spatio-temporal attributes in the

hierarchy, the STZones would always be always the immediate container to a task, but this was not

necessary for other attributes.

36

The user-attribute hierarchy (AHu) and the object-attribute hierarchy (AHo) were two varia-

tions of attribute hierarchy. The hierarchy was location and time-dependent. A jurisdiction officer

could inherit the permissions of public health officers when s/he was in the field with the group.

The attribute hierarchies were formally defined as follows.

1. AHu ⊆ UA × UA. AHu is anti-symmetric, ∀ua1, ua2 ∈ UA • (ua1, ua2) ∈ AHu ⇒

(ua2, ua1) 6∈ AHu

2. AHo ⊆ OA × OA. AHo is also anti-symmetric, ∀oa1, oa2 ∈ OA • (oa1, oa2) ∈ AHo ⇒

(oa2, oa1) 6∈ AHo

3. Relations AHu and AHo are disjoint; AHu ∩ AHo = φ

4. Spatio-temporal attributes were the containers of all attributes in the hierarchy: ∀ua, ua
′

∈

UA, (ua, ua
′

) ∈ AHu ∧ ∄ua
′′

∈ UA • (ua
′

, ua
′′

) ∈ AHu ⇒ ua
′

∈ STZones, which

meant the spatio-temporal attributes were the terminal (far-most) downstream entities in

the attribute hierarchy, AHu. This requirement was also is bound to the object-attribute

hierarchy, AHo.

5. Task attributes were always contained by either task or spatio-temporal attributes: ∀ua, ua
′

∈

UA • (ua, ua
′

) ∈ AHu ∧ ua ∈ T ⇒ (ua
′

∈ T) ∨ (ua
′

∈ STZones)

AH+
u and AH+

o are the transitive closure of the relations AHu and AHo respectively, provide

a convenient way to determine whether an attribute was contained from another through hierarchy.

Using AHu as an example of the following discussion, the expression uax AH+
u uay meant that

uax was a contained attribute from container uay. For example, relation AH+
u was transitive on set

UA since for all uax, uay, uaz in UA, whenever uax AHu uay and uay AHu uaz then uax AH+
u

uaz.

- ∀uax, uay ∈ UA • (uax, uay) ∈ AH+
u ⇒ ∃ua1, ua2, ua3,, uan ∈ UA | n > 1 ∧

(uai, uai+1) ∈ AHu for i = 1, 2, 3,, n− 1 ∧ uax = ua1 ∧ uay = uan

37

With the user attribute hierarchy relation, a user needs only to be assigned to the contained

attribute in order to acquire all container attributes in the inheritance hierarchy, similarly for object

attribute hierarchy. Authua and authoa were two functions that gave all attributes entitled to a

user and an object, respectively, through the attribute hierarchy relations. These two functions

aided in making access-control decisions and enforcing expressed policies. We said that attribute

uai was authorized for a user ui only if attribute uai was assigned to user ui or uai was inherited

by another contained attribute that was directly assigned to user ui or attribute uai was available to

user ui through the transitive closure hierarchy, a similar concept applied to function authoa.

- ∀ u ∈ U • authua(u) = {ua ∈ UA | (u, ua) ∈ UAAssign ∨ [∃ua AH+
u ua

′

∧

(u, ua
′

) ∈ UAAssign]}

- ∀ o ∈ O•authoa(o) = {oa ∈ OA | (o, oa) ∈ OAAssign∨ [∃oa AH+
o oa

′

∧(o, oa
′

) ∈

OAAssign]}

6.2.3 Attribute Enabling-usage

Enabling attribute was the means used to express that a user was given the authorization to oper-

ate in one or more attributes. Here again, an attribute was enabled by location and time constraints;

spatio-temporal constraints determined when the attributes could be enabled or disabled. When a

user needed to access some resources, the enabling of the attributes took place. The enabling

required the attributes to be assigned as a prerequisite. The assignment of attributes happened of-

fline, while the enabling was performed on the fly during the time a user effectively performing

some operations on protected system resources, so it was dynamic. For example, the attribute of a

doctor-trainee could only be enabled in a hospital during the training period. The functionality was

achieved in our model through transitive closure and containership of zonal attributes with other

attributes. As mentioned before, the zonal attribute assigned to the user: directly or by inheritance,

were there to represent the zones on which the contained attributes could be enabled.

Therefore, an assigned attribute was used if and only if the current zone of the user was exactly

equal to the user attribute for the same user. Additionally, a workflow task was enabled for the

38

user to perform, if all the attributes required for the task were enabled and there was no other

concurrent task attribute executed by the user. We defined enableua to formalize the enabling of

user attributes. Function enableua mapped each user to a currently enabled attributes note that

a user might not have any enabled attributes, whereby a user was mapped to an empty set. Also,

function usageu mapped an attribute to users who were currently using that attribute in a workflow

instance.

- enableua : U → 2UA

- usageu : UA → 2U

6.2.4 Association

The association relationship ASSOC allowed representing access control rights from a user

attribute to an object attribute. The entities involved in an association was different in adminis-

trative accesses. Administrative access was defined by the administrative association AASSOC

relationship. In administrative access rights, the relationship could exist from user attribute to any

other policy elements PE, where normally association was between user attribute and an object

attribute. The association relationship represented that a UA would have permission to perform

OPs (operation list) on object attribute OA. Similar, meaning was inferred for the administrative

association. For example, if a student had permission to check out the books from the library,

an association relationship would be established from user attribute student to the object attribute

library books, check out being an operation in the system. Similarly, if an admin had a privilege to

delete the user from the system, an association relationship would be established between the user

attribute admin to the most superior attribute of the user, so the admin would have permission to

delete all the available users in the system. Or if the requirement was to give permission to delete

certain user but not all, the association would be done to the container that contained the desired

users.

Although an association relationship was defined to be established between any user attributes

to any object attributes, we restricted the association to exclude the zonal attributes in case of non-

39

administrative association relationship. It was because the zonal attribute mainly aided on spatio-

temporal constraint and having an association relation between zonal attributes would not convey

a logical relationship. For example, having an association between one zone (say z1) which acted

as a container for all users in that zone and the object of that zone would just mean that every user

within a zone would have access to every object in the zone which was not a very logical real life

scenario. Association has been restricted from spatio-temporal attributes to prevent unnecessary

access. At the same time, allowing association relationship for the task attributes provided us

with extra granularity. The assignment of the task attribute requires pre-assignment of all other

attributes required to perform the task, which might make the association relationship redundant.

However, there might be situations where similar attributes needed to perform different actions for

a different task in a workflow. The situation was handled by having an association relationship

between the task type user attributes and the object attributes.

- ASSOC ⊆ UA
′

× OP × OA
′

, where (UA
′

⊆ UA) ∧ (OA
′

⊆ OA) ∧ (STZones 6⊆

(UA
′

∪OA
′

))

- AASSOC ⊆ UA×OP × PE.

6.2.5 Processing

A user was the active entity of a system that could cause information flow between objects

or alter system state, possibly to an insecure state. Therefore, processing of an access right ex-

pressed the state of an active user who was currently requesting some access rights on objects, or

in fact, a user exercising some operation on sensitive objects. These aspects of security were ad-

dressed through the PROC relationship that captured user access requests or activities on system

objects for a particular workflow instance. The processing relationship was also location and time-

dependent, a user may be granted an access request from a certain location and during a specific

time period. For example, it would be reasonable to demand that a user was authorized to report a

damaged facility as part of an activity repair for a workflow instance during the daytime and at the

house location. This relation was formally defined as follows:

40

- PROC ⊆ U ×OP ×O

6.2.6 Prohibitions

Prohibitions represented the inverse of the association to incorporate the existing exception into

the system, the suppression of access rights. A certain user attribute was defined as the prohibition

against accessing certain types of objects. The properties of an object attribute in complement set

(OAC of OA) defined the prohibitions allotted to users. For example, a specific student who had

been suspended for a week would not be able to access the resources throughout the suspension

period. Such a case was handled by defining a prohibition to the particular student. Prohibitions

could be formed and revoked through administrative operations overriding privileges that would

otherwise allow access to an object. Similar to an association, prohibitions as well was restricted

to exclude the zonal attributes.

- PROHIB ⊆ UA×OP ×OAC , where OAC is the complement set of elements not in OA

(OAC ∩ OA = φ), OAC = {oa ∈ OAC | oa /∈ OA}, where UA /∈ (STZones) ∧ OA /∈

STZones

A tuple (ua, op, oac) ∈ PROHIB, where ua ∈ UA, op ∈ OP , oac ∈ OAC , denoted that

any user contained by one or more user attributes in ua could not exercise the operations in op on

any object that was contained by at least one of the object attributes in oac. This formalization

was useful if we wanted to define a prohibition on a specific user attribute. Prohibition on a user

would prohibit all the operations executing on behalf of a user, whereas defining a prohibition on

user attribute would deny access for just that attribute of the user and allow other operations to be

executed, in other words, access modes allowed and denied to specific users.

6.2.7 Obligations

Obligations denoted administrative actions performed automatically upon event triggers, re-

sulting in automatic changes to policy. Events were the means by which administrative actions

were triggered automatically. An event took place each time an access operation to an object on

41

behalf of a user, denoted by < u, op, o >, executes successfully. Obligations specify an event

pattern specified conditions(refereed by set PATT) that, if matched with an event context trigger,

a set of administrative actions, also called as a response (referred by set RESP), to change the

state of the policy. Information related to a requested access event, such as an identifier of the

user, access operation, an object identifier of the triggering event was conveyed as part of the event

pattern. Thereby, an event pattern, PATT , and a response, RESP were two main components

defined an obligation, which was expressed in as �PATT
execute
−−−→ RESP , where � represented

whenever.

When an event occurred, conditions for the event pattern were expressed as logical expressions

that employ information from event context as well as the policy elements and relations to specify

the triggering conditions. The response to a triggered event was the means by which an invocation

of an administrative command occurred; every response invocation needed to pass data items from

event pattern to the administrative commands. Obligations in policy were formalized as follows.

- OBLIG ⊆ U × PATT ×RESP

The obligations were mostly useful to handle dynamic situations, especially with environmen-

tal conditions. For example, often times a user changed its location while exercising access rights

on objects and reached a new zone (say z2) from the old zone (say z1), it no more acquired the

attribute z1 but z2. To handle such changes, an administrative action to update the zone attribute

for the user from z1 to z2 or define a prohibition on z1 required adding an association on z2 and a

prohibition on z1 as the response for the event of the zone change.

6.3 Constraints

A constraint was an essential aspect of a workflow authorization model and was sometimes

argued to be the principle the motivation for it. Constraints provided a means of adapting ac-

cess control models to the specifics of administrative and security policies in an organization. For

mobile workflows, a constraint was a defined relationship among access control entities or envi-

ronmental conditions (i.e., location and time attributes) related to those entities. Access control

42

constraints provided flexibility and granularity of expressing a security policy for performing tasks

in mobile workflows. Without this flexibility and granularity, there was a greater risk that a work-

flow participant may be granted more access to resources that were needed because of the limited

control over the types of authorizations that could be allowed.

We, therefore, discussed the most frequently mentioned constraints in the context of mobile

workflows that our access control model should be capable to express and incorporate. This sec-

tion discusses the following types of spatial-time constraints on attribute relationships for mobile

workflows: mutually exclusive, trigger, dependency, and cardinality constraints.

6.3.1 Separation of Duty

The separation of duty (SoD) aimed to reduce the danger of fraud by distributing responsibility.

In our model, SoD confirmed constraints defined on attribute assignment and enabling, that is, a

user must not have two mutually exclusive attributes or capabilities at the same time. The static

and dynamic SoD relations were represented using the relationships SSoD and DSoD, which

connected the conflicting attributes, which were in certain spatio-temporal zones as a top-level

attribute, SoD = {SSoD∪DSoD}, the set of all conflicting attributes. The same individual should

not be assigned to conflicting attributes defined by SSoD in a specific location for some duration.

For example, the same user should not be assigned to a billing clerk and account receivable clerk

at the same time at a specific trade corporation.

1. SSoD ⊆ UA× UA

2. DSoD ⊆ UA× UA, where SSoD ∩DSoD = φ

3. SoD = {SSoD ∪DSoD}

The SSoD and DSoD relation are symmetric in contrast with role hierarchy relation.

- ∀ua1, ua2 ∈ UA • (ua1, ua2) ∈ SSoD ⇒ (ua2, ua1) ∈ SSoD

- ∀ua1, ua2 ∈ UA • (ua1, ua2) ∈ DSoD ⇒ (ua2, ua1) ∈ DSoD

43

However, the SSoD constraint may be violated through a role hierarchy relation. For exam-

ple, a billing supervisor may be a container attribute of the two conflicting contained attributes of a

billing clerk and account clerk at the same time and in the same accounting department. Therefore,

the SSoD and DSoD relations were symmetric in contrast with role hierarchy relation. There-

fore, two conflicting attributes in SSoD or DSoD must not directly or indirectly have a hierarchy

relation.

- ∀ua1, ua2 ∈ UA • (ua1, ua2) ∈ SSoD ⇒ (ua2, ua1) ∨ (ua1, ua2) /∈ AHu

- ∀ua1, ua2 ∈ UA • (ua1, ua2) ∈ DSoD ⇒ (ua2, ua1) ∨ (ua1, ua2) /∈ AHu

DSoD was the means by which two conflicting usages of attributes could not be executed by

the user in some spatio-temporal zones by the same user. For example, the simultaneous execution

of cashier and cashier supervisor was forbidden during the working hours in the same store to deter

such a user from committing fraud. The DSoD constraints were expressed in a similar manner

to the SSoD constraints. The only difference was that this container prevented the execution of

conflicting attributes that were connected by DSoD in some top-level zones by making use of

obligations as follows.

- ∀u ∈ U, ∃ua1, ua2 ∈ enableua(u), (ua1, op1, oa1)∧ (ua2, op2, oa2) ∈ ASSOC •ua1, ua2 ∈

DSoD ⇒ (ua1, op1, oa1) ∨ (ua2, op2, oa2) ∈ PROHIB

This constraint expressed the PROHIB suppression of access rights op1 and op2 for user u,

contained by conflicting ua1 and ua2 attributes in DSoD, on any objects pertaining with oa1 and

oa2 attributes, regardless of the access rights from user attributes to object attributes defined in

relationship ASSOC.

The separation of duty defined in the attributes would also determine the separation of duty

amongst the tasks. If a user could not be assigned two attributes then they could not be assigned

to tasks that required those attributes. Therefore, we did not define the separation of tasks between

the users as a different relationship but let the inheritance come into play to handle both through

44

already existing separation of duty in the system. Presence of static and dynamic separation of

duty in the system would be able to handle the separation of tasks between the users.

6.3.2 Trigger Constraint

Trigger constraint was useful in cases where we had to perform some action instantly after

an event. For the example workflow being considered throughout this model, a trigger constraint

could handle a situation where a mobile user crossed the infected zone, s/he would no more be able

to update the palatine record. The trigger constraint was represented as the obligation too.

- ∀u ∈ U, ua ∈ enableua(u) ∧ z ∈ currentzone(u), ∃(ua, op, oa) ∈ ASSOC • (z, ua) /∈

AHu ⇒ (ua, op, oa) ∈ PROHIB

While a user u exercising access rights op on an object with attribute oa using some user

attribute ua, if a user u moved into an invalid zone z, (z, ua) /∈ AHu, then the system must

precluded the user from exercising the access rights defined by relationship ASSOC, until the

user moved back to the valid zone. (z, ua) /∈ AHu meant that zone z was not defined by policy,

z /∈ STZones, or there was no containment relationship between container z and ua attributes in

AHu, where STZones ⊆ UA ∪OA.

6.3.3 Dependency of Activities

Dependency of Activities (DoA) prevented a workflow user from exercising an activity in a

workflow instance depending on performing other activities by the same or different user; in other

words, DoA defined constraints on operations OP . For example, the dependency between review

proposal and submit proposals activities, user u1 must review a proposal before user u2 submit

the proposal. The DoA constraint may be location and time restrictive. Referring to an example

from mobile workers who had to visit customer’s house to perform ad-hoc maintenance work (e.g.,

fixing heating system); a mobile worker order damaged parts only if the worker had performed the

inspection and reported the damage from the customer house and during the activity repair time.

- DoA ⊆ OP ×OP

45

The DoA relation was symmetric similar to role hierarchy relation, (op1, op2) ∈ DoA meant

that op2 depended on op1, but not the opposite.

- ∀op1, op2 ∈ OP • (op1, op2) ∈ DoA ⇒ (op2, op1) /∈ DoA

We defined the COMP relationships that recorded events that occurred in workflow engine

hosted on a stationary backend server by authenticated users in the communications (i.e., transac-

tions) between the workflow engine and the users of that workflow; it was a data collection method

that automatically captured the operation type, content object, or time of transactions made by the

user from mobile devices with the workflow client application. In other words, COMP defined

all operations accomplished by a user on a particular object for a given workflow instance, such as

(u, op, o) ∈ COMP , which meant user u performed operation op on object o. The DoA constraint

governed the use of computing resources by making use of COMP and PROC, a user attempted

to access resources were intercepted and allowed or disallowed based on current DoA.

- ∀u ∈ U, op1, op2 ∈ OP, (op1, op2) ∈ DoA • (u, op1, o) /∈ COMP ⇒ (u, op2, o) /∈ PROC

6.3.4 Cardinality Constraint

Another constraint type was cardinality constraints. Cardinality referred to defining a max-

imum number with respect to attribute, this was denoted by an attribute-usage cardinality con-

straint. One such constraint limited the maximum number of users that could be assigned to a

given attribute. The numerical limitation was subject to the organizational policies. For example,

a project leader or a department head would typically be limited to a single user. Thus, cardinal-

ity constraints defined a constraint on the relationship between model entities. These constraints

limited the number of elements that could be connected to each other in an authorization model.

For workflows, cardinality constraints were dynamic as the numerical restriction may vary de-

pending upon workflow instances. For example, in mWDDS workflow, the number of public health

officiates that could operate in VC or SC depended on the size of the infected area, which varied

from one workflow instance to another. The following formalism of attribute-usage cardinality

46

constraint limited the number of users that had access to attributes. Our model defined two types

of cardinality for each attribute: cardinality constraints on attribute assignment (for a workflow

template) and enabling (for a workflow instance).

- assigncard : UA → N>0, assigncard(ua) denoted the cardinality of attribute ua, i.e., the

maximum number of users authorized for that attribute in a workflow template.

- usagecard : UA → N>0, usagecard(ua) limited the maximum number of used attributes

by a collaborative user per a workflow instance. The usage attribute carnality must not

exceed the assignment cardinality, ∀ua ∈ UA • |usagecard(ua)| ≤ |assigncard(ua)|.

- The attribute cardinality must be specified for every attribute: ∀ua ∈ UA•assigncard(ua) 6=

φ ∧ usagecard(ua) 6= φ

The number of authorized users for any attribute in the assignment or usage relationship did

not exceed the cardinality of that attribute. Formally:

- Cardinality Constrains on Attribute-Assignment: ∀ua ∈ UA•|assignu(ua)| ≤ assigncard(ua)

- Cardinality Constrains on Attribute-Activation: ∀ua ∈ UA•|usageu(ua)| ≤ usagecard(ua)

6.4 Check Access

After having the policy in place, a user was granted or denied access to an object based on

the attributes of the user and object. This operation was location and time-dependent, it checked

whether a user was authorized to perform some operation on an object during a certain time and

from a certain location. A user was allowed to fire a missile if he was assigned the role of a top-

secret commander and he was in the controller room of the missile during a severe crisis period.

Thus, a user could access an object in a certain zone if that user had operated on an attribute

with appropriate access right in relationship ASSOC. Check access function checkAccess was

formalized as follows.

47

- ∀u ∈ U, op ∈ OP, o ∈ O • checkAccess(u, op, o) ⇒ {“GRANTED”, “DENIED”}

With respect to the assignment and association relationship created between the entities, a

request was granted if there existed an association and no obligation or prohibition for it.

- ∀u ∈ U, op ∈ OP, o ∈ O • checkAccess(u, op, o) == “GRANTED” ⇒ ∃(ua, op, oa) ∈

ASSOC ∧ (ua, op, oa) /∈ (PROHIB ∪OBLIG), where (u, ua) ∈ UAAssign∧ (o, oa) ∈

OAAssign.

6.4.1 Relation derivation

We could use existing relations to derive another relation in order to process access requests in

accordance with policy. From the association relationship, we could see that we did not assign user

u to operation op on object o, such as < u, op, o >, however, we were checking for the existence of

(ua, op, oa) ∈ ASSOC during check access, where (u, ua) ∈ UAAssign∧ (o, oa) ∈ OAAssign.

Checking access request or exercising access rights was done by derivation from the assignment

relationship, such as from ASSOC and

- ∀u ∈ U, ua ∈ UA, o ∈ O, oa ∈ OA, op ∈ OP • (ua, op, oa) ∈ ASSOC ∧ (u, ua) ∈

UAAssign ∧ (o, oa) ∈ OAAssign ⇒ (u, op, o) ∈ PROC

Similar derivation, from the attribute hierarchy relationships that existed between the attribute

and the policy elements itself, we could derive the associations between policy elements. Deriva-

tion from attribute hierarchy to the association was formalized as follows.

- ∀ua1, ua2 ∈ UA, oa ∈ OA • ua1 � ua2 ∧ (ua1, op, oa) ∈ ASSOC ⇒ (ua2, op, oa) ∈

ASSOC

Above mentioned derivations verifed that the query submitted < u, op, o > belonged or did

not belong to the set ASSOC. Similarly, relation derivation could be used to verify if < u, op, o >

belonged or did not belong to the set (PROHIB ∪ OBLIG). If it was found that the query

belonged to the ASSOC and did not belong to either of PROHIB or OBLIG than we could say

48

that the attributes required for the operation on the object existed for the user. However, due to

the spatio-temporal constraints present in our model, the existence of the attribute was not enough

to have access, but the attribute enabling and disabling decided the access. The process would be

followed by the enabling, and upon successful enabling, the user would be granted the permission

or denied on failure.

- enbaling()={success if currentzone(u) ∈ AH+
u } ⇒ AccessGranted, elseAccessDenied

After the enabling of the attributes and confirmation of access rights, the user would be able

to perform a task for the workflow. Through PROC and COMP function, we could keep track of

task being completed and, thus, disable the task for the users after completion, thereby, revoking

the permissions associated.

6.5 Authorization Graph

An authorization graph denoted by AG was the visual representation of the policy structure.

Authorization graph was a set of items connected by edges, each item was called a vertex or node,

edges represent the relations between items. The AG graph did not allow self-loops, adjacency

was irreflexive. The authorization graph depicted all the policy elements and their relationship

including prohibition constraints. The dynamic constraints, like obligation and SoD, would be

mentioned through some other measures rather than the edges or nodes of the graph. Policy ele-

ments in the model were represented as the nodes in the AG graph. In the actual graph database,

the nodes could have their own labels and, therefore, distinguishable.

Here, the graph was marked to distinguish between different kinds of element the node was

representing. Similarly, all the relationship would be represented as the directed edges between

the nodes. The assignment relationship was represented as the directed edge to the container. The

direction also showed that the contained attribute was inheriting the properties from the container.

The association would be represented as the (dotted) undirected edges from one policy element

to the other. The association relationship would not be directed, this in turn, aided on having two

49

types of interpretation of the association relationship, i.e., from the perspective of the user or the

object.

The association relationship had operations labeled onto it representing the set of operations

that could be performed due to the existence of that edge between the components (nodes). The

prohibitions relationship would have all the inverse behavior of the association in the graph, i.e.,

would be represented as a (dotted) undirected edge and have prohibition of operations labeled

into it in order to express the fact that both of prohibition and association had opposite functional

behavior.

Definition 3. [Authorization Graph AG] An authorization graph AG is a pair < V,E >, where

V is a set of vertices, and E is a set of edges between the vertices or nodes.

Authorization graph had two types of edges, E
′

directed edges and E
′′

(dotted) undirected

edges augmented with labels, L was the set of labels that denoted to the type of association

operation, prohibition operations, or SoD constraints between two adjacent vertices, thus, E =

{E
′
⋃

E
′′

}. The set of E
′

directed edges between the vertices was asymmetric, E
′

⊆ {(u, v)|u, v ∈

V ∧ u 6= v}, That is, each edge could be followed from one “outgoing" vertex, such as u,

to another “target" vertex, such as v. The set of E
′′

(dotted) undirected edges was symmetric,

E
′′

⊆ {{u, l, v}|u, v ∈ V ∧ l ∈ L∧ u 6= v}, that is, each edge connected two vertices with a labels

representing the type of association/constraint between vertices. When e
′′

∈ E
′′

this meant that

e = (ua, op1, oa) such that e
′′

was a (dotted) undirected edge between two vertices such as ua and

oa that had an association operation op1.

Thus, the developed authorization graph allowed us to see the flow of the properties between

the policy elements through the relationship defined in the model. Similarly, it allowed a better

understanding of the hierarchy and inheritance. Authorization graph also helped in the visualiza-

tion of restriction applied by giving permission into a different level of inheritance. Ultimately,

AG supported the understanding and justification of the containership between the elements and

its significance on mapping the access control to a real-world scenario..

50

Table 6.1: Input Data Structure for authorization graph

N Data Set Description

1 U Set of users in the system

2 UA Set of user attributes in the system

3 O Set of objects in the system

4 OA Set of object attributes in the system

6 PC Set of policy classes in the system

7 A
′

Set of all relationships in the system: A
′

= {A∪AHu∪AHo}
8 ASSOC Set of associations between attributes in the system

9 PROHIB Set of prohibitions in the system, inverse of ASSOC

10 SoD
Set of SoD conflicting constraints between attributes in the

system

We had devised an algorithm to develop the authorization graph AG, which took the policy in-

formation as the input and returned the authorization graph AG. Table 6.1 shows the Data Structure

required for the AG algorithm, 1 was the pseudo-algorithm for the construction of the authorization

graph.

Let us explain the algorithm through an example. We showed an example of policy informa-

tion in the form provided in Table 6.1. Algorithm 1 took the policy information as an input data

structure and generated the authorization graph AG as shown in Figure 6.2.

Lines 3 − 10 of algorithm 1 explore elements in sets U , O, UA, OA, and PC and construct

nodes marked by the elements in those sets. The algorithm traversed through the relationships in set

A
′

in lines 11−18 to create directed edges into E
′

between nodes in V . Undirected (dotted) edges

between nodes that represented associations, prohibition was created into E
′′

in lines 19 − 35.

The SOD constraints were noted into a file in line 36 − 43. Note in lines 27 − 34 that label

l was concatenated with annotation PR to express on the edge the suspension of the operation

represented by label l. Lines 44, 45, 46, and 47 form set E of edges, incorporated sets V and E in

graph AG, rendered graph AG, and returned the object AG graph, respectively.

A Real-world mobile Workflow System: mWDDSS

The DDSS mentioned in Chapter 3 had certain job functions. Here we present some of them

and their representation of in an authorization graph following our model.

51

Algorithm 1: Constructing Authorization Graph
input : Data Structure

output : Authorization graph “AG′′

1 AG = φ→ V = φ ∧ E = φ; // E
′

= φ ∧ E
′′

= φ

2

3 foreach (u ∈ Users; o ∈ Objects;ua ∈ UA; oa ∈ OA; pc ∈ PC) do

4 V = V ∪ {u}; // adds marked user u node to set V

5 V = V ∪ {o}; // adds marked object o node to set V

6 V = V ∪ {ua}; // adds marked user attribute ua node to set V

7 V = V ∪ {oa}; // adds marked object attribute oa node to set V

8 V = V ∪ {pc}; // adds marked policy class pc node to set V

9

10 end

11 if A
′

6= φ then

12 foreach (x, y) ∈ A
′

do

13 if (x ∈ V ∧ y ∈ V) then

// check whether x and y are nodes in V

14 E
′

= E
′

∪ {(x, y)};// adds a directed edge from node x to node y

15

16 end

17 end

18 end

19 if ASSOC 6= φ then

20 foreach (x, l, y) ∈ ASSOC do

21 if (x ∈ V ∧ y ∈ V) then

// check whether x and y are nodes in V

22 E
′′

= E
′′

∪ {x, l, y};// adds an undirected edge between node x and y with label l,

such as op

23

24 end

25 end

26 end

27 if PROHIB 6= φ then

28 foreach (x, l, y) ∈ PROHIB do

29 if (x ∈ V ∧ y ∈ V) then

// check whether x and y are nodes in V

30 l
′

= “PR” + l; // concat lable l with word “PR” to indicate the suppression of

ASSOC

31 E
′′

= E
′′

∪ {x, l
′

, y};// adds an undirected edge between node x and y with label l
′

,

such as PRop

32

33 end

34 end

35 end

36 if SoD 6= φ then

37 foreach (x, y) ∈ SoD do

38 if (x ∈ V ∧ y ∈ V) then

// check whether x and y are nodes in V

39 write into SOD.txt file x, y

40 end

41 end

42 end

43 E = {E
′ ⋃

E
′′

};
44 AG←< V,E >; // creates authorization graph for vertices V and edges E

45 display(AG); // renders the AG graph

46 return(AG);

52

Table 6.2: Input Data Structure for Example Authorization Graph

Set U {u1, u2, u3, u4}

Set UA {ua1, ua2, ua3, ua4}
Set O {o1, o2, o3}

Set OA {oa1, oa2, oa3}
Set PC {pc1}

Relation A
′

{(u1, ua1), (u2, ua2), (ua1, ua3), (u4, ua4), (u4, ua1), (ua4, ua3),
(ua2, ua3), (u3, ua3), (ua3, pc1), (o1, oa1), (o2, oa1), (o3, oa2),
(oa1, oa3), (oa2, oa3), (oa3, pc1)}

Relation

ASSOC
{(ua2, op1, oa2), (ua3, op2, oa3), (ua3, op3, oa3), (ua4, op3, oa2)}

Relation

PROHIB
{(ua1, PRop3, oa1)}

Relation SoD {(ua4, ua1)}

Figure 6.2: Example of Authorization Graph from Algorithm

53

Personal managers were responsible for assigning attributes, tasks, and privileges to users

(based on the attributes). Clinicians reviewed patient personal information (e.g., names, gender,

date of birth), premises of the patient (e.g., residence, and optionally work or school), past hospi-

talization and treatment information (e.g., clinic, physicians, disease), and clinical findings (e.g.,

presence/absence of fever, nausea, or headache). Laboratory technicians collected laboratory test

data including the type of samples, method(s) used to test the samples, framework for interpreting

test results, and interpreted results. Epidemiologists accessed patient and laboratory test informa-

tion with regard to evaluating and changing health safety standards and programs. Vector control

team members sprayed houses in infected areas. Vector surveillance team members performed

mosquito collection and testing tasks intended for developing insecticide resistance methods. Vec-

tor control and surveillance members were provided with needed materials to use for their tasks.

Such material allocation was done by material managers at the state or city level. Material man-

agers were also responsible for updating the local materials inventories. Vector manager designated

the tasks that must be performed by vector control and surveillance teams.

Health care professionals were only allowed to access their patients’ records in the areas where

the dengue case occurred and during the course of dengue. Moreover, to prevent fraudulent entries,

the vector control and surveillance teams must perform their tasks in the designated places and at

specified times. Due to the significance hierarchy between the attributes (for example: A user

having an attribute State Hospital Clinician would also have City Hospital Clinician City resided

in a city within the state) the access control model captured it in terms of containership between

attributes. To bind the actions to certain zones, zones were considered an attribute of this system.

Below we present some fictional user and their access policy with respect to their attributes

including workflow task. The policy is graphically represented in Figure 6.3.

Users: {Alice(u1), Bob(u2), Dave(u3), Shan(u4), T im(u5), Shelly(u6), Phil(u7), Lara(u8),

Evan(u9)}

54

User and Object attributes (Spatio-temporal zones): {z0 :< Colorado,DayT ime >,

z1 :< HeadOffice,DayT ime >, z2 :< FortCollins,DayT ime >,

z3 :< HouseAddress,DayT ime >, z4 :< InfectedArea,DayT ime >,

z5 :< Lab,DayT ime >, z6 :< AnyWhere, Anytime >}

Daytime = [8am− 5pm], Anytime = [11 : 59am− 11 : 59pm] and zone z6 is the zone that

contains all other zones.

User Attributes: {Manager(M), StateOfficer(SO), Jurisdiction Officer(JO),

LabTechnician(LT), V ectorControlTeamMember (V CT),

V ectorSurveillanceTeamMember(V ST), PublicHealthOfficer(PHO)}

Objects: {UserName(o1), UserAddress(o2), ThresholdT ime (o3), ThresholdV alue(o4),

Equipment(o5), Equipment Amount(o6), InfectionRate(o7), Infectedarea(o8),

SampleId(o9),MethodUsed(o10), AssignedTask(o11), AssignedPersonel(o12)}

Object Attributes: {UserData(UD), EnvironmentalData (ED),WareHouseData(WHD),

V ectorData(V D), LabTechnicianData(LTD)}

Task: {FormJurisdiction(FJ), CheckThreshold(CT), Activate Response(AR),

ActivateV CandV STeam(AV CST), P erformTest (PT), SprayHouses(SH),

CollectMosquito(CM), Release Material(RM)}

Operations: {Read/Write/Update/UserData(op1), Read/Write /Update/

LabTechnicianData(op2), ReadV ectorData(op3), Read/Write/UpdateEnvironmental

Data(op4), Read LabTechnicianData(op5), Read/Write/Update WareHouseData(op6),

Read/Write/UpdateV ectorData(op7)}

55

Policy Classes: {DDSSAccess}

User-Attribute Assignment:{(u1,M), (u2, SO), (u3, JO), (u4, V CT), (u5, V CT), (u6, V CT),

(u7, V CT), (u8, V CT), (u4, V ST), (u5, V sT), (u6, V ST), (u7, V ST), (u8, V ST), (u9, LT)}

Object-Attribute Assignment:{(o1, UD), (o2, UD), (o3, ED), (o4, ED), (o5,WHD),

(o6,WHD), (o7, ED), (o8, ED), (o9, LTD), (o10, LTD), (o11, V D), (o12, V D)}

Attribute Hierarchy: {(M,FJ), (M,CT), (M,AR), (SO,RM), (JO,AV CST),

(V CT, PHO), (V ST, PHO), (V CT, SH), (V ST,CM), (LT, PT), (FJ, z1), (CT, z1),

(AR, z1), (RM, z0), (AV CST, z2), (PHO, z2), (SH, z3), (CM, z4), (PT, z5), (UD, z1),

(ED, z1), (ED, z4), (WHD, z0), (V D, z2), (LTD, z5), (z1, z6), (z0, z6), (z5, z6), (z3, z6),

(z2, z6), (z4, z6)}

UserAttribute-PolicyClass-Assignments:{(z6, DDSSAccess)}

ObjectAttribute-PolicyClass-Assignments: {(z6, DDSSAccess)}

Associations:{(LT, op2, LTD), (SO, op6,WHD), (JO, op3, V D), (V ST, op4, ED),

(V CT, op5, LTD), (M, op4, ED), (AR, op1, UD), (FJ, op1, UD), (FJ, op7, V D)}

56

Figure 6.3: Authorization graph for DDSS

57

Chapter 7

Analysis of Workflow with Authorization Constraints

The proposed model in Chapter 6 was well-suited for many mobile workflow policies, however,

by itself, did not guarantee that a system remained secure in all situations. The model supported

the specification of various spatio-temporal features that might interact in a subtle way resulting

in inconsistencies and conflicts. For example, incorrect spatio-temporal constraints or task control

flows may prevent a workflow participant from invoking its job. Therefore, an analysis approach

of the workflow model, such as the one introduced in Chapter 6, was a compulsory task needed to

ensure that inconsistencies or security violations did not occur when a given application was using

our model. The policy flaws such as incompleteness and inconsistency were hard to be detected by

manual policy inspection. In addition, when a policy had numerous rules, manual inspection was

tedious and error-prone.

Automaton verification such as using model checking techniques was an important task needed

to detect policy flaws. The automaton checker would disclose any event that caused the system

transition to an invalid state, which did not conform with underlying policy rules. For example,

deadlocks may exist in a workflow in case no participant was available to perform a task, while

some tasks were waiting for the completion of that task in the first place. Such a problem arose

due to an error in the business rules specification and task authorizations. In our proposed mobile

workflow model, the attribute-based access control model governed user access to tasks, data, and

services. That is, tasks, objects, and applications were associated with attributes that defined where

and when a user could have access.

Thus, it was important to analyze the interactions of the dependencies and authorization con-

straints and verify properties of the system through an automated verification tool. In our case,

we used Timed Coloured Petri Nets (TCPN). TCPN was widely utilized to perform an exhaustive

search in model space in order to verify security properties of concurrent and distributed actions.

For the complete reference on the TCPN, please refer to [42]. The analysis step will detected

58

conflicts between tasks, improper execution of tasks by unauthorized users, violation of depen-

dencies, and deadlocks. Towards this end, we advocated the use of the TCPN to develop and

analyze the CPN model representing mobile workflow with authorization constraints. TCPN had

toolbox support for graphically representing the workflow model and performing simulation and

formal analysis [43]. It has been used successfully for the formal analysis of real-time concurrent

systems, such as our mobile workflow model.

7.1 Background: Timed Colored Petri Nets(TCPN)

A classical Petri-nets (PN) were widely used for describing and studying systems that were

characterized as being concurrent, asynchronous, distributed, parallel, and non-deterministic [1].

A classical Petri net was a bipartite graph and mathematical modeling tool. Petri nets have had

an intuitive graphical representation that made it easy to see the basic structure of a complex PN

model, i.e., understand how the individual processes interact with each other. It consisted of three

basic components: places (that usually represent the passive elements of the system), transitions

(that represent the active elements), and arcs that connect them. Two types of arcs existed: input

arcs connect places with transitions, while output arcs connect transitions with places.

Places could contain tokens. The current state of the modeled system (the marking) was given

by the distribution of tokens in each place. Transitions were active components that model activ-

ities, which could occur (the transition fires), thus, changing the state of the system (the marking

of the Petri net). When transitions were enabled, they were allowed to fire, which meant that all

the preconditions for the activity must be fulfilled (there were enough tokens available in the input

places). Whenever a transition fired, it removed tokens from its input places and added some at

all of its output places. The number of tokens removed and added to output places depended on

the cardinality of each arc. Furthermore, transitions and arcs could be augmented with guards and

expressions respectively.

Colored Petri-Net extended Petri Nets by combining the strengths of ordinary Petri Nets with

the strengths of a high-level programming language to provide more expressiveness. CPN also

59

had a formal, mathematical representation with a well-defined syntax and semantics. Basic Petri

nets provided the primitives for process interaction, while the programming language provided the

primitives for the definition of data types and the manipulations of data values. Colored Petri Nets

(CPN) allowed tokens to be associated with colors, i.e., data types through color sets.

The Timed Colored Petri-Nets(TCPN) extended furthermore by allowing the inclusion of the

time in the model. The color sets were timed by appending “timed” keyword, while declaring the

colored sets. It further made it possible to assign an integer number to each timed token and would

represent the time in which those tokens would be available. The TCPN introduced a feature to

incorporate with a transition either a constant or functional time, which represented the amount of

time taken for the completion of an activity.

TCPNs allowed different tools for simulation of the model. It could be simulated interactively

observing effects on each step or automatically to some final state after a specified number of steps.

TCPNs also offered more formal verification methods, known as State Space analysis. In this way,

it was possible to prove, in the mathematical sense of the world, that a system had a certain set of

behavioral properties. A state space analysis represented all possible executions of the model being

analyzed. This made it possible to verify systems, i.e., prove that different behavioral properties

were present or absent in a model.

As our model had a temporal component associated with it, the Timed Colored Petri Net al-

lowed us to introduce the effect during the simulation and verification.

7.2 Formal Definition: TCPN

The Timed Colored Petri Nets formally were composed of ten tuples:

TCPN = (Tm,Cs, P, T, A,N,C,G,E, IN,M)

satisfying the following requirements:

60

(i) Tm was a set of real integer that represented time. Tm appended with CS to form a timed

color set. Tm also represented the global time clock for TCPN. Every page in a net would

have access to the global clock and changed the state as permitted by the global clock. If no

transaction was active for a certain time (say tm1), the global clock was incremented to the

next time a transaction was active. Tm could also be a transaction inscription for which it

would increase the time for the token by the inscribed value, in other words, would introduce

a time delay.

(ii) CS was a finite set of non-empty types called color sets (also referred as colset). They

could be timed or untimed with at least one of the color set in the system being timed, i.e.,

n(CS) ∗ T imed > 0

(iii) P was a finite set of places

(iv) T was a finite set of transitions

(v) A = Ia∪Oa∪ IOa was a finite set of arcs such that P
⋂

T = P
⋂

A = T
⋂
A = ⊘; where

Ia is a set of input arcs, Oa is a set of output arcs and IOa is a set of input output arcs.

(vi) N : A → P × T
⋃

T × P is a node function maps each arc with place and transition

(vii) C : P → CS was a color function that mapped a place to a color type

(viii) G was a guard function. It was defined from T into expressions such that ∀t ∈ T :

[(Type(G(t)) = Bool) ∧ Type(V ar(G(t))) ⊆ CS]

(ix) E was an arc function. It is defined from A into expressions such that ∀a ∈ A : [(Type(E(a)) =

C(p(s))ms) ∧ Type(V ar(E(a))) ⊆ CS], where p(a) was the place of N(a) and CMS de-

noted the set of all multi-sets over C. More precisely, this function associated each arc with

an expression, which must be of type C(p)ms where P was an input/output place belonging

to a given arc. Furthermore, all variables in such expressions must also be of place color

C(p) type. Evaluation of the arc expressions for a given transition let us know what token

was to be taken from the transitions input place as well as what token was to be placed into

the output place.

61

(x) IN was an initialization function. It was defined from P into expressions such that ∀p ∈

P : [(Type(IN(p)) = C(p(s))ms) ∧ V ar(IN(p)) = ⊘]. It mapped each place into an

expression, which must be of color type C(p)ms. Each place was assigned a multi-set of

tokens, and relevant color conforms to the color of the place.

To enable transitions in the TCPN model, we must obtain initial marking by evaluating the

initialization functions. Arc expressions specified a collection of tokens that were added to (or

removed from) the places. A transition could be enabled when each of its input places contained

the multi-set specified by the input arc inscription and the guard transition evaluated to be true. The

tokens inscribed to flow to the transaction, if time, would not be available until the global time was

greater than or equal to the token time. Upon firing an enabled transition, the tokens were removed

from the input places and probably added to the output places of the occurring transitions. The

number and color of the tokens were determined by the output arc expressions, evaluated for the

occurring bindings. The time delay, if any in the transitions, would be imposed on the tokens being

passed away from the transitions.

In the following, we constructed the transformed TCPN model of our task-attribute based ac-

cess control policy for mobile workflow systems based on the above elements of TCPN.

7.3 TCPN based model for mobile Workflow System

Using TCPN allowed us to model the behavior of the task control flows and perform the model

simulation. As discussed in Chapter 6, our access control model for the real-time workflow system

(Dengue Decision Support System) was based on user, object, and their attributes. The attributes

in addition to their roles and hierarchies also included the location and time (known as STZones

as single units) and workflow tasks that they were allowed to perform after verification of all other

required attributes. Based on these, our TCPN model simply represented user as the timed tokens

that were moved to places, when a transition was enabled. A sample example is shown in Figure

7.1. The relationship, flow, and constraints were preserved in the model by following a constant

template, which is described below in detail.

62

Figure 7.1: Example TCPN

Relevant TCPN elements

• Color set(CS)

– colset USER = record name:STRING timed;

– colset threshold = INT timed;

– colset StartEnd = bool;

– colset INT = int;

The tokens matching the above color sets were:

USER token : < u > ::colset USER

As we could see that the USER was a timed colset, every user token was timed. The time

factor to the user token would constrain a user token to be available before time.

Threshold token :< th > :: colset threshold

The threshold token represented the input from the environment. In particular, it specified

the infection rate of the area being analyzed and, thus, the workflow should start operating if

the input was greater than a standard value.

The timed feature of threshold type token helped us to model the real-time scenario where

the threshold value was updated every interval of time. And once the input value was higher

63

than the threshold, the response was enabled, but not multiple times for each input greater

than the threshold.

StartEnd : < se >:: colset StartEnd

Counter: < c >:: colset INT

• Places(P)

– User Attribute (UA): The place represented the user attribute of the users and held a user

token. In real life scenarios, we could have these attributes being assigned to different

users in the system. In which case, our model would represent the complete phenomena

as shown in the left side of the Figure 7.1. However, with the guard functions in each

transition, it was a static phenomenon. Also, since we were modeling a task-attribute

based access control, our assumption would be that a user possessed certain attributes

and used any combination to exercise the required task permissions. Therefore, in our

model, we simplified the model by representing a user with an attribute as a token in

the user attribute place. In this way, we reduced the complexity and had an efficient

representation of our model at the same time.

– Zone Attribute (ZA): The place represented the physical locations. The presence of a

token in this place signified that the mobile user was now in the required STZone place

and, thereby, could enable the user attribute from which it had arrived into the place. It

could be further sent to the task attribute since it had obtained all the attribute necessary

for the task by fulfilling the spatial-temporal constraints necessary.

– WorkFlow Task Attribute (TA): The place represented the individual task of the work-

flow and held a timed user token. Presence of a token in this place, at any state of

the TCPN model, would signify that the user or multiset of users had all the attributes

64

required to perform the task and, thus, were eligible to perform the task. This state was

considered to be the processing state where the users were into the task.

– Start and Sink (SS): These places represented the start and sink of the workflow. They

held boolean type token. The model consisted of a single token in the start type place,

which was moved by a transition and enabled the operation on the workflow. Our goal

was to have one or more boolean type token in the Sink type place. The number of the

token to be present depended on the number of the path that could be followed to the

end and the number of user tokens required to perform each end task.

– Counter(C): These places were present in the system to hold a single INT type token

that got updated every time a transaction was fired. The counter token was there to track

the number of tokens supplied to the successor TA or ZA or UA where ever necessary.

• Transitions (Ts)

– Assign (Assn): Since our model had an assignment for users to attributes, the assign

transition would be responsible for assigning a task when all the task to a user who

possessed all the required attribute and inactive state. The assign type transition moved

the tokens from ZA to TA representing the user being assigned the task.

– Enable (Enb): Since, enabling depended on spatio-temporal constraint, enabling transi-

tions to move the user tokens from UA to ZA such that token now enabled the transition

that would move the token to the task. In other words, the user got the necessary zonal

attribute to exercise the user attributes and was ready to be assigned to the task.

• Arc, Arc Expression and Guard:

– Our TCPN model had input and output arcs with mostly user token as expressions,

which made the arcs simple. In very few cases, the arcs were required to be both input

and output. Such cases were represented as two arcs (input and output) joining the

same elements. The guard functions were given to some transaction to specify certain

65

conditions at which they were to be enabled. For example, infection should be greater

than a threshold or only some user was allowed to fire some transaction.

In the template TCPN model given in Figure 7.1, the circles represented the places. Places in

the TCPN template held tokens of type colset USER. The small filled tokens represented the tokens

of user type. The color coding was done to represent the same user being assigned to different

attribute or vice versa. As a result, there could be multiple tokens of the same type in the system.

Also, in the example, there were four input tokens but has five tokens in the system in total because

one user was being assigned to two different user attributes. The transitions were represented in the

rectangles. The arcs directed towards the transactions were the input arc and directed away from

the transitions were the output arcs. The inscription “1‘u” was the arc expression that represented

1 unit of user token was being moved, where “u” was a USER type variable. The inscription above

the transition enclosed within in the square braces was the guard function which, in this example,

stated the name tuple of record “u” should be as mentioned for the transition to fire or only the

token with such behavior could fire the transition.

7.3.1 Workflow Control Flow in TCPN

The workflow task in our model was ordered in six different ways. Each order is described

below for TCPN modeling and shown in Figure 7.2

A. Sequential (S): The sequential order was when one task was performed after another. If T1

and T2 were sequential such that T2 came after T1, TCPN modeled it by placing a transition

between them such that the transition placed a token from T1 to T2.

B. Conditional Repeats (CR): The conditional repeats were modeled in TCPN by a guard func-

tion in the transitions. If T1 needed to be repeated conditionally then a transition was placed

before T1 that took input for conditions and placed a token to T1 whenever satisfied.

66

Figure 7.2: ControlFlow in TCPN model

C. And-Split (AS): In the case of and-split, all the branches from a task should be performed.

If T1 was splitting to two independent task T2 and T3, a transition was placed in between

the branching task (T1) and branches (T2, T3) task and which received one input token and

multiplies to all the branches.

D. Mutually Exclusive-Split (EX): In the case of mutually exclusive-split, one of the branches

from a task should be executed. If task T1 splits to two task T2 and T3, a transition was

placed in between the branching task (T1) and each of the branches (T2, T3) task, such that,

each of the branches required a different token to fire the transition and, therefore, received

a token.

E. And-Joins (AJ): The and-join required completion of all the merging task. If T1 and T2

joined to T3, to achieve this a single transition was placed that received tokens from all the

merging tasks (T1, T2) such that transition was fired only when all the merging transitions

were completed.

F. Or-Joins (OJ): The Or-joins allowed the same task to be performed from a different path but

not all the merging task needed to be completed. Therefore, if T1 and T2 merged to T3, a

67

Figure 7.3: Special cases in TCPN model

transition was placed after each merging task (T1, T2).

7.3.2 Special Cases

Apart from, the elements and their flow, TCPN model also needed to incorporate special cases

like attribute hierarchy, separation of duty in task, and cardinality constraints.

A. Attribute Hierarchy: Attribute hierarchy would allow a senior attribute to exercise the privi-

lege given to the junior level attribute. The hierarchy was represented in TCPN by placing a

transition between two attributes. If A1 was a senior attribute and should be able to exercise

all the permissions from A2 then, user token would be on attribute A1 only through A2, such

before having used A1, it would use A2, thus, having both the attributes as shown in Figure

7.3.

B. Separation of Duty in Tasks: For separation of duty in the task, we followed the guidelines

provided by [44] and their model is shown in Figure 7.3 with a small modification since our

model did not have a start and end for the task.

68

C. Cardinality Constraints: Cardinality constraints controlled the number of tokens that could

be present in a place (attributes or task). It essentially meant that some attributes or task

should be assigned to at most a given number of users and no more. To implement this in

TCPN, we added a counter place to the transition that transferred tokens to the designated

place and also guarded specifying the limit of the counter tokens as shown in Figure 7.3.

However, in different places, where more tokens were available at once, the cardinality con-

straints could be represented by the arc inscription as well. If an arc was inscribed with the

multiset of variables, it would refer to the cardinality constraints exactly equal to the spec-

ified number as shown in Figure 7.3 d. However, this could be done if some tokens were

available in the system, or it might cause deadlock, otherwise.

7.3.3 Hierarchical Model

The TCPN net developed by following the template described above was a very huge net,

due to which there was an obstruction on viewing and understanding the flow of the model. As

a solution to this, CPNs supported a mechanism for construction of large system models in a

hierarchical manner equivalent to the complete and complex model by introducing the concept of

subpage transition, ports, and sockets as described on [45]. Thus, developed hierarchical model

followed the structure as shown in Figure 7.4. The hierarchy mechanism of modules allowed us

to model different levels of abstraction that were inherent in workflows. Hierarchy divided up

and represented a complex system as several connected sub-models. CPN Tools allowed both a

bottom-up approach and a top-down approach for instantiating hierarchical net models. Thus, the

graphical representation of the hierarchical model made it easy to see the whole structure of the

workflow model and understand the individual sub-components interaction.

Each of the units shown in Figure 7.4 are separate TCPN pages with unique properties enclosed

within. The DDSS was the main page that represented a higher level or abstraction level of the

DDSS system, i.e., a workflow was started where a manager monitored the infection rate of the

jurisdiction, form the jurisdiction group, and upon receiving an infection rate greater than the pre-

determined threshold, the response was enabled. The workflow ended upon successful execution

69

Figure 7.4: Hierarchical Structure for TCPN Model

of the response. The response was a separate model, which maintained the control flow of the task.

The ManagerUA was responsible for verifying that the Manager had gotten the spatio-temporal at-

tribute necessary to use the Manager attribute and upon successful activation could perform tasks

in the sub-models of the DDSS workflow. Similarly, SOJOPHO and LabTcUA were responsible

for activation of the state officer, jurisdiction officer, public health officers, and lab technicians

required to perform the tasks within Response. UAHierarchySOD, in addition to activation of the

attributes, also captured the hierarchy between attributes and separation of duty between the tasks.

Each unit moved token as shown by the direction of the arcs and, thus, enabled or disabled the

transitions in a separate net. This can be viewed in Figure 7.5.

The transitions that represented the subpage (double-bordered) would be connected by ports

and sockets. The sockets were double bordered as well and acted as either of input, output, or

input/output socket. The type of sockets could be distinguished by the tag presented on them.

Each of these sockets was connected to corresponding port in the main module and had to be of

the same type. We could see the same names of ports and sockets in our model, which was not

necessary but helped visualize it better. We could also think of the ports and sockets as a pipeline

that connected two pages, such that any incoming arc to the substitution transition would flow the

data to the input port of the subpage and the output arc would flow the data from the output port

of the subpage, while the path was two way for input/output arcs. This guaranteed that the input

to the substitution transition was the input to the subpage and output of the substitution transition

70

was the output of the subpage. Since we could have multiple input or output ports in a subpage, we

had to predetermine the port and socket pair. For example, UAHierarchySOD in Figure 7.5e was a

substitution transition with subpage shown in Figure 7.5f. The input port FortCollins in Figure 7.5f

was connected to the socket FortCollins in Figure 7.5e. Similarly, the output ports SparyHouse and

CollectMosquito on Figure 7.5f were connected to the sockets SprayHouse and Collect Mosquito

in Figure 7.5e. Likewise, the input/output port, Enable VC and VS Team, were connected to the

respective socket.

7.3.4 Model Simulation

TCPN models could be simulated interactively or automatically. With interactive simulation, it

was possible to see the effects of the individual steps straightforwardly on the graphical represen-

tation of the CPN. This meant that it was easy for us to investigate the different states and choose

between the enabled transitions. The automatic simulations were similar to program executions

that enabled us to execute the CPN models as fast and efficient as possible, without detailed hu-

man interaction and inspection. This meant that the user could investigate the application-specific

view of the current state and activities in the system missed in the interactive simulations.

Typically, for models with very large state spaces as in our realistic DDSS workflow, it was of-

ten useful to analyze all the restricted behavior of the workflow in order to increase our confidence

in the correctness of the TCPN model. CPNs offered more formal verification methods, known

as State Space analysis. In this way, it was possible to prove, in the mathematical sense of the

word, that a system had a certain set of behavioral properties. A state space analysis represented

all possible executions of the model being analyzed. This made it possible to verify systems, i.e.,

prove that different behavioral properties were present or absent in a model.

7.4 Model Analysis

TCPN allowed us to investigate the behavior of the CPN model using simulation and state space

analysis. TCPN generated all possible reachable states as well as the values of environmental vari-

71

SOURCE

BOOL

1`true

Manager

USER

1`{name="Alice"}

T3:
Activate
Response

USER

SINK

BOOL

T1:
Form

Jurisdiction

USER

T2:
Check

Threshold
USER

Threshold

INT

thresholds

Ts2

@+2

Ts3

[th>70]

Response

Response

@+20

Response

UAManager

ManagerUA

@+5

ManagerUA

1`u

1`u

1`u

th

1`u

(a) DDSS

Head
Office

USER

START

In
BOOL

1`true

T1:
Form

Jurisdiction
Out

USER
Out

Manager

In
USER

1`{name="Alice"}

Ts1

Manager
HeadOffice

1`u

1`u

1`x

1`u

1`u

In

In

(b) ManagerUA

Lab

USER

Perform
Test

Out

USER

Out

Lab
Technician

In
USER

1`{name="Evan"}@+20

Collect
Mosquito

In
USER

In

LT
Lab

Ts8

1`u

1`u

1`u

1`u

1`pho4++
1`pho5

In

(c) LabTCUA

State
Officer

USER

1`{name="BoB"}@+5

Jurisdiction
Officer

USER

1`{name="Dave"}@+6

Public
Health
Officer

USER

allPHO

T5:
Activate

VC and VS
Team

USER

T4:
Release
Material

USER

Spray
House

USER

Update
 Database

2

USER

Perform
Test

USER

Collect
Mosquito

USER

Lab
Technician

USER

1`{name="Evan"}@+20

T3:
Activate
Response

In
USER

In

SINK

Out
BOOL

Out

Ts5

Ts11Ts9

Ts10

SOJOPHO

SOJOPHOSOJOPHO

LabTCUA

LabTCUaLabTCUa

1`u

1`pho1++
1`pho2++
1`pho3

1`pho1++
1`pho2++
1`pho3

1`u

1`u 1`true

1`u

1`u

(d) Response

FortCollins

USER

Jurisdiction
Officer

In
USER

1`{name="Dave"}@+6

In

T5:
Activate

VC and VS
Team

In/Out

USER

Spray
House

Out
USER

T3:
Activate
Response

In
USER

In

State
Officer

In
USER

1`{name="BoB"}@+5

In

Collect
Mosquito

Out
USER

Out

T4:
Release
Material

Out
USER

Out

Public
Health
Officer

In
USER

allPHO

In

Colorado

USER

JO
Fort Collins

PHO
FortCollins

SO
Colorado

Ts4

1`u''

returnallPHO()

1`u''

returnallPHO()

1`u'

1`u'

1`u

1`u''

1`u''

1`u'

1`u'

Out

In/Out

UA
Hierarchy

SOD

UAHierarchySODUAHierarchySOD

(e) SOJOPHO

Infected
Area

USER

Vector
Surveliance

Team

USER

Vector
Control
Team

USER

House
Address

USER

CountVS

INT

1`0

CountVC

INT

1`0

FortCollins

In

USER

In

T5:
Activate

VC and VS
Team

In/Out

USER

In/Out

Spray
House

Out
USER

Out

Collect
Mosquito

Out
USER

Out

SODC USER

1`{name="Test"}

PHO
VCT

[countVC<3]

PHO
VST[countVS<2]

VC
House

Address

VS
Infected

Area

Ts6

[u'<>pho]

Ts7

[u''<>pho']

countVC+1

1`pho4++
1`pho5

1`pho1++
1`pho2++
1`pho31`u

1`pho4++
1`pho5

countVC

1`pho

countVS+1

countVS

1`u

1`pho1++
1`pho2++
1`pho3

1`pho'

1`u

1`u
1`u

1`pho

1`pho'

1`u

1`pho

1`u'

1`pho'

1`u''

(f) UAHierarchySOD

Figure 7.5: Hierarchical TCPN model

72

ables that caused the system change. Once the TCPN model was created, the toolbox allowed us to

do a state space analysis. The TCPN toolbox generated all possible states of the workflow model.

For the analysis of the TCPN model, we were interested in the determination of deadlocks in the

DDSS workflow, violation of constraints like separation of duty, and the hierarchy in attributes. In

order to do so, we needed to calculate the state space and build a state space graph that showed

every possible state of the model and also a path to reach any state. The occurrence graph analysis

elaborated all reachable states of the DDSS workflow. Paper in [46] provided details about how to

perform the state space analysis.

7.4.1 State Space (Reachability) Graph

We were generally interested in what might happen when transitions might continually fire in

arbitrary order. We said that a marking M
′

was reachable from a marking M in one step or in

more than one step in the path between these two marking. The basic idea behind state space

graph analysis was to construct a weighted directed graph which had a node for each reachable

marking and an arc for each possible state change (occurring binding elements), i.e., different

binding between arc expression variable and tokens in each marking.

The state space graph of this CPN model could be computed fully automatically using state

space tool and made it possible to automatically verify the model policy, i.e., proved in the mathe-

matical sense of the word that the model possessed a certain formally specified property. However,

there could be an infinite number of reachable markings, generated a state space explosion. To

obtain a finite number of reachable markings, it was possible to limit the initial number of tokens,

which may be present in the TCPN net (this was called a bounded CPN net) or created partial state

space graph by limiting the time of creating reachable marking, but this affected the analysis power

of model leaving some errors undetected.

The state space graph presented in Figure 7.7 contains information of all reachable states

(markings) of the TCPN model in Figure 7.11b. The marking represented the system being in

a certain state. The state changed when tokens were moved following the binding elements. Fig-

73

Figure 7.6: UAHierarchySOD with Initial markings

ure 7.6 shows the initial state with marking, which underwent different changes and results to the

states given in Figure 7.7.

In Figure 7.7, each node was inscribed with three integers. The topmost integer was the node

or state number and the two integers separated by a colon gave the number of predecessor and

successor states. Node 1 corresponded to the initial state marking, and the figure shows all mark-

ings reachable by the occurrence of at most ten binding elements starting in the initial marking.

The number of predecessors of the state in Node 1 equaled to zero meant none of the tokens had

been moved to a new place. For each node, the directed arrows connected predecessor states to its

successor states. The sharply cornered rectangle associated with each node was called a descriptor,

which gave information about the marking of the individual places in that state represented by the

node. The node descriptor listed the places that had an empty and non-empty marking and the cur-

rent values stored in each place at that specific state. The rectangular arc descriptor associated with

each arc gave information about the corresponding binding element. The node and arc descriptors

had a default content. Each arc labeled with a binding element (t, b), where t was the transition

name and b was the binding of variables with values, from a node representing a marking M1 to

74

1
0:10

1 @ 0.0:

HierarchySOD'Vector_Control_Team 1: empty

HierarchySOD'CountVC 1: 1`0

HierarchySOD'Vector_Surveliance_Team 1: empty

HierarchySOD'House_Address 1: empty

HierarchySOD'Infected_Area 1: empty

HierarchySOD'CountVS 1: 1`0

HierarchySOD'Collect_Mosquito 1: empty

HierarchySOD'FortCollins 1: 1`{name="Lara"}@7.0+++

1`{name="Phil"}@7.0+++

1`{name="Shan"}@7.0+++

1`{name="Shelly"}@7.0+++

1`{name="Tim"}@7.0

HierarchySOD'T5 1: 1`{name="Dave"}@6.0

HierarchySOD'Spray_House 1: empty

1 @ 0.0:

HierarchySOD'Vector_Control_Team 1: empty

HierarchySOD'CountVC 1: 1`0

HierarchySOD'Vector_Surveliance_Team 1: empty

HierarchySOD'House_Address 1: empty

HierarchySOD'Infected_Area 1: empty

HierarchySOD'CountVS 1: 1`0

HierarchySOD'Collect_Mosquito 1: empty

HierarchySOD'FortCollins 1: 1`{name="Lara"}@7.0+++

1`{name="Phil"}@7.0+++

1`{name="Shan"}@7.0+++

1`{name="Shelly"}@7.0+++

1`{name="Tim"}@7.0

HierarchySOD'T5 1: 1`{name="Dave"}@6.0

HierarchySOD'Spray_House 1: empty

11
1:8

10
1:8

9
1:8

8
1:8

7
1:8

6
1:8

5
1:8

4
1:8

3
1:8

2
1:8

1:1->2 @ 7.0 HierarchySOD'PHO_VCT 1: {u={name="Phil"},countVC=0}

19
1:6

18
1:6

17
1:6

16
1:6

15
1:6

14
1:6

13
1:6

12
1:6

97
2:4

96
2:4

95
2:4

94
2:3

93
2:3

92
2:3

332
3:2

331
3:2

330
3:2

329
3:2

314
3:2

313
3:2

312
3:3

598
4:2

597
4:2

843
2:1

842
2:2

1044
2:1

1132
3:1

1172
2:0

1172 @ 7.0:

HierarchySOD'Vector_Control_Team 1: empty

HierarchySOD'CountVC 1: 1`3

HierarchySOD'Vector_Surveliance_Team 1: empty

HierarchySOD'House_Address 1: empty

HierarchySOD'Infected_Area 1: empty

HierarchySOD'CountVS 1: 1`2

HierarchySOD'Collect_Mosquito 1: 1`{name="Shan"}@7.0+++

1`{name="Shelly"}@7.0

HierarchySOD'FortCollins 1: empty

HierarchySOD'T5 1: 1`{name="Dave"}@7.0

HierarchySOD'Spray_House 1: 1`{name="Lara"}@0.0+++

1`{name="Phil"}@0.0+++

1`{name="Tim"}@0.0

1172 @ 7.0:

HierarchySOD'Vector_Control_Team 1: empty

HierarchySOD'CountVC 1: 1`3

HierarchySOD'Vector_Surveliance_Team 1: empty

HierarchySOD'House_Address 1: empty

HierarchySOD'Infected_Area 1: empty

HierarchySOD'CountVS 1: 1`2

HierarchySOD'Collect_Mosquito 1: 1`{name="Shan"}@7.0+++

1`{name="Shelly"}@7.0

HierarchySOD'FortCollins 1: empty

HierarchySOD'T5 1: 1`{name="Dave"}@7.0

HierarchySOD'Spray_House 1: 1`{name="Lara"}@0.0+++

1`{name="Phil"}@0.0+++

1`{name="Tim"}@0.0

Figure 7.7: State Space Graph:UAHierarchySOD

a node representing a marking M2 if and only if the binding (t, b) was enabled in M1 and the

occurrence of (t, b) in M1 led to the marking M2.

For instance, in the initial marking of the state space graph in Figure 7.7, we had the binding

element at place FortCollins that enabled a transition PHOVCT. The transition moved a user token

with name “Phil” to place Vector Control Team. At the same time, the CountVC in moved and

incremented to reach state 2. By visual observation of the SCC graph, we were able to identify

all the system state changes including the dead states. In addition, we could generate a state space

report which contained information such as boundedness properties and liveness properties. For a

small system, with a few states, based on the observation of the state space graph and the report,

we would be able to verify that all the workflow policy constraints were satisfied. However, for

a larger number of places, transitions, and constraints that increased the complexity of the net,

we may not be able to visually detect invalid workflow stated in the state space graph that caused

system inconsistencies, state space queries were needed in this case.

75

7.4.2 Analysis of Hierarchical TCPN

The path in the state space graph basically showed the binding information, which would

change the state of the model. After the state space information was available, the TCPN tool

provided us with the feature to generate a standard report that included the statistics, boundedness

properties, home properties, liveness properties, and fairness properties. The statistics provided

us with information about a number of nodes and arcs in the state space graph including the time

taken to generate it and status of the graph.

The boundedness properties allowed us to observe the minimum and the maximum number of

tokens and their values in each place amongst all the existing states. The home properties focused

on the structure of the graph like: Is the graph strongly connected? Is it possible to obtain a certain

state from all the reachable states? The liveness properties, probably the important one in terms of

the existence of the model, focused on liveness of the markings and transactions. They revealed the

information related to whether some transaction was never fired or some markings had not enabled

binding elements. Similarly, the fairness properties looked into the fact that some transition might

have a greater contribution than the other for the infinite existence of the system that was being

modeled. However, in our case, our model was based on a single instance of the workflow and

not considering an infinite iteration but a single run. This information will provided us with initial

insights into the model.

If the model was very large, then the state space graph might not be fully calculated because,

by default, TCPN tool would spend at most 300 CPU seconds for the calculation in which case

the status of the report could be partial. All the properties being observed would then be based on

the partial graph as well. Thus, it was necessary to confirm that the analysis was being done on

complete state space information to draw a reliable conclusion from it. As our model was large

and had larger state space, the default setting would provide a partial report. To overcome this, the

state space was calculated after deactivating all the default settings for stop and branching options.

The calculation was run on a Windows platform using 6GB RAM, Intel(R) Core(TM) 2Duo

CPU @2.83 GHz. However, for the TCPN model given in Figure 7.5, the state space calculation

76

took more than a week time period and was still not complete. The reason behind the infinite

calculation could be the state space explosion or the inability of the TCPN toolbox to handle

certain hierarchical component. Since we were never able to get a state space information for the

model, we could not look further into the specifics of the problem. Also, this amount of time

period was not feasible for any real-time systems, therefore, we considered slicing the model for

the verification.

Slicing the Hierarchical TCPN

To avoid partial state space and state space explosion, we developed a TCPN model for each of

the problems that we tried to model in the workflow. The sub- TCPN models were populated using

values from the access control graph representing the workflow access control policies of DDSS.

The slicing of the model was done in such a way that the hierarchy of the model was preserved.

Therefore, the input/output pattern for each of the nets would be the same, however, they were not

physically connected to each other. It further referred that the inputs were provided to each sub-

model, assuming that the output from the sender-model was sent correctly. Our slicing approach

was based on the facts presented in our previous work [47], which stated that if every sub model

verified the property being analyzed than it would be true for the complete model. Therefore,

we could safely, mark the inputs to different models as all the models would be verified for the

correctness. In order to develop a sliced model, different nets were created as shown in Figure

7.8. The hierarchical model and the sliced model represented the same concept except the physical

binding between ports and sockets. This allowed us to remove some of the arrange the models to

fit the scenario with fewer notations. For example, the Start port had been removed from Figure

7.5b and Manager place had been removed from Figure 7.5a since the Manager had been assigned

the required attribute and task in Figure 7.8d such that we could mark place from Jurisdiction in

sub-model of Figure 7.8a upon success full verification of sub-model in Figure 7.8d.

After slicing the hierarchical model, each individual nets was run for state space information.

The result for the standard report is listed in Table 7.1. The table, however, does not show the

fairness property because our model was based on a single instance that caused the fairness prop-

77

SOURCE

BOOL

1`true
T3:

Activate
Response

USER

SINK

BOOL

T1:
Form

Jurisdiction

USER

1`{name="Alice"}@+5

T2:
Check

Threshold
USER

Threshold

INT

thresholds

Ts2

@+2

Ts3

@+2[th>70]

Response

@+20

1`u

1`u 1`u

th

1`u 1`u 1`true1`true

(a) DDSS

State
Officer

USER

1`{name="BoB"}@+5

T4:
Release
Material

USER

Spray
House

USER

Update
 Database

2

USER

Perform
Test

USER

Collect
Mosquito

USER

Lab
Technician

USER

1`{name="Evan"}@+20

SINK

BOOL

Jurisdiction
Officer

USER

1`{name="Dave"}@+6

Public
Health
Officer

USER

allPHO

Ts5

Ts9

Ts10

Ts11SOJOPHO

LabTCUA
1`u

1`u

1`u

1`u

1`pho1++
1`pho2++
1`pho3

1`u

1`pho1++
1`pho2++
1`pho3

1`true

1`u'

1`u''

1`u'

1`pho4++
1`pho5

1`pho1++
1`pho2++
1`pho3++
1`pho4++
1`pho5

1`pho1++
1`pho2++
1`pho3

1`u

1`pho4++
1`pho5 1`u

(b) Response

FortCollins

USER

T5:
Activate

VC and VS
Team

USER

Colorado

USER

T4:
Release
Material

USER

Jurisdiction
Officer

USER

1`{name="Dave"}@+6

State
Officer

USER

1`{name="BoB"}@+5

Collect
Mosquito

USER

Public
Health
Officer

USER

allPHO

Spray
House

USER

JO
Fort Collins

Ts4
SO

Colorado

HierarchySOD

PHO
FortCollins

1`u' 1`u''

1`u''

1`u'

1`u''

1`u'

1`u''

1`u'

1`pho4++
1`pho5

1`u'' 1`pho1++
1`pho2++
1`pho3

1`pho1++
1`pho2++
1`pho3++
1`pho4++
1`pho5

1`pho1++
1`pho2++
1`pho3++
1`pho4++
1`pho5

1`pho1++
1`pho2++
1`pho3++
1`pho4++
1`pho5

(c) SOJOPHO

Head
Office

USER

Manager

USER

1`{name="Alice"}

T1:
Form

Jurisdiction

USER

Manager
HeadOffice

@+5

Ts1
1`u

1`u

1`u 1`u

(d) ManagerUA

Lab

USER

Lab
Technician

USER

1`{name="Evan"}@+20

Perform
Test

USER

LT
Lab

Ts8
1`u

1`u

1`u

1`u

(e) LabTCUA

Vector
Control
Team

USER

Vector
Surveliance

Team

USER

House
Address

USER

Infected
Area

USER

Collect
Mosquito

USER

FortCollins

USER

allPHO
T5:

Activate
VC and VS

Team

USER

1`{name="Dave"}@+6

Spray
House

USER

SODC USER

1`{name="Test"}

CountVC

INT

1`0

CountVS

INT

1`0

VC
House

Address
Ts6

[pho<>u]

VS
Infected

Area
Ts7

[pho'<>u'']

PHO
VCT

[countVC<3]

PHO
VST

[countVS<2] 1`pho4++
1`pho5

1`pho4++
1`pho5

1`pho

1`pho1++
1`pho2++
1`pho3

1`pho1++
1`pho2++
1`pho3

1`pho' 1`pho'

1`u'

1`pho

1`u'

1`u

1`u

1`pho

1`u''

1`pho'

1`u

1`u

1`u

countVC countVC+1

countVScountVS+1

(f) UAHierarchySOD

Figure 7.8: Hierarchical TCPN model after Slicing

78

Table 7.1: Standard State Space report for Sliced Model

DDSS
Manager

UA
Response SOJOPHO LabTCUA UAHierarchySOD

Statistics(State Space)

Nodes 4 3 1019 80 3 20986

Arcs 3 2 4702 1339 2 79160

Secs 0 0 1 0 0 202

Status Full Full Full Full Full Full

Statistics(Scc Graph)

Nodes 4 3 1019 80 3 20986

Arcs 3 2 4702 1339 2 79160

Secs 0 0 0 0 0 2

Liveness Properties
Dead Markings 1 1 1 60 1 4000

Dead Transition Instances None None None None None None

erty to state “no infinite sequence occurrence” for each of the nets and therefore is not significant.

From Table 7.1, we could observe that the combined net was fairly large (considering the number

of nodes and arcs) and the time taken to compute the information was a small finite number. We

could see a few dead markings being reported that actually showed the number of final states pos-

sible for each of the nets. The larger nets, UAHierarchySOD and Response, ended up having a

larger number of possible final states as shown in the report (by the dead markings). Similarly, for

all the nets, there were no dead transition instances, which meant that each of the transitions was

fired at least once. Another thing that was left out from Table 7.1 was the boundedness properties,

which would provide information about upper and lower limit bounds for each place instances.

The inspection of those tokens showed that the upper and lower multiset were derived without

considering the time factor and, therefore, were not reliable for our analysis of Time Petri Nets for

inconsistencies in the UAHierarchySOD and SOJOPHO nets. The upper and lower integer bounds,

however, revealed an inconsistency. For some places, the upper bound was less than desired.

The standard report led us to believe that the model might have some errors within it, there-

fore, we further devised queries to run across state space graph, using the ML language to derive

conclusions about the properties we were interested in. The queries used to explore the specific

property and their logistics are shown below.

7.4.3 State-Space Verification Queries

Verifying all the reachable states in the state space graph was a time consuming and error-prone

task. To solve this problem, we created queries using the Standard ML language that allowed us

79

to select a subset of reachable states having the properties that we were interested in. We wrote

state space queries to investigate the properties of the DDSS TCPN model. These queries made it

possible to investigate the reachability, boundedness, liveness, and fairness properties in the DDSS

workflow using standard queries; and non-standard queries could be drafted by writing TCPN ML

functions. We made state-space queries by creating auxiliary text containing the query functions

and then, by using the evaluate ML tools, we were able to evaluate the text. In particular, we were

interested in writing quires to detect the following problems with the workflow specification:

• DeadLock

We considered a system to be in deadlock if some task was not successfully completed.

There could be many reasons for a system to be in deadlock. One of the very common

reasons could be the unavailability of the user to perform a task. Furthermore, users might

not be available because they had been assigned to more than one task at the same time,

or the spatial-temporal constraint did not satisfy, or the modeling was erroneous such that

some tokens or transitions were never triggered. Our goal was to devise a standard query

to detect a deadlock, if present, irrespective to the cause behind it. Therefore, we focused

on the number of tokens to be present in the sink node at the end of the transactions. This

was based on the fact that, if everything ran as it was supposed to be, we could evaluate

the expected number of tokens in the sink node. For our model, since the sink nodes were

preceded by a task that was or-joined to three other tasks, our expected number of token in

the sink node was five(for our complete model). For the sliced model, there were more that

one sink or source nodes and different estimates for each of them. Therefore, we showed

below our query to determine the presence of deadlock in the complete model. The query

traversed the entire SCCGraph. While doing so, it checked if the node did not produce any

successor and the number of tokens in such node was as desired. In other words, the query

was looking for the end nodes (final states) that might not have received all the required

tokens. If it found any inconsistent final state, the state would be added to a list. The list was

80

our output from the query. We modified the name of sink nodes and numbers of each net to

determine if there had been a deadlock in the net.

SearchNodes(

EntireGraph,

fn n => (length(OutArcs(n)))=0 andalso

not((size(Mark.DDSS’SINK 1 n))=5),

NoLimit,

fn n =>n,

[],

op::)

The query returned a null list of nodes for all the nets except for sub-net “UAHierarchySOD”

which is shown in Figure 7.9 Although the standard report indicated there was no dead tran-

sition on this instance, there was some transition that did not fire as they had to be. To

investigate further, we drew a partial graph for the nodes that were having an issue and care-

fully inspected the erroneous state and the predecessor state. The state information for one

of the erroneous state and its predecessor are shown in Figure 7.10. We found that the place

“T5” from Figure 7.8f had empty tokens. T5 in our case was the task of activating the vector

control team and the vector surveillance team. We knew that only one user, i.e., the Juris-

diction officer, was responsible for performing the task “T5”. As a result, when the token

“Jurisdiction officer” would activate either of Ts6 or Ts7 once, there would be no token left

to activate the transitions again. Addition of separation of duty constraint for those tasks

further caused tokens to move one at a time and, therefore, not enough users were available

to perform the task. As a correction, we changed the output arcs connecting “T5” to “Ts6”

and “Ts7" to input/output arc such that the Jurisdiction officer performed the task and also

was available for other activation. The deadlock query was run once more after new state

space was calculated and the verification of no deadlock in the model was done as it now

81

Figure 7.9: Output to Deadlock Detection Query for UAHierarchySOD

returned the empty node list, which indicated there were no final states where the sink nodes

did not have enough tokens, i.e., five user tokens.

• Separation of Duty violation

The separation of duty constraint existed because there were some users who were eligible

for multiple tasks, but they were allowed to perform only one of the task in any instance.

Such tasks in our system were “Spray House” and “Collect Mosquito” as shown by end

places in Figure 7.8f. Both of those tasks could be performed by any member of Public

Health Officer, again represented as the places in Figure 7.8f, as all the Public Health Officer

were equally eligible to a member of the vector control team or vector surveillance team. Our

query to check for separation of duty violation would see if, at any state when both of those

tasks were assigned to some user, they were different. The following is the query for our

complete model. The query traversed the entire SCCGraph in search of states where there

were common token in both task places: “Spray House” and “Collect Mosquito” when there

was at least one token present in them at the same time. The output of the query was the list

82

Figure 7.10: State Information of Partial Graph

of states that violated the separation of duty constraints or nodes found to meet the condition

in the search described before. In case of the sliced model, we did not need to verify it in

each net but “Response”,“SOJOPHO”, “UAHierarchySOD”, which contained the task that

required the separation of duty.

SearchNodes(

EntireGraph,

fn n => not (List.null(intersect

(Mark.UAHierarchySOD’Spray_House 1 n)

(Mark.UAHierarchySOD’

Collect_Mosquito 1 n)))

andalso

size(Mark.UAHierarchySOD’

Spray_House 1 n)>0

andalso

83

size(Mark.UAHierarchySOD’

Collect_Mosquito 1 n)>0,

NoLimit,

fn n => intersect

(Mark.UAHierarchySOD’

Spray_House 1 n)

(Mark.UAHierarchySOD’

Collect_Mosquito 1 n),

[],

op::)

When the query was run on each of the nets, we found that the correction measure applied

for deadlock situation also helped us to find the separation of duty constraint violation. It

was because, with tokens only assigned to one of the tasks, there would be no such states

where the same token would be present in both the task as only one user token could be

assigned to any one of the tasks due to lack of “Jurisdiction Officer” type token to enable

the transition any further. After the correction was applied, all nets returned an empty list

showing there were no common tokens except for the UAHierarchySOD sub-net shown in

Figure 7.8f. We found that the separation of duty constraint model as in [44] was not able to

effectively implementing the separation of duty.

Furthermore, we observed that separation of duty constraints for any task could be reflected

in the attributes required for that task. For example, if T1 and T2 could not be assigned to

the same user in one instance, we could also say that the attributes required for T1 (say a1,

a2) and attributes required for T2 (say a3, a4) could not be obtained for the same user in

that instance. This helped us to simplify the model and effectively implement the separation

of duty to the task through other attributes. Therefore, as a correction measure, we removed

the SODC from Figure 7.8f and moved the separation of duty to attributes vector control

team and vector surveillance team as shown in Figure 7.11b. As before, the query was run

84

again on improved state space and verified for the correctness. Since the query resulted in

an empty list, we could say that there was no violation of the separation of duty constraints.

• Hierarchy violation

One of the requirements of our example was that the Jurisdiction Officer and all the Pub-

lic Health Officers were enabled in Fort Collins. The Public Health Officers were further

allowed to work as either of Vector control Team or Vector Surveillance Team. The same

was not true for Jurisdiction Officer. Therefore, our query was designed to find if any in-

consistency existed in a hierarchy that existed for attribute Public Health Officer and Vector

Control or Surveillance Team. As we could not use the upper multiset, due to the time fac-

tors, we tried to look at whether there were any state markings of Spray Houses or Collect

Mosquito places that had common timed tokens to Jurisdiction officer and T5 had common

timed tokens to public health officer. Furthermore, we devised a separate query for each of

the cases so that it was easier to see which hierarchy was under violation. The query given

below is for the complete connected model. Each query traversed the entire SCC Graph

and looked at whether any assigned token to the conflicting places were the same at a certain

time. The output of the query was the list of states that had conflicting user tokens. Basically,

we were looking at whether Jurisdiction officer had been assigned to Public Health officer

any point of time and vice-versa. In the sliced nets, since we were looking for the violation

in SOJOPHO only, the query needed no changes.

SearchNodes(

EntireGraph,

fn n =>

size(Mark.SOJOPHO’Collect_Mosquito 1 n)>0

andalso not(List.null(intersect

(Mark.SOJOPHO’Collect_Mosquito 1 n)

[{name="Dave"}@6.0,{name="Dave"}@7.0])),

85

NoLimit,

fn n => n

[],

op::)

SearchNodes(

EntireGraph,

fn n =>

size(Mark.SOJOPHO’Spray_House 1 n)>0

andalso not(List.null(intersect

(Mark.SOJOPHO’Spray_House 1 n)

[{name="Dave"}@6.0,{name="Dave"}@7.0])),

NoLimit,

fn n => n

[],

op::)

SearchNodes(

EntireGraph,

fn n =>

size(Mark.SOJOPHO’

Jurisdiction_Officer 1 n)>0

andalso not(List.null(intersect

(Mark.SOJOPHO’Jurisdiction_Officer 1 n)

[{name="Shan"}@7.0,{name="Tim"}@7.0,

{name="Shelly"}@7.0,{name="Phil"}@7.0,

{name="Lara"}@7.0])),

86

NoLimit,

fn n => n

[],

op::)

In the query, we added the desired tokens to be avoided (e.g., Dave@6 and Dave@7) man-

ually because the boundedness multiset would also consider the tokens ahead of time. We

compared the tokens that were available for the transition. Also, in the first and second

query, we saw two instances of “Dave” that were timed differently. It was because Dave was

available after time stamp 6 but we would not want Dave to interfere with the hierarchy any

time after that as well. The query ran on the state space, each returned a null list that, in turn,

indicated that there were no states where the hierarchy was violated.

• Cardinality constraint violation

There were a few cardinality constraints in the DDSS workflow. In order to check for the

violation of the cardinality constraint, we looked into the number of tokens at those places

at each state and compared them with the cardinality constraint. For each place, we wrote a

different query. Following is a query to check for place “Spray House”, which was required

to have at most three tokens. The query traverses the entire SCCGraph and returned the

states where the number of tokens was greater than the required number (three in the given

query). The output was the list of states where the condition was found to be true. For the

sliced model, it was necessary to verify it in every net whereas, for the connected model,

verification on page UAHierarchySOD was sufficient due to the port socket connection.

SearchNodes(

EntireGraph,

fn n => size(Mark.UAHierarchySOD’

Spray_House 1 n)) <=3),

87

NoLimit,

fn n =>n,

[],

op::)

The query was run for all the places to verify the correct number of tokens present. All of

the queries returned an empty list indicating that there were no states where the cardinality

constraint was violated.

7.4.4 Hierarchical Model After application of Correction measures identi-

fied from analysis of Sliced Model

After analysis of the sliced model, we figured different problems that existed in the system

and verified the correctness by addressing the problems. The correction measures were, thereafter,

applied to the hierarchical model as well. After the correction, the model was run for calculation

of state space. Unlike, before, the calculation was completed in about fifty five hours, which

was an improvement of the performance itself. Since we were able to generate the state space

standard report, we further verified that the sliced model was able to find all the flaws in the model

and, therefore, the complete hierarchical model should be out of flaw as well. To do so, we ran

all the queries devised before. All the properties were verified on the complete model except

the Hierarchy violation. This was due to the fact that, the sliced model, here, was mimicking

the behavior of the hierarchical model, during which it tended to miss the smaller details. For

example, in Figure 7.5e, the substitution transition ”UAHierarchySOD” was taking input from

place “Fort Collins”, “T5” and providing output to places “Spray House”, “Collect Mosquito” and

“T5”. However, these are four separate port a socket combination. To be more specific, each place

in Figure 7.5e was connected to the places in Figure 7.5f with the same names i.e., tokens could

move in and out only through this connected places. The same behavior, when replicated as the

sliced model, the substitution transition was now a normal transition and behaved as one single

transfer point. It further caused a cycle within i.e., HierarchySOD transition in Figure 7.8f could

88

Table 7.2: Table for Standard Report (Hierarchical Model) After all corrections are performed

Statistics(State Space)

Nodes 157136

Arcs 796544

Secs 15130

Status Full

Statistics(Scc Graph)

Nodes 157136

Arcs 796544

Secs 120

Liveness Properties
Dead Markings 6

Dead Transition Instances None

not be fired until a token had been received from place “T5” that further required transition “Ts4”

to fire before transition “HierarchySOD” every time. On the contrary, either of transition “Ts4” of

net UAHierarchySOD could be fired from a token in place “FortCollins” in case of the hierarchical

model shown in Figure 7.4. Therefore, when token type “Jurisdiction Officer” was available, it

was able to fire either of the transaction in the hierarchical model but only “T4” in case of sliced

model i.e., Figure 7.8f. Therefore, the result from the analysis of the sliced model was different

from the hierarchical model. In order to solve the problem, we could either guard the transition

“UAHierarchySOD” in Hierarchical model, only allowing it to fire when the hierarchy was met

or we could prioritize the transition “Ts4” over “UAHierarchySOD” such that Ts4 fired before

UAHierarchySOD and let the temporal constraint come into play.

The latter choice, in addition to solving the hierarchical model issue, also added a feature to

the model i.e., from the workflow control flow, the activation of VC and VS team was done before

they could actually perform their job. Prioritizing the task further enforced this fact, which was

why we chose the second approach as the solution. The resultant model is shown in Figure 7.11.

However, only the changed nets are shown and all other nets would resemble Figure 7.5 After, the

small change, the hierarchical model was re-analyzed and queried. The standard report is shown

in Table 7.2 and the analysis showed all empty list indicating that the model was not violating any

of the properties.

89

FortCollins

USER

Jurisdiction
Officer

In
USER

1`{name="Dave"}@+6

In

T5:
Activate

VC and VS
Team

In/Out

USER

In/Out

Spray
House

Out
USER

Out

T3:
Activate
Response

In
USER

In

State
Officer

In
USER

1`{name="BoB"}@+5

In

Collect
Mosquito

Out
USER

Out

T4:
Release
Material

Out
USER

Out

Public
Health
Officer

In
USER

allPHO

In

Colorado

USER

JO
Fort Collins

PHO
FortCollins

SO
Colorado

Ts4

UA
Hierarchy

SOD

UAHierarchySODUAHierarchySOD

1`u''

1`pho1++
1`pho2++
1`pho3++
1`pho4++
1`pho5

1`u''

1`pho1++
1`pho2++
1`pho3++
1`pho4++
1`pho5

1`u'

1`u'

1`u

1`u''

1`u''

1`u'

1`u'

1

2

(a) SOJOPHOfinal

Infected
Area

USER

Vector
Surveliance

Team

USER

Vector
Control
Team

USER

House
Address

USER

CountVS

INT

1`0

CountVC

INT

1`0

FortCollins

In

USER

In

T5:
Activate

VC and VS
Team

In/Out

USER

In/Out

Spray
House

Out
USER

Out

Collect
Mosquito

Out
USER

Out

PHO
VCT

[countVC<3]

PHO
VST

[countVS<2]

VC
House

Address

VS
Infected

Area

Ts6

Ts7

countVC+1

1`pho4++
1`pho5

1`pho1++
1`pho2++
1`pho31`u

1`pho4++
1`pho5

countVC

1`pho1++
1`pho2++
1`pho3

countVS+1countVS

1`u

1`pho1++
1`pho2++
1`pho3

1`pho4++
1`pho5

1`u

1`u 1`u

1`pho1++
1`pho2++
1`pho3

1`pho4++
1`pho5

1`u

1`u

1`u

(b) UAHierarchySOD

Figure 7.11: Improved nets from Hierarchical MOdel

90

7.4.5 Model Performance

As we saw in our analysis, it was not possible to figure out the problems in the model via the

hierarchical model. Due to the large nature of the model, the error would propagate and magnify,

therefore, would lead to the state space explosion. Slicing the model into equivalent nets was a

viable solution for the problem. It not only made the analysis possible but reduced the time for

analysis. The slicing of the model made it possible to focus on the properties that we were con-

cerned about. It further made the problem smaller, as if the problem was divided into smaller

individual parts without affecting the output of the analysis. Slicing the model was equivalent to

implementing a divide and conquer approach for the analysis itself. Also, we benefited from slic-

ing as we could understand the problem better since the focus of the problem was now smaller and

distributed. However, we found that, in order to have a reflective, replicative analysis, the sliced

model should be able to preserve all the properties of the model being sliced. From Table 7.1 and

Table 7.2, we can see that there was a huge difference in the time taken for the state space calcu-

lation. Since in the sliced model, there were different independent nets, we needed to consider the

time taken for all the state space calculation. The improvement we had gained by slicing the model

is shown in Table 7.3. The improvement in performance was due to the reduction of the number

of states in the nets. A hierarchical model would consider every possible state and would create

a larger state space. While the model, if sliced, different properties could be verified in different

nets. In addition, once an input and output was verified for a net to satisfy some property, we did

not need to consider every possible output as input for the next system but one. This gradually

decreased the total state space required for the analysis of the problem and, therefore, enhanced

the performances of the analysis without any decline in the quality.

Here we were considering that there was some time that was within the zero CPU time and

since there were multiple nets taking those time, we assumed it to be around one in total.

91

Table 7.3: Table for Comparison of performance between two models

Time taken

[Sliced Model]

(sec)

Time taken

[Hierarchical Model]

(sec)

DDSS 0

15130

Manager UA 0

Response 1

SOJOPHO 0

LabTCUA 0

UAHierarchySOD 202

Total 203 ≈ 204 15130

Gain ((15130-203)/15130)*100 = 98%

92

Chapter 8

The Enforcement Mechanism

In Chapter 6 we presented our model to effectively represent the spatio-temporal attribute based

access control for the management of workflow task. We also verified the model by using TCPN in

Chapter 7, which indicated the absence of inconsistencies with respect to the representation of the

access control policies. However, it was necessary to study the suitability of our model in the real-

world system. How the model should be enforced such that the mobile component was flexible as

well as protected? Therefore, in this section, we further investigate the practicality of our model.

In other words, we present the technical simulation of our high-level model perspective. While

enforcement of attribute-based access control was still a challenge, we looked at the coordination

of spatio-temporal component with workflow task. We tried to explore the possible bottlenecks

and challenges to implement our model. We also analyzed the correctness of the authorization

graph and analyzed the access response time to evaluate the feasibility. Furthermore, through the

enforcement architecture, we investigated a possible configuration feature of the system. What

possible components could be placed into the enforcement mechanism, their significance, and

their communication protocol? The goal of having an enforcement simulation was to be able to

predict the configuration flexibility when the proposed model was used for a real-world example

and discover erroneous behavior beforehand.

8.1 Solution Architecture

As our model considerd the spatio-temporal factors, the architecture needed to verify the

STZone of the mobile devices. Additionally, it had to deal with the changing STZone after the

access was granted. In other words, the mobile device when entered an invalid zone, the access

provided should be revoked. We followed a similar concept as in [47] to address these challenges.

The mobile unit, with help of its GPS and STZone builder components, built an appropriate ac-

cess request, thus, formed STZone also contained the timestamp of when the request was created.

93

The STZone was later verified at the Resources component by tallying it with the cell identity

of the mobile devices. Altogether the components kept a balance between security and accuracy

with respect to the STZones verification of the mobile device. Similarly, the authorization was

adjusted with respect to the changing location and time by having pre-authorization and ongoing-

authorization, i.e., pre-authorization decided if the access should be given to some object for a

given request. After the request was granted, the ongoing authorization kept track of the current

location and time. All the given privilege was revoked if ongoing authorization failed to confirm

the valid location and time.

The system architecture shown in Figure 8.1 is responsible for handling all the above-mentioned

task. All the three components were standalone components separating the different modules.

The mobile unit was installed in the mobile device which communicated with resources com-

ponents with some access request. Considering the limited storage and processing capacity of

the mobile unit, to avoid heavy processing within the device, rather transfer the required informa-

tion was transferred to the Resources component. The access request contained information about

which user, what object, what operation, and the spatio-temporal zone of the mobile device. The

mobile device was tied to some user with user certificates, i.e., user could access the system only

through their own device or by logging in with their credentials. These credentials were stored in

the mobile unit itself for verification. They were never communicated to any other module through

any of the communication media to maintain the anonymity of the user with other modules. The

Resources components further forwarded the request to Access Control Module which determined

if the request was valid or not. Before the validation of the actual request, the validation of the

STZone was performed making use of STZone verification component. The verification required

mapping the physical location to the logical location as described in Chapter 5. The Access Control

Module was also responsible for monitoring the changes and notifying the Resources if the request

was no longer valid. We could reduce the number of communication between different modules

if the access request for ongoing authorization was triggered by the mobile unit. An authorization

token was returned to the sender if the access control was granted. The information packaged

94

Figure 8.1: System Architecture

in the authorization token made it possible for the mobile unit to keep track of the zone the task

allowed and trigger another request if the zone was no longer valid. Furthermore, the access con-

trol module needed to maintain the policy authorization graph. The graph was subject to change

and the changes were allowed only by the administrator which was not shown in the system. Our

assumption here was that we had a genuine, non-malicious administrator responsible for handling

any changes to the policy graph.

8.2 Protocols for secure communication

The system architecture is shown in Figure 8.1 which reflects different modules communicating

with each other. In order to make those communications secured over unsecured channels, we pro-

posed the following protocol. The protocols tended to preserve the information being transferred

from common security attack.

8.2.1 Assumptions on the system

• All the modules should have an agreement on public keys that should be used for encryption

of the message and verification of the signatures.

95

• For each user registered in the system, a pair of public and private key should be created

by the central authority. The public keys should be securely communicated with each party

involved in the communication.

• All the communication should be time-stamped and, therefore, there should be an impartial

synchronization of the clocks between the participating modules.

• All message packages should be hashed using MD5 hashing technique and signed using the

recipient’s public key and extracted using the private key.

8.2.2 Steps of the Protocol

1. A mobile unit should send an encrypted and digitally signed access request package M1

to Resources server. M1 should be created by hashing and signing with resources server’s

public key. The payload of M1 should contain id of the user (IDu), id of the device (IDd),

task being requested access to (T), Spatio-temporal Zone (STZone), Cell Identity (CI),

Operation being requested(OP) and timestamp (TS). The resource server should validate

the user certificate and STZone.

2. If the validation of user and STZone is confirmed, the resource server should send the mes-

sage package M2 to the access control module server. The payload to M2 should contain

id of the resource server (IDrs),id of the user (IDu), task being requested access to (T),

Spatio-temporal Zone (STZone),Operation being requested (OP) and timestamp (TS).

3. The ACM server should validate the identity of Message M2. If the validation is success-

ful, the authorization graph should be evaluated for computation of access decision. If the

permission is granted ACM should respond with message package M3 that contains autho-

rization token. If the permission is not granted, ACM should respond with message package

M5 with access denied message. The payload of M3 is id of acm server (IDas), id of user

(IDu), authorization token (AT), and timestamp (TS). The payload of M5 should be id of

acm server (IDas), id of user (IDu), access denied message(Mad), and timestamp (TS)

96

4. The response package M3 or M5 should be validated and sent to the user. Either of M4

or M6 should be sent to the mobile unit with respect to received response package M3 or

M5. The payload of M4 should be id of the resource server (IDrs),id of the user (IDu),

id of the device (IDd),authorization token (AT), and timestamp (TS). The payload of M6

containsM4 should be id of the resource server (IDrs),id of the user (IDu), id of the device

(IDd), access denied message(Mad), and timestamp (TS). The authorization token should

contain the information of permission and valid zones for the permissions.

5. In case of ongoing authorization, the mobile unit would need to trigger an access request with

updated STZone . The prevailing access would be revoked if acm server evaluated access

denied. Similarly, the access would be continued if the evaluation returned authorization

token and previous authorization token would be updated.

8.3 Specifications of Authorization Graph in Neo4j

Our model defined policy as different policy elements maintaining relationships with each

other. The relationships that could exist in the authorization graph according to the model were the

assignment, association, and prohibition. All of these relationships were directed and there could

not be any cycles. For example, if there existed an assignment relationship from A to B, there could

not be an assignment from B to A. Same went for association and prohibition. Additionally, the

association and prohibition were always meant to be from user attributes to the object attributes and

not the other way around. With all of these facts, we were able to conclude that our authorization

graph was a Directed Acyclic Graph (DAG). Therefore, we utilized the power of graph database to

preserve the logical representation of the authorization graph. Additionally, we chose Neo4j over

all other graph databases.

Neo4j is a NoSQL native (graph specific storage and processing engine) graph database that

implements a property graph model [48] to the storage label. In addition, it provides facilities such

as ACID properties. A property graph model is comprised of nodes, relationship, properties, and

labels. Nodes are the main data elements connected with each other via relationships. The nodes,

97

as well as the connecting relationship, can have properties of their own. In order to categorize

the nodes into the related groups, labels are used. A node can have multiple labels at the same

time. All the labels are indexed, in order to accelerate the process of finding nodes in the graph.

Neo4j makes use of Cypher Query Language for its operation. Cypher is a declarative graph query

language, inspired by SQL, with pattern-matching capabilities. Finally, Neo4j allows computation

of a record’s location in O(1) time. This is made possible by storing the file records into multiple

node storage files. The records stored are fixed-sized (9 bytes). Therefore, if we have a node with

an id equal to 100, then we know that the record begins 900 bytes into the file. Also, it maintains an

index-free adjacency which is to have each node maintain a direct reference to its adjacent nodes.

Maintaining an index-free node is cheaper than having a global index and allows query execution to

be independent of the size of the graph but proportional to the amount of graph searched. The use of

relationships instead of indexes further aided with fast traversal of the graph. As our authorization

decision was based on traversal of the authorization graph, the features provided by Neo4j further

motivated us to use it for storing and processing the policies.

Following are the list of components in our model and how they were being represented in the

Neo4j graph database.

• Users: Users were represented as a node. They have a unique property called id which

distinguished a user from others. Another property in the user node was the name which

held the name of the user. The nodes were labeled “User".

• Objects: Similarly, the object was represented as the nodes labeled “Objects" and had a

unique property called id and another property name which held the name of the object.

• User Attributes: The user attributes were nodes labeled “UserAttributes”. They only had

one property called name and was unique among the user attributes. In our model, we

represented the zones and the task as the user attributes. However, it would be easier to be

able to distinguish them from normal attributes as they bore some special characteristics in

the model. Therefore, the task attributes were named as task_TaskName. In case of zone

98

attributes a separate label “Zone” was used. This was because zone attributes were also

object attributes and having them represented as single node preserved space and also aided

the processing of authorization graph during processing of access request.

• Object Attributes: Unlike user attributes, task were not the part of object attributes. The rela-

tionship between object and task were represented via an association relationship. Therefore,

object attributes were simply represented as nodes labeled “ObjectAttributes” and having a

property name. As discussed above, the nodes labeled “Zone” were also object attributes.

• Operations: The Operations were represented as nodes labeled “Operation”. They did not

have any unique property. Each Operation node contained three boolean type properties

called read, write, and update with values true or false depending on the availability of the

privilege. The operation node, in general, could have been represented as the property of

the association relationship. However, our algorithm worked better with node type represen-

tation and, therefore, the design decision was made to have an operation type node in the

system. Also, our system assumed to have three kinds of operation which was represented

as the properties of the “Operation" type node. It would be more efficient (in terms of space)

to represent operations node having a single property called name in a system having nu-

merous operations. As the complexity of processing remained the same, we decided to have

operations as properties as we were working with three different kinds of operations.

• Policy Classes: Policy Classes were represented as nodes labeled“PolicyClass" and uniquely

identified by its property name.

• Assignments: The assignments were represented as relationships labeled “Assignment" with

no property.

• Associations: As association in our model existed between user attributes and object at-

tributes and carried the information of the operations, we modeled association as two outgo-

ing relationships, labeled “Association", from user attributes and object attributes connected

to the operation node.

99

Figure 8.2: Neo4j Authorization Graph

• Prohibitions: Prohibitions were representation similar to associations labeled “Prohibitions".

• Obligations: The Obligations were event-based and, therefore, implemented as a transaction

event handler in Neo4j which were equivalent in Triggers in relational databases.

Apart from the above-mentioned elements, the other part of the model like PROC and Sep-

aration of Duty were part of the implementation and not the graph database. Also, the above-

mentioned representation was not the hard and fast rules to represent the access control policies

but the one we found more flexible and useful. As Neo4j is a NoSQL database, we could have a

varying number of attributes in each node with the same label and, therefore, could add or remove

information as per the requirement. The Neo4j graph diagram for the example DDSS policy is

shown in Figure 8.2

100

8.4 Experimental Setup

After having made the design decision for the representation of the policies in Neo4j, there

were two major questions to be answered about the model. Firstly, is the model and representation

able to answer the queries correctly? Secondly, is the performance good enough for a real-life

system. In order to quench the answers for two different kinds of questions, we developed two

separate setups and looked through the problems.

8.4.1 Algorithm for Processing of Authorization Graph

The algorithm to process the authorization graph was based on the Depth First Search of the

authorization graph. The algorithm was implemented as the plugin to the Neo4j which eradicated

the necessity of connecting to the server every time there was a requirement of data flow to and

from. It was a basic algorithm used for the verification purpose and also aided to explore the

required improvements.

The algorithm presented in 2 did not show the details of how the violation of SOD was checked.

To do so, a different class was implemented in java which reads the file that contained used at-

tributes and the file that contained the list of Separation of Duties and determined if the user had

been using the attributes that violated the separation of duty constraint with the attributes that it

intended to enable (usedAttributes in line 26 and 39). Also, the algorithm was designed to ignore

the task attributes if the task name was not supplied. The feature was mainly introduced for the

performance testing of the algorithm in which case the access request was being processed against

a randomly generated graph which might or might not contain task as the attributes.

8.4.2 Correctness of the algorithm

To determine if algorithm 2 was actually giving us the correct response, i.e., true if all the

attributes were present including the zone and task without violating the separation of duty con-

straints or else False, we created the authorization graph in Neo4j representing the components

mentioned in Figure 8.2. We ran queries for each user, from each available zone and task to each

101

Algorithm 2: Check Access Request
input : userId, zone, objectId, accessType, task

output : True or False

1 userNode = Node with id userId

2 objectNode = Node with id ObjectId

3 userReachable = Nodes reachable from userNode through DFS

4 objectReachable = Nodes reachable from objectNode through DFS

5 accessNode = NULL

6 containedZone = NULL

7 taskNode = NULL

8 output = False

9 foreach ur ∈ userReachable do

10 if objectReachable contains ur then

11 if ur is operation Node and has accesstype true then

12 accessNode = ur

13 end

14 else if ur is Zone and equal to zone then

15 containedZone=ur

16 end

17 else if name property of ur equals task then

18 taskNode=ur

19 end

20 end

21 end

22 if task = NULL then

23 if containedZone 6= NULL ∧ accessNode 6= NULL then

24 foreach Nodes Adjacent to accessNode connect by “Association" do

25 if endNode has label UserAttribute then

26 usedAttributes= DFS in transpose of graph from endNode.

27 if usedAttributes does not violates Separation of Duty then

28 output=True

29 Write used Attributes to file

30 end

31 end

32 end

33 end

34 end

35 else if taskNode 6= NULL then

36 if containedZone 6= NULL ∧ accessNode 6= NULL then

37 foreach Nodes Adjacent to accessNode connect by “Association" do

38 if endNode has label UserAttribute then

39 usedAttributes= DFS in transpose of graph from taskNode

40 if usedAttributes does not violates Separation of Duty then

41 output=True

42 Write used Attributes to file

43 end

44 end

45 end

46 end

47 end

48 write to PROC.txt access request, result and cause

49 return output

102

available resource. Our goal was to get the access request only on an appropriate object at appro-

priate zone and task which was what the result showed.

8.4.3 Performance of the algorithm

As we verified that the algorithm was working as expected for the real-world scenario that

we have modeled, we wanted to look for the upper bounds for the performance of the algorithm.

To do so, a custom graph was created, still following the specification but naming each element

randomly. Also, four different experiments were performed to see the behavior with respect to the

user, object, operation, and attributes.

1. With respect to user: To evaluate the performance of the algorithm with respect to the user,

a base random graph was generated which contained few user attributes, object attributes

that build a tree structure on each side of the graph. An operation node connected the root

node from each user attribute to the object attribute. There was only one object node which

connected to all the object attributes without any incoming edges. We added the user to the

user attributes in a similar manner, one at a time, and record the time taken for an increasing

number of users.

2. With respect to object: The authorization graph was built similar to the approach in ”with

respect to the user" except the number of the user was one and the object was added to the

graph every iteration and the time was recorded for access query to be processed.

3. With respect to operation: To measure the performance with respect to operation, we kept the

number of the user, objects, and attributes constant and gradually increased the number of

operation node by connecting new operation node connecting same user attribute and object

attribute same iteration. This way all the operation nodes were reachable from all the users

and object and, therefore, the worst case scenario.

4. With respect to attributes: Similar to other approaches, we increased the number of attribute

nodes in each iteration. Unlike others, to maintain the logical relationship and tree structure

103

(a) With Respect To Attribute

(b) With Respect To Operation (c) With Respect To User (d) With Respect To Object

Figure 8.3: Experimental Setup

in either side of the authorization graph, the attributes grew by 2n on each side where n was

the number of iteration.

Figure 8.3 and Figure 8.5 show the experimental setups and their performance result, respec-

tively.

8.4.4 Experimental Evaluation

The enforcement architecture as described in Figure 8.1 is our approach to keep the architecture

general and implementable. All the modules acted as separate entities and communicated for total

functionality. The communication protocol defined in Section 8.2 ensures that the communication

whether via wired or wireless was secured against numerous attacks like eavesdropping, a man in

the middle attack, replay, and modifications. However, we used a simple algorithm for hashing

because of the contribution of the hashing technique to be more towards the consistency of the

message being passed in terms of size than towards the security. Until the keys used for public key

encryption were compromised, the hashing algorithm used was irrelevant to security. Therefore,

104

(a) Performance NX: With Respect To Attribute (b) Performance NX: With Respect To Operation

(c) Performance NX: With Respect To User (d) Performance NX: With Respect To Object

Figure 8.4: Performance Result using NetworkX

105

(a) Performance: With Respect To Attribute (b) Performance: With Respect To Operation

(c) Performance: With Respect To User (d) Performance: With Respect To Object

Figure 8.5: Performance Result

106

the combination tended to nurture the security perspective using the public key encryption and

maintained a smaller size consistent payload. The protocol also aided in keeping the individual

component independent of each other. Our work here just described a probable architecture for

implementation of described task-based access control in mobile workflows. We have not imple-

mented the actual architecture nor have performed any experiments to verify the feasibility and

performance of the architecture itself. Therefore, the protocol itself was subject to change and

open-ended to adaptation with the requirements of the system being implemented.

We used Neo4j for the representation of our authorization graph. As we have already men-

tioned, that the nature of our authorization graph resembled a Directed Acyclic Graph (DAG).

The logical relationship in the authorization graph was better preserved with a graph data model.

Additionally, as shown in a study [49] we could say that the graph databases showed better perfor-

mance when the data were large and contained more relationships. On top of that, the study [50]

had reported that Neo4j outperformed all the included graph databases in traversal payloads. The

algorithm 2 was based on traversal of the graph which made Neo4j the most desirable platform.

The experimental setup was designed to explore the performance in the worst case scenarios.

As our proposed model considered the location-time and different constraints, it was important to

verify that those constraints were being considered in the computation of the access decision. In

other words, the implementation of the model agreed with the definition of the model. Therefore,

the algorithm was first verified for the correctness by using an example policy which was small

and comparable. On the other hand, the performance could not be evaluated by a smaller example,

thus, the random experimental setup as in Figure 8.3 was designed to represent the worst case au-

thorization graph. The given algorithm 2 was a simple algorithm based on DFS. Theoretically, the

time complexity of the algorithm was in square terms with respect to operation nodes and attribute

nodes, user nodes and linear with respect to the object nodes. The complexity of the algorithm

is shown in Figure 8.4 which was generated by replicating the algorithm 1 and the authorization

graph is shown in Figure 8.2 using NetworkX package of python3. As our experiment was per-

formed in the Neo4j platform where our algorithm was introduced as a plugin in the server, the

107

algorithm and data were located within the server. The result of our experiments as shown in Fig-

ure 8.5 shows a constant time complexity irrespective of the number of nodes of any type. The

performance gain was due to the optimization done in the Neo4j itself. Furthermore, the native

storage and processing of Neo4j made any traversal query less complex also shown by the result

in Figure 8.5. As mentioned in [51], Neo4j followed an index-free adjacency leading to a low cost

joins. The traversing of a relationship was O(1) in time. The advantage of using adjacency was

more when the graph was traversed in the opposite direction. The native graph storage followed by

Neo4j provided a supportive architecture for the processing. Each element was stored in different

files. The graph structure was differentiated from property data to further add to the performance.

Also, Neo4j tended to minimize the input-output operation by implementing the inline optimiza-

tion, where a property data that could be encoded into the single record were directly in-lined in

property store file instead of being pushed into the dynamic storage. Therefore, we could conclude

that our approach of modeling the task-based access control with implementation architecture de-

scribed in Figure 8.1 was feasible in the real-world system. Furthermore, the algorithm, despite

being simple, performed very well with the combination of Neo4j platform.

108

Chapter 9

Conclusion and Future Work

9.1 Conclusion

Although organizations have been using a workflow management system to increase the ef-

ficiency of the business processes, the task has been more distributed and there has been a re-

quirement of flexibility in the services provided. The inclusion of mobile devices has made the

services flexible. At the same time, they have also introduced concerns about reliability and se-

curity. In order to have a flexible, secure, and manageable mobile service, there needs to be a

proper system capable of controlling the access and flow of the tasks. Therefore, in this work,

an architecture was proposed to incorporate the access control module and workflow management

system together so that the access control policy could be used for management (handling the

control flow) and enforcement (initialization and handling dynamic changes) of the workflow. The

architecture that was proposed created an initial template and took feedback from the analyzer to

correct any anomalies present. Similarly, to handle the dynamic situation like the change in loca-

tion, the environmental feedback was used to perform the necessary changes. The access control

module, which was a separate component of the architecture, was responsible for making all the

authorization decisions. These decisions were very essential for the enforcement and continuation

of the workflow plan. In addition, authorization decisions were also responsible for controlling

the flow of the workflow. Therefore, the access control model played a very important role in our

proposed system architecture.

The access decisions were made considering the workflow task, location, and time as well.

Location and time were represented as an abstraction called “STZone” or spatio-temporal zone.

The STZones were the logical mapping of the physical locations (i.e., represented in the form of

longitudes and latitudes, at certain time instance or interval). The mapping function made use

of containment and equality relations to compare and contrast between the two available logical

109

locations. The access control model itself was a hybrid of an existing framework and architecture

called “Policy Machine” described in [52] and Role Based Access Control(RBAC). We introduced

different attributes, relations, and constraints while following the specifications provided in [29]

in an attempt to preserve the concept of a logical model. We combined it with the hierarchy and

enable-disable feature of RBAC to handle the workflow management challenges. We also devised

an algorithm to form an authorization graph given the model information.

The workflow authorization model was verified using TCPN. TCPN combined the strength of

ordinary Petri Nets with high-level programming language and time, which made it more suitable

for simulation of our mathematical model. The simulation was done by modeling the control flow

between the processes from a real-world system called dengue decision support system. The con-

straints of DDSS (task assignment inclusive of time and location properties and other properties

like separation of Duty) were modeled in coordination with the control flow. State space analysis

was done on two types of model representation, to look into the structural and behavioral prop-

erties, namely, task assignment, Deadlock, violation of separation of duty constraint, violation of

hierarchical constraints, and violation of cardinality constraints. The Hierarchical model repre-

sented the scenario as connected components, where each component was a portion of a bigger

picture. The model was sliced using a slicing technique to mitigate the state space explosion, ex-

pand the search space, and be able to have a more effective and faster analysis. The sliced model,

in contrast to the Hierarchical model, was not connected. Therefore, the verification of the model

in the sliced model was based on the fact that, if the properties were verified in applicable nets, the

output of the model could be safely used in other nets as an input. The approach reduced the size

of the state space graph and, therefore, reduced the time taken for analysis. One thing to consider,

however, was that the sliced model should mimic all the properties of the hierarchical model for a

correct analysis.

The model checking helped to eradicate the inconsistencies in the model, but it was equally

important to study the practicality of the model. It was critical to ensure that the model could

be enforced for real system applications. We proposed an architecture to enforce our proposed

110

model into a system including mobile components. We devised the configuration between the

systems involved and a communication protocol to ensure security. The proposed architecture

contained different modules for distinct jobs and communicates with each other when required.

The abstraction was obtained by having the resources module as the enforcement point and the

access control module as the decision point. To make the decision, the access control module

was provided with a DFS based algorithm to traverse the authorization graph and came up with

an access control decision. We represented the authorization graph in Neo4j platform and the

algorithm as its plugin. To verify the correctness of the algorithm, a sample authorization graph

was created representing the DDSS system and system was queried for every possible combination

of entities. The output was manually verified for the correctness. Similarly, the behavior of the

algorithm with respect to the number of different entities in the policy was studied to analyze the

performance in the real system. The performance evaluation showed a constant time behavior

which made the system feasible for enforcement.

9.2 Future Work

In this work, we have made an approach to address the problem of modeling as well as the

implementation of access control system dedicated to the management of the workflow systems.

Although the system addressed the targeted problem, there existed an area of improvements in

every sector. Firstly, we look forward to having a complete implementation. Currently, the imple-

mentation handles the access control but the architectures (both system architecture and enforce-

ment architecture) are theoretical. We would like to explore the pros and cons of the architectures

as well. The implementation of access control assumed that there existed a reliable administra-

tive representation to develop and maintain the information required for the authorization graph.

Since the authorization graph was an essential part of the whole system, we would like to explore

the probability of introducing Artificial Intelligence (AI) for administrative actions and revoke a

malfunctioning unit from the system. Also, even though our work here was dedicated to workflow

management, the scope is not limited to it. We would like to investigate the generality of the model

111

and outreach different genres, for example, health care. Overall, we would like to see the limit of

generalization and specialization of the model with completely enforced architecture.

112

Bibliography

[1] David Hollingsworth and UK Hampshire. Workflow management coalition: The workflow

reference model. Document Number TC00-1003, 19:16, 1995.

[2] Ralf Salomon, Martin Lüder, and Gerald Bieber. ifall-a new embedded system for the de-

tection of unexpected falls. In Pervasive Computing and Communications (PerCOM) Work-

shops, pages 286–291. Citeseer, 2010.

[3] Amiya K Maji, Arpita Mukhoty, Arun K Majumdar, Jayanta Mukhopadhyay, Shamik Sural,

Soubhik Paul, and Bandana Majumdar. Security analysis and implementation of web-based

telemedicine services with a four-tier architecture. In Pervasive Computing Technologies for

Healthcare, 2008. PervasiveHealth 2008. Second International Conference on, pages 46–54.

IEEE, 2008.

[4] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-based access

control models. Computer, 29(2):38–47, 1996.

[5] Subhendu Aich, Samrat Mondal, Shamik Sural, and Arun Kumar Majumdar. Role based

access control with spatiotemporal context for mobile applications. In Transactions on Com-

putational Science IV, pages 177–199. Springer, 2009.

[6] Indrakshi Ray and Manachai Toahchoodee. A spatio-temporal role-based access control

model. In IFIP Annual Conference on Data and Applications Security and Privacy, pages

211–226. Springer, 2007.

[7] Subhendu Aich, Shamik Sural, and Arun K Majumdar. STARBAC: Spatiotemporal role

based access control. In OTM Confederated International Conferences "On the Move to

Meaningful Internet Systems", pages 1567–1582. Springer, 2007.

113

[8] Liang Chen and Jason Crampton. On spatio-temporal constraints and inheritance in role-

based access control. In Proceedings of the ACM Symposium on Information, Computer and

Communications Security, pages 205–216. ACM, 2008.

[9] Manachai Toahchoodee and Indrakshi Ray. On the formalization and analysis of a spatio-

temporal role-based access control model. Journal of Computer Security, 19(3):399–452,

2011.

[10] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. Adding attributes to role-based

access control. Computer, 43(6):79–81, 2010.

[11] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang, Margaret M

Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen Scarfone, et al. Guide

to attribute based access control (abac) definition and considerations (draft). NIST special

publication, 800(162), 2013.

[12] Xin Jin, Ram Krishnan, and Ravi Sandhu. A unified attribute-based access control model

covering dac, mac and rbac. In IFIP Annual Conference on Data and Applications Security

and Privacy, pages 41–55. Springer, 2012.

[13] Michael Decker. A location-aware access control model for mobile workflow systems. In-

ternational Journal of Information Technology and Web Engineering (IJITWE), 4(1):50–66,

2009.

[14] Indrakshi Ray, Na Li, Robert France, and Dae-Kyoo Kim. Using uml to visualize role-based

access control constraints. In Proceedings of the ninth ACM symposium on Access control

models and technologies, pages 115–124. ACM, 2004.

[15] Karsten Sohr, Gail-Joon Ahn, Martin Gogolla, and Lars Migge. Specification and validation

of authorisation constraints using uml and ocl. In European Symposium on Research in

Computer Security, pages 64–79. Springer, 2005.

114

[16] Arjmand Samuel, Arif Ghafoor, and Elisa Bertino. A framework for specification and verifi-

cation of generalized spatio-temporal role based access control model. 2007.

[17] Manachai Toahchoodee and Indrakshi Ray. Using alloy to analyse a spatio-temporal access

control model supporting delegation. IET Information Security, 3(3):75–113, 2009.

[18] Basit Shafiq, Ammar Masood, James Joshi, and Arif Ghafoor. A role-based access con-

trol policy verification framework for real-time systems. In Object-Oriented Real-Time De-

pendable Systems, 2005. WORDS 2005. 10th IEEE International Workshop on, pages 13–20.

IEEE, 2005.

[19] Hind Rakkay and Hanifa Boucheneb. Security analysis of role based access control models

using colored petri nets and cpntools. In Transactions on Computational Science IV, pages

149–176. Springer, 2009.

[20] Christopher C Yang, Gondy Leroy, and Sophia Ananiadou. Smart health and wellbeing. ACM

Transactions on Management Information Systems (TMIS), 4(4):15, 2013.

[21] Suruchi Deodhar, Keith R Bisset, Jiangzhuo Chen, Yifei Ma, and Madhav V Marathe. An

interactive, web-based high performance modeling environment for computational epidemi-

ology. ACM Transactions on Management Information Systems (TMIS), 5(2):7, 2014.

[22] M Lisa Yeo, Erik Rolland, Jackie Rees Ulmer, and Raymond A Patterson. Risk mitigation

decisions for it security. ACM Transactions on Management Information Systems (TMIS),

5(1):5, 2014.

[23] Xitong Guo, Sherry X Sun, and Doug Vogel. A dataflow perspective for business process

integration. ACM Transactions on Management Information Systems (TMIS), 5(4):22, 2015.

[24] Basit Shafiq, Arjmand Samuel, and Halima Ghafoor. A GTRBAC based system for dynamic

workflow composition and management. In Object-Oriented Real-Time Distributed Comput-

ing, 2005. ISORC 2005. Eighth IEEE International Symposium on, pages 284–290. IEEE,

2005.

115

[25] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. TRBAC: A temporal role-based

access control model. ACM Transactions on Information and System Security (TISSEC),

4(3):191–233, 2001.

[26] Gail-Joon Ahn, Ravi Sandhu, Myong Kang, and Joon Park. Injecting rbac to secure a web-

based workflow system. In Proceedings of the fifth ACM Workshop on Role-based access

control, pages 1–10. ACM, 2000.

[27] Peter Mell, James M Shook, and Serban Gavrila. Restricting insider access through efficient

implementation of multi-policy access control systems. In Proceedings of the 8th ACM CCS

International Workshop on Managing Insider Security Threats, pages 13–22. ACM, 2016.

[28] Arindam Roy, Shamik Sural, Arun Kumar Majumdar, Jaideep Vaidya, and Vijayalakshmi

Atluri. On optimal employee assignment in constrained role-based access control systems.

ACM Transactions on Management Information Systems (TMIS), 7(4):10, 2017.

[29] David F Ferraiolo, Serban I Gavrila, and Wayne Jansen. Policy Machine: features, architec-

ture, and specification. Technical report, 2015.

[30] Sejong Oh and Seog Park. Task–role-based access control model. Information Systems,

28(6):533–562, 2003.

[31] Sejong Oh and Seog Park. Task-role based access control (T-RBAC): an improved access

control model for enterprise environment. In International Conference on Database and

Expert Systems Applications, pages 264–273. Springer, 2000.

[32] Guoping Zhang and Jing Liu. A model of workflow-oriented attributed based access control.

International Journal of Computer Network and Information Security, 3(1):47, 2011.

[33] James BD Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A generalized temporal

role-based access control model. IEEE Transactions on Knowledge and Data Engineering,

17(1):4–23, 2005.

116

[34] Greg Milner. What is gps? Journal of Technology in Human Services, 34(1):9–12, 2016.

[35] John Whipple, William Arensman, and Marian Starr Boler. A public safety application of

gps-enabled smartphones and the android operating system. In Systems, Man and Cybernet-

ics, 2009. SMC 2009. IEEE International Conference on, pages 2059–2061. IEEE, 2009.

[36] Frank Sposaro and Gary Tyson. ifall: an android application for fall monitoring and response.

In Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International

Conference of the IEEE, pages 6119–6122. IEEE, 2009.

[37] Axel Küpper. Location-based services. Fundamental and operation, John Willey & Sons,

Ltd, 2005.

[38] Luca Mainetti, Luigi Patrono, and Ilaria Sergi. A survey on indoor positioning systems.

In Software, Telecommunications and Computer Networks (SoftCOM), 22nd International

Conference on, pages 111–120. IEEE, 2014.

[39] AKM Mahtab Hossain and Wee-Seng Soh. A survey of calibration-free indoor positioning

systems. Computer Communications, 66:1–13, 2015.

[40] Kai Jansen, Nils Ole Tippenhauer, and Christina Pöpper. Multi-receiver gps spoofing de-

tection: error models and realization. In Proceedings of the 32nd Annual Conference on

Computer Security Applications, pages 237–250. ACM, 2016.

[41] Todd E Humphreys, Brent M Ledvina, Mark L Psiaki, Brady W O’Hanlon, and Paul M

Kintner Jr. Assessing the spoofing threat: Development of a portable gps civilian spoofer.

In Proceedings of the ION GNSS International Technical Meeting of the Satellite Division,

volume 55, page 56, 2008.

[42] Kurt Jensen and Lars M Kristensen. Timed coloured petri nets. In Coloured Petri Nets, pages

231–255. Springer, 2009.

117

[43] Kurt Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use, vol-

ume 1. Springer Science & Business Media, 2013.

[44] Yahui Lu, Li Zhang, and Jiaguang Sun. Using colored petri nets to model and analyze work-

flow with separation of duty constraints. The International Journal of Advanced Manufac-

turing Technology, 40(1-2):179–192, 2009.

[45] Timed Color Petri Nets- Hierarhy (Top-down development). http://cpntools.org/2018/01/09/

top-down-development. Accessed: 2018-06-15.

[46] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The definition of standard

ML: revised. MIT press, 1997.

[47] Ramadan Abdunabi. An access control framework for mobile applications. PhD thesis,

Colorado State University. Libraries, 2013.

[48] Justin J Miller. Graph database applications and concepts with neo4j. In Proceedings of the

Southern Association for Information Systems Conference, Atlanta, GA, USA, volume 2324,

page 36, 2013.

[49] Shalini Batra and Charu Tyagi. Comparative analysis of relational and graph databases.

International Journal of Soft Computing and Engineering (IJSCE), 2(2):509–512, 2012.

[50] Salim Jouili and Valentin Vansteenberghe. An empirical comparison of graph databases. In

Social Computing (SocialCom), 2013 International Conference on, pages 708–715. IEEE,

2013.

[51] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases. " O’Reilly Media, Inc.",

2013.

[52] David Ferraiolo, Vijayalakshmi Atluri, and Serban Gavrila. The policy Machine: A novel

architecture and framework for access control policy specification and enforcement. Journal

of Systems Architecture, 57(4):412–424, 2011.

118

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Underlying Problem
	Our Approach
	Thesis Organization

	Literature Review
	Information System and Management
	Access Control Mechanism

	Motivation Example:Dengue Decision Support System (DDSS)
	System Architecture
	Workflow Formulation Module
	Example Workflow model

	Workflow Management Module
	Example Workflow Instantiation:

	Access Control Module

	Location and Time Models
	Location Model
	Time Model

	Task-Attribute Based Workflow Authorization Model
	Entities
	Users
	Objects
	User Attributes
	Object Attributes
	Spatio-temporal Zones
	Tasks
	Operations
	Policy Classes
	Policy Elements

	Relationships
	Assignment
	Attribute Hierarchy
	Attribute Enabling-usage
	Association
	Processing
	Prohibitions
	Obligations

	Constraints
	Separation of Duty
	Trigger Constraint
	Dependency of Activities
	Cardinality Constraint

	Check Access
	Relation derivation

	Authorization Graph

	Analysis of Workflow with Authorization Constraints
	Background: Timed Colored Petri Nets(TCPN)
	Formal Definition: TCPN
	TCPN based model for mobile Workflow System
	Workflow Control Flow in TCPN
	Special Cases
	Hierarchical Model
	Model Simulation

	Model Analysis
	State Space (Reachability) Graph
	Analysis of Hierarchical TCPN
	State-Space Verification Queries
	Hierarchical Model After application of Correction measures identified from analysis of Sliced Model
	Model Performance

	The Enforcement Mechanism
	Solution Architecture
	Protocols for secure communication
	Assumptions on the system
	Steps of the Protocol

	Specifications of Authorization Graph in Neo4j
	Experimental Setup
	Algorithm for Processing of Authorization Graph
	Correctness of the algorithm
	Performance of the algorithm
	Experimental Evaluation

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

