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ABSTRACT

PARAMETRIC AND SEMIPARAMETRIC MODEL ESTIMATION AND

SELECTION IN GEOSTATISTICS

This dissertation is focused on geostatistical models, which are useful in many

scientific disciplines, such as climatology, ecology and environmental monitoring. In

the first part, we consider variable selection in spatial linear models with Gaussian

process errors. Penalized maximum likelihood estimation (PMLE) that enables si-

multaneous variable selection and parameter estimation is developed and for ease

of computation, PMLE is approximated by one-step sparse estimation (OSE). To

further improve computational efficiency particularly with large sample sizes, we

propose penalized maximum covariance-tapered likelihood estimation (PMLET) and

its one-step sparse estimation (OSET). General forms of penalty functions with an

emphasis on smoothly clipped absolute deviation are used for penalized maximum

likelihood. Theoretical properties of PMLE and OSE, as well as their approxima-

tions PMLET and OSET using covariance tapering are derived, including consistency,

sparsity, asymptotic normality, and the oracle properties. For covariance tapering,

a by-product of our theoretical results is consistency and asymptotic normality of

maximum covariance-tapered likelihood estimates. Finite-sample properties of the

proposed methods are demonstrated in a simulation study and for illustration, the

methods are applied to analyze two real data sets.

In the second part, we develop a new semiparametric approach to geostatisti-

cal modeling and inference. In particular, we consider a geostatistical model with

additive components, where the covariance function of the spatial random error is

not pre-specified and thus flexible. A novel, local Karhunen-Loève expansion is de-

veloped and a likelihood-based method devised for estimating the model parameters.
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In addition, statistical inference, including spatial interpolation and variable selec-

tion, is considered. Our proposed computational algorithm utilizes Newton-Raphson

on a Stiefel manifold and is computationally efficient. A simulation study demon-

strates sound finite-sample properties and a real data example is given to illustrate

our method. While the numerical results are comparable to maximum likelihood esti-

mation under the true model, our method is shown to be more robust against model

misspecification and is computationally far more efficient for larger sample sizes. Fi-

nally, the theoretical properties of the estimates are explored and in particular, a

consistency result is established.
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Chapter 1

INTRODUCTION

1.1 Geostatistics

Geostatistical models are widely used to analyze spatial data in many scientific

disciplines, such as climatology, ecology and environmental monitoring. For example,

at weather stations across Colorado, precipitation data have been collected over time.

An interesting topic is to investigate the relationship between precipitation and co-

variates such as elevation, slope, aspect, and other satellites imagery information, and

which covariates have a significant effect on precipitation. Moreover, it is of interest

to quantify precipitation in areas where there are no data. For this type of spatial

data, geostatistical models provide a useful tool set to help researchers to address the

scientific questions of interest.

A geostatistical model has one significant difference from more traditional sta-

tistical models in that observations are spatially correlated. Suppose that there is

rain at weather station A, then at a nearby weather station B, rain is quite likely.

However, at weather station C far away from weather station A, it is less likely to

have rain. In statistical terms, precipitation at weather stations A and B is more

correlated than that at weather stations A and C. This correlation is related to the

spatial closeness of these weather stations such that the correlation between two ob-

servations is determined by the locations of the corresponding observations, which is

also known as spatial correlation.

For a random process ε(s) in a spatial domain of interest R ∈ Rd, the covariance

between ε(s1) and ε(s2), cov{ε(s1), ε(s2)}, is used to measure the spatial correlation
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between ε(s1) and ε(s2), where s1, s2 ∈ R. For modeling a spatial process, second-

order stationarity and isotropy are often assumed. A random process ε(s) is second-

order stationarity if it satisfies the conditions

E{ε(s)} = µ, for all s ∈ R,

V ar{ε(s)} = constant <∞,

and

cov{ε(s1), ε(s2)} = γ(s1 − s2), for all s1, s2 ∈ R.

That is, for a second-order stationary process, the expected value stays the same at

different locations, and the covariance is only a function of distance, and direction

between two locations. Moreover, if γ(s1−s2) is only a function of distance ∥s1−s2∥,

then the random process ε(s) is said to be isotropic (Chapter 2.3 in Cressie 1993).

There are various ways to model the covariance function γ(·). A commonly-used

family of covariance functions is the Matérn class with covariance functions in the

form of

γ(d) = σ2(1− c){2ν−1Γ(ν)}−1
(
2ν1/2d/r

)ν Kν

(
2ν1/2d/r

)
,

where σ2 > 0 is a variance, c ∈ [0, 1] is a nugget proportion such that cσ2 is the

nugget effect representing variation at small lag distance, r > 0 is a range parameter

controlling the rate of autocorrelation decay with lag distance, ν > 0 is a shape

parameter controlling the smoothness of the spatial process, and Kν(·) is a modified

Bessel function of the second kind of order ν.

The exponential covariance function, γ(d) = σ2(1 − c) exp(−d/r), is commonly

used and is a special case of of the Matérn class with ν = 1/2. Another well-known

covariance function is the Gaussian covariance function γ(d) = σ2(1−c) exp(−d2/r2).

Although it does not belong to the Matérn class, the Matérn covariance function

converges to Gaussian covariance function, as ν → ∞.
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1.2 Topics and Our Approaches

In this dissertation, we will consider a spatial linear model for a spatial process

{y(s) : s ∈ R}:

y(s) = x(s)Tβ + ε(s), (1.1)

where x(s) = (x1(s), . . . , xp(s))
T is a p × 1 vector of covariates at location s and

β = (β1, . . . , βp)
T is a p × 1 vector of regression coefficients. Here, the error process

{ε(s) : s ∈ R} is used to model the spatial correlation, and is assumed to be a second-

order stationary and isotropic Gaussian process with mean zero and a covariance

function γ(s, s′), where s, s′ ∈ R. We focus on three main topics for spatial linear

model: parameter estimation, variable selection, and spatial prediction (also known

as Kriging) at unsampled locations.

First, for parameter estimation, maximum likelihood estimates are often used.

Let the response variable be y = (y(s1), . . . , y(sN))
T atN sampling locations s1, . . . , sN ,

X = [x1, . . . ,xp] be an N × p design matrix of covariates, Γ = [γ(si, si′)]
N
i,i′=1 be the

covariance matrix for y. The log-likelihood function is

ℓ(β,Γ;y,X) = −(N/2) log(2π)− (1/2) log |Γ| (1.2)

−(1/2)(y −Xβ)TΓ−1(y −Xβ).

The maximum likelihood estimate (MLE) can be obtained by maximizing (1.2).

One challenge for parameter estimation is the computational burden to invert the

covariance matrix Γ. Since Γ is an N ×N matrix, the computational complexity for

the inversion of Γ is O(N3), which is time consuming, if not infeasible, when sample

size becomes larger. One way to overcome this challenge is to approximate the covari-

ance matrix by a sparse matrix and take advantage of the fast computing algorithm to

invert the sparse matrix (Furrer et al., 2006; Kaufman et al., 2008; Du et al., 2009).

The method is known as covariance tapering, such that if the distance between two
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observations is large, their correlation should be small. Even if we treat these correla-

tions as zero, the parameter estimates will still be relatively accurate. Based on this

idea, a tapering function will be applied to re-scale the covariance matrix to obtain a

tapered covariance matrix, which is a sparse matrix and thus faster to compute.

A second challenge for parameter estimation is that the underlying covariance

structure is often unknown a priori. Thus, we take a nonparametric approach, namely,

Karhunen-Loève expansion, to model the error process. By incorporating this non-

parametric form into the log-likelihood function, parameter estimates can be obtained.

However, for a geostatistical model, there is often one realization of the random field

and the resulting estimate is not consistent. To overcome this difficulty, we intro-

duce a novel local Karhunen-Loève expansion and consequently, consistent regression

parameter estimates and covariance function estimates are obtained.

Second, variable selection is considered for identifying the best subsets among all

possible subsets of covariates. For linear regression with independent error, variable

selection has been widely studied, and various methods are available. One popular

variable selection technique is stepwise selection procedure, such as forward selec-

tion and backward elimination (Draper and Smith, 1998). This method is carried

out by an automatic procedure and fast to compute. However, its theoretical prop-

erty is hard to understand. Another way is to use information discrepancy-based

methods, such as Kolmogorov-Smirnov, Kullback-Leibler, or Hellinger discrepancy

(Linhart and Zucchini, 1986), which is often time consuming when the number of

covariates is large.

Recently, penalized methods have been developed for variable selection, which

enable parameter estimation and variable selection simultaneously. However, in geo-

statistics, little has been studied about such penalized methods, especially from a

theoretical perspective. In this dissertation, we focus on spatial linear models and

establish consistency, asymptotical normality and oracle property of penalized max-

imum likelihood estimates for smoothly clipped absolute deviation (SCAD) penalty
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function (Fan and Li, 2001) under certain conditions. First, we define the penalized

log-likelihood function Q(β,Γ;y,X) as

Q(β,Γ;y,X) = ℓ(β,θ;y,X)−N

p∑
j=1

pλ(|βj|). (1.3)

where pλ(·) is the known penalty function, and in this dissertation, we focus on SCAD

penalty function.

By maximizing (1.3), variable selection and parameter estimation are obtained

simultaneously. However, the inversion of Γ is also needed in order to maximize (1.3)

and we face the similar computational burden as parameter estimation. One way

to address this computational burden is covariance tapering and the performance of

variable selection under covariance tapering method will be investigated.

Last, for spatial prediction (Kriging), we consider best linear unbiased predictor

(BLUP) at unsampled locations. We begin with simple Kriging. Let ε(s) be a spatial

process with Eε(s) = 0, for all s ∈ R. For an unsampled location s0, the BLUP is

ε̂(s0) = wε, where w = cT0Γ
−1
0 , ε = (ε(s1), . . . , ε(sN))

T , c0 is an N × 1 vector whose

ith component is γ(s0, si) and Γ0 is the variance-covariance for ε. For universal

Kriging in spatial linear model (1.1), the BLUP is

ŷ(s0) = xT (s0)β̂ + cT0Γ
−1
0 (y −XT β̂),

where β̂ = (XΓ−1
0 X)−1XΓ−1

0 y (section 3.4.5 in Cressie 1993).

Since c0, Γ0 are unknown in practice, and estimates ĉ0 and Γ̂0 are needed.

This is part of the parameter estimation problem as mentioned above. It is worth

mentioning that if the sample size is large, covariance tapering method is needed in

order to compute Γ−1
0 efficiently. Moreover, if the underlying covariance structure

is unknown, the covariance function estimates from local Karhunen-Loève expansion

may be more suitable.

The reminder of the dissertation is organized as follows. In Chapter 2, the co-

variance function of the error process is assumed to be parametric, and penalized

5



maximum covariance-tapered likelihood is proposed for simultaneous parameter esti-

mation and variable selection. In Chapter 3, we take a semiparametric approach for

spatial linear model to obtain regression parameter estimates and covariance function

estimates. These parameter estimates are then used in spatial prediction and variable

selection. Summary and future work will be included in Chapter 4.
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Chapter 2

REGULARIZED APPROACH TO VARIABLE SELECTION 1

2.1 Introduction

Geostatistical models are popular tools for the analysis of spatial data in many

disciplines. It is often of interest to estimate model parameters based on data at

sampled locations and perform spatial interpolation (also known as Kriging) of a re-

sponse variable at unsampled locations within a spatial domain of interest (Cressie,

1993; Stein, 1999; Schabenberger and Gotway, 2005). In addition, a practical issue

that often arises is how to select the best model or a best subset of models among

many competing ones (Hoeting et al., 2006). Here we focus on selecting covariates in

a spatial linear model, which we believe is a problem that is underdeveloped in both

theory and methodology despite its importance in geostatistics. The spatial linear

model for a response variable under consideration has two additive components: a

fixed linear regression term and a stochastic error term. We assume that the error

term follows a Gaussian process with mean zero and a covariance function that ac-

counts for spatial dependence. Our chief objective is to develop a set of new methods

for the selection of covariates and establish their asymptotic properties. Moreover,

we devise efficient algorithms for computation, making these methods feasible for

practical usage.

1Part of this chapter is based on Tingjin Chu’s Master Thesis and the paper "Penalized Max-
imum Likelihood Estimation and Variable Selection in Geostatistics" published in the Annals of
Statistics, 39, 2607-2625.
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For linear regression with independent errors, variable selection has been widely

studied in the literature. The more traditional methods often involve hypothesis

testing such as F -tests in a stepwise selection procedure (Draper and Smith, 1998).

An alternative approach is to select models using information discrepancy such as

Kolmogorov-Smirnov, Kullback-Leibler, or Hellinger discrepancy (Linhart and Zucchini,

1986). In recent years, penalized methods are becoming increasingly popular for

variable selection. For example, Tibshirani (1996) developed a least absolute shrink-

age and selection operator (LASSO), whereas Fan and Li (2001) proposed a noncon-

cave penalized likelihood method with smoothly clipped absolute deviation (SCAD)

penalty. Efron et al. (2004) devised least angle regression (LARS) algorithms, which

allow computing all LASSO estimates along a path of its tuning parameters at a low

computational order. More recently, Zou (2006) improved LASSO and the resulting

adaptive LASSO enjoys the oracle properties as SCAD, in terms of selecting the true

model. Zou and Li (2008) proposed one-step sparse estimation in the nonconcave

penalized likelihood approach, which retains the oracle properties and utilizes LARS

algorithms.

For spatial linear models in geostatistics, in contrast, statistical methods for prin-

cipled selection of covariates are limited. Hoeting et al. (2006) suggested Akaike’s in-

formation criterion (AIC) with a finite-sample correction for variable selection. Like

information-based selection in general, computation can be costly especially when

the number of covariates and/or the sample sizes are large. Thus, these authors

considered only a subset of the covariates that may be related to the abundance of

orange-throated whiptail lizard in southern California, in order to make it tractable to

evaluate their AIC-based model selection. Huang and Chen (2007) developed a model

selection criterion in geostatistics, but for the purpose of Kriging rather than selec-

tion of covariates. Further, Wang and Zhu (2009) proposed penalized least squares

(PLS) for a spatial linear model where the error process is assumed to be strong

mixing without the assumption of Gaussian process. This method includes spatial

8



autocorrelation only indirectly in the sense that the objective function involves a sum

of squared errors ignoring spatial dependence. A spatial block bootstrap is then used

to account for spatial dependence when estimating the variance of PLS estimates.

Here we take an alternative, parametric approach and assume that the errors

in the spatial linear model follow a Gaussian process. Our main innovation here is

to incorporate spatial dependence directly into a penalized likelihood function and

achieve greater efficiency in the resulting penalized maximum likelihood estimates

(PMLE). Unlike computation of PLS estimates which is on the same order as or-

dinary least squares estimates, however, penalized likelihood function for a spatial

linear model will involve operations of a covariance matrix of the same size as the

number of observations. Thus the computational cost can be prohibitively high as

the sample size becomes large. It is essential that our new methods address this issue.

To that end, we utilize one-step sparse estimation (OSE) and LARS algorithms in

the computation of PMLE to gain computational efficiency. In addition, we explore

covariance tapering, which further reduces computational cost by replacing the ex-

act covariance matrix with a sparse one (Furrer et al., 2006; Kaufman et al., 2008;

Du et al., 2009). We establish the asymptotic properties of both PMLE and OSE,

as well as their covariance-tapered counterparts. As a by-product, we establish new

results for covariance-tapered MLE which, to the best of our knowledge, have not

been established before and can be of independent interest.

The remainder of the chapter is organized as follows. In Section 2.2, we develop

PMLE that enables simultaneous variable selection and parameter estimation, as well

as an approximation of the PMLE by one-step sparse estimation to enhance compu-

tational efficiency. For further computational improvement, we consider penalized

maximum covariance-tapered likelihood estimation (PMLET) and its one-step sparse

estimation (OSET) in Section 2.3. We establish asymptotic properties of PMLE and

OSE in Section 2.4 and those of PMLET and OSET under covariance tapering in

Section 2.5. In Section 2.6, finite-sample properties of the proposed methods are

9



investigated in a simulation study and for illustration, the methods are applied to

analyze two real data sets. A brief summary and discussion is given in Section 2.7,

whereas technical proofs and details are given in Section 2.8.

2.2 Penalized Maximum Likelihood

2.2.1 Spatial Linear Model and Maximum Likelihood Estimation

For a spatial domain of interest R in Rd, we consider a spatial process {y(s) :

s ∈ R} such that

y(s) = x(s)Tβ + ε(s), (2.1)

where x(s) = (x1(s), . . . , xp(s))
T is a p × 1 vector of covariates at location s and

β = (β1, . . . , βp)
T is a p × 1 vector of regression coefficients. We assume that the

error process {ε(s) : s ∈ R} is a Gaussian process with mean zero and a covariance

function

γ(s, s′;θ) = cov{ε(s), ε(s′)}, (2.2)

where s, s′ ∈ R and θ is a q × 1 vector of covariance function parameters.

Let s1, . . . , sN denote N sampling sites in R. Let y = (y(s1), . . . , y(sN))
T denote

an N×1 vector of response variables and xj = (xj(s1), . . . , xj(sN))
T denote an N×1

vector of the jth covariate with j = 1, . . . , p, at theN sampling sites. Further, let X =

[x1, . . . ,xp] denote an N × p design matrix of covariates and Γ = [γ(si, si′ ;θ)]
N
i,i′=1

denote an N × N covariance matrix. In this chapter, we consider general forms for

the the covariance matrix Γ and describe suitable regularity conditions in Sections 2.4

and 2.5. By (2.1) and (2.2), we have

y ∼ N(Xβ,Γ). (2.3)

Let η = (βT ,θT )T denote a (p + q) × 1 vector of model parameters consisting

of both regression coefficients β and covariance function parameters θ. By (2.3), the
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log-likelihood function of η is

ℓ(η;y,X) = −(N/2) log(2π)− (1/2) log |Γ| (2.4)

−(1/2)(y −Xβ)TΓ−1(y −Xβ).

Let η̂MLE = arg maxη{ℓ(η;y,X)} denote the maximum likelihood estimate (MLE)

of η.

For a real-valued function f(a) where a = (aT
1 ,a

T
2 )

T , ai ∈ Rri , ri ≥ 1, r1+r2 = r,

and i = 1, 2, let f ′(a) = ∂f(a)/∂a denote an r×1 vector of first-order derivatives with

respect to a and f ′(ai) = ∂f(a)/∂ai denote an ri × 1 vector of first-order derivatives

with respect to ai, i = 1, 2. Let f ′′(a) = ∂2f(a)/∂a∂aT denote an r × r matrix of

second-order derivatives with respect to a and f ′′(ai,aj) = ∂2f(a)/∂ai∂a
T
j denote

an ri × rj matrix of second-order derivatives with respect to ai and aj, i, j = 1, 2.

From (2.4), we have ℓ′(β) = XTΓ−1(y − Xβ) and the kth element of ℓ′(θ)

is −(1/2)tr(Γ−1Γk) − (1/2)(y − Xβ)TΓk(y − Xβ), where Γk = ∂Γ/∂θk and Γk =

∂Γ−1/∂θk = −Γ−1ΓkΓ
−1 for k = 1, . . . , q. Moreover, ℓ′′(β,β) = −XTΓ−1X, the

kth column of ℓ′′(β,θ) is XTΓk(y − Xβ), and the (k, k′)th entry of ℓ′′(θ,θ) is

−(1/2)

{
tr(Γ−1Γkk′ +ΓkΓk′)+(y−Xβ)TΓkk′(y−Xβ)

}
, where Γkk′ = ∂2Γ/∂θk∂θk′

and Γkk′ = ∂2Γ−1/∂θk∂θk′ = Γ−1(ΓkΓ
−1Γk′+Γk′Γ

−1Γk−Γkk′)Γ
−1 for k, k′ = 1, . . . , q.

Since E{−ℓ′′(β,θ)} = 0, the information matrix of η is I(η) = diag{I(β), I(θ)},

where

I(β) = E{−ℓ′′(β,β)} = XTΓ−1X (2.5)

and the (k, k′)th entry of

I(θ) = E{−ℓ′′(θ,θ)} (2.6)

is tkk′/2 with tkk′ = tr(Γ−1ΓkΓ
−1Γk′) = tr(ΓΓkΓΓk′); see Mardia and Marshall

(1984).
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2.2.2 Penalized Maximum Likelihood Estimation

We define a penalized log-likelihood function as

Q(η) = ℓ(η;y,X)−N

p∑
j=1

pλ(|βj|), (2.7)

where ℓ(η;y,X) is the log-likelihood function defined in (2.4) and pλ(·) is a pre-

specified penalty function with a tuning parameter λ. We let η̂PMLE = arg maxη{Q(η)}

denote the penalized maximum likelihood estimate (PMLE) of η.

Let ϕ(β) = (p′λ(|β1|)sgn(β1), . . . , p′λ(|βp|)sgn(βp))T and Φ(β) = diag{p′′λ(|β1|), . . . , p′′λ(|βp|)}.

Then Q′(β) = ℓ′(β) − Nϕ(β) and Q′(θ) = ℓ′(θ). Moreover, Q′′(β,β) = ℓ′′(β,β) −

NΦ(β), Q′′(β,θ) = ℓ′′(β,θ), andQ′′(θ,θ) = ℓ′′(θ,θ). ThusE{−Q′′(η)} = diag{I(β)+

NΦ(β), I(θ)}, where I(β) and I(θ) are given in (2.5) and (2.6).

For penalty functions, we mainly consider smoothly clipped absolute deviation

(SCAD) defined as

pλ(β) =


λ|β|, if |β| ≤ λ,
λ2 + (a− 1)−1(aλ|β| − β2/2− aλ2 + λ2/2), if λ < |β| ≤ aλ,
(a+ 1)λ2/2, if |β| > aλ

(2.8)

for some a > 2 (Fan, 1997). For iid error in standard linear regression, variable

selection and parameter estimation under the SCAD penalty are shown to possess

three desirable properties: unbiasedness, sparsity and continuity (Fan and Li, 2001).

For spatial linear regression (2.1), these properties continue to hold for SCAD penalty

following arguments similar to those in Wang and Zhu (2009).

To compute PMLE under the SCAD penalty, Fan and Li (2001) proposed a lo-

cally quadratic approximation (LQA) of the penalty function and a Newton-Raphson

algorithm. Although fast, a drawback of the LQA algorithm is that once a regres-

sion coefficient is shrunk to zero, it remains to be zero in the remainder iterations.

More recently, Zou and Li (2008) developed a unified algorithm to improve com-

putational efficiency, which, unlike LQA algorithm, is based on locally linear ap-

proximation (LLA) of the penalty function. Moreover, Zou and Li (2008) proposed

12



one-step LLA estimation that approximates the solution after just one iteration in a

Newton-Raphson-type algorithm starting at the MLE. We extend this one-step LLA

estimation to approximate PMLE for the spatial linear model as follows.

Algorithm 1. At the initialization step, we let η(0) = η̂MLE with β(0) = β̂MLE and

θ(0) = θ̂MLE. Then, we update β by maximizing

Q∗(β) = −(1/2)(y −Xβ)TΓ(θ(0))−1(y −Xβ)−N

p∑
j=1

p′λ(|β
(0)
j |)|βj| (2.9)

with respect to β, where the first term is from (2.4) evaluated at θ(0) and the sec-

ond term is an LLA of the penalty function in (2.7). The resulting one-step sparse

estimate (OSE) of β is denoted as β̂OSE. Although not necessary, we may update θ

by maximizing (2.4) evaluated at β = β̂OSE with respect to θ. The resulting OSE

of θ is denoted as θ̂OSE. We let η̂OSE = (β̂T
OSE, θ̂

T
OSE)

T denote the OSE of η, which

approximates η̂PMLE. As we will show in Section 2.4, by using MLE as the initial

values, consistency of η̂OSE is ensured.

Finally, two tuning parameters, λ and a, in the SCAD penalty (2.8) need to be

estimated. For computational ease, we fix a = 3.7 as recommended by Fan and Li

(2001). To determine λ, we use Bayesian information criterion (BIC); see Wang et al.

(2007b). In particular, let

σ̂2(λ) = N−1{y −Xβ̂(λ)}TΓ{θ̂(λ)}−1{y −Xβ̂(λ)}, (2.10)

where β̂(λ) and θ̂(λ) are the PMLE obtained for a given λ and let

BIC(λ) = N log{σ̂2(λ)}+ k(λ) log(N), (2.11)

where k(λ) is the number of non-zero regression coefficients (Wang et al., 2007a).

Thus an estimate of λ is λ̂ = arg minλ{BIC(λ)}.
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2.3 Penalized Maximum Covariance-Tapered Likelihood

When computing the OSE in Algorithm 1, the initial parameter values are set to

the MLE. It is well-known that computation of MLE for a spatial linear model is of

orderN3 and can be very demanding when the sample sizeN increases (Cressie, 1993).

There are various approaches to alleviating the computational cost. Here we consider

covariance tapering, which could effectively reduce our computational cost in practice.

Furrer et al. (2006) considered tapering for Kriging and demonstrated that not only

tapering enhances computational efficiency but achieves asymptotically optimality

in terms of mean squared prediction errors under infill asymptotics. For parameter

estimation via maximum likelihood, Kaufman et al. (2008) established consistency

of tapered MLE, whereas Du et al. (2009) established the asymptotic distribution,

also under infill asymptotics. However, both Kaufman et al. (2008) and Du et al.

(2009) focused on the parameters in the Matérn family of covariance functions and

did not consider estimation of the regression coefficients. In contrast, our primary

interest is in the estimation of regression coefficients and we investigate the asymptotic

properties under increasing domain asymptotics, which to the best of our knowledge,

have not been established in the literature before. We will discuss infill asymptotics

in the concluding Section 2.7.

Recall that Γ = [γ(si, si′)]
N
i,i′=1 is the covariance matrix of y. Assuming second-

order stationarity and isotropy, we let γ(d) = γ(s, s′), where d = ∥s − s′∥ is the lag

distance between two sampling sites s and s′ in R. Let KT(d, ω) denote a tapering

function, which is an isotropic autocorrelation function when 0 < d < ω and 0 when

d ≥ ω, for a given threshold distance ω > 0. Compactly supported correlation

functions can be used as the tapering functions (Wendland, 1995). For example,

KT(d, ω) = (1− d/ω)+, (2.12)

where x+ = max{x, 0}, in which case the correlation is 0 at lag distance greater than

the threshold distance ω. Let ∆(ω) = [KT(dii′ , ω)]
N
i,i′=1 denote an N × N tapering
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matrix. Then a tapered covariance matrix of Γ is defined as ΓT = Γ ◦∆(ω), where

◦ denotes the Hadamard product (i.e., elementwise product).

We approximate the log-likelihood function by replacing Γ in (2.4) with the

tapered covariance matrix ΓT and obtain a covariance-tapered log-likelihood function

ℓT(η;y,X) = −(N/2) log(2π)− (1/2) log |ΓT| (2.13)

−(1/2)(y −Xβ)TΓ−1
T (y −Xβ).

We let η̂MLET
= arg maxη{ℓT(η;y,X)} denote the maximum covariance-tapered

likelihood estimate (MLET) of η.

Let Γk,T = ∂ΓT/∂θk = Γk ◦ ∆(ω), Γk
T = ∂Γ−1

T /∂θk = Γk ◦ ∆(ω), Γkk′,T =

∂2ΓT/∂θk∂θk′ = Γkk′ ◦∆(ω), Γkk′
T = ∂2Γ−1

T /∂θk∂θk′ = Γkk′ ◦∆(ω) denote covariance-

tapered version of Γk, Γk, Γkk′ , and Γkk′ , respectively. From (2.13), ℓ′T(β) = XTΓ−1
T (y−

Xβ) and the kth element of ℓ′T(θ) is −(1/2)tr(Γ−1
T Γk,T) − (1/2)(y −Xβ)TΓk

T(y −

Xβ). Moreover, ℓ′′T(β,β) = −XTΓ−1
T X, the kth column of ℓ′′T(β,θ) is XTΓk

T(y −

Xβ), and the (k, k′)th entry of ℓ′′T(θ,θ) is −(1/2){tr(Γ−1
T Γkk′,T + Γk

TΓk′,T) + (y −

Xβ)TΓkk′
T (y − Xβ)}. Since E{−ℓ′′T(β,θ)} = 0, the covariance-tapered informa-

tion matrix of η is IT(η) = diag{IT(β), IT(θ)}, where IT(β) = E{−ℓ′′T(β,β)} =

XTΓ−1
T X and the (k, k′)th entry of IT(θ) = E{−ℓ′′T(θ,θ)} is tkk′,T/2 with tkk′,T =

tr(Γ−1
T Γk,TΓ

−1
T Γk′,T) = tr(ΓTΓ

k
TΓTΓ

k′
T ).

Now, the penalized log-likelihood function (2.7) can be approximated by

QT(η) = ℓT(η;y,X)−N

p∑
j=1

pλ(|βj|), (2.14)

where ℓT(η;y,X) is a covariance-tapered log-likelihood function as defined in (2.13).

Moreover, we let η̂PMLET
= arg maxη{QT(η)} denote the penalized maximum covariance-

tapered likelihood estimates (PMLET). In the following, we again use one-step LLA

estimation to approximate PMLET, as in Algorithm 1.
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Algorithm 2. At the initialization step, we let η(0)
T = η̂MLET

with β
(0)
T = β̂MLET

and

θ
(0)
T = θ̂MLET

. We then update β by maximizing

Q∗
T(β) = −(1/2)(y −Xβ)TΓT(θ

(0)
T )−1(y −Xβ)−N

p∑
j=1

p′λ(|β
(0)
jT |)|βj| (2.15)

with respect to β, where the first term is from (2.13) and the second term is an LLA

of the penalty function in (2.14). The resulting one-step sparse estimate (OSE) of β is

denoted as β̂OSET
. We may also update θ by maximizing (2.13) with respect to θ given

β̂OSET
. The resulting OSE of θ is denoted as θ̂OSET

. We let η̂OSET
= (β̂T

OSET
, θ̂T

OSET
)T

denote the OSET of η, which approximates η̂PMLET
.

Although we focus on maximum likelihood estimation, the methodology here can

be extended to utilize restricted maximum likelihood (REML) estimation. A REML

estimator of θ is obtained by minimizing

ℓrl(θ) = {(N − p)/2} log(2π)− (1/2) log(|XTX|) + (1/2) log |Γ(θ)|

+(1/2) log{|XTΓ(θ)X|}+ (1/2)yTΠ(θ)y,

where Π(θ) = Γ(θ)−1 − Γ(θ)−1X{XTΓ(θ)−1X}XTΓ(θ)−1. Since REML estimates

are consistent (Cressie and Lahiri, 1993), we may readily modify Algorithm 1 by

replacing MLE with REML estimates as the initial values.

It is worth mentioning an alternative covariance-tapered with log-likelihood func-

tion (Kaufman et al., 2008),

ℓT2(η;y,X) = −(N/2) log(2π)− (1/2) log |ΓT| (2.16)

−(1/2)(y −Xβ)T{Γ−1
T ◦∆(ω)}(y −Xβ).

If the alternative covariance tapering is used in Algorithm 2, we obtain η̂OSET2
=

(β̂T
OSET2

, θ̂T
OSET2

)T . The estimates of parameters, especially the range parameter, tend

to be more accurate, but require more time to compute Γ−1
T ◦∆(ω) than Γ−1

T . Fol-

lowing Kaufman et al. (2008), we refer to this tapering as type-2 tapering.
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For choosing ω in practice, we adopt an approach suggested by Kaufman et al.

(2008). First, a pilot estimate η̂p is obtained from a suitable subset of the data, and

then an estimated variance of θ̂p is computed from IT(θ̂p)
−1. In addition, the com-

puting time for evaluating ℓT(θ̂p;y,X) is recorded. As ω increases, the performance

of parameter estimates improves, but it takes more computing time; and vice versa.

These two criteria need to be balanced when selecting a reasonable ω among various

choices of threshold. An illustrative example is given in Appendix E of this chapter.

2.4 Asymptotic Properties of PMLE and OSE

2.4.1 Notation and Assumptions

We let β0 = (β10, . . . , βp0)
T = (βT

10,β
T
20)

T denote the true regression coefficients,

where without loss of generality β10 is an s×1 vector of nonzero regression coefficients

and β20 = 0 is a (p− s)× 1 zero vector. Let θ0 denote the vector of true covariance

function parameters.

We consider the asymptotic framework in Mardia and Marshall (1984) and let

n denote the stage of the asymptotics. In particular, write Rn = R, Nn = N ,

and λn = λ. Furthermore, we define an = max1≤j≤p{|p′λn
(|βj0|)| : βj0 ̸= 0} and

bn = max1≤j≤p{|p′′λn
(|βj0|)| : βj0 ̸= 0}. Also, let ϕn(β) = ϕ(β) and Φn(β) = Φ(β),

both evaluated at λn. For all other quantities that depend on n, the stage n will be

in either the left superscript or the right subscript.

Recall that ntkk′ = tr(nΓ−1nΓk
nΓ−1nΓk′). Let µ1 ≤ · · · ≤ µNn denote the

eigenvalues of nΓ. For l = 1, . . . , Nn, let µk
l denote the eigenvalues of nΓk such

that |µk
1| ≤ · · · ≤ |µk

Nn
| and let µkk′

l denote the eigenvalues of nΓkk′ such that

|µkk′
1 | ≤ · · · ≤ |µkk′

Nn
|.

For an Nn × Nn matrix A = (aij)
Nn
i,j=1, the Frobenius, max, and spectral norm

are defined as ∥A∥F =
(∑Nn

i=1

∑Nn

j=1 a
2
ij

)1/2
, ∥A∥max = max{|aij| : i, j = 1, . . . , Nn},

and ∥A∥s = max{|µl(A)| : l = 1, . . . , Nn}, where µl(A) is the lth eigenvalue of A.

The following regularity conditions are assumed for Theorems 2.4.1–2.4.2.
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(A.1) For θ ∈ Ω where Ω is an open subset of Rq such that η ∈ Rp × Ω, the covari-

ance function γ(·, ·;θ) is twice differentiable with respect to θ with continuous

second-order derivatives and is positive definite in the sense that, for any Nn ≥ 1

and s1, . . . , sNn , the covariance matrix Γ = [γ(si, sj;θ)]
Nn
i,j=1 is positive definite.

(A.2) There exist positive constants C, Ck and Ckk′ , such that limn→∞ µNn = C <∞,

limn→∞ |µk
Nn

| = Ck <∞, limn→∞ |µkk′
Nn

| = Ckk′ <∞ for all k, k′ = 1, . . . , q.

(A.3) For some δ > 0, there exist positive constants Dk, Dkk′ and D∗
kk′ such that

(i) ∥nΓk∥−2
F = DkN

−1/2−δ
n for k = 1, . . . , q; (ii) Either ∥nΓk + nΓk′∥−2

F =

Dkk′N
−1/2−δ
n or ∥nΓk − nΓk′∥−2

F = D∗
kk′N

−1/2−δ
n for any k ̸= k′.

(A.4) For any k, k′ = 1, . . . , q, (i) nakk′ = limn→∞{ntkk′(ntkkntk′k′)−1/2} exists and

An = (nakk′)
q
k,k′=1 is nonsingular; (ii)

∣∣ntkknt−1
k′k′

∣∣ and
∣∣ntk′k′nt−1

kk

∣∣ are bounded.

(A.5) The design matrix X has full rank p and is uniformly bounded in max norm

with limn→∞(XTX)−1 = 0.

(A.6) There exists a positive constant C0, such that ∥nΓ−1∥s < C0 <∞.

(A.7) For β ∈ Rp and θ ∈ Ω, N−1
n In(β) → J(β) and N−1

n In(θ) → J(θ) as n→ ∞.

(A.8) an = O(N
−1/2
n ) and bn → 0 as n→ ∞.

(A.9) There exist positive constants c1 and c2 such that, when β1, β2 > c1λn, |p′′λn
(β1)−

p′′λn
(β2)| ≤ c2|β1 − β2|.

(A.10) λn → 0, N
1/2
n λn → ∞ as n→ ∞.

(A.11) lim infn→∞ lim infβ→0+ λ
−1
n p′λn

(β) > 0.

(A.2), (A.3)(i), (A.4)(i) and (A.5) are assumed in Mardia and Marshall (1984).

(A.1) and (A.5) are standard assumptions for MLE, whereas (A.2), (A.3)(i), (A.4)(i),

and (A.6) ensure smoothness, growth, and convergence of the information matrix
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(Mardia and Marshall, 1984). Together with (A.7), they yield a central limit theorem

of ℓ′(η) and convergence in probability of ℓ′′(η). For establishing Theorems 2.4.1–

2.4.2, only the parts (i) of (A.3) and (A.4) are used. Moreover, the implicit asymp-

totic framework is increasing domain, where the sample size Nn grows at the increase

of the spatial domain Rn (Mardia and Marshall, 1984). Finally, (A.8)–(A.11) are

mild regularity conditions regarding the penalty function and are sufficient for The-

orems 2.4.1–2.4.2 to hold (Fan and Li, 2001) and (Fan and Peng, 2004).

2.4.2 Consistency and Asymptotic Normality of PMLE

Theorem 2.4.1. Under (A.1)–(A.9), there exists, with probability tending to one, a

local maximizer nη̂ of Q(η) defined in (2.7) such that ∥nη̂ − η0∥ = Op(N
−1/2
n + an).

If, in addition, (A.10)–(A.11) hold, then nη̂ = (nβ̂T
1 ,

nβ̂T
2 ,

nθ̂T )T satisfies

(i) Sparsity: nβ̂2 = 0 with probability tending to 1.

(ii) Asymptotic normality:

N1/2
n {J(β10) +Φn(β10)}

[
nβ̂1 − β10 + {J(β10) +Φn(β10)}−1ϕn(β10)

]
D−→ N(0,J(β10)),

N1/2
n (nθ̂ − θ0)

D−→ N(0,J(θ0)
−1),

where J(β10) and Φn(β10) consist of the first s×s upper-left submatrix of J(β0)

and Φn(β0), respectively.

Theorem 2.4.1 establishes the asymptotic properties of PMLE. Under (A.1)–

(A.9), there exists a local maximizer converging to the true parameter at the rate

Op(N
−1/2
n + an). Since an = O(N

−1/2
n ) from (A.8), the local maximizer is root-Nn

consistent. As shown in Fan and Li (2001), the SCAD penalty function satisfies

(A.8)–(A.11) by choosing an appropriate tuning parameter λn. Therefore, by Theo-

rem 2.4.1, PMLE under the SCAD penalty possesses the sparsity property and asymp-

totic normality. Moreover, when the sample size Nn is sufficiently large, Φn(β10) will
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be close to zero. That is, performance of the PMLE is asymptotically as efficient as

the MLE of β1 when knowing β2 = 0. The arguments above hold for other penalty

functions such as Lq penalty with q < 1, but not q = 1.

2.4.3 Consistency and Asymptotic Normality of OSE

Theorem 2.4.2. Suppose that the initial value nη(0) in Algorithm 1 satisfies nη(0) −

η0 = Op(N
−1/2
n ). For the SCAD penalty, under (A.1)–(A.7) and (A.10), the OSE

nη̂OSE = (nβ̂T
1,OSE,

nβ̂T
2,OSE,

nθ̂T
OSE)

T satisfies

(i) Sparsity: nβ̂2,OSE = 0 with probability tending to 1.

(ii) Asymptotic normality:

N1/2
n (nβ̂1,OSE − β10)

D−→ N(0,J(β10)
−1)

N1/2
n (nθ̂OSE − θ0)

D−→ N(0,J(θ0)
−1)

where J(β10) consists of the first s× s upper-left submatrix of J(β0).

Theorem 2.4.2 establishes the asymptotic properties of OSE such that the OSE

is sparse and asymptotically normal under the SCAD penalty. The OSE for β1 and

θ has the same limiting distribution as PMLE and thus achieves the same efficiency.

In fact, Theorem 2.4.2 holds for another general class of penalty functions such that

p′λn
(·) = λnp(·) where p′(·) is continuous on (0,∞), and there is some α > 0 such

that p′(β) = O(β−α) as β → 0+ (Zou and Li, 2008). Following similar arguments

for SCAD penalty in our Theorem 2.4.2 and those in Zou and Li (2008), it can be

shown that, if N (1+α)/2
n λn → ∞ and N

1/2
n λn → 0, Theorem 2.4.2 continues to hold.

In practice, we set the initial value nη(0) to be the MLE nη̂MLE as it satisfies the

consistency condition.

2.5 Asymptotic Properties under Covariance Tapering
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2.5.1 Notation and Assumptions

In order to establish the asymptotic properties under covariance tapering, we

continue to assume (A.1)–(A.11). We now restrict our attention to a second-order

stationary error process in R2 with an isotropic covariance function γ(d), where d ≥ 0

is lag distance. We also assume that the distance between any two sampling sites is

greater than a constant (Mardia and Marshall, 1984). As for the tapering function,

we consider (2.12).

Let γk(d) = ∂γ(d)/∂θk, γkk′(d) = ∂2γ(d)/∂θk∂θk′ , for k, k′ = 1, . . . , q. Two

additional regularity conditions are assumed for Theorems 2.5.2–2.5.3.

(A.12) 0 < infn{ωnN
−1/2
n } ≤ supn{ωnN

−1/2
n } < ∞ , where ωn = ω is the threshold

distance in the tapering function (2.12).

(A.13) There exists a nonincreasing function γ0 with
∫∞
0
u2γ0(u)du < ∞ such that

max{|γ(u)|, |γk(u)|, |γk,k′(u)|} ≤ γ0(u) for all u ∈ (0,∞) and 1 ≤ k, k′ ≤ q.

From (A.12), the threshold distance ωn is bounded away from 0 and grows at the

rate of N1/2
n . The condition in (A.13) has to do with the covariance function. It can

be shown that they hold for some of the commonly-used covariance functions such as

the Matérn class. Details are given in Appendix D of this chapter.

2.5.2 Consistency and Asymptotic Normality of PMLET

Proposition 2.5.1. Under (A.1)–(A.7) and (A.12)–(A.13), the MLET
nη̂MLET

is

asymptotically normal with

N1/2
n (nη̂MLET

− η0)
D−→ N(0,J(η0)

−1).

Proposition 2.5.1 establishes the asymptotic normality of MLET. In particular,

MLE and MLET have the same limiting distribution. This implies that, under the

regularity conditions, covariance-tapered MLE achieves the same efficiency as MLE.

Thus, in Algorithm 2 for computing the OSET, we may set the initial parameter

values to nη̂MLET
.
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Theorem 2.5.2. Under (A.1)–(A.9) and (A.12)–(A.13), there exists, with proba-

bility tending to one, a local maximizer nη̂T of QT(η) defined in (2.14) such that

∥nη̂T − η0∥ = Op(N
−1/2
n + an). If, in addition, (A.10)–(A.11) hold, then nη̂T =

(nβ̂T
1,T,

nβ̂T
2,T,

nθ̂T
T)

T satisfies

(i) Sparsity: nβ̂2,T = 0 with probability tending to 1.

(ii) Asymptotic normality:

N1/2
n {J(β10) +Φn(β10)}

[
nβ̂1,T − β10 + {J(β10) +Φn(β10)}−1ϕn(β10)

]
D−→ N(0,J(β10)),

N1/2
n (nθ̂T − θ0)

D−→ N(0,J(θ0)
−1),

where J(β10) and Φn(β10) consist of the first s×s upper-left submatrix of J(β0)

and Φn(β0), respectively.

In Theorem 2.5.2, PMLET is shown to be consistent, sparse, and asymptotically

normal. In particular, PMLET has the same asymptotic distribution as PMLE in

Theorem 2.4.1. That is, PMLET achieves the same efficiency and oracle property as

PMLE asymptotically, yet in the mean time is more computationally efficient.

2.5.3 Consistency and Asymptotic Normality of OSET

Theorem 2.5.3. Suppose that the initial value nη
(0)
T in Algorithm 2 satisfies nη

(0)
T −

η0 = Op(N
−1/2
n ). For the SCAD penalty function, under (A.1)–(A.7), (A.10) and

(A.12)–(A.13), the OSET
nη̂OSET

= (nβ̂T
1,OSET

, nβ̂T
2,OSET

, nθ̂T
OSET

)T satisfies

(i) Sparsity: nβ̂2,OSET
= 0 with probability tending to 1.

(ii) Asymptotic normality:

N1/2
n (nβ̂1,OSET

− β10)
D−→ N(0,J(β10)

−1)

N1/2
n (nθ̂OSET

− θ0)
D−→ N(0,J(θ0)

−1)

where J(β10) consists of the first s× s upper-left submatrix of J(β0).
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Theorem 2.5.3 establishes the asymptotic properties of OSET under the SCAD

penalty. In particular, OSET achieves the same limiting distribution as OSE of

β1 and θ in Theorem 2.4.2 and thus the same efficiency. Furthermore, similar

to Theorem 2.4.2, Theorem 2.5.3 holds for the class of penalty functions such that

p′λn
(·) = λnp(·) where p′(·) is continuous on (0,∞), and there is some α > 0 such that

p′(β) = O(β−α) as β → 0+, provided that N (1+α)/2
n λn → ∞ and N1/2

n λn → 0.

2.6 Numerical Examples

2.6.1 Simulation Study

We now conduct a simulation study to investigate the finite-sample properties of

OSE and OSET. The spatial domain of interest is assumed to be a square [0, l]2 of side

lengths l = 5, 10, 15. The sample sizes are set to be N = 100, 400, 900 for l = 5, 10, 15,

respectively, with a fixed sampling density of 4. For regression, we generate seven

covariates that follow standard normal distributions with a cross-covariate correlation

of 0.5. The regression coefficients are set to be β = (4, 3, 2, 1, 0, 0, 0)T . We standardize

the covariates to have mean 0 and variance 1 and standardize y to have mean 0.

Thus, there will be no intercept in the vector of regression coefficients β. For spatial

dependence, we generate error terms that follow a zero-mean stationary and isotropic

Gaussian process. A commonly-used family of covariance function is the Matérn class

in the form of γ(d) = σ2(1− c){2ν−1Γ(ν)}−1
(
2ν1/2d/r

)ν Kν

(
2ν1/2d/r

)
, where σ2 > 0

is the error variance, c ∈ [0, 1] is a nugget proportion such that cσ2 is the nugget effect

representing variation at small lag distance, r > 0 is a range parameter controlling the

rate of autocorrelation decay with lag distance, ν > 0 is a shape parameter controlling

the smoothness of the Gaussian process, and Kν(·) is a modified Bessel function of the

second kind of order ν. An exponential covariance function γ(d) = σ2(1−c) exp(−d/r)

is a special case of the Matérn class with shape parameter ν = 1/2. We let σ2 = 9,

c = 0.2, r = 1, and ν = 1/2. For each choice of sample size N , a total of 100 data

sets are simulated.
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For each simulated data set, we compute OSE and OSET using Algorithms 1

and 2. For OSET, we consider different threshold values for covariance tapering

ω = l/2k for k = 1, 2, . . .. We present only the case of ω = l/4 to save space. Our

methods are compared against several alternatives. Of particular interest is OSE

under a standard linear regression where spatial autocorrelation is unaccounted for

in the penalized loglikelihood function. This would be akin to PLS under SCAD in

Wang and Zhu (2009) and will be referred to as OSEAlt1. In addition, we modify the

initialization step of both Algorithms 1 and 2 by using MLE under the true model

which is unknown but assumed to be known. This is an attempt to evaluate the effect

of starting values and will be referred to as OSEAlt2. Last, we consider a benchmark

case, referred to as OSEAlt3, where the true model is assumed to be known and

MLE of the nonzero regression coefficients and the covariance function parameters

are computed. Our OSE and OSET will be compared against this benchmark to

evaluate the oracle properties.

For each choice of sample size N , we first compute the average numbers of cor-

rectly (C0) and incorrectly (I0) identified zero-valued regression coefficients from OSE

β̂OSE and OSET β̂OSET
, as well as those from OSEAlt1 and OSEAlt2. The true number

of zero-valued regression coefficients is 3 as is assumed in OSEAlt3. Then, we compute

means of the nonzero-valued OSE β̂1,OSE and OSET β̂1,OSET
, as well as the corre-

sponding covariance function parameters θ̂OSE and θ̂OSET
. We estimate a standard

deviation (SD) for each parameter estimate using the information matrix formulas in

Sections 2.2 and 2.3. The true SD is approximated by the median of the sample SD

(SDm) of the 100 parameter estimates. The results are given in Tables 2.1–2.3.

In terms of variable selection, C0 tends to the true value 3 and I0 tends to 0,

as the sample size N increases, for OSE, OSET, OSEAlt1, and OSEAlt2. When the

sample size is relatively small (N = 100), OSEAlt2 has the best performance with the

largest C0 and smallest I0, reflecting the effect of starting values in Algorithm 1. But

it is not practical, as we do not know what the true model is in actual data analysis.
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Table 2.1: Simulation Results for N = 100

Method Truth OSE OSET OSEAlt1 OSEAlt2 OSEAlt3

C0 3 2.79 2.84 2.84 2.95 3.00
I0 0.06 0.10 0.32 0.06 0.00
β1 4.00 4.01 4.03 4.17 4.01 4.01
SD 0.28 0.29 0.39 0.27 0.27

SDm 0.26 0.27 0.36 0.26 0.26
β2 3.00 3.04 3.03 3.08 3.04 3.03
SD 0.30 0.30 0.41 0.30 0.29

SDm 0.25 0.26 0.36 0.25 0.25
β3 2.00 1.94 1.97 2.00 1.94 1.93
SD 0.29 0.31 0.50 0.28 0.28

SDm 0.25 0.26 0.36 0.26 0.26
β4 1.00 1.02 1.03 0.78 1.03 1.02
SD 0.35 0.40 0.55 0.33 0.26

SDm 0.24 0.24 0.26 0.24 0.26
r 1.00 0.79 6.31 – 0.83 0.84

SD 0.54 2.14 – 0.57 0.57
SDm 0.48 17.65 – 0.51 0.51
c 0.20 0.16 0.23 – 0.17 0.17

SD 0.12 0.13 – 0.12 0.12
SDm 0.11 0.19 – 0.11 0.11
σ2 9.00 7.96 7.14 7.74 8.03 8.03
SD 2.28 1.53 2.06 2.36 2.36

SDm 2.21 4.79 1.16 2.28 2.28

The average number of correctly identified 0 coefficients (C0), average number of incorrectly
identified 0 coefficients (I0), mean, standard deviation (SD), and median estimated standard
deviation (SDm) under OSE, OSET, OSEAlt1, OSEAlt2, and OSEAlt3 for sample size N =
100.
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Table 2.2: Simulation Results for N = 400.

Method Truth OSE OSET OSEAlt1 OSEAlt2 OSEAlt3

C0 3 2.97 2.97 2.97 2.98 3.00
I0 0.00 0.00 0.01 0.00 0.00
β1 4.00 3.98 3.98 3.98 3.99 3.99
SD 0.14 0.14 0.20 0.14 0.14

SDm 0.13 0.13 0.19 0.13 0.13
β2 3.00 3.02 3.03 3.03 3.02 3.02
SD 0.14 0.14 0.21 0.13 0.13

SDm 0.13 0.13 0.19 0.13 0.13
β3 2.00 2.01 2.01 2.01 2.01 2.01
SD 0.12 0.12 0.17 0.12 0.12

SDm 0.13 0.13 0.19 0.13 0.13
β4 1.00 0.99 1.00 0.96 1.00 1.00
SD 0.12 0.12 0.26 0.12 0.12

SDm 0.13 0.13 0.19 0.13 0.13
r 1.00 0.90 2.87 – 0.90 0.90

SD 0.29 4.08 – 0.29 0.29
SDm 0.25 5.24 – 0.25 0.25
c 0.20 0.19 0.29 – 0.19 0.19

SD 0.06 0.07 – 0.06 0.06
SDm 0.05 0.11 – 0.05 0.05
σ2 9.00 8.70 8.25 8.71 8.70 8.70
SD 1.39 1.00 1.37 1.39 1.39

SDm 1.29 2.95 0.63 1.29 1.29

The average number of correctly identified 0 coefficients (C0), average number of incorrectly
identified 0 coefficients (I0), mean, standard deviation (SD), and median estimated standard
deviation (SDm) under OSE, OSET, OSEAlt1, OSEAlt2, and OSEAlt3 for sample size N =
400.
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Table 2.3: Simulation Results for N = 900.

Method Truth OSE OSET OSEAlt1 OSEAlt2 OSEAlt3

C0 3 3.00 3.00 3.00 3.00 3.00
I0 0.00 0.00 0.00 0.00 0.00
β1 4.00 4.00 4.01 4.03 4.00 4.00
SD 0.10 0.10 0.13 0.10 0.10

SDm 0.09 0.09 0.13 0.09 0.09
β2 3.00 3.01 3.01 2.99 3.01 3.01
SD 0.08 0.08 0.12 0.08 0.08

SDm 0.09 0.09 0.13 0.09 0.09
β3 2.00 1.98 1.99 1.98 1.98 1.98
SD 0.08 0.08 0.11 0.08 0.08

SDm 0.09 0.09 0.13 0.09 0.09
β4 1.00 1.00 1.00 1.01 1.00 1.00
SD 0.09 0.09 0.13 0.09 0.09

SDm 0.09 0.09 0.13 0.09 0.09
r 1.00 0.94 1.44 – 0.94 0.94

SD 0.17 0.50 – 0.17 0.17
SDm 0.17 0.40 – 0.17 0.17
c 0.20 0.19 0.25 – 0.19 0.19

SD 0.04 0.04 – 0.04 0.04
SDm 0.04 0.04 – 0.04 0.04
σ2 9.00 8.80 8.50 8.80 8.80 8.80
SD 0.90 0.74 0.87 0.90 0.90

SDm 0.85 1.15 0.42 0.85 0.85

The average number of correctly identified 0 coefficients (C0), average number of incorrectly
identified 0 coefficients (I0), mean, standard deviation (SD), and median estimated standard
deviation (SDm) under OSE, OSET, OSEAlt1, OSEAlt2, and OSEAlt3 for sample size N =
900.
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OSEAlt1 assuming no spatial dependence in the regression model seems to over-shrink

the regression coefficients. While C0 = 2.84 is close to 3 under OSEAlt1, I0 = 0.32

is also large, compared to our OSE and OSET. Between OSE and OSET, it appears

that C0 is slightly better, but I0 is slightly worse for OSET than OSE.

In terms of estimation of the nonzero regression coefficients, both accuracy and

precision improve as the sample size N increases, for all five OSE cases considered

here. While the accuracy is similar between OSEAlt1 and our OSE and OSET, a strik-

ing feature is the larger SD of OSEAlt1 when compared with our OSE and OSET, for

all three sample sizes N = 100, 400, 900. This suggests that, by including spatial de-

pendence directly in the penalized likelihood function, we gain statistical efficiency in

parameter estimation. For the small sample size (N = 100), SD based on information

matrix without accounting for spatial dependence appears to underestimate the true

variation estimated by SDm. Furthermore, the SD’s of OSE and OSET tend to those

in the benchmark case OSEAlt3 as the sample size increases, confirming the oracle

properties in Sections 2.4 and 2.5. For 100 simulations, it takes about 1 second, 30

seconds, and 4 minutes per simulation for saple sizes N = 100, 400, 900, respectively.

Based on these simulation results, it may be tempting to consider using OSEAlt1

to select variables and then OSEAlt3 for parameter estimation when the sample size

is reasonably large, as a means of saving computational time. We contend that

this is not necessary, as our OSE or OSET enables variable selection and parameter

estimation simultaneously, at the similar computational cost. Moreover, in practice,

it is not always clear how large a sample size at hand really is, as an effective sample

size is influenced by factors such as the strength of spatial dependence in the error

process.

In addition, we investigate the effect of thresholding. We discuss our conclusions

without showing the numeral results to save space. We observe that, as the threshold

distance ω decreases, the covariance matrix becomes more sparse and thus the compu-

tation is faster. However, OSET is closer to OSEAlt1 which ignores spatial dependence
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and the variation of OSET of the regression coefficients increases. Conversely, as the

threshold distance ω increases, OSET gets closer to OSE. There indeed is a tradeoff

between computation efficiency and statistical efficiency for finite sample sizes.

In Table 2.4, we consider several modifications of our method for the sample

size N = 100 following the suggestions of the reviewers. The first modification is to

continue one-step approximation until convergence; the results are reported in the

column labeled PMLE. It can been seen that the resulting estimates are very close to

those from OSE algorithm. The second modification is to replace maximum likelihood

estimation with restricted maximum likelihood estimation for covariance parameters;

the results are reported in the column called REML-OSE. With this change, there is

some improvement in the estimation of θ, but for the estimation of β, the results

are similar. Moreover, we implement type-2 tapering as described in (2.16). The

results are reported in the column named OSET2. Note that the estimation of the

range parameter has greatly improved under type-2 tapering. In the last column of

Table 2.4, we investigate the effect of number of covariates by increasing p from 7

to 20, where the true number of non-zero regression coefficients is 4. The estimates

are found to be reasonably accurate and efficient. The sparsity can also be achieved

despite the increasing number of covariates.

Finally, in Table 2.5, we investigate the robustness of our method against the

misspecification of the underlining covariance structure. We generate data using

Gaussian covariance function γ(d) = σ2(1− c)e−d2/r2 with σ2 = 9, r = 1 and c = 0.2

where sample size N = 100. We fit the generated data using both the exponential

and Gaussian covariance functions. It can be seen that, in the misspecified case, the

exponential model still yields good results.

2.6.2 Data Examples

The first data example consists of January precipitation (inches per 24-hour pe-

riod) on the log scale from 259 weather stations in the state of Colorado (Reich and Davis,

29



Table 2.4: Simulation Results of PMLE, REML-OSE, OSET2 and OSE20.

Method PMLE REML-OSE OSET2 OSE20

C0 2.83 2.83 2.87 14.68
I0 0.06 0.08 0.15 0.10
β1 4.01 4.01 4.05 4.02
SD 0.28 0.29 0.31 0.31

SDm 0.26 0.27 0.30 0.26
β2 3.04 3.06 3.04 3.05
SD 0.30 0.30 0.32 0.30

SDm 0.25 0.26 0.29 0.25
β3 1.93 1.93 1.93 1.98
SD 0.29 0.29 0.33 0.29

SDm 0.25 0.26 0.29 0.25
β4 1.03 1.02 1.02 0.96
SD 0.34 0.37 0.44 0.41

SDm 0.24 0.24 0.25 0.23
r 0.79 0.84 0.68 0.82

SD 0.54 0.58 1.57 0.57
SDm 0.49 0.52 3.52 0.49
c 0.16 0.18 0.12 0.14

SD 0.12 0.12 0.16 0.12
SDm 0.11 0.12 0.16 0.10
σ2 7.97 8.11 7.52 8.00
SD 2.26 2.36 1.98 2.34

SDm 2.22 2.28 2.15 2.27

The average number of correctly identified 0 coefficients (C0), average number of incorrectly
identified 0 coefficients (I0), mean, standard deviation (SD), and median estimated standard
deviation (SDm) under PMLE, REML-OSE, OSET2 and OSE20 for sample size N = 100.
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Table 2.5: Simulation Results for the Misspecified Case.

Method Gaussian Exponential
C0 2.80 2.87
I0 0.01 0.01
β1 3.96 3.98
SD 0.22 0.25

SDm 0.20 0.21
β2 3.05 3.02
SD 0.22 0.22

SDm 0.20 0.21
β3 2.00 1.98
SD 0.25 0.26

SDm 0.20 0.21
β4 1.01 1.01
SD 0.27 0.29

SDm 0.20 0.21
r 0.98 1.19

SD 0.19 0.51
SDm 0.15 0.67
c 0.19 0.06

SD 0.08 0.08
SDm 0.06 0.06
σ2 8.14 8.69
SD 2.48 3.13

SDm 2.34 3.38

The average number of correctly identified 0 coefficients (C0), average number of incorrectly
identified 0 coefficients (I0), mean, standard deviation (SD), and median estimated standard
deviation (SDm) under Gaussian and exponential spatial covariance models for sample size
N = 100.
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Figure 2.1: Map of Locations of 259 Sampling Sites.

Map of locations of 259 sampling sites in the Colorado precipitation data.

2008) as shown in Figure 2.1. Candidate covariates are elevation, slope, aspect, and

seven spectral bands from a MODIS satellite imagery (B1M through B7M). It is of

interest to investigate the relationship between precipitation and these covariates.

We first fit a spatial linear model with an exponential covariance function via

maximum likelihood. The parameter estimates and their standard errors in Table 2.6

suggest that the regression coefficients for elevation, B1M, B4M, B6M, and B7M are

possibly significant. Among the covariance function parameters, of most interest is

the range parameter, which is significantly different from zero. This indicates that

there is spatial autocorrelation among the errors in the linear regression. Our OSE

method selects elevation and B4M, and shrink all the other regression coefficients

to zero. The covariance function parameter estimates are close to the MLE. For

comparison, we fit a standard linear regression with iid errors and the corresponding
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Table 2.6: Colorado Precipitation Data

Terms MLE SD OSE SD OSEAlt1 SD
Regression coefficients

Elevation 0.305 0.055 0.228 0.054 0.195 0.044
Slope 0.016 0.026 – – 0.035 0.040

Aspect -0.004 0.022 – – 0.032 0.034
B1M 0.214 0.157 – – – –
B2M 0.058 0.064 – – – –
B3M 0.017 0.109 – – – –
B4M -0.404 0.183 -0.089 0.034 -0.264 0.045
B5M 0.043 0.089 – – – –
B6M -0.162 0.116 – – – –
B7M 0.172 0.098 – – – –

Covariance function parameters
Range 0.967 0.368 1.043 0.417 – –

Nugget 0.183 0.061 0.196 0.064 – –
σ2 0.287 0.067 0.304 0.074 0.289 0.026

Regression coefficient estimates and standard deviations (SD) using maximum likelihood
(MLE) and one-step sparse estimation (OSE) under a spatial linear model with an expo-
nential covariance function for the Gaussian error process, as well as OSE under a standard
linear model with iid errors (OSEAlt1).
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Table 2.7: California Lizards Data

MLE SD OSE SD MLE SD OSE SD
ELEVATION 0.04 0.24 – – PTREE2 -0.12 0.09 – –

CHAPARRAL 0.09 0.12 – – PGRASS2 0.27 0.15 – –
COVER 0.06 0.12 – – POTHER 0.02 0.09 – –

SAND 0.31 0.08 0.14 0.07 LL -0.13 0.11 – –
ANT1 -0.20 0.11 -0.10 0.08 CRY 0.14 0.08 – –
ANT2 -0.03 0.09 – – CS 0.03 0.08 – –

BARE ROCK 0.01 0.08 – – ORG -0.18 0.15 – –
SLOPE 0.00 0.08 – – MOS -0.19 0.10 – –

ASPECT 0.02 0.08 – – ARGEN -0.06 0.12 – –
CANOPYHT 0.10 0.13 – – HARV 0.07 0.10 – –

SHRUBHT -0.02 0.12 – – NHARVNEST 0.01 0.08 – –
HERBHT 0.04 0.18 – – CARP -0.03 0.07 – –

CSS2 0.20 0.11 – – CANHTCAT 0.13 0.11 – –

Regression coefficient estimates and standard deviations (SD) using maximum likelihood
(MLE) and one-step sparse estimation (OSE) under a spatial linear model with an expo-
nential covariance function for the Gaussian error process.

OSEAlt1 selects slope and aspect in addition to elevation and B4M. However, the

regression coefficients for slope and aspect do not appear to be significant.

In addition, we apply our method to the whiptail lizard data as described in

Section 2.1. There are 148 sites, and the response variable is the abundance of

lizards at each site. There are 26 covariates regarding location, vegetation, flora,

soil and ants. Hoeting et al. (2006) considered only 6 covariates after a separate

prescreening procedure, and selected 2 covariates in their final model. In this chapter,

we consider all 26 covariates simultaneously, and interestingly reach the same final

model. The parameter estimates can be found in Table 2.7. For detailed description,

see Hoeting et al. (2006) and Hollander et al. (1994).

2.7 Summary and Discussion

In summary, we have proposed a penalized method for simultaneous variable

selection and parameter estimation in a spatial linear model. We have also devel-
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oped one-step sparse estimation and its counterpart under covariance tapering to

approximate the penalized parameter estimates and gained computational efficiency.

Furthermore, we have established asymptotic properties of the parameter estimates

and their approximations, showing consistency, sparsity, and asymptotic normality.

Finite-sample properties have been examined via a simulation study and we have

found that, with direct incorporation of spatial autocorrelation in the penalized like-

lihood function, the accuracy of variable selection and the precision of parameter

estimates improve over penalized methods that do not directly account for spatial

dependence.

Furthermore, we have adopted here essentially increasing domain asymptotics.

An alternative would be the infill asymptotics. Unlike our increasing domain asymp-

totic framework where the density of sampling sites is bounded and the spatial domain

of interest grows to infinity, the spatial domain of interest is fixed in an infill asymp-

totic framework and the sampling density tends to infinity. Many of the theoretical

results focused on MLE of the parameters in the Matérn family of covariance func-

tions under infill (Zhang, 2004; Kaufman et al., 2008; Du et al., 2009), while much

less appears to be known regarding the estimates of the regression coefficients for

d ≥ 2 dimensions. It would be interesting to investigate penalized maximum likeli-

hood under infill asymptotics. We leave this and other possible extensions for future

investigation.

2.8 Appendices: Technical Details

For ease of notation, we suppress n in ntkk′ , nakk′ , nΓ, In, An, nη̂, nβ̂ and nθ̂.

2.8.1 Appendix A: Asymptotic Properties of PMLE and OSE

Lemma 1. Under (A.1)—(A.7), for any given η ∈ Rp × Ω, we have, as n→ ∞,

N−1/2
n ℓ′(η)

D−→ N(0,J(η)), N−1
n ℓ′′(η)

P−→ −J(η),

where J(η) = diag{J(β),J(θ)}.
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Proof. Let W (η) = I(η)−1/2ℓ′(η) and V (η) = I(η)−1/2ℓ′′(η)I(η)−1/2. Then, N−1/2
n ℓ′(η) =

{N−1/2
n I(η)1/2}W (η) and N−1

n ℓ′′(η) = {N−1/2
n I(η)1/2}V (η){N−1/2

n I(η)1/2}. By

Theorem 1 of Sweeting (1980), under (A.1)–(A.6), we have

W (η)
D−→ N(0,Ip+q), V (η)

P−→ −Ip+q.

Thus, by (A.7) and Slusky’s theorem, we have the results of Lemma 1.

Remark. Lemma 1 establishes the asymptotic behavior of the first-order and the

second-order derivatives of the log-likelihood function ℓ(η), scaled by N−1/2
n and N−1

n ,

respectively. In addition, by Theorem 2 of Mardia and Marshall (1984), η̂MLE is con-

sistent and asymptotically normal with ∥η̂MLE − η0∥ = Op(N
−1/2
n ) and N1/2

n (η̂MLE −

η0)
D−→ N(0,J(η0)

−1). Moreover, for a random vector η∗, such that ∥I(η)1/2(η∗ −

η)∥ = Op(1), by Theorem 2 of Mardia and Marshall (1984), we have N−1
n ℓ′′(η∗)

P−→

−J(η). These results will be used repeatedly in the proof of Theorems 2.4.1 and

2.4.2.

Proof of Theorem 2.4.1.

Proof. Let ξn = N
−1/2
n + an. To establish ∥η̂ − η0∥ = Op(N

−1/2
n + an), it suffices to

show that, for a given constant ϵ > 0, there is a constant C such that, for a sufficiently

large n, we have

P

{
sup

∥u∥=C

Q(η0 + ξnu) < Q(η0)

}
≥ 1− ϵ, (2.17)

where u ∈ Rp+q (Fan and Li, 2001).

Since pλn(0) = 0, we have

Q(η0 + ξnu)−Q(η0) ≤ ℓ(η0 + ξnu)− ℓ(η0)−Nn

s∑
j=1

{
pλn(|βj0 + ξnuj|)− pλn(|βj0|)

}
,

where the penalty terms now involve only the s nonzero regression coefficients. By

Taylor’s expansion, we obtain

ℓ(η0 + ξnu)− ℓ(η0) = ξnℓ
′(η0)

Tu− (1/2)Nnξ
2
nu

TJ(η0)u{1 + op(1)}. (2.18)
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From Lemma 1 under (A.1)–(A.7), we have N
−1/2
n ℓ′(η0)

D−→ N(0,J(η0)). Thus,

ℓ′(η0) = Op(N
1/2
n ) and the first term of (2.18) is of order Op(N

1/2
n ξn). For a suffi-

ciently large C, the second term dominates the first term in (2.18). Furthermore, by

Taylor’s expansion and (A.8)–(A.9), the term Nn

∑s
j=1{pλn(|βj0+ ξnuj|)−pλn(|βj0|)}

is bounded by Nnξnans
1/2∥u∥+Nnξ

2
nbn∥u∥2, which is again dominated by the second

term of (2.18). Thus (2.17) holds for a sufficiently large C.

We now establish the sparsity property (i) by showing that, with probability

tending to 1, for any given β̂1 and θ̂ that satisfy ∥β̂1 − β10∥ = Op(N
−1/2
n ) and

∥θ̂ − θ0∥ = Op(N
−1/2
n ), we have

Q

(
β̂1

0

)
= min

∥β̂2∥≤CN
−1/2
n

Q

(
β̂1

β̂2

)

for a sufficiently small ϵn = CN
−1/2
n , which is implied by

∂Q(β̂, θ̂)

∂βj
< 0 for β̂j ∈ (0, ϵn) and

∂Q(β̂, θ̂)

∂βj
> 0 for β̂j ∈ (−ϵn, 0), (2.19)

for j = s + 1, . . . , p. This argument is an extension from that used in Lemma 1 of

Fan and Li (2001) for iid errors.

By Taylor’s expansion of (2.19), we have

∂Q(β̂, θ̂)

∂βj
=

∂ℓ(β̂, θ̂)

∂βj
−Nnp

′
λn
(|β̂j|)sgn(β̂j)

=
∂ℓ(β0,θ0)

∂βj
+

p∑
j′=1

∂2ℓ(β∗,θ∗)

∂βj∂βj′
(β̂j′ − βj′0) +

q∑
k=1

∂2ℓ(β∗,θ∗)

∂βj∂θk
(θ̂k − θk0)

−Nnp
′
λn
(|β̂j|)sgn(β̂j),

where β∗ = aβ̂ + (1 − a)β0 and η∗ = bθ̂ + (1 − b)θ0 for some a, b ∈ (0, 1). By

Lemma 1, we have N−1/2
n

∂ℓ(β0,θ0)
∂βj

= Op(1), N−1
n

∂2ℓ(β∗,θ∗)
∂βj∂βj′

= {J(β0)}jj′ + Op(1) and

N−1
n

∂2ℓ(β∗,θ∗)
∂βj∂θk

= Op(1). Since ∥β̂ − β0∥ = Op(N
−1/2
n ) and ∥θ̂ − θ0∥ = Op(N

−1/2
n ), we

have
∂

∂βj
Q(β̂, θ̂) = −Nn

{
p′λn

(|β̂j|)sgn(β̂j) +Op(N
−1/2
n )

}
.
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By (A.10)–(A.11), the sign of the derivative is determined by sgn(β̂j) and thus (2.19)

holds.

Now, we show the asymptotic normality (ii). The PMLE η̂ = (β̂T , θ̂T )T satisfies

∂Q(η)

∂β

∣∣∣∣
η=η̂

= 0 and
∂Q(η)

∂θ

∣∣∣∣
η=η̂

= 0.

Thus, we have

0s×1 = −U1ℓ
′(η̂)−Nnϕ(β̂1) = −U1

[
ℓ′(η0) + {ℓ′′(η0) + op(1)}(η̂ − η0)

]
−Nn

[
ϕn(β10) +Φn(β10)(β̂1 − β10){1 + op(1)}

]
,

where U1 = [Is×s,0s×(p−s+q)]. By Lemma 1, we haveN−1/2
n U1ℓ

′(η0)
D−→ N(0,J(β10)).

Thus, by Slusky’s theorem,

N1/2
n {J(β10)+Φn(β10)}

[
β̂1−β10+{J(β10)+Φn(β10)}−1ϕn(β10)

]
D−→ N(0,J(β10)).

Similarly, with U2 = [0q×p,Iq×q], we have

0q×1 = −U2ℓ
′(η̂) = U2

[
ℓ′(η0) + {ℓ′′(η0) + op(1)}(η̂ − η0)

]
.

and N
1/2
n J(θ0)

(
θ̂ − θ0

)
D−→ N(0,J(θ0)). This completes the proof of Theorem

2.4.1.

Proof of Theorem 2.4.2.

Proof. From Lemma 1 under (A.1)–(A.7), we have ∥θ(0) − θ0∥ = Op(N
−1/2
n ), where

θ(0) = θ̂MLE. Consider the asymptotic properties of β̂OSE = β0 +N
−1/2
n û, where û is

the maximizer of Q∗(β0 +N
−1/2
n u,θ(0))−Q∗(β0,θ

(0)). Note that

Q∗(β0 +N−1/2
n u,θ(0))−Q∗(β0,θ

(0))

= −(1/2){y −X(β0 +N−1/2
n u)}TΓ(θ(0))−1{y −X(β0 +N−1/2

n u)}

+(1/2)(y −Xβ0)
TΓ(θ(0))−1(y −Xβ0)−Nn

p∑
j=1

p′λ(|β
(0)
j |)(|β0j +N−1/2

n uj| − |β0j|)

= −(1/2)N−1
n uTXTΓ(θ(0))−1Xu+N−1/2

n uTXTΓ(θ(0))−1(y −Xβ0)

−Nn

p∑
j=1

p′λ(|β
(0)
j |)(|β0j +N−1/2

n uj| − |β0j|)

≡ Q1 +Q2 +Q3.
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By Lemma 1, we have

N−1
n XTΓ(θ(0))−1X = N−1

n

∂2ℓ(β0,θ
(0))

∂β∂βT

P→ −J(β0).

By Taylor’s expansion and Lemma 1,

N−1/2
n XTΓ(θ(0))−1(y −Xβ0) = N−1/2

n

∂ℓ(β0,θ
(0))

∂β

= N−1/2
n

∂ℓ(β0,θ0)

∂β
+N−1/2

n

∂ℓ(β0,θ
∗)

∂β∂θT
(θ(0) − θ0)

D→ W TJ(β0),

where θ∗ = aθ(0) + (1− a)θ0 for some a ∈ (0, 1) and W ∼ N(0,J(β0)
−1). Thus, we

have

Q1 = −(1/2)N−1
n uTXTΓ(θ(0))−1Xu

D−→ −(1/2)uTJ(β0)u,

Q2 = N−1/2
n uTXTΓ(θ(0))−1(y −Xβ0)

D−→ W TJ(β0)u.

Let W = (W T
1 ,W

T
2 )T and u = (uT

1 ,u
T
2 )

T . By arguments similar to Zou and Li

(2008) for iid errors, under the penalty functions SCAD and (A.10), we have Q3
P→ 0

if u2 = 0; and ∞ otherwise. Thus,

Q∗(β0 +N−1/2
n u,θ(0))−Q∗(β0,θ

(0))

D−→
{

−(1/2)uT
1 J(β1)u1 +W T

1 J(β10)u1; u2 = 0
∞; otherwise,

which has a unique maximum at u1 = W1 and u2 = 0. Applying arguments in

Knight and Fu (2000), we have û1
D−→ W1 and û2

P−→ 0.

Furthermore, the asymptotic normality of θ̂OSE can be shown as in the proof of

our Theorem 2.4.1. Indeed, with U2 = [0q×p,Iq×q], we have

0q×1 = −U2ℓ
′(η̂OSE) = U2

[
ℓ′(η0) + {ℓ′′(η0) + op(1)}(η̂OSE − η0)

]
and thus, N1/2

n J(θ0)(θ̂OSE − θ0)
D−→ N(0,J(θ0)).
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2.8.2 Appendix B: Asymptotic Properties of PMLET and OSET

Let |A| denote the cardinality of a discrete set A. Let µ1,T ≤ · · · ≤ µNn,T denote

the eigenvalues of tapered covariance matrix ΓT. Let µk
l,T denote the eigenvalues of

Γk,T such that |µk
1,T| ≤ · · · ≤ |µk

Nn,T
| and let µkk′

l,T denote the eigenvalues of Γkk′,T such

that |µkk′
1,T| ≤ · · · ≤ |µkk′

Nn,T
|. For a matrix A, we let µmin(A) denote the minimum

eigenvalue of A. Also, recall that tkk′,T = tr(Γ−1
T Γk,TΓ

−1
T Γk′,T).

Lemma 2. Under (A.12)—(A.13), we have

(i)∥Γ−ΓT∥∞ = O(N−1/2
n ); (ii)∥Γk−Γk,T∥∞ = O(N−1/2

n ); (iii)∥Γkk′−Γkk′,T∥∞ = O(N−1/2
n ).

Proof. We show (i) in detail and omit details for (ii) and (iii), as similar arguments

can be applied. Let An = {1, . . . , Nn} denote the indexes of Nn sampling sites. Write

∥Γ− ΓT∥∞ as

∥Γ− ΓT∥∞ = max

{ ∑
i′∈An

fn(dii′) : i ∈ An

}
,

where fn(dii′) = γ(dii′){1 − (1 − dii′/ωn)+} is the difference between the covariance

function and the tapered covariance function at lag distance dii′ between sampling

sites si and si′ , for a given threshold distance ωn. By (A.13)(a), there exists constant

D such that dγ(d) reaches maximum at D and by (A.12), for a sufficiently large n,

ωn > D. Thus, for any i ∈ An,

∑
i′∈An

fn(dii′) =
∑

i′∈A1n

fn(dii′) +
∑

i′∈A2n

fn(dii′) +
∑

i′∈A3n

fn(dii′),

where A1n = {i′ : dii′ ≤ D}, A2n = {i′ : D < dii′ ≤ ωn}, and A3n = {i′ : dii′ > ωn}.

Since the lag distance between any two sampling sites is greater than a constant,

the sampling density of any subset of Rn ∈ R2 is bounded by a constant, say ρ. Thus,

|A1n| ≤ πρD2. By (A.12) and (A.13)(a), it follows that, for some C1 > 0,

∑
i′∈A1n

fn(dii′) ≤ πρD2 max
i′∈A1n

fn(dii′) ≤ πρD3γ(D)/ωn ≤ C1N
−1/2
n .
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Next, let Bm = {i′ : mh < dii′ ≤ (m + 1)h}, where h is independent of n.

Thus, |Bm| ≤ (2m + 1)ρπh2. It can be shown that, A2n ⊂
∪⌊(ωn/h)⌋+1

m=⌊(D/h)⌋Bm and

A3n ⊂
∪∞

m=⌊(ωn/h)⌋+1Bm, where ⌊·⌋ denotes the floor function. Moreover,

∑
i′∈A2n

fn(dii′) ≤
⌊(ωn/h)⌋+1∑
m=⌊(D/h)⌋

(2m+ 1)πρh2 max
i′∈Bm

fn(dii′) ≤ ω−1
n πρ

∞∑
m=0

3mh2 max
i′∈Bm

{dii′γ(dii′)} .

As h → 0, we have
∑

i′∈A2n
fn(dii′) ≤ ω−1

n πρ
∫∞
0

3u2γ(u)du ≤ C2N
−1/2
n for some

C2 > 0.

Similarly, we have

∑
i′∈A3n

fn(dii′) ≤
∞∑

m=⌊(ωn/h)⌋

(3m)πρh2 max
i′∈Bm

γ(dii′) ≤ C3N
−1/2
n

for some C3 > 0.

Combining the three inequalities above, we have
∑

i′∈An
fn(dii′) ≤ (C1 + C2 +

C3)N
−1/2
n , for all i ∈ An.

Remark. Lemma 2 establishes that the order of the difference between the covariance

matrix Γ and the tapered covariance matrix ΓT is N−1/2
n , as well as that of the first-

order and the second-order derivatives of the covariance matrices. These results are

used when establishing Lemma 3.

Lemma 3. Under (A.1)–(A.4), (A.6), and (A.12)–(A.13), we have

(C.1) limn→∞ µNn,T = C < ∞, limn→∞ |µk
Nn,T

| = Ck < ∞, limn→∞ |µkk′
Nn,T

| = Ckk′ <

∞ for any k, k′ = 1, . . . , q.

(C.2) For k = 1, . . . , q, ∥Γk,T∥−2
F = O(N

−1/2−δ
n ), for some δ > 0.

(C.3) ∥Γ−1
T ∥s < C0 <∞.

(C.4) For any k, k′ = 1, . . . , q, akk′,T = lim{tkk′,T(tkk,Ttk′k′,T)−1/2} exists and is equal

to akk′ = lim{tkk′(tkktk′k′)−1/2}. That is, AT = (akk′,T)
q
k,k′=1 = A = (akk′)

q
k,k′=1

and is nonsingular.

41



Proof. First, we show (C.1). Since |∥Γ∥s − ∥ΓT∥s| ≤ ∥Γ − ΓT∥s ≤ ∥Γ − ΓT∥∞ → 0

by (i) of Lemma 2, we have limn→∞ ∥Γ∥s = limn→∞ ∥ΓT∥s. Thus, limn→∞ µNn,T =

limn→∞ ∥ΓT∥s = limn→∞ ∥Γ∥s = limn→∞ µNn = C < ∞, by (A.2). By similar

arguments, limn→∞ |µk
Nn,T

| = Ck <∞, limn→∞ |µkk′
Nn,T

| = Ckk′ <∞.

Next, we show (C.2). By (A.3)(i), ∥Γk∥−2
F = O(N

−1/2−δ
n ) for some δ > 0. Also,

∥Γk − Γk,T∥F ≤ N
1/2
n ∥Γk − Γk,T∥∞ = O(1), by (ii) of Lemma 2. Thus,

∥Γk,T∥F ≥ ∥Γk∥F − ∥Γk − Γk,T∥F = O(N1/4+δ/2
n ) and ∥Γk,T∥−2

F = O(N−1/2−δ
n ).

Now, we show (C.3). Since ∆(ω) and Γ are both semi-positive definite and the

diagonal elements of matrix ∆(ω) are 1’s, we have

µmin(Γ) ≤ µmin{Γ ◦∆(ω)} = µmin(ΓT)

(Chapter 5, Horn and Johnson (1991)). Thus, by (A.6),

∥Γ−1
T ∥s = µmin(ΓT)

−1 ≤ µmin(Γ)
−1 = ∥Γ−1∥s < C0 <∞.

Finally, we show (C.4). We first show that |tkk′,T − tkk′ | = O(N
1/2
n ). Note that

|tkk′,T − tkk′| = |tr(Γ−1
T Γk,TΓ

−1
T Γk′,T)− tr(Γ−1ΓkΓ

−1Γk′)|

≤ |tr{(Γ−1
T − Γ−1)Γk,TΓ

−1
T Γk′,T}|+ |tr{Γ−1(Γk,T − Γk)Γ

−1
T Γk′,T}|

+ |tr{Γ−1Γk(Γ
−1
T − Γ−1)Γk′,T)|+ |tr(Γ−1ΓkΓ

−1(Γk′,T − Γk′)}|

≡ G1 +G2 +G3 +G4.

For G1 = |tr{(Γ−1
T − Γ−1)Γk,TΓ

−1
T Γk′,T}| ≤ Nn∥Γ−1

T − Γ−1∥s∥Γk,T∥s∥Γ−1
T ∥s∥Γk′,T∥s,

the last three norms are of order O(1) by (C.1) and (C.3). Further, by (A.6) and

Lemma 2, ∥Γ−1
T − Γ−1∥s = ∥Γ−1∥2s∥ΓT − Γ∥s(1 − ∥Γ−1∥s∥ΓT − Γ∥s)−1 = O(N

−1/2
n )

(Stewart, 1990). Thus, we have G1 = O(N
1/2
n ). By similar arguments, Gi = O(N

1/2
n ),

for i = 2, 3, 4.

We then show that akk′,T = akk′ . For any k and k′, by (A.3)(ii), either ∥Γk +

Γk′∥−2
F = O(N

−1/2−δ
n ) or ∥Γk − Γk′∥−2

F = O(N
−1/2−δ
n ). Without loss of generality,
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we assume the first condition. Also, 2(akk′,T − akk′) = limn→∞(2tkk′,Tt
−1/2
kk,T t

−1/2
k′k′,T −

2tkk′t
−1/2
kk t

−1/2
k′k′ ) = limn→∞(H1 −H2 −H3), where

2tkk′,Tt
−1/2
kk,T t

−1/2
k′k′,T − 2tkk′t

−1/2
kk t

−1/2
k′k′

=
[{

(2tkk′,T + tkk,T + tk′k′,T)t
−1/2
kk,T t

−1/2
k′k′,T − (2tkk′ + tkk + tk′k′)t

−1/2
kk t

−1/2
k′k′

}
−
(
t
1/2
kk,Tt

−1/2
k′k′,T − t

1/2
kk t

−1/2
k′k′

)
−
(
t
1/2
k′k′,Tt

−1/2
kk,T − t

1/2
k′k′t

−1/2
kk

)]
≡ H1 −H2 −H3.

It is straightforward to verify that H1 = (2tkk′ + tkk + tk′k′)t
−1/2
kk t

−1/2
k′k′

(
H11H

−1
12 − 1

)
where

H11 = 1 + {2tkk′,T + tkk,T + tk′k′,T − (2tkk′ + tkk + tk′k′)} (2tkk′ + tkk + tk′k′)
−1,

H12 =
{
1 + (tkk,T − tkk)t

−1
kk

}1/2 {
1 + (tk′k′,T − tk′k′)t

−1
k′k′

}1/2
.

Since 2tkk′ + tkk + tk′k′ = tr{Γ−1(Γk + Γk′)Γ
−1(Γk + Γk′)} ≥ µ−2

Nn
∥Γk + Γk′∥2F and

|2tkk′,T+tkk,T+tk′k′,T−(2tkk′+tkk+tk′k′)| ≤ 2|tkk′,T−tkk′|+|tkk,T−tkk|+|tk′k′,T−tk′k′| =

O(N
1/2
n ), we have H11 = 1 + O(N−δ

n ). Since tkk = tr(Γ−1ΓkΓ
−1Γk) ≥ µ−2

Nn
∥Γk∥2F , we

also have H12 = 1 + O(N−δ
n ). In addition, (2tkk′ + tkk + tk′k′)t

−1/2
kk t

−1/2
k′k′ is bounded,

since
∣∣tkkt−1

k′k′

∣∣ and
∣∣tk′k′t−1

kk

∣∣ are bounded by (A.4)(ii). Thus, we have H1 → 0, as

n→ ∞. For H2, we have

H2 = tkkt
−1
k′k′

[ {
1 + (tkk,T − tkk)t

−1
kk

}1/2{
1 + (tk′k′,T − tk′k′)t

−1
k′k′

}1/2 − 1

]
= tkkt

−1
k′k′

{
1 +O(N−δ

n )

1 +O(N−δ
n )

− 1

}
→ 0.

Similarly, H3 → 0. Thus, akk′,T = akk′ and the matrix AT is identical to the matrix

A, which is nonsingular by (A.4)(i).

Remark. (C.1)–(C.4) are the covariance tapering counterparts of (A.2), (A.3)(i),

(A.4)(i), and (A.6). Together with (A.5), they yield Proposition 2.5.1. In fact, Lem-

mas 2 and 3 hold for other tapering functions such as truncated polynomial functions

of d/ω with constant term equal to 1 when d < ω, and 0 otherwise (Wendland, 1995).

Furthermore, (A.12) can be weakened to 0 < infn{ωnN
−1/2+τ
n } ≤ supn{ωnN

−1/2+τ
n } <

∞, with τ < min{1/2, δ}.
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Lemma 4. Under (A.1)–(A.7) and (A.12)–(A.13), for any given η ∈ Rp × Ω, we

have

N−1/2
n ℓ′T(η)

D−→ N(0,J(η)) and N−1
n ℓ′′T(η)

P−→ −J(η),

where recall that J(η) = diag{J(β),J(θ)}.

Proof. From Lemma 3, we have (C.1)–(C.4). Together with (A.5), the regularity

conditions of Theorem 1 of Sweeting (1980) hold. Thus, we have

IT(η)
−1/2ℓ′T(η)

D−→ N(0,Ip+q) and IT(η)
−1/2ℓ′′T(η)IT(η)

−1/2 P−→ Ip+q.

By Slusky’s theorem, it suffices to show that N−1
n IT(η) → J(η).

Note that IT(β)− I(β) = XT (Γ−1
T − Γ−1)X. By Lemma 2 and (A.5),

∥N−1
n {IT(β)− I(β)}∥max ≤ ∥Γ−1

T −Γ−1∥∞∥X∥2max = O(N−1/2
n )∥X∥2max = O(N−1/2

n ).

Thus, N−1
n {IT(β)−I(β)} → 0. By (A.7), we have N−1

n IT(β) → J(β). Furthermore,

the (k, k′)th entry of N−1
n {IT(θ)−I(θ)} is (2Nn)

−1(tkk′,T− tkk′), which tends to zero

as shown in the proof of (C.4) in Lemma 3.

Remark. Lemma 4 establishes the asymptotic behavior of the first-order and the

second-order derivatives of the covariance-tapered log-likelihood function ℓT(η). The

rates of convergence and the limiting distributions are the same as those for the log-

likelihood function. As in Lemma 1, it follows that MLET η̂MLET
is consistent and

asymptotically normal, as is given in Proposition 2.5.1. These results will be used to

establish Theorems 2.5.2 and 2.5.3 and play the same role as Lemma 1 when showing

Theorems 2.4.1 and 2.4.2.

Proof of Proposition 2.5.1.

Proof. From Lemma 3, (C.1)–(C.4) are satisfied. Together with (A.5), the regularity

conditions of Theorem 2 of Mardia and Marshall (1984) hold. Thus the result in

Proposition 2.5.1 follows.
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Proof of Theorem 2.5.2.

Proof. The proof of Theorem 2.5.2 is similar to that of Theorem 2.4.1. The main

differences are that the parameter estimates η̂PMLE, log-likelihood function ℓ(η), and

penalized log-likelihood Q(η) are replaced with their covariance-tapered counterparts

η̂PMLET
, ℓT(η), and QT(η), respectively. Furthermore, we replace the results from

Lemma 1 with those from Lemma 4, which holds due to Lemma 2–3 under the

additional assumptions (A.12)–(A.13).

Proof of Theorem 2.5.3.

Proof. The proof of Theorem 2.5.3 is similar to that of Theorem 2.4.2, but we replace

the parameter estimates η̂OSE, log-likelihood function ℓ(η), and Q∗(β) with their

covariance-tapered counterparts η̂OSET
, ℓT(η), and Q∗

T(β), respectively. As before,

we replace the results from Lemma 1 with those from Lemma 4, where the additional

conditions (A.12) and (A.13) are assumed and Lemma 2–3 are applied.

2.8.3 Appendix C: Remarks on Assumptions (A.2), (A.3), (A.6) and
(A.7)

Assumption (A.2) is the same as that in Mardia and Marshall (1984). In fact,

it can be relaxed by replacing lim with lim sup. We consider a one-dimensional grid

with the exponential covariance function γ(u) = σ2e−u/r. It is easy to see that

Γ = [σ2e−|i−i′|/r]Ni,i′=1, Γ1 = [e−|i−i′|/r]Ni,i′=1, Γ2 = [σ2|i − i′|r−2e−|i−i′|/r]Ni,i′=1, Γ1,1 =

[0]Ni,i′=1, Γ1,2 = [|i − i′|r−2e−|i−i′|/r]Ni,i′=1 and Γ2,2 = [−2σ2(|i − i′|r−3e−|i−i′|/r + |i −

i′|2r−4e−|i−i′|/r)]Ni,i′=1.

Since the spectral radius of any matrix is less than L1-norm of the matrix, it

suffices to show that L1-norm of the above matrices are bounded.

45



Assuming that parameters r and σ2 are in some closed set. That is, there exist

constants r1, r2, σ2
1 and σ2

2, such that all pairs (r, σ2) ∈ [r1, r2]× [σ2
1, σ

2
2]. We have

∥Γ∥1 ≤ 2σ2

∞∑
i=0

ρi = 2σ2/(1− ρ) < 2σ2
2/(1− e−r1),

∥Γ1∥1 ≤ 2
∞∑
i=0

ρi = 2/(1− ρ) < 2/(1− e−r1),

∥Γ2∥1 ≤ 2σ2r−2

∞∑
i=0

iρi = 2σ2r−2ρ/(1− ρ)2 < 2σ2
2r

−2
1 /(1− e−r1)2,

∥Γ1,1∥1 = 0,

∥Γ1,2∥1 ≤ 2r−2

∞∑
i=0

iρi = 2r−2ρ/(1− ρ)2 < 2r−2
1 /(1− e−r1)2,

∥Γ2,2∥1 ≤ 4σ2r−3

∞∑
i=0

iρi + 2σ2r−4

∞∑
i=0

i2ρi = 4r−3ρ/(1− ρ)2 + 3r−4(ρ+ ρ2)/(1− ρ)3

< (4r−3
1 + 6r−4

1 )/(1− e−r1)3,

where ρ = e−1/r.

For (A.3), ∥Γ1∥2F ≥ N , ∥Γ2∥2F = 2r−4
∑N

i=1(Ni
2ρ2i − i3ρ2i)

≥ 2r−4 {Nρ2 − 24ρ(1− ρ)−1 − 48ρ2(1− ρ)−2 − 32ρ3(1− ρ)−3 − 6ρ4(1− ρ)−4} > 2r−4
2 {Ne−r2−

110e−r1(1− e−r1)−4} and ∥Γ1+Γ2∥2F ≥ N . Therefore, (A.3) is satisfied with δ = 1/2.

For (A.6), from Brockwell and Davis (1991), the smallest eigenvalue of Γ,

µ1 ≥ (2π)−1σ2

∞∑
i=−∞

e−i/re−iiω

= (2π)−1σ2(1− ρ2)/(1− 2ρcos(ω) + ρ2) ≥ (2π)−1σ2(1− ρ2)/(1 + ρ)2.

Therefore, ∥Γ−1∥s ≤ (2π)σ−2(1+ρ)2/(1−ρ2) ≤ (2π)σ−2
1 (1+e−r1)2/(1−e−2r1). More-

over, in Section 4 of Mardia and Marshall (1984), it was shown that under some mild

assumptions, a more general family of covariance functions satisfy these assumptions.

Assumption (A.7) follows directly from Zou and Li (2008) and Wang and Zhu

(2009).

2.8.4 Appendix D: Remark on Assumption (A.13)

Here we show that γ(u) = σ2(1− c)Γ(ν)−1(ru/2)ν2Kν(ru) from the Matérn class

of covariance function satisfies (A.13).
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Observe that

∂γ(u)/∂σ2 = (1− c)Γ(ν)−1(ru/2)ν2Kν(ru),

∂γ(u)/∂c = −σ2Γ(ν)−1(ru/2)ν2Kν(ru),

∂γ(u)/∂r = σ2Γ(ν)−1r−1(ru/2)ν{2νKν(ru)− 2cνKν(ru)− ruKν+1(ru) + cruKν(ru)},

∂2γ(u)/(∂σ2)2 = 0,

∂2γ(u)/∂σ2∂c = −Γ(ν)−1(ru/2)ν2Kν(ru),

∂2γ(u)/∂σ2∂r = Γ(ν)−1r−1(ru/2)ν{2νKν(ru)− 2cνKν(ru)− ruKν+1(ru) + cruKν(ru)},

∂2γ(u)/∂c2 = 0,

∂2γ(u)/∂c∂r = σ2Γ(ν)−1r−1(ru/2)ν{−2νKν(ru) + ruKν(ru)},

∂2γ(u)/∂r2 = σ2Γ(ν)−1r−2(ru/2)ν{4ν2Kν(ru)− 2νKν(ru)− 2νruKν+1(ru)

+r2u2Kν(ru) + ruKν+1(ru)}.

Note that the covariance function and its first-order and second-order partial

derivatives are linear combinations of a Bessel function of u times a polynomial of u.

In order to prove (A.13), it suffices to show that, for a, b > 0,

(i)
∫∞
0
ub+2Ka(u)du <∞.

(ii) x1/2
∫∞
x
ub+1Ka(u)du <∞, as x→ ∞.

(iii) ubKa(u) → 0, as u→ ∞.

Since Ka(u) ∝ e−uu−1/2{1+O(1/u)} when |u| → ∞, there exists C and M such

that Ka(u) ≤Me−uu−1/2(1 + C/u), when |u| > C. Thus, for (i)∫ ∞

0

ub+2Ka(u)du =

∫ C

0

ub+2Ka(u)du+

∫ ∞

C

ub+2Ka(u)du

≤
∫ C

0

ub+2Ka(u)du+

∫ ∞

0

Mub+3/2e−u(1 + C/u)du.

The first term is bounded because the limit of the integral is bounded. The sec-

ond term
∫∞
0
Mub+3/2e−u(1 + C/u)du =

∫∞
0
Mub+3/2e−udu +

∫∞
0
CMub+1/2e−udu =

M(b+ 3/2)Γ(b+ 3/2) + CM(b+ 1/2)Γ(b+ 1/2) is also bounded.
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Figure 2.2: Plots of Error and Time versus Omega.
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For (ii),

x1/2
∫ ∞

x

ub+1Ka(u)du = x1/2
∫ C

min{x,C}
ub+1Ka(u)du+ x1/2

∫ ∞

max{C,x}
ub+1Ka(u)du,

when x→ ∞, the first term tends to 0, and the second term is x1/2
∫∞
x
ub+1Ka(u)du ≤

x1/2
∫∞
x
Mub+1/2e−udu + x1/2

∫∞
x
CMub−1/2e−udu. To show that it is bounded, it

suffices to show that x1/2
∫∞
x
uke−udu is bounded, where k ≥ b + 1/2 is an integer.

Since
∫∞
x
uke−udu = P (x)e−x, where P (x) is a polynomial of x, x1/2

∫∞
x
uke−udu is

bounded and in fact, tends to 0.

For (iii), ubKa(u) ≤Mub−1/2(1+C/u)e−u, when |u| > C. Therefore, ubKa(u) →

0, as u→ ∞.

2.8.5 Appendix E: The Choice of ω

We following the empirical rule suggested by Kaufman et al. (2008). For a

sample size N = 900, we use 20% of the data for estimation and obtain β̂p =

(3.87, 3.32, 2.00, 1.28,−0.01,−0.22,−0.18)T and θ̂p = (0.97, 0.21, 8.32)T . Then we

compute the estimated error and record time of evaluating ℓT(θ̂p;y,X), as shown

in Figure 2.2. From the plots above, one reasonable choice is ω = 6. We further
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apply our method to the entire data set, and obtain the final estimates β̂OSET
=

(4.22, 3.05, 1.95, 0.97, 0, 0, 0)T and θ̂OSET
= (1.21, 0.27, 8.15)T . Without tapering, the

estimates are

β̂OSE = (4.22, 3.05, 1.95, 0.97, 0, 0, 0)T and θ̂OSE = (1.00, 0.23, 8.34)T . Note that these

estimates are quite close to each other.
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Chapter 3

LOCAL KARHUNEN-LOÈVE EXPANSION

3.1 Introduction

Geostatistics are used in many scientific studies that involve analysis of spatially

correlated data in a spatial domain (see, e.g., Cressie, 1993; Stein, 1999). A geostatis-

tical model, in its general form, is a random field for an attribute of interest such that

the random field is a stochastic process over a continuous index within the spatial

domain. Based on geostatistical data sampled at point locations, statistical inference

about the geostatistical model can be drawn. The main purpose of this chapter is

to develop a novel semiparametric approach to spatial modeling and statistical in-

ference that accounts for spatial dependence in a robust manner and carries out the

computation efficiently.

For a spatial linear model, Mardia and Marshall (1984) considered maximum

likelihood estimates (MLE) of the model parameters and established asymptotic

properties of the MLE under regularity conditions. The computational complex-

ity of these MLEs for a sample of size N , however, is on the order of N3, making

the computation demanding for large N (see, e.g., Cressie, 1993). To reduce such a

computational burden, various methods based on approximations have been devel-

oped. One such method, covariance tapering, rescales the spatial correlation function

by a weight function of the distance between two locations, effectively truncating the

spatial correlation to zero when the distance exceeds a certain threshold. The re-

sulting tapered covariance matrix as an approximation of the true covariance matrix

is sparse and thus fast to compute at an appropriately chosen threshold (see, e.g.,
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Furrer et al., 2006; Kaufman et al., 2008; Du et al., 2009; Chu et al., 2011). Alter-

natively, Caragea and Smith (2007) partitioned the spatial domain into blocks and

approximated the likelihood function by an estimating function that separates vari-

ability within blocks and between blocks. In a so-called small-block case, the spatial

processes in different small blocks are assumed to be independent, giving rise to a

block-diagonal covariance matrix that is also fast to compute. Furthermore, the theo-

retical properties of the small-block method were established under certain conditions.

The aforementioned methods, however, assume a parametric form for the spa-

tial covariance function, upon which the performance of statistical inference and the

asymptotic results hinge. In contrast, semiparametric modeling offers an attrac-

tive alternative, as the spatial covariance function does not need to be pre-specified.

The corresponding approach tends to be more flexible and potentially more robust

against model misspecification (see, e.g., Im et al., 2007; Cressie and Johannesson,

2008; Zhang and Wang, 2010). For example, Cressie and Johannesson (2008) consid-

ered a flexible family of nonstationary spatial covariance functions and developed a

fixed-rank Kriging. In particular, the true covariance function is assumed to be from a

finite expansion of basis functions, such as splines, in a certain sequence. The covari-

ance function was estimated by a method of moment using an empirical covariance

matrix under the Frobenius norm, which was then used for Kriging. Im et al. (2007)

considered the frequency domain and used B-splines to model the spectral density

function, from which the covariance function is derived using the Hankel transform.

The MLEs of the model parameters are computed using simulated annealing. Despite

the added model flexibility, the aforementioned methods primarily focus on spatial

interpolation and there appears to be little or no theoretical backing. Thus, it is of

interest to develop innovative semiparametric methods for inference in general and to

explore their theoretical properties in geostatistics.

In this chapter, we aim to develop a new semiparametric approach to geostatis-

tical modeling and inference. In particular, we consider a geostatistical model with
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additive components, namely, a fixed mean possibly in the form of linear regression

and Gaussian random errors. The spatial covariance function is left unspecified and

thus flexible, enhancing the robustness against model misspecification. A novel local

Karhunen-Loève expansion is developed to approximate the spatial random error. In

addition, we devise a likelihood-based method for estimating the model parameters

and drawing inference. The computational algorithm developed utilizes Newton-

Raphson on a Stiefel manifold recently developed by Peng and Paul (2009) and the

existing computational method for linear mixed models (see, e.g., Pinheiro and Bates,

2000). Our approach applies to estimation of regression coefficients, selection of co-

variates, and nonparametric estimation of the covariance function, in addition to spa-

tial interpolation. Unlike Cressie and Johannesson (2008) who assumed a low-rank

type representation to be the true underlying model, our method does not make such

an assumption and offers a principled approach to approximate the true, unspecified

spatial covariance function. Further, while we approximate the likelihood function by

employing a technique similar to the small-block idea, our method does not assume

a parametric form for the spatial covariance function as Caragea and Smith (2007).

Finally, although more model flexibility is attained, it becomes substantially more

challenging to establish the theoretical properties of semiparametric methods, an is-

sue that is often not pursued in the existing literature. Here, we make an attempt to

establish some theoretical result and in particular, the consistency of likelihood-based

estimates of regression coefficients and spatial covariance function.

The remainder of the chapter is organized as follows. In Section 3.2, we describe

a general geostatistical model and a local Karhunen-Loève expansion for the spatial

random error. In Section 3.3, we develop a likelihood-based method for parameter

estimation and a modification of the estimation to increase accuracy and numerical

stability. Spatial interpolation and model selection are also implemented based on

the parameter estimates. In Section 3.4, a simulation study is given to investigate

the finite-sample properties of the inference in comparison with several alternative
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approaches, as well as a real data example. We establish the consistency of the

estimates in Section 3.5. The technical proof and more simulation results are in

Section 3.6.

3.2 Random Field Model

Let R be a spatial domain of interest in Rd, where d ≥ 1 denotes the dimension

of space. The following model for a random field {y(s) : s ∈ R} is considered:

y(s) = µ(s) + ε1(s) + ε2(s), (3.1)

where µ(s) is an unknown mean function of location s. Furthermore, the error ε1(·)

is assumed to be a stationary Gaussian process with mean zero and a covariance

function γ(s−s′), where s, s′ ∈ R. The second error term ε2(·) is assumed to be i.i.d.

N(0, σ2) and independent of ε1(·). That is, the random field y(·) is decomposed into

three additive components: a large-scale trend µ(·), a small-scale spatial variation

ε1(·), and a measurement error ε2(·); see Cressie (1993) for more details.

3.2.1 Local Karhunen-Loève Expansion

Assume that the spatial domain R is compact and the error process ε1(·) is square

integrable over R. The Karhunen-Loève expansion of ε1(s) can be expressed as

ε1(s) =
∞∑
j=1

ξ̄jφ̄j(s), s ∈ R,

where {ξ̄j : j = 1, 2, . . .} is a sequence of independent random variables and ξ̄j ∼

N(0, λ̄j), with variances λ̄1 ≥ λ̄2 ≥ . . . ≥ 0. Furthermore, {φ̄j(·) : j = 1, 2, . . .} is a

sequence of orthonormal eigenfunctions over R such that
∫
R
φ̄j(s)φ̄j′(s)ds = 1 when

j = j′ and zero otherwise. For a recent review of the Karhunen-Loève expansion, see

Adler and Taylor (2007) and the references therein.

For a random field, the application of the Karhunen-Loève expansion is limited.

There is usually only one realization of the random field and consequently, the vari-

ances λk cannot be estimated consistently. To circumvent this issue, we introduce a

notion of local Karhunen-Loève expansion.

53



First, we assume that the spatial domain R can be partitioned into K compact

subdomains with identical shape, namely, R1, . . . , RK . Denote Rk = R1 + vk, for

a d-dimensional vector vk. Restricting the error ε1(·) to each of the K subdomains

gives rise to K error processes that are identically distributed, but not independent

of each other, due to the stationarity of the error process ε1(·).

Next, we apply the Karhunen-Loève expansion to the error process within each

subdomain. More specifically, we have

ε1(s) =
∞∑
j=1

ξj,kφj,k(s), s ∈ Rk. (3.2)

Here, for a fixed k, {ξj,k}∞j=1 is a sequence of independent random variables such

that ξj,k ∼ N(0, λj), with variances λ1 ≥ λ2 ≥ . . . ≥ 0. For a given j, {ξj,k}Kk=1 are

identically, although not independently, distributed across all subdomains. Moreover,

{φj,k(·)}∞j=1 is a sequence of orthonormal eigenfunctions on subdomain Rk. More

importantly, as a direct consequence of stationarity of ε1(·) over the domain R, for any

given j and any s ∈ Rk, φj,k(s) = φj,1(s−vk); that is, the orthonormal eigenfunctions

φj,k(s) are the same across all K subdomains up to a constant shift.

In (3.2), the equivalence is defined in the L2 sense. In practice, however, we

approximate the error process ε1(·) expressed in an infinite series by a finite sum.

That is, we let ε1(s) ≈
∑J

j=1 ξj,kφj,k(s) =
∑J

j=1 ξj,kφj,1(s− vk), for s ∈ Rk.

3.2.2 Approximation of the Eigenfunctions

An essential component of implementing the local Karhunen-Loève expansion

is the computation of the eigenfunctions φj,k(·), which ideally can be obtained by

solving integral equations. That is, λk and φj,k(·) can be found by solving
∫
Rk
γ(s−

s′)φj,k(s
′)ds′ = λjφj,k(s), for j = 1, 2, . . . and s, s′ ∈ Rk. In general, however, such

eigenfunctions cannot be expressed explicitly except for certain special cases. Here,

we propose to approximate these eigenfunctions by a set of known orthonormal basis

functions.
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Let ϕ1(s) = (ϕ1,1(s), . . . , ϕM,1(s))
T be an M -dimensional vector of orthonor-

mal basis functions on R1. We propose to approximate the eigenfunctions φ1(s) =

(φ1,1(s), . . . , φJ,1(s))
T from the family {BTϕ1(s) : B

TB = IJ}, where B is an M×J

coefficient matrix and IJ is a J×J identity matrix. Suppose that an element from this

approximating family, say B∗Tϕ1(s), provides an adequate approximation of φ1(s).

Then, on the subdomain Rk, the eigenfunctions φk(s) = (φ1,k(s), . . . , φJ,k(s))
T can

be well approximated by B∗Tϕk(s), where ϕk(s) = ϕ1(s− vk).

Combining the truncated local Karhunen-Loève expansion and the eigenfunction

approximation, we have

y(s) ≈ µ(s) + ϕk(s)
TBξk + ε2(s), s ∈ Rk, (3.3)

where ξk = (ξ1,k, . . . , ξJ,k)
T is a J-dimensional vector of random variables such that

ξk ∼ N(0,Λ) with Λ = Var(ξk) = diag{λ1, . . . , λJ}. That is, the error process ε1(·)

is approximated by a sum of independently distributed Gaussian random variables,

which has substantial computational advantages, as we will demonstrate later.

For the choice of basis functions, we consider the orthonormalized cubic B-spline

basis for d = 1 and orthonormalized radial basis function for d ≥ 2 (Buhmann, 2003).

In particular, the radial basis function is defined as g(c∥s − κm∥), where g is a pre-

specified continuous function, κm is a knot point, and c > 0 is a constant. Commonly

used choices for g include g(h) = h2log(h), which leads to thin-plate splines, and

g(h) = e−h2 , which results in Gaussian radial splines. In practice, the vector of basis

functions can be orthonormalized.

3.3 Statistical Inference

3.3.1 Constrained Likelihood-based Estimation

Henceforth, we will restrict our attention to the case of model (3.1) with a linear

trend. That is, µ(s) = x(s)Tβ, where x(s) = (x1(s), . . . , xp(s))
T is a p-dimensional
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vector of covariates at location s and β = (β1, . . . , βp)
T is a p-dimensional vector of re-

gression coefficients. Under this setting, model (3.3) resembles a linear mixed model,

but is subject to constraints due to the orthonormality of the basis functions. Conse-

quently, standard statistical methods for estimating the parameters of a linear mixed

model are not directly applicable. Peng and Paul (2009) considered a similar prob-

lem for functional data, and implemented a manifold version of the Newton-Raphson

method to optimize a likelihood-based criterion with such constraints. In addition,

Paul and Peng (2009) established the consistency of the resulting estimates under the

assumption that there are independent replicates per subject, which generally does

not hold for geostatistical data. Here, we develop a new estimation procedure as

follows.

Suppose there are N sampling locations in the spatial domain R. Let {sk,i : i =

1, . . . , nk} denote the sampling locations in subdomain Rk and thus,
∑K

k=1 nk = N .

Let Xk = (x(sk,1), . . . ,x(sk,nk
))T denote an nk×p design matrix of the covariates and

Φk = (ϕk(sk,1), . . . ,ϕk(sk,nk
))T denote an nk ×M matrix of ϕk(·) evaluated at the

sampling locations in the subdomain Rk. Moreover, let yk = (y(sk,1), . . . , y(sk,nk
))T

denote an nk-dimensional vector of responses in Rk and y = (yT
1 , . . . ,y

T
K)

T denote

an N -dimensional vector of responses in R, such that Σ0k = Var(yk) is the true

covariance matrix of yk and Σ0 = Var(y) is the true covariance matrix of y.

Based on model (3.3), the corresponding approximating covariance matrix of

Σ0k is Σk = ΦT
kBΛBTΦk + σ2Ink

. By ignoring the dependence among yk in

different subdomains, Σ0 can be approximated by a block-diagonal matrix ΣKL =

diag{Σ1, . . . ,ΣK}. Consequently, up to an additive constant, the negative log-likelihood

function can be approximated as,

LK(β, σ
2,B,Λ) = (2K)−1

K∑
k=1

{
(yk −Xkβ)

TΣ−1
k (yk −Xkβ) + log |Σk|

}
. (3.4)

Note that, (3.4) provides a better approximation to the true negative log-likelihood

function as the correlation of the observations between subdomains becomes weaker;

56



see Section 3.5 for further discussion. Let (β̂, σ̂2, B̂, Λ̂) denote the estimates obtained

from minimizing (3.4).

To carry out the minimization of (3.4), the following iterative algorithm is con-

ducted. First, for a given (β, σ2,Λ), we minimize (3.4) with respect to B subject to

the constraint BTB = IJ . Here, we implement a Newton-Raphson type algorithm

on a Stiefel manifold, which utilizes the intrinsic Riemannian geometric structure of

such manifold (Peng and Paul, 2009). Next, given B, we minimize (3.4) with respect

to β, σ2 and Λ. In the second step, for a fixed B, (3.4) is the log-likelihood func-

tion of a linear mixed model and thus, its minimization is straightforward (see, e.g.,

Pinheiro and Bates, 2000).

3.3.2 Pre-tapered and Tapered Estimates

The block-diagonal matrix ΣKL approximates the true covariance matrix by ig-

noring the dependence of observations between subdomains. Such an approximation

has great computational advantages; however, our numerical studies suggest that the

amount of error can be large. Here, for a stationary isotropic random field, we propose

a novel approach to recover some of the accuracy loss caused by the approximation

of the true covariance matrix.

Recall that, for subdomainRk, the estimated covariance matrix is Σ̂k = ΦT
k B̂Λ̂B̂TΦk+

σ̂2Ink
. First, we obtain an estimated mean covariance function γ̂1(h) from Σ̂k for

spatial lag h ∈ [0, D], where D is the maximum spatial lag within the subdomain.

We take an average of covariance function estimates over the lag distances that are

within a small neighborhood ∆h of a given spatial lag h. For example, for h = 0.1

and ∆h = 0.05, γ̂1(0.1) is the average of covariances between sampling locations that

are 0.1 ± 0.05 distance apart. By taking a local mean, we observe, in our numerical

examples, that the inversion of the estimated covariance matrix is more stable.

Since γ̂1(h) is not guaranteed to be positive definite, we implement a further

transformation proposed by Hall and Patil (1994). In particular, let ψ(θ) =
∫

exp(iθh)γ̂1(h)dh,
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where θ ∈ R, and transform γ̂1(h) to

γ̂2(h) = (2π)−1

∫
R
cos(θh)ψ̂(θ)dθ, (3.5)

where ψ̂ = max{ψ, 0}. The resulting γ̂2(h) will be referred to as a pre-tapered estimate

of the covariance function. Although it is positive definite on [0, D], it may not be

continuous nor positive definite on [0,∞]. Thus, we further adopt a tapering function

W (h, ω), which is an isotropic autocorrelation function when h ≤ ω and 0 when

h > ω for a given threshold distance ω. Compactly supported correlation functions

are often used as the tapering functions, such as W (h, ω) = (1 − h/ω)I{h ≤ ω},

where I{h ≤ ω} is an indicator function (Wendland, 1995). A tapered estimate

for the covariance function γ̂3(h) can be obtained by γ̂3(h) = γ̂2(h)W (h, ω), which

is a positive definite covariance function over [0,∞]. The corresponding estimated

covariance matrix Σ̂T = [γ̂3(dii′)]
N
i,i′=1 is also positive definite, where dii′ is the distance

between two sampling locations si and si′ . Using Σ̂T, we then update the estimates

of β and σ2, denoted by β̂T and σ̂2
T. Since Σ̂T is a sparse matrix, the computation is

fast even for large sample sizes.

3.3.3 Applications of Tapered Estimates

The tapered estimates (β̂T, σ̂
2
T, Σ̂T) developed in Section 3.3.2 can be applied

to spatial prediction and variable selection. To predict the random field y(s0) at an

unsampled location s0, we apply the standard approach of best linear unbiased pre-

diction (BLUP; Section 3.4.5 in Cressie (1993)). Let s1, . . . , sN denote N sampling

locations in R, y = (y(s1), . . . , y(sN))
T denote an N -dimensional vector of response

variables, and X denote an N × p design matrix of covariates. The BLUP of the re-

sponse at an unsampled location s0 is ỹ(s0) = xT (s0)β̃+cT0Σ
−1
0 (y−XT β̃), where c0 is

an N -dimensional vector comprising cov{y(s0), y(si)}, Σ0 = [cov{y(si), y(si′)}]Ni,i′=1,

and β̃ = (XΣ−1
0 X)−1XΣ−1

0 y. Both Σ0 and c0 rely on the unknown covariance

function γ(·). By directly plugging the tapered estimate γ̂3(·) into Σ0, we obtain an

empirical BLUP at s0.
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Next, we consider variable selection in the context of spatial linear model with

the goal of determining the best subset of the covariates. Extending a penalized least

squares method by Wang and Zhu (2009), Chu et al. (2011) proposed a penalized

maximum likelihood approach for simultaneous parameter estimation and variable

selection, which we will adopt here. In particular, a penalized log-likelihood function

is defined as

ℓ(β,Σ0;y,X)−N

p∑
j=1

pλ(|βj|). (3.6)

where ℓ(β,Σ0;y,X) = −(N/2) log(2π) − (1/2) log |Σ0| − (1/2)(y − Xβ)TΣ−1
0 (y −

Xβ) is the log-likelihood function and pλ(·) is a known penalty function with a regu-

larization parameter λ. Popular choices of the penalty function include the L1 penalty

and smoothly clipped absolute deviation (SCAD; Fan, 1997; Fan and Li, 2001). Here,

we will focus on the SCAD penalty function.

When Σ0 is replaced with Σ̂T, (3.6) is equivalent to a penalized least squares

problem. The corresponding optimization problem has been widely studied; see

Fan and Li (2001) and Zou and Li (2008) for more details. We implement a one-step

estimation procedure proposed by Zou and Li (2008) and provide an approximate

solution by a Newton-Raphson type iteration starting from β̂T.

The finite-sample properties of the tapered estimates in both of these applications

will be investigated in a simulation study in Section 3.4.1.

3.4 Numerical Examples

3.4.1 Simulation Study

We now investigate the finite-sample properties of our proposed method using

local Karhunen-Loève expansion denoted as KL. Four different scienarios are consid-

ered, which are combinations of two dimensions (d = 1 or 2) and two true covariance

functions (exponential or not). For comparison, we consider three competing meth-

ods. The first alternative, ALT1, is the ordinary least squares that ignores spatial
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dependence. The second alternative, ALT2, assumes a parametric covariance func-

tion and applies maximum likelihood for parameter estimation (Mardia and Marshall,

1984). Third and last, we consider a “small block” method, ALT3, proposed by

Caragea and Smith (2007). In ALT2 and ALT3, we assume that the error term fol-

lows an exponential covariance function regardless of the true underlying covariance

structure.

d = 1, Exponential Covariance.

Let the spatial domain be R = [0, L] with L = 30, 60, 90. For a fixed sam-

pling density 10, the corresponding sample size N is 300, 600 and 900, respec-

tively. The linear regression model has seven covariates with regression coefficients

β = (4, 3, 2, 1, 0, 0, 0)T . The covariates are generated from standard normal distri-

butions with a cross-covariate correlation of 0.5. In addition, we standardize each

covariate to have sample mean 0 and sample variance 1, and the response to have a

sample mean 0. Consequently, there is no intercept in this model. For spatial de-

pendence, we generate the error ε1(s) at the sampling location s from a zero-mean

stationary and isotropic Gaussian process with an exponential covariance function

γ(h) = σ2
1 exp(−h/cr), where σ2

1 is a variance component and cr is a range parameter.

In addition, the measurement errors ε2(s) are independently generated from N(0, σ2
2).

Let σ2
1 = 16, σ2

2 = 4 and cr = 2. For KL and ALT2, the subdomains are set to be

intervals of equal length 6.

For each sample size N , we simulate 100 data sets, and for each data set, we

estimate β using our KL method as well as the three alternatives. The mean and

standard deviation of the resulting estimates are reported in Table A in Appendix D

of this chapter. The results show that ALT2 performs the best, as expected. As

the sample size increases, the performances of all four estimates improve in terms of

smaller biases and variances. Moreover, by accounting for spatial dependence, pa-

rameter estimation using ALT2, ALT3, and KL all outperforms ALT1. The estimates
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from ALT3 and KL tend to those of ALT2, which suggests that the effect of the

covariance matrix approximation becomes smaller as the sample size increases.

Figure 3.1: Estimated Covariance Functions in Scenario 1.
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Estimated covariance functions and 95% pointwise confidence intervals using our pro-
posed method with both pre-tapered estimates (upper-left) and tapered estimates
(upper-right), maximum likelihood ALT2 (lower-left) and a small-block method ALT3

(lower-right). Black solid line: true exponential covariance function; grey line: esti-
mated covariance function from each simulated data; dashed lines: pointwise confi-
dence intervals.

The estimated covariance functions by KL are quite close to ALT2, as illustrated

in Figure 3.1. In particular, using the pre-tapered estimate γ̂2(h), the true covariance

function falls well within the 95% pointwise confidence intervals. However, when the

spatial lag increases, the pointwise confident intervals do not narrow as in ALT2 and

ALT3, due to a nonparametric form of the error process. For the tapered estimate

of covariance function γ̂3(h), the true covariance functions fall within 95% pointwise

confidence intervals except when the distance gets close to 6, due to tapering beyond

distance 6.

In Figure 3.2, the computing time for all three methods, KL, ALT2, and ALT3,

is reported. It can be seen that, for relatively small sample sizes, the three methods

take up about the same amount of time. As the sample size increases, however,
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Figure 3.2: Computing Times (in seconds).

400 600 800 1000 1200 1400

0
10

0
20

0
30

0
40

0

Sample Size

Ti
m

e(
Se

co
nd

s)

KL
ALT2

ALT3

Computing times (in seconds) for KL, ALT2, and ALT3 versus various choices of
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the computing time for ALT2 increases dramatically compared with both KL and

ALT3 whose computing time is similar. This large difference in computing time is

expected, as ALT2 involves large matrix inversion, but underscores the usefulness of

our KL method. Similar observations are made in the other three scenarios.

To evaluate the performance of spatial prediction, we define a mean squared

prediction error (MSPE) as n−1
∑n

i=1 {ỹ(s0i)− y(s0i)}2, where s01, . . . , s0n are n un-

sampled locations in R, y(s0i) is the true value and ỹ(s0i) is the predicted value at

location s0i, for i = 1, . . . , n. In the simulation, for each sample size N , an additional

10% observations are generated at new locations to form a test set. The mean and

standard deviation of the MSPE values are reported in Table 3.3. Our KL method

performs similarly to ALT2 and ALT3, but ALT1 gives rather poor prediction. As for

variable selection, KL, ALT2, and ALT3 perform similarly and satisfactorily, and all

are slightly better than ALT1, as shown in Table A in Appendix D of this chapter.

d = 1, Misspecified Covariance.

Here the setup is the same as Scenario 1 except for the spatial dependence struc-

ture. Specifically, the error process ε1(s) follows a sinusoidal covariance function:

γ(h) = σ2
1 sin(h/cr)cr/h. Moreover, the measurement error terms ε2(s) are indepen-

dently generated from N(0, σ2
2). Let σ2

1 = 16, σ2
2 = 4 and cr = 0.4. The results are

reported in Table B in Appendix D of this chapter.
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Table 3.1: Kriging Simulation Results from Scenario 1 and 2

Exponential Covariance Misspecified Covariance
N Method mean(MSPE) SD(MSPE) mean(MSPE) SD(MSPE)

300

KL 5.83 1.52 4.88 1.30
ALT1 17.84 6.32 18.97 6.43
ALT2 5.69 1.49 4.96 1.29
ALT3 5.72 1.49 4.99 1.27

600

KL 5.70 1.20 4.81 0.98
ALT1 18.92 4.36 19.81 3.97
ALT2 5.62 1.17 4.93 0.99
ALT3 5.68 1.19 4.99 1.00

900

KL 5.61 0.84 4.76 0.72
ALT1 19.21 4.12 19.92 3.46
ALT2 5.51 0.81 4.90 0.74
ALT3 5.56 0.82 4.95 0.75

Simulation results from Scenario 1 (left panel) and 2 (right panel): Mean squared prediction error
(MSPE) and standard deviation (SD) under KL, ALT1, ALT2, and ALT3 for sample size N = 300,
600, 900.

Again, as the sample size increases, the estimation of all four methods improves.

In addition, ALT2, ALT3, and KL perform better than ALT1 for both parameter

estimation and prediction. This suggests that it is important to consider spatial de-

pendence, even if spatial covariance function is misspecified. However, our KL method

outperforms ALT2 and ALT3 by providing a more robust estimate of the covariance

function, as illustrated in Figure 3.3. Unlike Scenario 1, the estimated covariance

functions from ALT2 and ALT3 are not close to the true underlying function, due

to the model misspecification when applying maximum likelihood. In contrast, the

performance of KL is satisfactory. Similar results regarding spatial prediction and

variable selection are attained as Scenario 1.

When d = 2, similar conclusions can be drawn regarding parameter estimation,

spatial prediction, and variable selection. To save space, those results are included in

Appendix D of this chapter.

3.4.2 Data Example
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Figure 3.3: Estimated Covariance Functions in Scenario 2.
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Estimated covariance functions and 95% pointwise confidence intervals using our pro-
posed method with both pre-tapered estimates (upper-left) and tapered estimates
(upper-right), maximum likelihood ALT2 (lower-left) and a small-block method ALT3

(lower-right). Black solid line: true sinusoidal covariance function; grey line: esti-
mated covariance function from each simulated data; dashed lines: pointwise confi-
dence intervals.
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Figure 3.4: The Domain and Subdomain of Locations of 259 Sampling Sites.

Map of locations of 259 sampling sites in the Colorado precipitation data and the
subdomain (divided by dotted line) used for KL method and small block method.
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Table 3.2: Precipitation Data Results under KL, ALT1, ALT2, and ALT3.

Terms KL SE ALT1 SE ALT2 SE ALT3 SE
Elevation 0.281 0.058 0.221 0.047 0.305 0.055 0.235 0.052

Slope 0.020 0.031 0.074 0.041 0.158 0.026 0.027 0.029
Aspect 0.000 0.027 0.051 0.034 -0.004 0.022 0.005 0.025

B1M 0.196 0.184 0.142 0.214 0.214 0.157 0.254 0.170
B2M 0.036 0.074 0.069 0.093 0.058 0.064 0.017 0.068
B3M 0.037 0.131 0.059 0.160 0.017 0.109 -0.015 0.112
B4M -0.400 0.214 -0.472 0.242 -0.043 0.183 -0.381 0.199
B5M 0.090 0.105 0.155 0.137 0.043 0.089 0.115 0.098
B6M -0.190 0.135 -0.357 0.166 -0.162 0.116 -0.212 0.124
B7M 0.158 0.116 0.241 0.150 0.172 0.098 0.121 0.110

Precipitation data: Regression coefficient estimates and standard errors (SE) under KL, ALT1,
ALT2, and ALT3.

The dataset consists of January precipitation (inches per 24-hour period) on the

log-scale from 259 weather stations in Colorado (Reich and Davis, 2008; Chu et al.,

2011), as shown in Figure 3.4. There are ten covariates of interest, including elevation,

slope, aspect, and seven spectral bands from a MODIS satellite imagery (B1M through

B7M). To investigate the relationship between precipitation and these covariates, we

first fit a spatial linear model with an exponential covariance function via ordinary

least squares, maximum likelihood, and the small block method. The parameter

estimates and their standard errors in Table 3.2 suggest that the regression coefficients

for elevation, B1M, B4M, B6M, and B7M are possibly significant. We then fit the

data using our proposed method and the results are similar to the three alternative

methods, although the MLE and the small block method appear to have slightly

smaller standard errors.

Here assumptions about the spatial error process, namely, normality, stationarity

and isotropy are investigated. To check the normality, we obtain normal QQ-plot

for Σ̂−1/2e, where Σ̂ is the estimated covariance matrix from MLE method, e =

y − Xβ̂MLE is the residuals, and β̂MLE is the regression coefficient estimates from
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Figure 3.5: Normal QQ-plot for Residuals Σ̂−1/2e.
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MLE method. By model assumption, Σ̂−1/2e should be i.i.d normal, and Figure 3.5

shows there is no obvious violation of the normality assumption.

To check the assumption of stationarity, we first divide the whole domain into

several small subdomains as illustrated in Figure 3.4. For each subdomain, an em-

pirical correlation function is estimated from residuals e and the results are shown

in Figure 3.6. Note that the estimated covariance function from each subdomain has

the similar shape, which suggests that the assumption of stationarity holds.

Last we check the isotropy assumption by comparing the estimated correlation

functions for different directions. That is, we estimate correlation functions from

residuals e with angles at 0, 45, 90, and 135 degrees, as shown in Figure 3.7. Since

the shape of estimated correlation functions appears similar, we conclude that there

is no obvious violation for the isotropy assumption, either.

3.5 Theoretical Aspect

In this section, we will establish the consistency of estimates in Section 3.3.1.

Recall that R denotes the compact domain of interest andN is the number of sampling

locations in R. Also, λj is the jth largest eigenvalue in the local Karhunen-Loève

expansion and nk is the number of sampling locations in subdomain Rk. Let β0

denote the true parameters. We assume σ2 is known with σ2 = 1, without loss of

generality.
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Figure 3.6: Estimated Correlation Functions in Subdomains.
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The estimated correlation functions in 6 different subdomains.
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Figure 3.7: Estimated Correlation Functions in Different Directions.
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Let λi(A1) denote the ith largest eigenvalue of a square matrix A1. Furthermore,

for an n × m matrix A2 = (aij)
n,m
i,j=1, the Frobenius norm and L2-norm are defined

as ∥A2∥F =
(∑n

i=1

∑m
j=1 a

2
ij

)1/2
and ∥A2∥2 = max{λi(AT

2A2)
1/2 : i = 1, . . . ,m}, re-

spectively. Moreover, if A3 is an n×l matrix, it holds that ∥A2A3∥F ≤ ∥A2∥F∥A3∥F ,

∥A2A3∥F ≤ ∥A2∥2∥A3∥F , and ∥A2A3∥2 ≤ ∥A2∥2∥A3∥2.

We assume the following regularity conditions.

(A.1) There exist 0 < c1, c2 c3 < ∞, such that (i) c1 ≥ λ1 > · · · > λJ > λJ+1; (ii)

max1≤j≤J(λj − λj+1)
−1 ≤ c2; (iii) λ1(Σ0) ≤ c3.

(A.2) The eigenfunctions {φj,1(·)}Jj=1 are four times continuously differentiable and

satisfy max1≤j≤J ∥φ(4)
j,1(·)∥∞ ≤ C0 for some 0 < C0 <∞.

(A.3) For nk, n ≤ nk ≤ n, where n ≥ 4, n/n = O(1), and n = O(Kκ) for some κ ≥ 0.

(A.4) There exist (B∗,Λ∗), such that δK = max1≤k≤K n
−1
k ∥Σ0k − Σ∗

k∥F and nδK =

O((M logK/K)1/2), where Σ∗
k = ΦT

kB
∗Λ∗B∗TΦk + σ2Ink

and B∗TB∗ = Ir.
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(A.5) There exist constants ρ1, d1, d2, K1 > 0, such that for (B,Λ) ∈ Θ((β0,B
∗,Λ∗); ρ1),

d1n
2a2K < 1/K

∑K
k=1 ∥Σk−Σ∗

k∥2F < d2n
2a2K for allK ≥ K1, where Θ((β0,B

∗,Λ∗); ρ)

is defined in (3.11).

(A.6) For (φ∗
1,k(·), . . . , φ∗

J,k(·)) = B∗T (ϕ1,k(·), . . . , ϕM,k(·)),

max
1≤j≤J

∥φj,k(·)− φ∗
j,k(·)∥ ≤ cϕ,3M

−4 max
1≤j≤J

∥φ(4)
j,k(·)∥∞, (3.7)

∥Φk∥2 ≤ ncg,1 + c−1
ϕ,0dη{(M

3/2 logK) ∨ (M(n logK)1/2)}, (3.8)

∥Φk∥2 ≤ cϕ,2nM, (3.9)

where cϕ,0, cϕ,2, cϕ,3, and cg,1 are constants.

(A.7) For (B,Λ) ∈ Θ((β0,B
∗,Λ∗); ρ1), let αK(·) be the α-mixing coefficient of ran-

dom variable tr{(Σ−1
k −Σ∗−1

k )(Sk −Σ0k)}. Then αK(2) = o(K−(2+2κ)Mr−η−2),

where Sk = (yk −Xkβ0)(yk −Xkβ0)
T and ρ1 is defined in (A.4).

(A.8) As K → ∞, M−1(K/logK)1/9 = O(1), M = o((K/logK)1/2), and n4M2logK =

o(K) .

(A.9) There exist constant C1, C2, N1 > 0, such that C1IN ≤ XTX/N ≤ C2IN , for

all N ≥ N1.

Assumptions (A.1)–(A.2) are about the spatial covariance structure and the

Karhunen-Loève expansion. (A.3) is a boundedness condition for the number of

sampling locations in subdomains (Paul and Peng, 2009). (A.4) assumes that there

exist optimal parameters (B∗,Λ∗) such that the difference of the true covariance ma-

trix Σ0k and optimal covariance matrix Σ∗
k in every subdomain tends to 0 uniformly,

as the number of subdomains K → ∞. Moreover, (A.4) requires that λJ+1 decay

sufficiently fast (e.g., the expansion (3.2) of the process ε1(s) has finite J terms).

In this case, the existence of the optimal parameters can be shown using the spline

approximation theory, which is well-established for the one-dimensional space. (A.5)
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is about the properties for spline basis and (A.6) is about the properties of the fixed

sampling locations. (A.7) assumes that correlations between subdomains decrease in

the sense of increasing domain. (A.8) specifies the relationship between n, M and K

(Paul and Peng, 2009). The assumption about the design matrix X is made in (A.9).

The following Theorem 3.5.1 establishes the consistency for the estimates of the

regression coefficients β and the spatial covariance function parameters B and Λ,

using our proposed method.

Theorem 3.5.1. Suppose that (A.1)–(A.9) hold, then there is a minimizer (β̂, B̂, Λ̂)

of equation (3.4), such that, for aK = (n2M logK/K)1/2,

∥β̂ − β0∥ = Op(N
−1/2), ∥B̂ −B∗∥F = Op(aK), ∥Λ̂−Λ∗∥F = Op(aK).

Theorem 3.5.1 shows that for regression coefficient vector, there exists a local

minimizer β̂ converging to the true parameter β0 at the rate of N1/2. For the spatial

covariance function parameters B and Λ, the convergence is also achievable but at a

slower rate of aK . However, the convergence rate is not as slow as it might appear,

especially for B, since both B and Λ are converging in the Frobenius norm. That

is, for B, the convergence is for the square sum of MJ parameters. It is also worth

mentioning that the resulting estimates (B̂, Λ̂) are the primary building blocks to

obtain the more accurate pre-tapered and tapered estimates for covariance function

in Section 3.3.2.

3.6 Appendix

3.6.1 Appendix A: Neighborhood in the Parameter Space

To maximize the approximated log-likelihood function in (3.4), a major challenge

is the orthogonal constraint of the matrix parameter B; that is, B is taken from the
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set SM,J = {A ∈ RM×J : ATA = IJ}, which is the well-known Stiefel manifold. Each

matrix B can be considered as a point on the manifold SM,J .

Let TB be the tangent space of SM,J at the point B. In particular, any element in

the tangent space, U ∈ TB, can be expressed as U = BAU +CU , where AU = −AT
U

and BTCU = 0; see Edelman et al. (1998) for more details. On the manifold SM,J ,

the geodesic emanating from B along the direction U can be written as, for any

t ≥ 0, GB,U (t) = BMB,U (t) +QNB,U (t), where[
MB,U (t)
NB,U (t)

]
= exp

{
t

[
BTU −RT

R 0

]}[
Ir
0

]
. (3.10)

Here exp(·) is the usual matrix exponential functional, and QR is the QR-decomposition

of (IM − BBT )U . Note that, the function GB,U (t) is the exponential map on the

manifold SM,J at B along the direction U , which essentially maps a tangent vector

to a point on the manifold.

The geodesic, along with the exponential mapping, provides a useful way to

define a neighborhood on the manifold. For instance, we can define the neighborhood

as {GB,U (t) : for some small enough t and U}. Note that the magnitudes of t and

U will determine the size of the neighborhood around B. For convenience, we let

t = 1, since GB,U (t) = GB,tU (1).

Finally, we define a neighborhood in parameter space, centered at (β0,B
∗,Λ∗)

and with size ρ, by

Θ((β0,B
∗,Λ∗); ρ)

= {(β,B,Λ) : β = exp(E)β0,B = GB∗,U (1),Λ = exp(D)Λ∗,

where U = B∗AU +CU ,AU = −AT
U and B∗TCU = 0,

D is a r × r diagonal matrix,

E is a p× p diagonal matrix, and

∥AU∥2F + ∥CU∥2F + ∥D∥2F + ∥n1/2aKE∥2F = ρ2
}
, (3.11)

72



This neighborhood extends the notion of restricted parameter space of (B,Λ) in

Paul and Peng (2009), by incorporating the vector of regression coefficient β. Paul and Peng

(2009) also provided two important expansions, which will be used in our proof of

Theorem 3.5.1:

B∗T (GB∗,U (1)−B∗) = B∗TU+O((∥B∗TU∥F+∥(IM−B∗B∗T )U∥F )∥U∥F ), (3.12)

(IM−B∗B∗T )GB∗,U (1) = (IM−B∗B∗T )U+O(∥(IM−B∗B∗T )U∥F )∥U∥F ) (3.13)

as ∥U∥F → 0.

3.6.2 Appendix B: Proof of Theorem 3.5.1

It suffices to show that, given η > 0, for large enough K, there exists a constant

cη, such that

P

{
inf

(β,B,Λ)∈Θ(cηaK)
LK(β,B,Λ) > LK(β0,B

∗,Λ∗)

}
≥ 1−O(K−η),

where Θ(cηaK) ≡ Θ((β0,B
∗,Λ∗); cηaK) is the neighborhood defined in Appendix A.

Note that, LK(β,B,Λ)− LK(β0,B
∗,Λ∗) = {LK(β,B,Λ)− LK(β0,B,Λ)}

+ {LK(β0,B,Λ)− LK(β0,B
∗,Λ∗)} . We will quantify LK(β,B,Λ) − LK(β0,B,Λ)

and LK(β0,B,Λ)− LK(β0,B
∗,Λ∗), denoted by (I) and (II), respectively.

First, we show that

P

{
inf

(β,B,Λ)∈Θ(cηaK)
LK(β,B,Λ)− LK(β0,B,Λ) > 0

}
≥ 1−O(K−η). (3.14)

It can be shown that, for any (β,B,Λ) ∈ Θ(cηaK),

2K {LK(β,B,Λ)− LK(β0,B,Λ)}

=
K∑
k=1

{
(yk −Xkβ)

TΣ−1
k (yk −Xkβ)− (yk −Xkβ0)

TΣ−1
k (yk −Xkβ0)

}
=

K∑
k=1

{
2(β0 − β)TXT

k Σ
−1
k (yk −Xkβ0)

}
+

K∑
k=1

{
(β0 − β)TXT

k Σ
−1
k Xk(β0 − β)

}
≡ (I1) + (I2)
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The term (I1) has a normal distribution with mean 0 and variance 4(β0 −

β)TXTΣ−1
KLΣ0Σ

−1
KLX(β0 − β). Moreover, by (A.1) and the definition of Θ(cηaK),

there exists a constant c4 > 0, such that 4(β0 − β)TXTΣ−1
KLΣ0Σ

−1
KLX(β0 − β) ≤

c4(β0−β)TXTX(β0−β). Together with (A.9), we have 4(β0−β)TXTΣ−1
KLΣ0Σ

−1
KLX(β0−

β) ≤ c4C2∥β0 − β∥22, which yields (I1) = ∥β0 − β∥2Op(N
1/2)

Next, we consider the term (I2). By (A.1), (A.8) and the definition of Θ(cηaK),

there exists a constant c5 > 0, such that (I2) = (β0 − β)TXTΣ−1
KLX(β0 − β) ≥

c5(β0 − β)TXTX(β0 − β). By (A.9), we have (I2) ≥ c5C1N∥β0 − β∥22. For a

sufficient large cη, (I2) dominates (I1) and thus, (3.14) follows.

For (II), we follow similar arguments in Paul and Peng (2009) and establish its

uniform bound as

P

{
inf

(β0,B,Λ)∈Θ(cηaK)
LK(β0,B,Λ)− LK(β0,B

∗,Λ∗) > (cηaK)
2

}
≥ 1−O(K−η).

(3.15)

For any fixed β0, we can express (II) as

(II) = K−1

K∑
k=1

V (Σk,Σ
∗
k) + (2K)−1

K∑
k=1

tr{(Σ−1
k −Σ∗−1

k )(Sk −Σ0k)}

+(2K)−1

K∑
k=1

tr{(Σ−1
k −Σ∗−1

k )(Σ0k −Σ∗
k)} ≡ (II1) + (II2) + (II3),

where Sk = (yk−Xkβ0)(yk−Xkβ0)
T and V (Σk,Σ

∗
k) = (1/2)tr

{
Σ

−1/2
k (Σ∗

k −Σk)Σ
−1/2
k

}
−

(1/2)log
∣∣∣Ink

+Σ
−1/2
k (Σ∗

k −Σk)Σ
−1/2
k

∣∣∣ .
In Appendix B of this chapter, we bound the above three terms individually in

Lemmas 6, , 7 and 8. As a consequence, we have P {LK(β0,B,Λ)− LK(β0,B
∗,Λ∗) ≤ (cηaK)

2} =

O(K−(2+2κ)MJ−η), for each point (B,Λ) ∈ Θ0(cηaK), where Θ0(cηaK) ≡ {(B,Λ) :

(β0,B,Λ) ∈ Θ(cηaK)}

Furthermore, define a restricted neighborhood in SM,J

⊗
RJ , centered at (B1,Λ1)

with size ωK , as Ne(B1,Λ1;ωK) = {(B,Λ) : ∥B −B1∥2F + ∥Λ−Λ1∥2F ≤ ω2
K} . There

is a finite set in SM,J

⊗
RJ , denoted by C[ωK ], such that

∪
(B1,Λ1)∈C[ωK ] Ne(B1,Λ1;ωK) ⊃
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Θ0(cηaK). In fact, by a standard construction of such neighborhoods on a sphere in

Rp (p =MJ − J(J − 1)/2), there exists C[ωK ], in which the number of elements is of

order max{1, (aKω−1
K )p}.

Thus, by (A.3), for a sufficiently large K, taking ωK = (n2K)−1 yields

P
{
inf(B,Λ)∈C[ωK ] LK(β0,B,Λ)− LK(β0,B

∗,Λ∗) > (cηaK)
2
}
≥ 1−O(K−η). Together

with Lemma 5 in Appendix D of this chapter, we have (3.15). Finally, combining

(3.14) and (3.15), Theorem 3.5.1 follows.

3.6.3 Appendix C: Lemmas

In this section, we present and prove lemmas which facilitate our proof of The-

orem 1. In particular, Lemmas 6-8 will be used to bound the terms (II1), (II2) and

(II3) in the proof of Theorem 1, respectively. Lemma 5 provides a uniform bound for

the quantity ∥Σk−Σ∗
k∥F , which plays an important role in the proofs of Lemmas 6-8.

Lemma 5. Under (A.1), (A.2), (A.6) and (A.8), for every (B,Λ) ∈ Θ0(cηaK), we

have

max
1≤k≤K

∥Σk−Σ∗
k∥2F ≤

[
D1

{
1 +D2{(M3/2 logK/n) ∨ (M2 logK/n)1/2}

}
n2a2K

]
∧(D2Mn2a2K),

(3.16)

for some constants D1, D2, D3 > 0.

Proof. Note that Σk −Σ∗
k = ΦT

k (BΛBT −B∗Λ∗B∗T )Φk can be expressed as

Σk −Σ∗
k = ΦT

kB
∗(B∗TBΛBTB∗ −Λ∗)B∗TΦk + 2ΦT

kB
∗B∗TBΛBT (IM −B∗B∗T )Φk

+ΦT
k (IM −B∗B∗T )BΛBT (IM −B∗B∗T )Φk = (III1k) + (III2k) + (III3k).

It can be seen that ∥(III1k)∥F ≤ ∥ΦT
kB

∗∥2F∥B∗TBΛBTB∗ − Λ∗∥F . Note that, by

(A.2) and (A.6), there exists a constant, D4 > 0, such that

max
1≤j≤J

∥φ∗
j,k∥∞ ≤ D4 <∞. (3.17)
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Therefore, each entry of ΦT
kB

∗ is bounded by D4, and hence ∥ΦT
kB

∗∥2F ≤ D2
4Jnk.

We have

max
1≤k≤K

∥(III1k)∥F = O(n∥B∗TBΛBTB∗ −Λ∗∥F ). (3.18)

For (III2k), we have

∥(III2k)∥F ≤ 2∥ΦT
kB

∗∥F∥B∗TB∥2∥Λ∥2∥BT (IM−B∗B∗T )Φk∥F ≤ D5n
1/2∥ΦT

k (IM−B∗B∗T )B∥F ,

(3.19)

for some D5 > 0. Here, we use ∥B∗TB∥ ≤ 1 and the definition of Θ(cηaK). Therefore,

max
1≤k≤K

∥(III2k)∥F = O(n1/2∥ΦT
k (IM −B∗B∗T )B∥F ). (3.20)

Last, we have

max
1≤k≤K

∥(III3k)∥F ≤ ∥Λ∥∥ΦT
k (IM −B∗B∗T )B∥2F = O(∥ΦT

k (IM −B∗B∗T )B∥2F ).

(3.21)

By (A.6), (A.8) and (12) in main manuscript, we have

n−1 max
1≤k≤K

∥ΦT
k (IM −B∗B∗T )B∥2F ≤ cϕ,2M∥(IM −B∗B∗T )B∥2F ≤ cϕ,2Ma2K(1 + o(1)) = o(1).

Therefore, we have,

max
1≤k≤K

∥(III3k)∥F = o(∥ΦT
k (IM −B∗B∗T )B∥F ). (3.22)

By the triangle inequality, (3.18), (3.20) and (3.22), we obtain

max
1≤k≤K

∥Σk −Σ∗
k∥F max

1≤k≤K
≤ O(n∥B∗TBΛBTB∗ −Λ∗∥F ) +O(n1/2∥ΦT

k (IM −B∗B∗T )B∥F ).

By (A.1), (A.6), the definition of Θ(cηaK), (11) and (12) in main manuscript,

the result follows.
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Lemma 6. Under (A.1)–(A.3), (A.5)–(A.6) and (A.8), for every (B,Λ) ∈ Θ0(cηaK),

we have

d3a
2
K ≤ K−1

K∑
k=1

V (Σk,Σ
∗
k) ≤ d4n

2a2K , (3.23)

for appropriate positive constants d3 and d4.

Proof. Note that

V (Σk,Σ
∗
k) =

nk∑
i=1

[λi(R
∗
k)− log {1 + λi(R

∗
k)}] ,

where R∗
k = Σ

−1/2
k (Σ∗

k −Σk)Σ
−1/2
k .

By Taylor’s expansion, we can show that, for any sufficiently small ϵ > 0, there

exist constants 0 < c1,ϵ < c2,ϵ <∞ such that, for ∥R∗
k∥F ≤ ϵ,

c1,ϵ∥R∗
k∥2F ≤ V (Σk,Σ

∗
k) ≤ c2,ϵ∥R∗

k∥2F . (3.24)

Straightforward matrix calculation yields

∥Σ∗−1/2
k (Σ∗

k −Σk)Σ
∗−1/2
k ∥F{

1 + ∥Σ∗−1/2
k (Σ∗

k −Σk)Σ
∗−1/2
k ∥F

} ≤ ∥R∗
k∥F ≤ ∥Σ∗−1/2

k (Σ∗
k −Σk)Σ

∗−1/2
k ∥F{

1− ∥Σ∗−1/2
k (Σ∗

k −Σk)Σ
∗−1/2
k ∥F

}
whenever ∥Σ∗−1/2

k (Σ∗
k −Σk)Σ

∗−1/2
k ∥F < 1.

Next we will show that ∥Σ∗−1/2
k (Σ∗

k −Σk)Σ
∗−1/2
k ∥F converges to 0 uniformly in

k. Thus, by (A.5), the desired result follows.

By (3.17), (A.1) and definition of Θ(cηaK), we have

∥ΦT
kB

∗Λ∗B∗TΦk∥2 ≤ ∥ΦT
kB

∗∥2F∥Λ∗∥2 ≤ D6λ1Jn, for k = 1, . . . , K,

for some D6 > 0. Therefore, 1 ≤ λmin(Σ
∗
k) ≤ λmax(Σ

∗
k) ≤ 1 +D6λ1Jn.

We obtain

(1 +D2λ1Jn)
−1∥Σk −Σ∗

k∥F ≤ ∥Σ∗−1/2
k (Σ∗

k −Σk)Σ
∗−1/2
k ∥F ≤ ∥Σk −Σ∗

k∥F . (3.25)

77



By Lemma 5 and (A.8), we have max1≤k≤K ∥Σk−Σ∗
k∥2F = o(1). Therefore, max1≤k≤K ∥Σ∗−1/2

k (Σ∗
k−

Σk)Σ
∗−1/2
k ∥F = o(1).

The following lemma is used to bound the quantity (II2) in the proof of Theo-

rem 1. This lemma is a generalization of Proposition 3 of Paul and Peng (2009) from

the independent case to a more general weakly dependent case under a mild assump-

tion (A.7). The key device used in the proof is the Bernstein inequality of an array

of weakly dependent random variables; see Lemma 5.3 of Sun and Lahiri (2003).

Lemma 7. Under (A.1)–(A.8), given any η > 0, for every (B,Λ) ∈ Θ0(cηaK), we

have

P

{∣∣∣∣∣(2K)−1
K∑
k=1

tr
{(

Σ−1
k −Σ∗−1

k

)
(Sk −Σ0k)

}∣∣∣∣∣ ≤ dηnaK(M logK/K)1/2

}
≥ 1−O(K−(2+2κ)MJ−η),

where Sk = (yk −Xkβ0)(yk −Xkβ0)
T .

Proof. Let Rk = Σ
1/2
0k (Σ−1

k −Σ∗−1
k )Σ

1/2
0k . Note that

Rk = (Σ
1/2
0k Σ

−1/2
k )(Σ

−1/2
k Σ

∗1/2
k )

{
Σ

∗−1/2
k (Σk −Σ∗

k)Σ
∗−1/2
k

}
(Σ

∗−1/2
k Σ

1/2
0k ).

Therefore, we have

∥Rk∥F ≤ ∥Σ1/2
0k Σ

−1/2
k ∥2∥Σ∗−1/2

k Σ
1/2
0k ∥2∥Σ−1/2

k Σ
∗1/2
k ∥2∥Σ∗−1/2

k (Σk −Σ∗
k)Σ

∗−1/2
k ∥F .

Moreover, it can be seen that ∥Σ1/2
0k Σ

−1/2
k ∥2 ≤ ∥Σ−1/2

k Σ
∗1/2
k ∥2∥Σ∗−1/2

k Σ
1/2
0k ∥2.

Thus, combining (3.25), we have

∥Rk∥F ≤ ∥Σ∗−1/2
k Σ

1/2
0k ∥22∥Σ

−1/2
k Σ

∗1/2
k ∥22∥Σk −Σ∗

k∥F .
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Next, we bound the first two terms on the right hand side of the above inequality. In

fact, note that

∥Σ∗−1/2
k Σ

1/2
0k ∥22 = ∥Σ∗−1/2

k Σ0kΣ
∗−1/2
k ∥2 ≤ 1 + ∥Σ∗−1/2

k Σ0kΣ
∗−1/2
k − 1∥2

≤ 1 + ∥Σ∗−1/2
k ∥2∥Σ0k −Σ∗

k∥2∥Σ
∗−1/2
k ∥2 ≤ 1 + ∥Σ0k −Σ∗

k∥2.

Similarly, we have ∥Σ∗−1/2
k Σ

1/2
k ∥22 ≤ 1 + ∥Σk −Σ∗

k∥2. Thus,

∥Rk∥F ≤ (1 + ∥Σ0k −Σ∗
k∥2)(1 + ∥Σk −Σ∗

k∥2)∥Σk −Σ∗
k∥F .

By (A.4), we have ∥Σk − Σ∗
k∥F ≤ CnδK = o(1) for some constant C > 0. In

addition, by Lemma 5 and (A.8), we have ∥Σ0k − Σ∗
k∥F = o(1). Consequently, for

sufficiently large K, we have ∥Rk∥ ≤ 2∥Σk −Σ∗
k∥F .

Applying an array form of the Bernstein inequality, Lemma 5.3 of (Sun and Lahiri,

2003), to tr{(Σ−1
k −Σ∗−1

k )(Sk −Σ0k)}, which depends on both K and k, we have

P

{
|(2K)−1

K∑
k=1

tr{(Σ−1
k −Σ∗−1

k )(Sk −Σ0k)}| > (M logK/K)1/2(K−1

K∑
k=1

∥Σk −Σ∗
k∥2F )1/2

}
≤ O

(
K−(2+2κ)MJ−η +K {αK(2)}2k/(2k+1)

)
= O

(
K−(2+2κ)MJ−η

)
.

In the above inequality, the last equality is a direct consequence of (A.7). Finally,

combined with (A.5), the proof is complete.

The following lemma is used to quantify (II)3 in the proof of Theorem 1.

Lemma 8. Under (A.1)–(A.6) and (A.8), for every (B,Λ) ∈ Θ0(cηaK), we have

(2K)−1

K∑
i=1

tr
{
(Σ−1

k −Σ∗−1
k )(Σ0k −Σ∗

k)
}
= O(naK(M logK/K)1/2). (3.26)
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Proof. By the Cauchy-Schwarz inequality, we have∣∣∣∣∣K−1

K∑
i=1

tr
{
(Σ−1

k −Σ∗−1
k )(Σ0k −Σ∗

k)
}∣∣∣∣∣

≤

{
K−1

K∑
i=1

∥Σ−1
k −Σ∗−1

k ∥2F

}1/2{
K−1

K∑
i=1

∥Σ0k −Σ∗
k∥2F

}1/2

.

We further note that{
K−1

K∑
i=1

∥Σ−1
k −Σ∗−1

k ∥2F

}1/2

≤ max
1≤k≤K

∥Σ−1
k ∥2∥Σ∗−1

k ∥2

{
K−1

K∑
i=1

∥Σk −Σ∗
k∥2F

}1/2

= O(naK),

which is a direct consequence of ∥Σ−1
k ∥2 < 1, ∥Σ∗−1

k ∥2 < 1, and (A.5). Moreover, by

(A.4), we have{
K−1

K∑
i=1

∥Σ0k −Σ∗
k∥2F

}1/2

≤ max
1≤k≤K

∥Σ0k −Σ∗
k∥F ≤ nδK = O((M logK/K)1/2),

which completes the proof.

Lemma 9. Let (B1,Λ1) and (B2,Λ2) be two elements of Θ0(cηaK) satisfying ∥B1 −

B2∥2F + ∥Λ1 −Λ2∥2F ≤ ω2
K with ωK = (n2K)−1. Then under (A.1)–(A.4), (A.6) and

(A.8), given η > 0, we have

P
{
|LK(β0,B1,Λ1)− LK(β0,B2,Λ2)| = o(a2K)

}
= O(K−η−1).

Proof. Note that

LK(β0,B1,Λ1)− LK(β0,B2,Λ2)

= (2K)−1

K∑
k=1

tr{(Σ−1
1,k −Σ∗−1

k )(Sk −Σ0k)}+ (2K)−1

K∑
k=1

tr{(Σ∗−1
k −Σ−1

2,k)(Sk −Σ0k)}

+K−1

K∑
k=1

V (Σ1,k,Σ2,k) + (2K)−1

K∑
k=1

tr{(Σ−1
1,k −Σ−1

2,k)(Σ0k −Σ2,k)}

= (III1) + (III2) + (III3) + (III4).
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Following a similar method as Lemma 7, we have P (|(III1)| = o(a2K)) = O(K−η−1)

and P (|(III2)| = o(a2K)) = O(K−η−1).

For (III3), by (3.24) and (3.25), there exists C1, C2 > 0, for large enough K, we

have∣∣∣∣∣K−1

K∑
k=1

V (Σ1,k,Σ2,k)

∣∣∣∣∣ ≤ (2K)−1

K∑
k=1

C1∥Σ1,k −Σ2,k∥2F ≤ C2 max
1≤k≤K

∥Σ1,k −Σ2,k∥2F .

By the triangle inequality and (A.1), simply computation reveals that

∥B1Λ1B
T
1 −B2Λ2B

T
2 ∥F ≤ ∥(B1 −B2)Λ1B

T
1 ∥F + ∥B2(Λ1 −Λ2)B

T
1 ∥F + ∥B2Λ2(B1 −B2)

T∥F

= O(ωK).

Therefore, by (A.6),we have

max
1≤k≤K

∥Σ1,k −Σ2,k∥2F ≤ ∥B1Λ1B
T
1 −B2Λ2B

T
2 ∥F∥Φk∥22 = O(n2M2ω2

K).

Thus, (III3) = o(a2K).

For (III4), by the Cauchy-Schwarz inequality, we have∣∣∣∣∣(2K)−1

K∑
k=1

tr{(Σ−1
1,k −Σ−1

2,k)(Σ0k −Σ2,k)}

∣∣∣∣∣ ≤ (2K)−1

K∑
k=1

∥Σ−1
1,k −Σ−1

2,k∥F∥Σ0k −Σ2,k∥F

≤ max
1≤k≤K

∥Σ−1
1,k −Σ−1

2,k∥F ( max
1≤k≤K

∥Σ0k −Σ∗
k∥F + max

1≤k≤K
∥Σ2,k −Σ∗

k∥F )

= O(nωK(nδK +M1/2naK)) = o(a2K).

Thus, the proof is complete.

3.6.4 Appendix D: Additional Simulation Results

In Section 3.4 of the chapter, our proposed method (KL) is compared with three

competing methods, namely ALT1, ALT2, and ALT3, in a simulation study. Here, we
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report more details of the simulation results regarding regression parameter estima-

tion, spatial prediction, and variable selection. In particular, for regression parameter

estimation, the mean and standard deviation of estimated parameters are reported.

For spatial prediction, the mean and standard deviation of the mean squared predic-

tion error (MSPE) are reported. For variable selection, we report the average number

of correctly identified zero-valued regression coefficients (C0) and the average number

of incorrectly identified zero-valued regression coefficients (I0).

Scenario 1: d = 1, Exponential Covariance.

The simulation results for this scenario are reported in Table 3.3. It can be seen

that, KL, ALT2, and ALT3 all outperform ALT1 significantly. As pointed out in Sec-

tion 3.4, by accounting for spatial dependence, there is noticeable improvement for

regression parameter estimation, spatial prediction and variable selection. Moreover,

for regression parameter estimation and variable selection, KL, ALT2, and ALT3 are

comparable, which suggests that the estimation of β is not sensitive to the approx-

imation of covariance structure. For spatial prediction, ALT2 performs better than

KL and ALT3, as is expected.

Scenario 2: d = 1, Misspecified Covariance.

The simulation results for this scenario are reported in Table 3.4. Similar to

Scenario 1, by considering spatial dependence, KL, ALT2, and ALT3 all outperform

ALT1 significantly, even though the covariance function is misspecified in ALT2 and

ALT3. However, unlike Scenario 1, KL outperforms both ALT2 and ALT3 in spatial

prediction, due to a more accurate estimate of the covariance function by KL, as

shown in Figure 3. For regression parameter estimation and variable selection, KL,

ALT2, and ALT3 perform similarly.

Scenario 3: d = 2, Exponential Covariance

For d = 2, let R = [0, L1]× [0, L2] in R2. We fix the value of L1 at 6, and consider

three different values for L2 = 6, 12, 18. The sample sizes are set to be N = 300, 600,

900 for L2 = 6, 12, 18, respectively. For regression, the large-scale trend is generated
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Table 3.3: Simulation Results from Scenario 1

N Method β1 β2 β3 β4 β5 β6 β7 MSPE C0 I0

300

KL 4.025 3.004 2.004 0.965 -0.018 0.003 -0.015 5.83 2.98 0.00
SD 0.171 0.196 0.165 0.175 0.176 0.187 0.188 1.52

ALT1 4.036 2.983 2.046 0.971 -0.022 0.008 -0.030 17.84 2.91 0.22
SD 0.302 0.347 0.290 0.323 0.309 0.342 0.321 6.32

ALT2 4.026 3.006 2.004 0.962 -0.016 0.004 -0.018 5.69 2.92 0.00
SD 0.172 0.186 0.161 0.172 0.177 0.185 0.185 1.49

ALT3 4.030 3.006 2.003 0.963 -0.016 0.001 -0.019 5.72 2.95 0.00
SD 0.172 0.187 0.164 0.172 0.178 0.184 0.184 1.49

600

KL 4.011 3.003 1.987 0.983 0.018 -0.017 0.008 5.70 2.98 0.00
SD 0.122 0.133 0.114 0.129 0.123 0.140 0.135 1.20

ALT1 4.023 2.994 1.985 0.967 0.029 -0.008 0.020 18.92 2.94 0.05
SD 0.231 0.245 0.230 0.231 0.253 0.242 0.242 4.36

ALT2 4.010 3.002 1.987 0.985 0.019 -0.018 0.008 5.62 2.96 0.00
SD 0.124 0.129 0.115 0.129 0.126 0.138 0.137 1.17

ALT3 4.010 3.002 1.987 0.983 0.019 -0.020 0.010 5.68 2.96 0.00
SD 0.123 0.128 0.114 0.130 0.123 0.137 0.136 1.19

900

KL 3.984 2.975 2.009 1.004 0.009 0.010 -0.004 5.61 2.99 0.00
SD 0.109 0.088 0.103 0.113 0.110 0.098 0.099 0.84

ALT1 3.967 2.981 2.009 1.039 -0.025 0.025 0.017 19.21 2.90 0.01
SD 0.188 0.180 0.203 0.187 0.222 0.188 0.192 4.12

ALT2 3.984 2.975 2.008 1.002 0.011 0.010 -0.003 5.51 2.99 0.00
SD 0.108 0.088 0.102 0.114 0.108 0.096 0.100 0.81

ALT3 3.984 2.975 2.008 1.001 0.011 0.010 -0.003 5.56 2.98 0.00
SD 0.109 0.088 0.104 0.115 0.109 0.095 0.101 0.82

Simulation results from Scenario 1: mean, standard deviation (SD) of regression coefficients esti-
mates and mean squared prediction error (MSPE), average number of correctly identified zero-valued
regression coefficients(C0) and average number of incorrectly identified zero-valued regression coef-
ficients (I0) under KL, ALT1, ALT2, and ALT3 for sample size N = 300, 600, 900.
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Table 3.4: Simulation Results from Scenario 2

N Method β1 β2 β3 β4 β5 β6 β6 MSPE C0 I0

300

KL 4.022 3.005 2.005 0.966 -0.014 0.002 -0.011 4.88 2.96 0.00
SD 0.155 0.175 0.157 0.157 0.162 0.174 0.173 1.30

ALT1 4.034 2.973 2.037 0.976 -0.020 0.007 0.003 18.97 2.94 0.29
SD 0.308 0.354 0.326 0.319 0.302 0.354 0.363 6.43

ALT2 4.023 3.005 2.003 0.963 -0.016 0.004 -0.012 4.96 2.92 0.00
SD 0.156 0.172 0.158 0.158 0.166 0.175 0.175 1.29

ALT3 4.026 3.005 2.002 0.964 -0.015 0.002 -0.013 4.99 2.94 0.00
SD 0.156 0.173 0.161 0.159 0.167 0.174 0.174 1.27

600

KL 4.008 3.003 1.988 0.984 0.017 -0.016 0.008 4.81 2.97 0.00
SD 0.110 0.121 0.104 0.120 0.115 0.124 0.128 0.98

ALT1 4.000 3.004 1.971 0.991 0.045 -0.014 0.008 19.81 2.94 0.06
SD 0.226 0.233 0.221 0.243 0.264 0.275 0.241 3.97

ALT2 4.006 3.004 1.987 0.986 0.019 -0.017 0.007 4.93 2.97 0.00
SD 0.112 0.121 0.106 0.123 0.119 0.124 0.131 0.99

ALT3 4.006 3.005 1.986 0.985 0.019 -0.020 0.009 4.99 2.97 0.00
SD 0.111 0.120 0.106 0.124 0.117 0.123 0.130 1.00

900

KL 3.985 2.975 2.008 1.001 0.012 0.011 -0.002 4.76 2.99 0.00
SD 0.100 0.081 0.095 0.105 0.100 0.088 0.092 0.72

ALT1 3.976 2.964 1.999 1.029 -0.024 0.026 0.035 19.92 2.92 0.02
SD 0.216 0.174 0.218 0.207 0.226 0.183 0.190 3.46

ALT2 3.986 2.974 2.008 0.998 0.014 0.010 -0.002 4.90 2.99 0.00
SD 0.102 0.080 0.098 0.107 0.102 0.087 0.097 0.74

ALT3 3.986 2.975 2.008 0.998 0.014 0.011 -0.003 4.95 2.98 0.00
SD 0.103 0.081 0.099 0.109 0.103 0.087 0.098 0.75

Simulation results from Scenario 2: mean, standard deviation (SD) of regression coefficients esti-
mates and mean squared prediction error (MSPE), average number of correctly identified zero-valued
regression coefficients(C0) and average number of incorrectly identified zero-valued regression coef-
ficients (I0) under KL, ALT1, ALT2, and ALT3 for sample size N = 300, 600, 900.
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in the same way as the case of d = 1. For spatial dependence, we generate the error

ε1(s) for each sampling location s from a zero-mean stationary and isotropic Gaussian

process with an exponential covariance function γ(h) = σ2
1 exp(−h/cr). In addition,

the measurement error terms ε2(s) are independently generated from N(0, σ2
2). Let

σ2
1 = 16, σ2

2 = 4 and cr = 2. For the ALT3 and KL method, the subdomains

are squares with side length 3. The results are reported in Table 3.5, and similar

conclusions can be drawn as Scenario 1.

Table 3.5: Simulation Results from Scenario 3

N Method β1 β2 β3 β4 β5 β6 β7 MSPE C0 I0

300

KL 4.017 2.974 2.024 1.004 -0.006 -0.007 -0.037 7.45 3.00 0.00
SD 0.195 0.220 0.216 0.206 0.198 0.192 0.190 1.98

ALT1 4.023 2.997 2.036 1.005 -0.011 -0.035 -0.065 16.08 2.88 0.12
SD 0.300 0.319 0.312 0.265 0.297 0.299 0.267 4.99

ALT2 4.014 2.983 2.022 1.008 -0.014 -0.011 -0.032 7.18 2.97 0.00
SD 0.190 0.216 0.209 0.205 0.194 0.184 0.197 1.90

ALT3 4.013 2.983 2.023 1.004 -0.011 -0.013 -0.028 7.35 2.97 0.00
SD 0.192 0.217 0.206 0.203 0.197 0.186 0.200 1.92

600

KL 4.021 2.995 1.978 0.990 0.018 -0.029 0.006 6.66 2.99 0.00
SD 0.135 0.146 0.144 0.154 0.146 0.136 0.138 1.17

ALT1 4.020 3.003 1.949 0.980 0.019 -0.006 0.036 17.64 2.96 0.04
SD 0.260 0.240 0.213 0.252 0.196 0.219 0.207 5.46

ALT2 4.016 2.995 1.977 0.998 0.017 -0.026 0.006 6.45 2.97 0.00
SD 0.134 0.143 0.141 0.149 0.146 0.133 0.134 1.19

ALT3 4.014 2.992 1.978 0.999 0.017 -0.023 0.007 6.61 2.99 0.00
SD 0.139 0.145 0.143 0.150 0.147 0.134 0.136 1.21

900

KL 4.004 2.966 1.992 1.008 0.002 0.009 0.008 6.67 2.99 0.00
SD 0.119 0.125 0.127 0.114 0.107 0.110 0.102 1.02

ALT1 4.018 2.961 1.997 0.999 0.000 0.008 0.014 17.17 2.97 0.00
SD 0.209 0.193 0.184 0.193 0.201 0.186 0.176 3.69

ALT2 4.001 2.966 1.995 1.008 0.002 0.008 0.010 6.50 2.98 0.00
SD 0.117 0.124 0.126 0.107 0.107 0.110 0.099 0.96

ALT3 4.002 2.967 1.992 1.007 0.002 0.009 0.008 6.70 2.97 0.00
SD 0.120 0.129 0.125 0.107 0.111 0.114 0.100 1.03

Simulation results from Scenario 3: mean, standard deviation (SD) of regression coefficients esti-
mates and mean squared prediction error (MSPE), average number of correctly identified zero-valued
regression coefficients(C0) and average number of incorrectly identified zero-valued regression coef-
ficients (I0) under KL, ALT1, ALT2, and ALT3 for sample size N = 300, 600, 900.

Scenario 4: d = 2, Misspecified Covariance

The setup is the same as that in Scenario 3 except for the spatial dependence

structure. Specifically, the error process ε1(·) follows the sinusoid covariance function
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γ(h) = σ2
1 sin(h/cr)cr/h. Moreover, the measurement error terms ε2(·) are indepen-

dently generated from N(0, σ2
2). Let σ2

1 = 16, σ2
2 = 4 and cr = 0.4. The results are

reported in Table 3.6, and similar conclusions can be drawn as Scenario 2.

Table 3.6: Simulation Results from Scenario 4

N Method β1 β2 β3 β4 β5 β6 β7 MSPE C0 I0

300

KL 4.008 2.986 2.018 1.010 -0.008 -0.012 -0.028 5.42 3.00 0.00
SD 0.168 0.183 0.185 0.177 0.167 0.157 0.163 1.53

ALT1 3.983 3.045 2.014 1.009 0.002 -0.019 -0.059 20.54 2.95 0.26
SD 0.366 0.349 0.360 0.293 0.316 0.331 0.318 6.42

ALT2 4.006 2.980 2.017 1.012 -0.016 -0.014 -0.016 5.83 2.97 0.00
SD 0.177 0.198 0.183 0.189 0.178 0.157 0.186 1.58

ALT3 4.006 2.982 2.018 1.010 -0.015 -0.014 -0.012 6.10 2.99 0.00
SD 0.182 0.199 0.184 0.189 0.181 0.161 0.190 1.68

600

KL 4.021 2.996 1.978 1.000 0.009 -0.024 0.004 4.70 2.99 0.00
SD 0.118 0.120 0.123 0.123 0.128 0.114 0.114 0.94

ALT1 4.009 2.986 1.967 0.996 0.006 -0.012 0.046 19.91 2.95 0.03
SD 0.260 0.266 0.246 0.258 0.244 0.241 0.227 5.54

ALT2 4.019 2.999 1.975 1.002 0.009 -0.023 0.007 5.12 2.98 0.00
SD 0.127 0.128 0.131 0.131 0.138 0.121 0.121 0.96

ALT3 4.017 2.997 1.975 1.004 0.009 -0.020 0.007 5.42 2.98 0.00
SD 0.131 0.132 0.136 0.134 0.137 0.121 0.125 1.02

900

KL 3.996 2.971 1.998 1.005 0.001 0.009 0.012 4.71 3.00 0.00
SD 0.103 0.102 0.106 0.092 0.091 0.095 0.088 0.66

ALT1 4.022 2.954 1.997 0.985 -0.022 0.040 0.012 19.68 2.95 0.01
SD 0.215 0.203 0.186 0.203 0.189 0.186 0.193 3.71

ALT2 3.994 2.967 2.000 1.006 0.003 0.005 0.014 5.17 2.98 0.00
SD 0.107 0.109 0.110 0.093 0.097 0.101 0.090 0.73

ALT3 3.996 2.970 1.996 1.004 0.004 0.006 0.011 5.51 2.98 0.00
SD 0.112 0.114 0.109 0.096 0.100 0.105 0.090 0.81

Simulation results from Scenario 4: mean, standard deviation (SD) of regression coefficients esti-
mates and mean squared prediction error (MSPE), average number of correctly identified zero-valued
regression coefficients(C0) and average number of incorrectly identified zero-valued regression coef-
ficients (I0) under KL, ALT1, ALT2, and ALT3 for sample size N = 300, 600, 900.

To choose J and M in practice, we proposed the following method. First, we

increase J until λ̂J/λ̂1 is very small, e.g., λ̂J/λ̂1 < 0.01. Second, we increase M until

σ̂2
T decreases slowly or starts to increase. For the threshold distance ω in the tapering

function, we set it to be equal or slightly smaller than D.
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Chapter 4

DISCUSSION AND FUTURE WORK

4.1 Summary

In this dissertation, we have studied both parametric and semiparametric meth-

ods for parameter estimation, variable selection, and spatial prediction in geostatis-

tics. In Chapter 2, the covariance structure of the error process is assumed to be

parametric (e.g., Matern covariance function) and therefore, the likelihood function

is obtained and maximum likelihood is used for parameter estimation. However, in

order to save computational time, a covariance-tapered likelihood function is used

instead of the likelihood function. Moreover, a penalized method is developed to

carry out variable selection. Combining the two ideas above, we have proposed to

maximize a penalized covariance-tapered likelihood function to conduct variable se-

lection and parameter estimation simultaneously for a spatial linear model. We have

also developed one-step sparse estimation and its counterpart under covariance ta-

pering to approximate the penalized parameter estimates and gained computational

efficiency. Furthermore, we have established asymptotic properties of the parameter

estimates and their approximations, showing consistency, sparsity, and asymptotic

normality. Finite-sample properties have been examined via a simulation study and

we have found that, with direct incorporation of spatial autocorrelation in the pe-

nalized likelihood function, the accuracy of variable selection and the precision of

parameter estimates improve over penalized methods that do not directly account for

spatial dependence.

87



In Chapter 3, the covariance structure of the error process is not pre-specified. We

have developed a nonparametric approach via Karhunen-Loève expansion to model

the error process and a parametric form for the large-scale trend. That is, a prin-

cipled semiparametric approach is adopted for regression parameter estimation in a

spatial linear model. Taking advantage of stationarity of the error process, we devel-

oped a smoothing algorithm to further improve the accuracy of regression parameter

estimation and Kriging. Our simulation study shows that the performance of the

proposed method is close to the maximum likelihood method when the underlying

covariance structure is correctly specified. Moreover, when the underlying covariance

is misspecified, our proposed method performs better than the maximum likelihood

method. Furthermore, the consistency of regression estimates has been established

under certain conditions.

4.2 Future Work

For the algorithm in Section 3.3.1, Edelman et al. (1998) and Peng and Paul

(2009) have investigated its convergence extensively. While the algorithm usually

converges with a proper initial value and large sample size in the simulation study, no

sufficient conditions for the convergence has been established theoretically. We will

leave this question for future study.

Second, it is natural to extend our methods for spatial linear models to spatial-

temporal linear models. Let R be the spatial domain of interest in Rd and T be the

temporal domain of interest in R. Consider a spatial-temporal process {y(s, t) : s ∈

R, t ∈ T} to be modeled as,

y(s, t) = µ(s, t) + ε(s, t),

where µ(s, t) is an unknown mean function at location s and time t, and ε(s, t) is an

error process on the spatial-temporal domain R×T (see, e.g., Stein, 2005). Although
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the spatial-temporal covariance function can be more complicated than the spatial

covariance function, the basic idea for covariance tapering may still apply. That is, if

(s, t) and (s′, t′) are far away from each other and their correlation is believed to be

small, we can a tapering function to re-scale their covariance to zero, and obtain a

sparse matrix to approximate the variance-covariance matrix. Similar to the spatial

case, the computing time can be saved due to the faster inversion of the sparse matrix.

Furthermore, in this dissertation, the error process ε(s) is assumed to be a sta-

tionary isotropic Gaussian process, which can be relaxed in several ways. First,

stationarity can be relaxed to be local stationarity, or non-stationarity. In both case,

Karhunen-Loève expansion will still work, but local Karhunen-Loève expansion not.

Second, the Gaussian process can be relaxed to be other non-Gaussian process. How-

ever, for this case, Karhunen-Loève type expansion appears to be not available yet.

Finally, for the large-scale trend µ(s), we have focused on a linear trend x(s)Tβ

in both Chapter 2 and Chapter 3. However, other types of parametric trend can

be considered for µ(s), as well as nonparametric trend by, for example, spline basis

functions.
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