Repository logo
 

Assessment of the effects of ligamentous injury in the human cervical spine

Abstract

Ligamentous support is critical to constraining motion of the cervical spine. Injuries to the ligamentous structure can allow hypermobility of the spine, which may cause deleterious pressures to be applied to the enveloped neural tissues. These injuries are a common result of head trauma and automobile accidents, particularly those involving whiplash-provoking impacts. The injuries are typically relegated to the facet capsule (FC) and anterior longitudinal (ALL) ligaments following cervical hyperextension trauma, or the flaval (LF) and interspinous (ISL) ligaments following hyperflexion. Impacts sustained with the head turned typically injure the alar ligament. The biomechanical sequelae resulting from each of these specific injuries are currently ill-defined, confounding the treatment process. Furthermore, clinical diagnosis of ligamentous injuries is often accomplished by measuring the range of motion (ROM) of the vertebrae, where current methods have difficulty differentiating between each type of ligamentous injury. Pursuant to enhancing treatment and diagnosis of ligamentous injuries, a finite element (FE) model of the intact human full-cervical (C0-C7) spine was generated from computed tomography (CT) scans of cadaveric human spines. The model enables the quantification of ROM, stresses, and strains, and can be modified to reflect ligamentous injury. In order to validate the model, six human, cadaveric, full-cervical spines were tested under pure ±1.5 Nm moment loadings in the axial rotation, lateral bending, flexion, and extension directions. ROM for each vertebra, facet contact pressures, and cortical strains were experimentally measured. To evaluate injured ligament mechanical properties, a novel methodology was developed where seven alar, fourteen ALL, and twelve LF cadaveric bone-ligament-bone preparations were subjected to a partial-injury inducing, high-speed (50 mm/s) tensile loading. Post-injury stiffnesses and toe region lengths were compared to the pre-injury state for these specimens. These experimental data were incorporated into the FE model to analyze the kinematic and kinetic effects of partial ligamentous injury. For comparison, the model was also adapted to reflect fully injured (transected) ligaments. Injuries simulated at the C5-C6 level included: 1) partial FC injury, 2) full FC injury, 3) partial FC and ALL injury, 4) full FC and ALL injury, 5) partial LF and full ISL jury, 6) full LF and ISL injury, 7) partial FC, ALL, LF, and full ISL injury, and 8) full FC, ALL, LF, and ISL injury. The model was also modified to replicate injury to the right alar ligament. Five cadaveric cervical spines were tested under pure moment conditions with scalpel-sectioning of these ligaments for validation of the full-injury models. Comparisons between the intact and various injury cases were made to determine the biomechanical alterations experienced by the cervical spine due to the specific ligamentous injuries. Variances in ROM and potential impingement on the neural tissues were focused upon. The overarching goals of the study were to identify a unique kinematic response for each specific ligamentous injury to allow for more accurate clinical diagnosis, and to enhance the understanding of the post-injury biomechanical sequelae.

Description

Rights Access

Subject

biomechanics
cervical spine
finite element
kinematics
ligaments
whiplash diagnosis

Citation

Associated Publications