Repository logo
 

Parametric and semiparametric model estimation and selection in geostatistics

dc.contributor.authorChu, Tingjin, author
dc.contributor.authorWang, Haonan, advisor
dc.contributor.authorZhu, Jun, advisor
dc.contributor.authorMeyer, Mary, committee member
dc.contributor.authorLuo, J. Rockey, committee member
dc.date.accessioned2007-01-03T08:11:17Z
dc.date.available2007-01-03T08:11:17Z
dc.date.issued2012
dc.description.abstractThis dissertation is focused on geostatistical models, which are useful in many scientific disciplines, such as climatology, ecology and environmental monitoring. In the first part, we consider variable selection in spatial linear models with Gaussian process errors. Penalized maximum likelihood estimation (PMLE) that enables simultaneous variable selection and parameter estimation is developed and for ease of computation, PMLE is approximated by one-step sparse estimation (OSE). To further improve computational efficiency particularly with large sample sizes, we propose penalized maximum covariance-tapered likelihood estimation (PMLET) and its one-step sparse estimation (OSET). General forms of penalty functions with an emphasis on smoothly clipped absolute deviation are used for penalized maximum likelihood. Theoretical properties of PMLE and OSE, as well as their approximations PMLET and OSET using covariance tapering are derived, including consistency, sparsity, asymptotic normality, and the oracle properties. For covariance tapering, a by-product of our theoretical results is consistency and asymptotic normality of maximum covariance-tapered likelihood estimates. Finite-sample properties of the proposed methods are demonstrated in a simulation study and for illustration, the methods are applied to analyze two real data sets. In the second part, we develop a new semiparametric approach to geostatistical modeling and inference. In particular, we consider a geostatistical model with additive components, where the covariance function of the spatial random error is not pre-specified and thus flexible. A novel, local Karhunen-Loève expansion is developed and a likelihood-based method devised for estimating the model parameters. In addition, statistical inference, including spatial interpolation and variable selection, is considered. Our proposed computational algorithm utilizes Newton-Raphson on a Stiefel manifold and is computationally efficient. A simulation study demonstrates sound finite-sample properties and a real data example is given to illustrate our method. While the numerical results are comparable to maximum likelihood estimation under the true model, our method is shown to be more robust against model misspecification and is computationally far more efficient for larger sample sizes. Finally, the theoretical properties of the estimates are explored and in particular, a consistency result is established.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierCHU_colostate_0053A_11276.pdf
dc.identifierETDF2012400332STAT
dc.identifier.urihttp://hdl.handle.net/10217/68166
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectgeostatistics
dc.subjectsemiparametric
dc.subjectparametric
dc.titleParametric and semiparametric model estimation and selection in geostatistics
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineStatistics
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CHU_colostate_0053A_11276.pdf
Size:
625.95 KB
Format:
Adobe Portable Document Format
Description: