Repository logo
 

Investigation of liquid cooling on M9506A high density Keysight AXIE chassis

Date

2021

Authors

Gilvey, Zachary Howard, author
Bandhauer, Todd M., advisor
Marchese, Anthony, committee member
Simske, Steve, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

Forced convection air-cooled heat sinks are the dominant cooling method used in the electronics industry, accounting for 86% of high-density cooling in data centers. However, the continual performance increases of electronics equipment are pushing these air-cooled methods to their limit. Fundamental limitations such as acoustics, cooling power consumption, and heat transfer coefficient are being reached while processor power consumption is steadily rising. In this study, a 4U, 5-slot, high density computing box is studied to determine the maximum heat dissipation in its form factor while operating at an ambient air temperature of 50°C. Two liquid cooling technologies were analyzed in this effort and compared against current state-of-the-art air-cooled systems. A new configuration proposed using return jet impingement with dielectric fluid FC72 directly on the integrated circuit die shows up to a 44% reduction in thermal resistance as compared to current microchannel liquid cooled systems, 0.08 K W-1, vs 0.144 K W-1, respectively. In addition, at high ambient temperatures (~45°C), the radiator of the liquid cooled system accounts for two thirds of the thermal resistance from ambient to junction temperature, indicating that a larger heat exchanger outside the current form factor could increase performance further. The efficiency of the chips was modeled with efficiency predictions based on their junction temperature. On a system level, the model showed that by keeping the chassis at 25°C ambient, the overall power consumption was significantly lower by 500W. Furthermore, the failure rate was accounted for when the chip junction temperature was beyond 75°C. FC72 jet impingement on the die showed the best performance to meet the system cooling requirements and kept the chips below 75°C for the highest ambient temperatures but consumed the most pumping power of all of the fluids and configurations investigated. The configuration with microchannels bypassing TIM 2 showed near the same performance as jet impingement with water on the lid and reduced the junction temperature difference by 5°C when compared to baseline. When the fluid was switched from water to a water glycol 50/50 mixture, an additional thermal resistance of 0.010 K W-1 was recorded at the heat sink level and a higher mass flow rate was required for the GC50/50 heat exchanger to achieve its minimum thermal resistance.

Description

Rights Access

Subject

cold plate
high performance cooling
microchannels
heat sink
advanced electronics cooling
jet impingement

Citation

Associated Publications