Repository logo
 

The conjugacy extension problem

dc.contributor.authorAfandi, Rebecca, author
dc.contributor.authorHulpke, Alexander, advisor
dc.contributor.authorAchter, Jeff, committee member
dc.contributor.authorPries, Rachel, committee member
dc.contributor.authorRajopadhye, Sanjay, committee member
dc.date.accessioned2021-09-06T10:26:00Z
dc.date.available2021-09-06T10:26:00Z
dc.date.issued2021
dc.description.abstractIn this dissertation, we consider R-conjugacy of integral matrices for various commutative rings R. An existence theorem of Guralnick states that integral matrices which are Zp-conjugate for every prime p are conjugate over some algebraic extension of Z. We refer to the problem of determining this algebraic extension as the conjugacy extension problem. We will describe our contributions to solving this problem. We discuss how a correspondence between Z-conjugacy classes of matrices and certain fractional ideal classes can be extended to the context of R-conjugacy for R an integral domain. In the case of integral matrices with a fixed irreducible characteristic polynomial, this theory allows us to implement an algorithm which tests for conjugacy of these matrices over the ring of integers of a specified number field. We also describe how class fields can be used to solve the conjugacy extension problem in some examples.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierAfandi_colostate_0053A_16653.pdf
dc.identifier.urihttps://hdl.handle.net/10217/233799
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2020-
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectconjugacy
dc.subjectmatrix
dc.subjectextension
dc.subjectalgebraic
dc.titleThe conjugacy extension problem
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineMathematics
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Afandi_colostate_0053A_16653.pdf
Size:
532.34 KB
Format:
Adobe Portable Document Format