Repository logo

Phototunable block copolymer hydrogels




Huq, Nabila A., author
Bailey, Travis S., advisor
Kipper, Matthew J., committee member
Reynolds, Melissa M., committee member
Snow, Christopher D., committee member

Journal Title

Journal ISSN

Volume Title


Thermoplastic elastomer (TPE) hydrogel networks, based on swelling of nanostructured blends of amphiphilic, sphere-forming AB diblock and ABA triblock copolymers, provide direct access to thermally processable plastics that exhibit exceptional elastic recovery and fatigue resistance even after hydration. In such two-component systems, the ratio of ABA to AB block copolymer (BCP) is used to control the resultant swelling ratio, system modulus, and overall mechanical response. This dissertation focuses on developing material strategies through which adjustment of such AB/ABA ratios, and thus the resultant properties, can be accomplished using light. The chapters within capture the manipulation of a photoreactive AB diblock copolymer micelle-like spheres to controllably generate ABA triblock copolymer and the network nanostructure in situ, both in the melt state and after dispersal in solution. This was accomplished using efficient photoinduced [4 + 4]cycloaddition (λ = 365 nm) between terminal anthracene units on a ω-anthracenylpolystyrene-b-poly(ethylene oxide) diblock copolymer precursor to produce the desired amount of polystyrene-b-poly(ethylene oxide)-b-polystyrene triblock copolymer. This direct, UV-mediated handle on tethering between adjacent micelles in the BCP matrix was found to be capable of controllably manipulating hydrogel material properties using (1) duration of irradiation, (2) hydration level and consequent micelle spacing upon exposure, and (3) photopatterning strategies to spatially direct swelling and mechanics. This level of control yielded an array of hydrogels, ranging from those irradiated in the dry melt to produce high-modulus, elastic materials suited for fibrocartilage repair and replacement, to moldable or injectable precursor solutions irradiated into soft, conformally shaped TPE hydrogels ideal for use in high contact applications such as wound healing. The development and scope of this versatile new photoactive BCP system is enclosed.


Rights Access


block copolymer
thermoplastic elastomer


Associated Publications