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ABSTRACT

THE CONJUGACY EXTENSION PROBLEM

In this dissertation, we consider R-conjugacy of integral matrices for various commutative

rings R. An existence theorem of Guralnick states that integral matrices which are Zp-conjugate

for every prime p are conjugate over some algebraic extension of Z. We refer to the problem of

determining this algebraic extension as the conjugacy extension problem. We will describe our

contributions to solving this problem.

We discuss how a correspondence between Z-conjugacy classes of matrices and certain frac-

tional ideal classes can be extended to the context of R-conjugacy for R an integral domain. In

the case of integral matrices with a fixed irreducible characteristic polynomial, this theory allows

us to implement an algorithm which tests for conjugacy of these matrices over the ring of integers

of a specified number field. We also describe how class fields can be used to solve the conjugacy

extension problem in some examples.
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Chapter 1

Conjugacy over a ring

The topic of matrix conjugacy, or similarity, is one of interest in many fields, as similar matrices

may be interpreted as linear maps which are equivalent up to a change in basis. Matrix similarity is

a powerful idea with several applications. For instance, diagonalization is a useful tool for solving

systems of linear ODEs.

The theory of matrix conjugacy over a field is well-established and lies within the realm of

linear algebra. A question of interest is whether this theory generalizes when we consider matrix

conjugacy over a ring. We define precisely what we mean by this.

Definition 1.0.1. For a ring R, we say that A,B ∈ Rn×n are R-conjugate or conjugate over R if

there is a matrix C ∈ GLn(R) = {C ∈ Rn×n : det(C) ∈ R×} such that C−1AC = B. Note that

this condition on the determinant of C ensures that C−1 has coefficients in R. The R-conjugacy

class of a matrix A is the equivalence class of A under R-conjugacy. We write A ∼R B to denote

that A and B are R-conjugate.

Much recent progress has been made in describing matrix conjugacy over the integers (see

[24], [11], and [18]). For integral matrices A and B, we will also say that A and B are integrally

conjugate to mean they are Z-conjugate.

Before discussing what is known about integral conjugacy, we will summarize the more classi-

cal theory of conjugacy over a field. We will be especially interested in Q-conjugacy, and we will

say that A and B are rationally conjugate if they are Q-conjugate.

For a field K, suppose we wish to describe the K-conjugacy class of a matrix A ∈ Kn×n. One

may do this by finding its rational canonical form, which depends to some extent on the minimal

and characteristic polynomials of A. Considering Kn as a K[x]-module via the linear transforma-

tion A, we have that Kn ∼= K[x]/(f1)⊕K[x]/(f2)⊕ ...⊕K[x]/(fm) as K[x]-modules since K[x]

is a principal ideal domain [10]. Here, the fi are polynomials in K[x] such that fi divides fi+1, the
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minimal polynomial of the matrix A is fm, and the product

m∏

i=1

fi is the characteristic polynomial

of A [10].

Determining whether matrices are conjugate over a field is equivalent to computing a particular

normal form called the rational canonical form [10]. Matrices are conjugate over a field if and

only if they have the same rational canonical form [10]. The benefit of using the rational canonical

form is that we do not require that our field be algebraically closed. In particular, one can find the

rational canonical form of matrices defined over the field of rational numbers, hence its name.

For fi = xd+ cd−1x
d−1+ ...+ c1x+ c0, letting Cfi denote the corresponding companion matrix

of fi, we have

Cfi =




0 0 ... 0 −c0
1 0 ... 0 −c1
0 1 .... 0 −c2
...

...
. . .

...
...

0 0 .... 1 −cd−1




.

Note that Cfi has characteristic polynomial fi.

For a matrix A ∈ Kn×n, if Kn ∼= K[x]/(f1)⊕K[x]/(f2)⊕ ...⊕K[x]/(fm) as K[x]-modules

(where x acts via A), then the rational canonical form of A is the block-diagonal matrix with the

Cfi as blocks, conventionally ordered so that fi | fi+1 moving down the diagonal. A standard linear

algebra result is that two matrices are conjugate over a field K if and only if they have the same

rational canonical form [10]. Thus, determining whether two matrices are conjugate over a field

only requires computation of the rational canonical form.

We will restrict ourselves to considering matrices which have square-free characteristic poly-

nomial. In this case, the fact that the minimal polynomial and characteristic polynomial of a

matrix share the same roots means that the square-free characteristic polynomial coincides with

the minimal polynomial [10]. Thus, the only possible rational canonical form for such a matrix is

the companion matrix of the characteristic polynomial, and so matrices with the same square-free

characteristic polynomial are conjugate over a field.
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Throughout this thesis, we will consider R-conjugacy of integral matrices for various rings R.

The rings we are primarily interested in include Z, the ring of p-adic integers (elements of this ring

are infinite tuples (z1, z2, .., zi, ...) such that zi ∈ Z/piZ and zi+1 ≡ zi (mod pi) ), which is denoted

Zp, and algebraic extensions of Z. We may consider R-conjugacy of integral matrices since there

is an embedding of Z into each of the rings R we consider.

For any of the previously mentioned rings R, we will consider R-conjugacy of matrices which

share a given square-free characteristic polynomial f . From here on, we let Mf denote the set

defined by Mf = {A ∈ Zn×n : det(xI − A) = f} for a monic square-free integral polynomial f .

If K = Frac(R), the fraction field of R, then there is just a single K-conjugacy class within Mf .

However, it can happen that the set Mf consists of multiple R-conjugacy classes. Also, integral

matrices cannot be R-conjugate if they are not first Frac(R)-conjugate, so it is enough to consider

R-conjugacy among the matrices in Mf .

1.1 The Latimer and MacDuffee correspondence for integral

conjugacy

Let us now discuss what is known about conjugacy over the integers. Since we cannot make

use of the standard results of linear algebra, the problem of integral conjugacy is much harder. We

now illustrate the difficulty which arises when considering Z-conjugacy. For the polynomial

f = (x2 + 4x + 7)(x3 − 9x2 − 3x − 1), there are 852 GL5(Z)-conjugacy classes which partition

Mf , while there is just a single GL5(Q)-conjugacy class. We will later discuss this in more detail

in Example 1.1.9. First, we must delve into the theory of integral conjugacy.

For a fixed square-free characteristic polynomial f of degree n and root α, Latimer and Mac-

Duffee gave a theoretical correspondence between Z-conjugacy classes within Mf , and isomor-

phism classes of Z[α]-modules in Q(α) which are also free Z-modules of rank n [21].

One may consider Zn to be a Z[α]-module where α acts as a matrix A with characteristic

polynomial f . We may also consider Zn as a Z[α]-module via another matrixB with characteristic

polynomial f . The two resulting modules are isomorphic exactly when the matrices A and B are
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GLn(Z)-conjugate [5]. Then it is not too surprising that GLn(Z)-conjugacy classes of matrices are

related to Z[α]-isomorphism classes of the modules previously described.

In the case that f is irreducible, Taussky made the result more concrete by providing an explicit

bijection [32]. Marseglia [24] and Husert [18] independently generalized Taussky’s bijection to the

square-free case. We will discuss the bijections in each case.

1.1.1 Irreducible characteristic polynomial

Before discussing Taussky’s contributions to the Latimer and MacDuffee correspondence in

the irreducible case, we must define a few terms. The following definitions are standard and can

be found in [26].

Definition 1.1.1. Let R be an integral domain with field of fractions K. Then a fractional R-ideal

of K is a non-zero finitely generated R-submodule of K.

While any ideal of R is a fractional R-ideal, a fractional ideal is more general than an ideal

since its elements need not be in R, but may be in its field of fractions. The ring R is itself a

fractional R-ideal, called the trivial ideal.

Beginning with an irreducible polynomial f , we let K = Q(α) ∼= Q[x]/(f). For the purposes

of Taussky’s bijection, we are concerned with Z[α]-fractional ideals of the field K. It is easy to see

that Z[α] is a free Z-module of rank n = [K : Q] since it has Z-basis {1, α, ..., αn−1}. Considering

any fractional Z[α]-ideal I as a Z-module, it follows that I is also free of rank n.

Definition 1.1.2. We say fractional R-ideals I and J are equivalent if there exists an element

k ∈ K = Frac(R) such that kI = J . The ideal class of a fractional ideal I is the equivalence

class of I under the equivalence of fractional ideals.

This notion of ideal class equivalence is the same as R-module isomorphism [5]. For each

fractional ideal class, one can clear denominators of a basis of a given representative to find a

representative which is an R-ideal.
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Under the operation induced by ideal multiplication of the representatives, the set of fractional

ideal classes form a monoid with the trivial ideal R as identity. We now discuss those ideal classes

which are invertible.

Theorem 1.1.3. For a ringR, the invertible fractional ideal classes form a group called the Picard

group of R and denoted by Pic(R). This group is finite. Of particular importance is Pic(OK),

where OK is the ring of integers of a field K. In this case, Pic(OK) is called the ideal class group

of K, and its order is called the class number of K.

Since we will be concerned with fractional Z[α]-ideals, we must take care when Z[α] is a

proper subring of OK . Since OK is also a Z[α]-ideal, the set of all Z[α]-ideals will contain at least

the elements of Pic(Z[α]) and Pic(OK) when Z[α] ( OK . We will return to a discussion of this

subtlety when we discuss the more general case of square-free characteristic polynomial. For now,

let us denote the set of fractional Z[α]-ideals in Q(α) by I(α).

We now describe Taussky’s bijection, which provides more detail to Latimer and MacDuffee’s

correspondence.

Let ϕ : I(α)/∼=Z[α] → Mf/∼Z be defined in the following way. For a fractional Z[α]-ideal

class, pick a representative I and a Z-basis {w1, .., wn} of I . Define ϕ([I]) = [A] where A is the

multiplication-by-α matrix with respect to this Z-basis. One may show that ϕ does not depend on

the choice of representative or Z-basis.

Theorem 1.1.4. (Latimer and MacDuffee, Taussky) [21], [32]

Let f ∈ Z[x] be an irreducible monic polynomial of degree n and root α. Then there is a one-

to-one correspondence between the Z-conjugacy classes of matrices within Mf and classes of

fractional ideals in I(α). Furthermore, the map ϕ defined above gives this bijection.

Taussky showed that ϕ is an injective map and that for A = (aij) ∈ Mf , the inverse image

of [A] can be found as follows. Let w = (w1, ..., wn)
t be an eigenvector of A with eigenvalue α

and let I = w1Z ⊕ ... ⊕ wnZ. Since αw = Aw, we have that αwi =
n∑

j=1

ai,jwj ∈ I , and so I is a

fractional Z[α]-ideal.
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We now illustrate in an example how to use Taussky’s bijection to obtain information about

GLn(Z)-conjugacy. Using Magma, we may obtain Z-bases for representatives of the Z[α]-ideal

classes. From there, it is straightforward to compute the matrix which represents multiplication-

by-α with respect to this Z-basis and list the representatives of the GLn(Z)-conjugacy classes.

Example 1.1.5. Let f = x2 − 10. The number field K = Q(α) ∼= Q[x]/(f) has class number

2. In this case, OK = Z[α] and I(α) = Pic(OK), the ideal class group. In Magma, we find

that Z[α] = 1Z ⊕ αZ and the non-principal fractional ideal 2Z ⊕ αZ are representatives for the

elements in Pic(OK).

We obtain representatives for the GL2(Q)-conjugacy classes by computing the multiplication-

by-α matrices. We have

α · 1 = 0 · 1 + 1 · α

α2 = 10 · 1 + 0 · α

and

α · 2 = 0 · 2 + 2 · α

α2 = 5 · 2 + 0 · α.

Thus, the GL2(Z)-conjugacy classes of matrices within Mf for f = x2 − 10 are given by the set

of representatives 






0 1

10 0


 ,




0 2

5 0







.

In the previous example, one of the matrix representatives is the transpose of the companion

matrix of f = x2 + 10. It is easy to check that under Taussky’s bijection, Z[α] always corresponds

to Ct
f . This is because (1, α, ..., αn−1)t is an eigenvector of Ct

f with eigenvalue α.
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1.1.2 A generalization to square-free characteristic polynomial

We now discuss Marseglia’s generalization of the previous correspondence to matrices with

square-free characteristic polynomial [24]. In order to state the generalized correspondence, we

introduce some preliminary definitions, following Marseglia’s notational conventions.

We will now consider Z-conjugacy of matrices with characteristic polynomial f =
m∏

i=1

fi.

For the remainder of the chapter, we will let K denote the corresponding finite-dimensional Q-

algebra K =
m∏

i=1

Ki where Ki = Q[x]/(fi). If αi denotes a root of fi, then each Ki is isomorphic

to the number field Q(αi). Operations in this Q-algebra include componentwise addition and

multiplication, and Q acts on an element of K by scalar multiplication.

Definition 1.1.6. [24]

Let K be a Q-algebra. An order in K, or a K-order is a commutative subring of K with unity

which has no non-zero nilpotent elements, and which is a finitely generated Z-module.

We will describe some K-orders of interest. First, recall that an element is called an algebraic

integer if it is a root of a monic polynomial with coefficients in Z. An algebraic integer in K =
m∏

i=1

Q(αi) is an element of the form (r1, .., rm) such that (p(r1), .., p(rm)) = (0, ..., 0) for some

polynomial p(x) ∈ Z[x].

Let OK denote the ring of algebraic integers of K. This is the maximal order in K with respect

to inclusion. In the case that K =
∏
Ki, we have that OK =

∏OKi
where OKi

is the ring of

integers of Ki [24].

We denote another important K-order by Z[α] where α = (α1, ...αm). We define Z[α] by

Z[α] = {(z1 + z2α1 + ...+ znα
1−n
1 , ..., z1 + z2αm + ...+ znα

1−n
m ) : zi ∈ Z}.

Identifying an element z ∈ Z with the constant tuple (z, ..., z) inK, we see that the above coincides

with the usual definition of Z[α].
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It is clear that Z[α] ⊆ OK since α and all integral polynomials in α are algebraic integers.

A non-maximal order cannot always be written as a product of orders in each of the fields Ki.

Husert [18] provides the following example of a K-order that is not a product of Ki-orders.

Example 1.1.7. Consider f(x) = (x + 1)(x2 + 1), which is associated to the Q-algebra K =

Q × Q(i). Then α = (−1, i) and Z[α] = {(x − y, x + iy) : x, y ∈ Z}. This order is not equal to

Z×Z[i], nor is it a product of Ki-orders. To see this, note that (0, 1) /∈ Z[α] since (0, 1) cannot be

expressed as (x− y, x+ iy) for integers x and y. Since every Ki-order contains unity, Z[α] cannot

be a product of Ki-orders.

The ring of integers of K is the product Z× Z[i]. In this case, we have Z[(1, i)] ( Z× Z[i].

This observation hints at the fact that when Z[α] is a proper subring of OK , the generalized

correspondence is not as straightforward as building up from the irreducible case.

In general, there can be other intermediate rings between Z[α] and OK . Any ring R satisfying

Z[α] ⊆ R ⊆ OK is called an over-order of Z[α].

For any over-order R of Z[α], a fractional R-ideal is an R-module which is a free Z-module

of rank n. Writing an R-ideal I with respect to a Z-basis {vi}, we have I =
n⊕

i=1

viZ. Here, the vi

are m-tuples since I is an object within the algebra

m∏

i=1

Ki. As before, fractional R-ideals I and J

are in the same equivalence classes if they are isomorphic as R-modules.

In the irreducible case, we noted that fractional ideals are equivalent if one fractional ideal is a

scalar multiple of the other. When K is a product of number fields, the only difference is that we

must avoid zero-divisors. In other words, we say I and J are equivalent if I = kJ for a non-zero-

divisor k ∈ K. Again, let us denote the set of all fractional Z[α]-ideals by I(α). This set is finite,

and we denote its order by #I(α).

In the case that R = OK , the maximal order in K with respect to inclusion, all of the R-

ideals are invertible and so the set of R-ideal classes forms a group, which we also denote by

Pic(OK) [24]. It is known that for K =
∏
Ki, we have Pic(OK) =

∏
Pic(OKi

) [29].
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For any over-order R of Z[α], the set of invertible R-ideal classes forms a finite group with

identity R, which we denote by Pic(R). The class number of K divides the order Pic(R) because

the map

Pic(R) → Pic(OK)

I 7→ IOK

is surjective (see Corollary 2.1.11. of [9]).

Lemma 3.6 of [24] asserts that I(α) ⊇ ⊔
Pic(R) where R ranges over the over-orders of Z[α].

According to Proposition 3.7 of [24], if OK/Z[α] is cyclic, meaning that OK = Z[α] + xZ[α] for

some x ∈ OK , then I(α) = ⊔
Pic(R). For instance OK/Z is cyclic whenever f is quadratic, and

so in this case, each Z[α]-ideal lies in Pic(R) for some over-order R.

In general, I(α) need not only consist of invertible fractional ideals. Marseglia provided

an algorithm for computing I(α), which he refers to as the ideal class monoid and denotes by

ICM(R) [24]. This is a new contribution because previously it was only known how to compute

the invertible fractional ideals [24].

We may now discuss Marseglia’s bijection, which generalizes Taussky’s bijection and which

makes the Latimer and MacDuffee correspondence more concrete.

For f square-free, we define the map ϕ : I(α)/∼Z[α] → Mf/∼Z in the same way as in

Taussky’s bijection. In other words, ϕ([I]) = [A] where A is the multiplication-by-α matrix with

respect to some Z-basis for I .

Theorem 1.1.8. (Latimer and MacDuffee, Marseglia) [21], [24]

Let f(x) =
m∏

i=1

fi ∈ Z[x] be a square-free polynomial. Let α = (α1, ..., αm) denote the tuple of

roots of the irreducible factors. Then there is a one-to-one correspondence between the integer

similarity classes of matrices in Mf and elements in I(α). Furthermore, the map ϕ defined above

gives this bijection.
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There are some subtleties in the proof that arise from the fact that elements in I(α) are m-

tuples. For instance, finding ϕ−1([A]) for A ∈ Mf is a little more involved than in Taussky’s bi-

jection. We must find eigenvectors vi corresponding to αi for i = 1, ...,m. If vi = (v1i, v2i, ..., vni)
t,

then the inverse image of [A] is ϕ−1([A]) = (v11, ..., v1m)Z⊕ ...⊕ (vn1, ..., vnm)Z [24].

Together with Marseglia’s algorithms for computing I(α), Theorem 1.1.8 provides a way of

obtaining the conjugacy classes for matrices in the square-free case. Marseglia implemented an

algorithm in Magma [2] which uses this correspondence to compute GLn(Z)-conjugacy classes

for matrices in Mf for f square-free [24].

As mentioned before, when the order Z[α] is not maximal, then not all elements in I(α)

can be expressed as a product of elements in I(αi). We illustrate how this is related to block-

diagonalization of matrices in the next example.

Example 1.1.9. Consider matrices with square-free characteristic polynomial f = f1f2 where

f1 = x2 + 4x+ 7 and f2 = x3 − 9x2 − 3x− 1. Let αi denote the root of fi, R = Z[(α1, α2)], and

Ri = Z[αi]. The ordersRi are not maximal inKi. We have thatR ⊂ R1×R2 ( OK1×OK2 = OK .

Since R = Z[(α1, α2)] is not maximal, R is not necessarily a product of orders in the Ki.

One can compute that #I(α1) = 2 and #I(α2) = 6. If R could be written as a product of

orders, then there would be 12R-ideal classes. In this situation, we could write the representatives

of the GL5(Z)-conjugacy classes as block-diagonal matrices with blocks in Mfi . However, we will

see that not every matrix is Z-conjugate to such a block-diagonal matrix.

Consider A =




−1 2 3 2 4

−2 −3 0 0 −4

0 0 0 −1 −4

0 0 1 0 2

0 0 0 2 9




, which has characteristic polynomial f .

To attempt to block-diagonalize A, we compute the A-invariant Z-modules Ni := Null(fi(A)).

If the union of the Ni span Z5, then the basis elements of the Ni may be used to create a change of

basis matrix which block-diagonalizes A.
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We find that N1 = Null(f1(A)) has Z-basis {(1, 0, 0, 0, 0)t, (0,−1, 0, 0, 0)t} and

N2 has Z-basis {(6,−1,−10, 0, 8)t, (1, 0, 1, 1− 2)t, (−1, 0,−2, 0, 2)t}.

The matrix with these basis elements as columns has determinant −4. Thus, A is not Z-

conjugate to a block-diagonal matrix. Then there are more than the 12 R-ideal classes which

we can build up from the irreducible case, meaning that R is not a product of orders in Ki.

Marseglia computed that there are 852 R-ideal classes and, thus, 852 GL5(Z)-conjugacy

classes within Mf .

Note that Eick, Hofmann, and O’Brien [11] also developed an algorithm for computing the

GLn(Z)-conjugacy classes of integral matrices. Their algorithm is based on ideas suggested by

Grunewald in [16]. Instead of using the Latimer and MacDuffee correspondence, the algorithm

given in [11] relies on isomorphism-testing of certain submodules.

These algorithms can be used to efficiently compute conjugacy classes in many but not all

cases. It seems that the complexity of these algorithms is exponential (for more discussion on

this, see section 5.1.2). One potential difficulty is computing the ideal class group in a number

field, for instance when the discriminant of the minimal polynomial is very large [11]. Another

obstacle arises if the number of submodules which may need to be constructed is very large [11].

The algorithm in [11] is more general than in [24] since it applies to matrices with non-square-free

characteristic polynomial, but the algorithm in [24] had a shorter running time in the square-free

case in several examples (see Table 3 of [24]).

1.2 Connections to local conjugacy

While the previous results answer the integer conjugacy problem to a large extent, computa-

tions can still be unwieldy. We will therefore discuss conjugacy over various local rings and how

this is connected to integer conjugacy. For instance, one may reduce a matrix modulo a prime p

and work with conjugacy over Fp, the finite field of order p. If there is a matrix C ∈ GLn(Z)

which conjugates A to B, then this means that AC = CB with det(C) = ±1. Then if A and B are

integrally similar, their reductions modulo any prime p are similar over Fp.
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A quick way to see that matrices are not integrally conjugate is to show that they have different

rational canonical forms over Fp for some prime p. If we have fixed a prime p, we will write A to

indicate the reduction of the integral matrix A modulo p.

Example 1.2.1. Consider A =




−1 3

3 −10


 and B =




0 −1

1 −11


, which have irreducible

characteristic polynomial x2 + 11x+ 1. Since A and B share the same irreducible characteristic

polynomial, they are rationally conjugate. In fact, C =




0 3

1 −10


 ∈ GL2(Q) conjugates A to

B. Note that B is the rational canonical form of A.

Since 3 | det(C), reducing C modulo any prime p besides 3 yields a conjugating matrix in Fp.

We must still consider p = 3. Reducing modulo 3, we get A =




2 0

0 2


 and B =




0 2

1 1


.

Since A is a scalar matrix, it is not conjugate to B over F3. Thus, A and B are not integrally

conjugate.

Since the characteristic polynomial factors as (x + 1)2 over F3, we no longer have just one

possible rational canonical form. Actually, A and B give the two distinct rational canonical forms

of matrices with characteristic polynomial f over F3. This tells us that are at least two different

GL2(Z)-conjugacy classes.

While integral conjugacy implies Fp-conjugacy for all primes p, the converse does not hold, as

we see in the following example from [25].

Example 1.2.2. The following is an example of matrices which are Fp-conjugate for every prime

p but are not Z-conjugate.

Consider the matrices A =




0 −6

1 0


 and B =




0 2

−3 0


, which have characteristic

polynomial x2 + 6.
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The matrix C1 =




−3 0

0 1


 conjugates A to B and satisfies det(C1) /∈ (2). Then C1 conju-

gates A to B over Fp for all primes p 6= 2.

On the other hand, the matrix C2 =




0 2

1 0


 conjugates A to B and has det(C2) /∈ (3).

Then A ∼ B over Fp for all primes p.

However, if there were a conjugating matrix C =




a b

c d


 in GL2(Z), it would have to

satisfy the system

a = −3d

b = 2c

ad− bc = ±1,

which is equivalent to satisfying 2c2 + 3d2 = 1. Clearly, this equation has no integer solution.

Thus, A and B are not GL2(Z)-conjugate.

Perhaps the previous example is not very surprising, for if there is a matrix C satisfying AC =

CB and det(C) = ±1, then these equations hold modulo any power of p. Then a natural question

to ask is whether Zp-conjugacy for every prime p implies integral conjugacy. We explore Zp-

conjugacy and consider this question more in the next chapter.

In Chapter 2, we discuss a theorem of Guralnick, which tells us that if A and B are conjugate

over Zp for every prime p, then they are conjugate over some integral extension of Z [17]. This

result is an existence theorem, as it is based on a non-constructive method by Dade outlined in [7].

We will refer to the question of determining this extension as the conjugacy extension problem.

The focus of the remainder of the thesis is to make contributions to solving this problem.

In Chapter 3, we disucss Dade’s method for how one might obtain the extension as in Gu-

ralnick’s theorem. As we will see, the method can result in an extension of larger degree than we
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would like. We also discuss quadratic forms as a way to approach the conjugacy extension problem

for two-by-two matrices.

We generalize the Latimer and MacDuffee correspondence to apply to conjugacy over integral

domains in Chapter 4. This is helpful in solving the conjugacy extension problem since it allows

us to translate the question of conjugacy over an algebra extension to a question about an extension

of ideals.

In Chapter 5, we outline how the generalized correspondence can be used to give an algorithm

for testing whether matrices are conjugate over a given extension. We were able to implement an

algorithm for matrices in Mf for f irreducible, but some obstacles arise in the square-free case

when considering conjugacy over an extension. We also provide a method which makes use of

class fields in searching for extensions over which matrices are conjugate.

We summarize our results in Chapter 6 and provide some examples in which the method with

class fields worked. We show that the Hilbert class field does not necessarily answer the conjugacy

extension problem, so we also list some open problems.

14



Chapter 2

Local conjugacy

The Hasse principle, or the local-global principle, is a philosophy in mathematics which says

that global information can be obtained from local information at every prime (see Chapter VI

of [26]). In other words, the idea of the Hasse principle is that if a property holds modulo all

powers of p for every prime p, then the property should hold in characteristic 0. It is desirable, but

not guaranteed, that the local-global principle holds, since it is typically easier to work locally and

since usually only finitely many primes need to be considered.

In this chapter, we will consider conjugacy over the ring Z/paZ for a natural number a. For

a fixed prime p, one may consider conjugacy for all such rings as a ranges over N by studying

conjugacy over Zp, the ring of p-adic integers. We will see that Zp-conjugacy is equivalent to Z(p)-

conjugacy, where Z(p) denotes the localization of Z at (p). We will refer to conjugacy over Zp or

Z(p) as local conjugacy. In this section, we explore the relationship between local conjugacy and

conjugacy over Z.

Fix a prime p and let R be one of aforementioned rings. For A,B ∈ Zn×n, we are concerned

with solutions V ∈ Rn×n to

AV = V B with det(V ) /∈ (p). (2.1)

Here, we identify A and B as having entries in the appropriate ring through embedding or by

reducing modulo pa. We will say that (2.1) has a solution over R if there is a V ∈ Rn×n satisfying

(2.1). Note that having a solution to (2.1) when R = Z does not imply that V ∈ GLn(Z) since we

only require det(V ) /∈ (p) and so V −1 is not necessarily integral. We have rewritten V −1AV = B

as AV = V B to make more clear that when V is a solution over Z to (2.1), it not necessarily an

element of GLn(Z) which conjugates A to B. However, having a solution V to (2.1) over the other

rings implies that V ∈ GLn(R).
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We wish to explore the ways in which the existence of solutions to over these different rings

are related. For instance, it is easy to see that there is a solution over Z(p) iff there exists a solution

over Z. You can clear denominators of the solution over the localization, and you will still have a

determinant not in (p). Of course, the converse holds as a solution over Z yields a solution over

Z(p), since Z naturally embeds in the localization.

We may also consider solutions over Zp in relation to solutions over Z/paZ. One could either

think of a matrix in Zn×n
p as having entries which are infinite tuples or by considering an infinite

sequence of matrices defined over the rings Z/paZ as a ranges through N. Since the components

of an element in Zp must satisfy some compatibility requirements, the sequence of matrices must

do so also.

Definition 2.0.1. We define a sequence of lifts for (2.1) to be a sequence {C1, C2, ..., Ca, ...} such

that Ca is a solution to (2.1) for R = Z/paZ and Ca+1 (mod pa) ≡ Ca. We say that Ca+1 is a lift

of Ca.

Definition 2.0.2. We say that A and B are p-adically conjugate if there is a matrix in Zn×n
p which

conjugates A to B. This is equivalent to there being a sequence of lifts for (2.1).

Before discussing the relationships among conjugacy over these various rings, we describe a

method for lifting solutions.

2.1 Lifting conjugating matrices

Suppose Cpa ∈ Zn×n is a solution to AC ≡ CB (mod pa) with det(Cpa) /∈ (p). Then Cpa

conjugates A to B over Z/paZ×. Note that this means that ACpa − CpaB = paD for some

D ∈ Zn×n.

We wish to lift, if possible, Cpa to a matrix, call it Cpa+1 , which conjugates A to B over

Z/pa+1Z. Such a lift must satisfy Cpa+1 ≡ Cpa (mod pa), so we know that Cpa+1 is of the form

Cpa + paX for some X ∈ Zn×n.
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If such a lift Cpa+1 were to exist, we would have that ACpa+1 − Cpa+1B = pa+1Y for some

Y ∈ Zn×n, so that

pa+1Y = ACpa+1 − Cpa+1B

= A(Cpa + paX)− (Cpa + paX)B

= ACpa − CpaB + pa(AX −XB)

= paD + pa(AX −XB),

from which we obtain

pY = D + (AX −XB).

In order to find a lift, we must find anX ∈ Zn×n withAX−XB ≡ −D (mod p). Since we are

assuming that det(Cpa) /∈ (p), we will still have that det(Cpa+1) /∈ (p). Thus, obtaining a lift comes

down to solving a linear system over Fp. We implemented this lifting algorithm in GAP [15].

Lifts do not necessarily exist, even for matrices which are integrally conjugate, as seen in the

next example.

Example 2.1.1. Let A =




−1 3

3 −10


 and B =




11 3

−81 −22


.

These matrices have irreducible characteristic polynomial x2+11x+1. Since A ≡ B modulo

3, we have that C3 = I conjugates A to B over F3.

If we wish to find C9, a lift of C3 to Z/9Z, we must solve the equation

AX −XB ≡ −D (mod 3)

where

D =
1

3
(AC3 − C3B) =




−4 0

28 4


 .
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We may describe the linear transformation X 7→ AX −XB by the four-by-four matrix

T =




−12 81 3 0

−3 21 0 3

3 0 −21 81

0 3 −3 12




.

Then solving Equation 2.2 is equivalent to solving Tx = (4, 0,−28,−4)t ≡ (1, 0, 2, 2)t (modulo 3).

There is no solution since T is equivalent to the zero matrix modulo 3, so the identity matrix has

no lift in Z/9Z.

This does not mean that A and B are not conjugate modulo 9. The matrices A and B are

actually GL2(Z)-conjugate with conjugating matrix C =




−7 −1

−1 0


. Reducing C modulo 3a

yields a chain of lifts.

We now discuss how conjugacy over the localization, Z(p), and the p-adic integers, Zp, are

related.

Lemma 2.1.2. If V is a solution over the localization Z(p), then defining Ca := V (mod pa) yields

a chain of lifts {C1, .., Ca, ...}. Thus a solution over Z(p) implies a solution over Zp.

Remark: A straightforward way to justify the lemma is to note that Zp is the completion of

Z(p) with respect to the p-adic norm. In the next proof, we take a different perspective and more

concretely show that an element in the localization corresponds to a sequence of lifts in the rings

Z/paZ.

Proof:

Let a
b

be an entry in lowest terms of a solution V to (2.1) over Z(p). We discuss how to lift this

entry, since the matrix can be lifted componentwise. We have that a
b
/∈ Z(p) so that p ∤ b. Then

(b, pi) = 1 for any i ∈ N, implying that b ∈ Z/piZ×. Then there is a unique solution xi to bxi = a

in Z/piZ×. The corresponding entry to a
b

in Ci is xi.
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We now show xi+1(mod pi) ≡ xi to prove that we get a chain of lifts. We have bxi+1 − a =

p(i+1)k. Let xi+1(mod pi) = r where xi+1 = piq + r. To show r = xi, we have

bxi+1 − a = p(i+1)k

b(piq + r)− a = p(i+1)k

br − a = p(i+1)k − bpiq

br − a = pi(pk − bq)

Then br ≡ a (mod pi), but we said that xi is the unique solution, so xi+1 (mod pi) = r = xi.

�

One may ask whether the converse of Lemma 2.1.2 holds. In other words, is it true that having

a solution over over Zp will imply a solution over Z(p)? The converse follows from a result of

Guralnick [17]. We first need a lemma.

Lemma 2.1.3. (See Lemma 3 in [17].)

Let T : Zn → Zn a linear map with rank r, and denote the image of T by Im(T ). Fix a prime

p. Pick a ∈ N such that there exists an r × r minor of T with determinant not in (pa). Then the

chosen a satisfies paZn ∩ Im(T ) ⊆ pIm(T ).

The proof follows from the Artin-Rees lemma (see page 255 of [35]). In the proof of Propo-

sition 2.2.4, we will show the details for proving this inclusion when a = 1 for a particular linear

map and for certain primes.

The next theorem is stated more generally as Theorem 4 in [17]. We may restate the theorem

and apply it to our situation since Z(p) is a principal ideal domain.

Theorem 2.1.4. [17] There exists an a ∈ N such that (2.1) has a solution over Z/paZ if and only

if (2.1) has a solution over Z.
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Proof:

A solution over Z may be reduced modulo pa to get a solution over Z/paZ.

For the other direction, identify A and B as vectors of length n2 and consider the linear map

T (X) = AX−XB as an n2×n2 matrix C with rank r. Taking an r×r minor of C with non-zero

determinant d, you can pick a such that d /∈ pa. Then a will satisfy paZn2 ∩ Im(T ) ⊆ pIm(T ) by

the previous lemma.

If there is a solution modulo pa, then T (X) ∈ paZn2
and by the previous inclusion, we have

T (X) ∈ pIm(T ). Then T (X) = T (pY ) for some Y ∈ Zn2
. From this, we obtain T (X − pY ) =

T (X) − T (pY ) = 0 and det(X − pY ) ≡ detX , which is non-zero modulo p. Thus, X − pY is

the solution over Z.

�

As a consequence of this theorem, a solution over Zp implies a solution over Z, which then

implies a solution over Z(p). Then, for the most part, solutions over the various rings we considered

are equivalent. The exception is that if a′ does not satisfy the inclusion in Lemma 2.1.3, then a

solution over Z/pa
′

Z need not imply a solution over Z. Remember that a solution V over Z only

required det(V ) /∈ (p), and does not mean that V belongs to GLn(Z).

2.2 Primes not dividing the discriminant

We will soon discuss to what extent local conjugacy will inform us about conjugacy over Z.

First, we provide a result which tells us that we only need to concern ourselves with finitely many

primes when considering local conjugacy. Let A,B ∈ Zn×n with square-free characteristic poly-

nomial f . Let p be prime which does not divide the discriminant, disc(f), i.e., f is square-free

modulo p. We will show that for such a p, Equation (2.1) (rewritten below)

AV = V B with det(V ) /∈ (p)
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has a solution for R = Zp. This is equivalent to there being a solution over Z (but not necessarily

a solution in GLn(Z)). Then, when considering local conjugacy for matrices with square-free

characteristic polynomial, we only need concern ourselves with the finitely many primes dividing

the discriminant.

The proof requires a standard result from linear algebra concerning the rank of the centralizer

of a matrix over a field. We will denote the centralizer of A in a field F by CentF (A) and define it

by CentF (A) = {C ∈ F n×n : AC = CA}. While this result is well-known, (see for instance page

100 of [30]) we provide the proof for clarity.

Lemma 2.2.1. Let F be a field and A ∈ F n×n with square-free characteristic polynomial over F .

Then dim(CentF (A)) = n.

Proof: Let f denote the characteristic polynomial of A. Assume without loss of generality

that A is in its rational canonical form. Since f is square-free, the rational canonical form is

the companion matrix of f . Let {ei}ni=1 denote the standard basis of F n. Then A0e1 = e1 and

Aie1 = e1+i for 1 ≤ i ≤ n− 1. Then {Aie1 : 0 ≤ i ≤ n− 1} is a basis for F n.

Now let B ∈ CentF (A). As {Aie1 : 0 ≤ i ≤ n − 1} is a basis, there exist αi ∈ F such that

Be1 =
n−1∑

i=0

αiA
ie1. Then Be1 = f(A)e1 for f(x) =

∑
αix

i. Since B commutes with A, it also

commutes with powers of A. So

B(Aie1) = AiBe1 = Aif(A)e1 = f(A)(Aie1)

for 1 ≤ i ≤ n. Since B and f(A) agree on a basis of F , we have that B = f(A). Thus,

CentF (A) = {g(A) : g(x) ∈ F [x]}. Finally, this space has dimension n since the minimal

polynomial of A has degree n.

�

For a prime p, let Ap denote the image of A modulo p.

Corollary 2.2.2. Suppose A ∈ Mf with f square-free. Let CA : Zn2 → Zn2
be the linear map

given by CA(X) = XA − AX . For a prime p, let CAp
: (Z/pZ)n

2 → (Z/pZ)n
2

be defined as

CAp
(X) = XAp − ApX . For any prime p ∤ disc(f), these maps have rank n2 − n.
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Proof:

Pick a prime p with p ∤ disc(f). Then f is square-free over Fp. In the previous lemma it was

shown that dim(CentFp
(A)) = n.

The rank of CA is at most n2 − n since I, A,A2, ..., An−1 are linearly independent elements

in the null space of CA. (If they were linearly dependent, this would contradict that the minimal

polynomial has degree n.)

Since CAp
is obtained from CA by reducing A modulo p, the rank of CA is at least the rank of

CAp
. Thus, CA and CAp

both have rank n2 − n.

�

Note 2.2.3. Let CA,B(X) = XA−BX . Since A and B have the same characteristic polynomial,

they are GLn(Q)-conjugate, so A = D−1BD for some D ∈ GLn(Q). Then

CA,B(X) = XA− BX

= (DD−1)XA− (DAD−1)X

= D((D−1X)A− A(D−1X))

= DCA(D
−1(X)).

Thus, CA,B = DCAD
−1 are similar Q-linear transformations. Then both maps have the same

Q-rank (and Z-rank), n2 − n.

One may consider CA,B as an n2 × n2 matrix C. Let P ,Q ∈ GLn2(Z) such that PCQ = S , the

Smith normal form of C. Then Sp is the Smith normal form of the n2 × n2 matrix associated to

CAp,Bp
. The Smith normal forms, S and Sp, also have rank n2 − n for p ∤ disc(f).

Proposition 2.2.4. Let A and B be integral matrices with square-free characteristic polynomial

f . For any prime p ∤ disc(f), A and B are Zp-conjugate.
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Proof:

Let p be a prime with p ∤ disc(f). Recall that a p-adic conjugating matrix is equivalent to

a sequence of lifts {X1, X2, ..., Xa, ...} such that Xa is a conjugating matrix over Z/paZ. We

may conjugate Ap and Bp over GLn(Fp) to their rational canonical forms. Since f is square-free

modulo p, the only possible rational canonical form is the companion matrix of f . Thus, there is

one conjugacy class over Fp, meaning there exists a conjugating matrix X1 over R = Z/pZ.

Keeping the same notation as before, we have CA,B(X) = XA− BX . Since X1 is a solution

to (2.1), we have CAp,Bp
(X1) ≡ 0 (mod p).

We wish to show that CA,B satisfies the inclusion

pZn2 ∩ Im(CA,B) ⊆ pIm(CA,B) (2.2)

As (2.2) is a statement about submodules of Zn2
, it does not depend on the basis for Im(CA,B).

As before, let C ∈ Zn2×n2
be the matrix associated to CA,B and suppose that PCQ = S is the

Smith normal form of C. We will define a linear map T which acts as CA,B but with the image

written with respect to the Z-basis {Pei} of Zn2
. We define T : Zn2 → Zn2

by T (x) = P−1Cx so

that Im(T ) = SpanZ(T (ei)) = SpanZ(P−1Cei) Then CA,B satisfies (2.2) iff T does.

Now let S : Zn2 → Zn2
be given by S(x) := Sx. Then Im(S) = SpanZ(Sei) = SpanZ(P−1CQ−1ei).

Since {Q−1ei} is a Z-basis for Zn2
, we have that Im(T ) = Im(S). Thus, we may simply consider

(2.2) for S rather than for CA,B.

Say S = diag(si). Both S and Sp have rank r = n2 − n, meaning p ∤ si for 1 ≤ i ≤ r. Then

pZn2 ∩ Im(S) = (pZ× ...× pZ) ∩ (s1Z× ...× srZ)

= LCM(p, s1)Z× ...× LCM(p, sr)Z

= ps1Z× ...× psrZ (as p ∤ si)

= pIm(S).
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We have shown the inclusion from Lemma 2.1.3 holds for a = 1. We now follow Lemma 2.1.4

to lift X1 to a matrix X ∈ Zn×n satisfying XA−XB = 0 with det(X) /∈ (p).

One may reduce X modulo powers of p to obtain a chain of lifts, which may be identified with

a conjugating matrix in Zp.

�

2.3 Failure of the local to global principle

For the rest of the dissertation, we say integral matrices A and B are locally conjugate if they

are Zp-conjugate for every prime p. We wish to determine whether locally conjugate matrices are

necessarily Z-conjugate.

By the previous result in Proposition 2.2.4, we know that any two matrices sharing the same

square-free characteristic polynomial f are Zp-conjugate for p ∤ disc(f). Then to determine whether

matrices are locally conjugate, we must only check for Zp-conjugacy for the finitely many primes

dividing the discriminant.

In the next example, we return to the matrices from example 1.2.2. We will now not only

consider Fp-conjugacy but Zp-conjugacy for every prime p. We previously saw that the matrices

A and B are not Z-conjugate. In this example, we show that they are conjugate over an algebraic

extension of Z.

Example 2.3.1. The matrices A =




0 −6

1 0


 and B =




0 2

−3 0


 with characteristic poly-

nomial f = x2 + 6 are not Z-conjugate, but are Fp-conjugate for every prime p.

Since disc(f) = −23 · 3, Proposition 2.2.4 says that A and B are Zp-conjugate for p 6= 2, 3.

According to Note 2.2.5, because B is Fp-conjugate to the rational canonical form A for

p = 2 and p = 3, we obtain a chain of lifts for every prime. More concretely, we saw that

C2 =




−3 0

0 1


 with det(C2) /∈ (2) and C3 =




0 2

1 0


 with det(C3) /∈ (3)
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are matrices which conjugate A to B. Reducing Cp modulo powers of p yields a sequence of lifts,

where each matrix conjugates A to B. Then A and B are locally conjugate matrices.

Recall that in Example 1.2.2, we observed before that a conjugating matrix




a b

c d


 with

determinant ±1 must satisfy

a = −3d and b = 2c

which means we need

−3d2 − 2c2 = ±1.

While this equation has no integer solution, it is easy to notice that taking c = 1 and d = i, one

finds that




−3i 2

1 i


 conjugates A to B and has determinant one.

This example shows that locally conjugate matrices need not be Z-conjugate. It is no coin-

cidence that we were able to find an algebraic extension of Z over which A and B in the last

example were conjugate. A theorem of Guralnick (see Theorem 7 in [17]) asserts what can be

said regarding conjugacy over an algebraic extension of locally conjugate matrices. Rather than

stating Guralnick’s theorem in full generality, we list a more specific version in Theorem 2.3.3 that

is enough for our purposes.

We must first state Theorem 3 of [7], as Theorem 2.3.3 hinges on it.

Theorem 2.3.2. (Dade) [7]

Let f(x1, ..., xm) be a homogeneous polynomial with relatively prime integral coefficients. Then

f(α1, .., αm) = 1 for suitable algebraic integers α1, ...αm.

We may now state Guralnick’s theorem. We also include the proof found in [17] for complete-

ness.

25



Theorem 2.3.3. (Guralnick) [17]

Let A,B ∈ Zn×n. If A ∼ B over Zp for every prime p, then A ∼ B over some finite integral

extension E of Z.

Proof: Fix a prime p0. If one has a solution over Zp0 , one can can obtain a solution C0 ∈ Zn×n to

AV = V B with det(V ) /∈ (p0) by Theorem 2.1.4.

While det(V ) /∈ (p0), the determinant is contained in finitely many prime ideals (p1), ..., (pk) of

Z. By our assumption, we have that A ∼ B over Z(pi) for (pi) with i ∈ {1, ..., k}. In other words,

we may pick the remaining Ci so that ACi = CiB and det(Ci) /∈ (pi). Then {det(Ci)}i=0,...,k is a

set of relatively prime numbers, i.e., there is no prime ideal containing all of these determinants.

However, 〈det(Ci)〉i=0,...,k is an ideal in Z. Every proper ideal is contained in a maximal ideal.

Since 〈det(Ci)〉i=0,...,k is not contained in any prime ideal, it generates all of Z.

Let Z denote the algebraic closure of Z. Consider the degree n form f : Z
k+1 → Z defined by

f(x0, .., xk) = det(x0C1 + ...+ xkCk).

In the case that k = 1, this is a binary form, and we have by the definition of determinant that

det(A+B) =
n∑

r=0

∑

α,β

(−1)s(α)+s(β)det(A[α | β])det(B(α | β)) [23].

Here, α and β are strictly increasing sequences of of length r chosen from {1, ..., n}, s(α) is

the sum of the integer sequence, A[α | β] denotes the r×r minor ofA comprised of the rows listed

in the sequence α and columns listed in the sequence β, andB(α | β) denotes the (n−r)× (n−r)

minor of B comprised of the rows omitted from the sequence α and the columns omitted from the

sequence β [23].

The sum corresponding to r = 0 is det(B) and the sum corresponding to r = n is det(A) [23].

Then we have

det(xA+ yB) = det(xA) + det(yB) +
n−1∑

r=1

∑

α,β

(−1)s(α)+s(β)det(xA[α | β])det(yB(α | β))

= xndetA+ yndet(B) + “mixed terms”.
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For k > 1, the situation is similar. We have

det(x1C1 + ...+ xkCk) = xn1det(C1) + ....+ xnkdet(Ck) + “mixed terms”.

Since {det(Ci)} is a set of relatively prime numbers, the coefficients of the form

f(x1, .., xk) = det(x1C1 + ...+ xkCk) = xn1det(C1) + ....+ xnkdet(Ck) + “other terms”

are also relatively prime.

Then by Theorem 2.3.2, there are algebraic integers αi such that f(α1, .., αk) is a unit. This

means there are algebraic elements αi such that M = α1C1 + ...+αkCk has unit determinant. We

also have AM = A(α1C1+ ...+αkCk) = α1AC1+ ...+αkACk = α1C1B+ ...+αkCkB =MB.

Thus, over the extension E = Z[α1, ..., αk], the matrix M conjugates A to B and has determinant

a unit in E.

�

Neither Theorem 2.3.2 nor (by extension) Theorem 2.3.3 is constructive, but is only an exis-

tence theorem. While we are able to easily see that the locally conjugate matrices A and B in

example 2.3.1 are conjugate over Z[i], there is currently no algorithmic way of determining such

an extension.

We will refer to the problem of computing the extension over which locally conjugate matri-

ces are conjugate as the conjugacy extension problem. The rest of the dissertation is devoted to

addressing this problem.

In the next chapter, we consider a method which Dade outlined in his proof of Theorem 2.3.2

for determining algebraic integers for which a primitive form realizes 1. We will also consider

whether we can simplify this problem for two-by-two matrices by making use of the theory of

quadratic forms.
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Chapter 3

Conjugacy extension problem

3.1 A theorem of Dade

As we saw in the previous chapter, Theorem 2.3.3 ensures that locally conjugate matricesA and

B (matrices which are Zp-conjugate for every prime p) are conjugate over an algebraic extension

of Z. Recall that we refer to the problem of determining this extension as the conjugacy extension

problem. In this chapter, we discuss how the conjugacy extension problem may be approached by

considering whether certain homogeneous forms realize a unit.

If {C1, .., Cs} is a set of matrices which conjugate A to B over Q, we can attempt to find an

algebraic extension E over which A and B are GLn(E)-conjugate by finding algebraic integers

xi so that the homogeneous form det(
∑
xiCi) realizes a unit. A solution gives a conjugating

matrix
∑
xiCi in GLn(E) where E = Z[x1, .., xs]. According to a theorem by Dade (see Theorem

2.3.2), there is an algebraic integral solution such that a homogeneous form with relatively prime

coefficients realizes a unit [7]. In the case thatA andB are locally conjugate, the Ci may be chosen

so that {det(Ci)} is a relatively prime set, and we may apply Dade’s theorem.

While Dade’s theorem is not constructive, he does outline some steps one could take to find the

desired algebraic solution [7]. We will discuss Dade’s method next. As we will see in an example,

the method can result in an algebraic extension of very large degree. Later, we will see if we can

simplify things by restricting ourselves to quadratic forms, which would arise when considering

the conjugacy extension problem for two-by-two matrices.

Below, we outline the steps in Dade’s method for finding an algebraic extension over which

the form f realizes a unit [7]. The following steps may be applied to a homogeneous form of any

degree with relatively prime coefficients. In a later example, we will illustrate how the method can

be applied to the specific case of a quadratic form in two variables. For this reason, we only discuss
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the details of each step of Dade’s method in the case of a form ax2 + bxy + cy2 where a, b, c ∈ Z.

To see how these steps can be applied to more general forms, see [7].

Step 1: Obtain a univariate polynomial with relatively prime coefficients from f .

Dade’s theorem on homogeneous forms is a corollary of Theorem 1 in [7] which says that a

univariate polynomial with relatively prime coefficients realizes a unit over an extension. To do

this, we first translate one of the variables to obtain f̃ , an inhomogeneous form with a non-zero

constant term. For instance, if f = ax2 + bxy + cy2, one could substitute x − 1 for x to get

f̃(x, y) = f(x, y)− 2ax+ by + a. Let ci denote the degree i homogeneous component of f̃ .

Next we must find integers ui such that f̃(u1x, u2x) is a univariate polynomial with relatively

prime coefficients. We want ui such that the ci(u1, u2) are relatively prime. Since we ensured that

c0 was non-zero, we reduce the other homogeneous component modulo p for primes pwhich divide

the constant term. We know that c2 = f(x, y) cannot be zero modulo p since f has relatively prime

coefficients. If c is non-zero modulo p, then one can pick (u1, u2) = (0, 1). Otherwise, b must be

non-zero modulo p, and one can pick (u1, u2) = (1, 1). If there are multiple primes dividing c0, one

may find an integral tuple (u1, u2) which satisfy all of the congruence conditions for each prime

by the Chinese remainder theorem.

Note that for forms of higher degree, obtaining the ui may be more subtle (see [7]).

Step 2: Find a unit.

Let g = f̃(u1x, u2x) be the polynomial with relatively prime coefficients obtained from the

previous step. Let ai
bi

denote the roots of g where ai and bi are relatively prime algebraic integers.

Then

g(x) =
c

b1b2
(b1x− a1)(b2x− a2)

where c denotes the leading term of g. We know that c
b1b2

is a unit because it divides each of the

relatively prime coefficients of g. In order for g to realize a unit, we need an algebraic integer α

such that biα− ai are units for each i.

We wish to determine a positive integer t and algebraic integers zi so that the polynomial

h(x) = xt + z1x
t−1 + ... + zt has a root α such that biα − ai are units. If α is a root of h,
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then biα − ai is a root of the polynomial btih(
x+ai
bi

). The constant term of btih(
x+ai
bi

) is given by

btih(
ai
bi
) = ati + z1a

t−1
i bi + z2a

t−2
i b2i + ...+ zt. If there are algebraic integers zj so that btih(

ai
bi
) = 1,

then biα− ai is a unit since it divides the constant term. We want biα− ai to be a unit for each i.

Finding a polynomial h which satisfies all of these properties amounts to finding a natural

number t so that the system ati + z1a
(t−1)
i bi + z2a

(t−2)
i b2i + ... + zt = 1, i = 1, 2 has an algebraic

integral solution z = (z1, .., zt). In other words, we want t so that M(t)z = v(t) has an algebraic

integral solution where M(t) = [at−j
i bj] for 1 ≤ i ≤ 2, and 1 ≤ j ≤ t and v(t) = (1− ati).

Letting δ(M) denote the ideal in Z[ai, bi] generated by the two-by-two minors of a matrix M ,

a theorem of Steinitz [28] tells us that the aforementioned system will have an algebraic integral

solution iff δ(M(t)|v(t)) = δ(M(t)) (this also applies for forms of degree n). Dade lists some

specific conditions on t for this equality to hold (see [7] and [8]). There will be a natural number

t which satisfies all these conditions, and the smallest such natural number will be strictly greater

than the degree of the form. Therefore, we know that an algebraic integral solution z to M(t)z =

v(t) exists.

While a solution exists in theory, there is no bound on the degree of the algebraic extension

from which the zi come. Therefore, this is a method and not an algorithm.

Assume that z = (z1, ...zt) is a solution. Let α denote the root of h(x) = xt+ a1x
t−1+ ...+ zt.

Then by the previous discussion, g(α) is a unit. Tracking the transformations needed to get from

the homogeneous form f to the polynomial g, we can apply the inverse transformations to obtain

a solution (x0, y0) over Z[α] such that f(x0, y0) = g(α). Then det(x0C1 + y0C2) = g(α) is a unit,

and x0C1 + y0C2 conjugates A to B.

(Optional) Step 3: Find a conjugating matrix with determinant one.

We may actually find an algebraic extension E so that A and B are SL2(E)-conjugate. Let

u = g(α), the unit that f realizes over the extension Z[α]. So far, we have found a conjugating

matrix with determinant u. We may find a new extension E in which u is a square so that we may

divide our current solution (x0, y0) by the square-root of u. Then f( x0√
u
, y0√

u
) = 1

u
f(x0, y0) = 1.
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More generally, one would have to find an extension in which there is an n-th root of u if f is an

n-form.

We now wish to illustrate Dade’s method in an example. We return once more to example

2.3.1, in which we showed that A =




0 −6

1 0


 and B =




0 2

−3 0


 are conjugate over Zp

for every prime p, but are not integrally conjugate. We previously found in Example 2.3.1 that


−3i 2

1 i


 conjugates A to B and has determinant one. We now follow Dade to find another

algebraic extension E of Z besides Z[i] over which A and B are SL2(E)-conjugate.

Example 3.1.1. Consider A =




0 −6

1 0


 and B =




0 2

−3 0


, which have characteristic

polynomial x2 + 6.

Recall that C1 =




−3 0

0 1


 and C2 =




0 2

1 0


 conjugate A to B.

Following Dade’s method, we wish to find an algebraic integral solution (x0, y0) which is a

solution to det(xC1 + yC2) = 1. Then if E = Z[x0, y0], we have x0C1 + y2C2 ∈ SLn(E). While

it is easy to observe that (i, 1) is one such solution, we will go through each of the steps in Dade’s

method.

In our example, we wish to determine the extension over which the quadratic form f(x, y) =

det(xC1 + yC2) = −3x2 − 2y2 realizes 1.

Substituting y − 1 for y, we get f̃(x, y) = f(x, y − 1) = −2 + 4y − 3x2 − 2y2. Let ci(x, y)

denote the degree i homogeneous component of f̃ .

In our case, since 2 is the only prime dividing c0, we want to find values u1, u2 so that not all of

the ci(u1, u2) are divisible by 2. We have −3x2−2y2 ≡ x2 (mod 2) which is non-zero if evaluating

at (u1, u2) = (1, 0).

We define g(x) = f̃(u1x, u2x) = f̃(x, 0) = −2− 3x2. The roots of g(x) are ±
√

2
3
i. Following

Dade’s notation, we write these roots as the quotient of algebraic integers ai
bi

. Then a1 =
√
2i, a2 =

−
√
2i, and bi =

√
3 for i = 1, 2.
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The smallest value of t for which M(t)z = v(t) has a solution is t = 4. The following is a table

of the powers of the algebraic integers of concern.

t at1 at2 bti
1

√
2i −

√
2i

√
3

2 −2 -2 3

3 −2
√
2i 2

√
2i 3

√
3

4 4 4 9

We have




−2
√
6i −6 3

√
6i 9

2
√
6i −6 −3

√
6i 9







z1

z2

z3

z4




=




−3

−3


 .

Assuming that there is an integral solution, this yields the system

−2
√
6iz1 + 3

√
6iz3 = 0 =⇒ −2z1 + 3z3 = 0

−6z2 + 9z4 = −3

which has solution z = (3,−1, 2,−1). Then h(x) = x4 + 3x3 − x2 + 2x − 1 has root α so that

g(α) is a unit. An element is an algebraic integral unit iff its minimal polynomial is monic with a

unit for its constant term. Thus, one can verify in GAP that g(α) is a unit by computing its minimal

polynomial, x4 − 41x3 + 105x2 − 14x+ 1.

Let u denote the unit g(α) in the extension Z[α] where α is a root of h. We see that u = g(α) =

f̃(α, 0) = f(α,−1). So αC1 − C2 =




−3α −1

−1 α


 conjugates A to B and has determinant u.

If we want to find a conjugating matrix with determinant 1, we must work within an extension

in which we can divide by
√
u. Since u is not a square in the current extension, we will find a new

extension in which it is. Letting m(x) denote the minimal polynomial of u, we will define a new
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extension E by the polynomial m(x2) = x8 − 41x6 + 105x4 − 14x2 + 1. The primitive element in

this extension is
√
u. Then in this new degree 8 extension, we have f( α√

u
, −1√

u
) = 1.

Thus, α√
u
C1 − 1√

u
C2 ∈ SL2(E), and this matrix conjugates A to B.

We have seen that the matrices from the previous example are SL2(E)-conjugate over different

extensions E. We first saw that A and B are conjugate over the degree 2 extension Z[i], while

following Dade’s method gave a different degree 8 extension. Then following Dade’s process may

not yield an extension of minimal degree. In fact, it is not possible to obtain a degree 2 extension

by Dade’s method since the degree of the polynomial h must be strictly larger than 2.

It is important to note that this example was very simple since we were able to find integers zi

that satisfied the system. Generally, the zi are algebraic integers, and it can be much more difficult

to find a solution. We now demonstrate a more complicated example of Dade’s method.

Example 3.1.2. Consider matrices with characteristic polynomial f = x2 − x− 117. The matrix

A =




−2 37

3 3


 is not Z-conjugate to the companion matrix Cf =




0 117

1 1


, but these

matrices are locally conjugate.

Let C1 =




3 −6

0 9


 and C2 =




−10 −538

14 12


 be two matrices which conjugate A to Cf

with relatively prime determinants.

We define the quadratic form f(x, y) = det(xC1+yC2) = 27x2+30xy−7652y2. We transform

this into the univariate polynomial g(x) = f(x, 1) = 27x2 + 30x− 7652.

We express the roots of g as ai
bi

where ai and bi are relatively prime algebraic integers. We

then try to find a natural number t so that the system M(t)z = v(t) has a solution. (Recall that

M(t) =
(
at−j
i bji

)
and v(t) = (1− ati) for 1 ≤ j ≤ t, 1 ≤ i ≤ 2.)

Using the criterion that this will have a solution iff δ(M(t)) = δ(M(t)|v(t)), we find that

t = 462 is the smallest natural number which yields a solution. Even if there is an integral solution

to the system, the size of the system makes the computation difficult.
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We will not actually attempt to solve the system, but the solution yields a degree 462 polynomial

h(x) with algebraic integers as coefficients. If α is the root of h(x), then g(α) = f(α, 1) is a unit.

Then the matrix αC1 + C2 has unit determinant in the extension Z[α] and conjugates A to B.

It is desirable to find a more constructive means of addressing the conjugacy extension problem.

We will restrict ourselves to two-by-two matrices and see what can be said in this context. The

hope is that the theory of quadratic forms will allow us to more easily determine an extension over

which a form realizes a unit.

3.2 Quadratic forms

We now focus on the conjugacy extension problem for two-by-two matrices, so that we are

restricting our attention to quadratic forms. We will use ideas from Watson in [34], in which he

provides a more constructive approach to finding an extension over which quadratic forms realize

a unit. At first glance, it may seem that Watson’s theorem answers the extension problem for two-

by-two matrices. However, Watson imposes restrictions on the quadratic forms which renders his

theorem inapplicable to our context.

In this section, we will discuss why Watson’s result is not exactly relevant for our purposes.

We will also discuss some general theory of quadratic forms and attempt to modify Watson’s result

to the desired context. First, we need some definitions.

3.2.1 Note on singularity

We say that a form f is non-singular iff its coefficient matrix Mf := (∂2f/∂xi∂xj)i,j has

non-zero determinant. Otherwise, we say that the form is singular [33].

Watson provides the following result on non-singular quadratic forms in at least three variables

[34].

Theorem 3.2.1. Suppose that f is a non-singular n-ary quadratic form with relatively prime co-

efficients.
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1. If n ≥ 4, then there is an integer q and αi ∈ Z[
√
q] such that f(α1, ..., αn) = 1.

2. If n = 3, then there are integers q and r and αi ∈ Z[
√
q,
√
r] such that f(α1, ..., αn) = 1.

We discuss why this theorem does not help us answer the conjugacy extension problem for two-

by-two integral matrices. Suppose that Ci are integral matrices with non-zero determinant which

conjugate A to B. Then considering the conjugacy extension problem is equivalent to asking

whether the quadratic form det(
∑

i xiCi) realizes a unit over some extension. It is not difficult to

ensure that we are working with a form with relatively prime coefficients. As mentioned in the

proof of Theorem 2.3.3, one may choose conjugating matrices with relatively prime determinants

since we assume that A and B are locally conjugate for every prime. The obstruction to using

Watson’s result comes from the condition that the form must be non-singular in at least three

variables.

The following result will be useful for considering the singularity of a form det(
∑
xiCi).

Proposition 3.2.2. Let f = det(
n−1∑

i=1

xiCi). If g = det(
n∑

i=1

xiCi), then

1. The coefficient matrix Mg has the coefficient matrix Mf as its upper left (n− 1)× (n− 1)

corner.

2. If Cn =
n−1∑

i=1

aiCi for some ai ∈ Q, and if vi denotes the i-th column vector of the coefficient

matrix Mg, then vn =
n−1∑

i=1

aivi. In particular, g is a singular form.

Proof:

1. To obtain the upper left (n−1)×(n−1) corner ofMg, we just disregard the terms ∂2g/∂xixn.

When considering ∂2g/∂xixj for j 6= n, we may ignore xn completely. Then ∂2g/∂xixj =

∂2g(x1, ..., xn−1, 0)/∂xixj = ∂2f/∂xixj . This proves 1.

2. Now suppose g = det(
n−1∑

i=1

xiCi+xn(
n−1∑

i=1

aiCi)). Clearly, g = f(x1+a1xn, ...xn−1+an−1xn).

Suppose that f =
∑

1≤i≤n−1,i≤j

ci,jxixj .
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By part 1, Mg =




2c1,1 c1,2 ... c1,n−1 ∂2g/∂xn∂x1

c1,2
. . . c2,n−1 ∂2g/∂xn∂x2

...
. . .

...

c1,n−1 c2,n−1 . . . 2cn−1,n−1 ∂2g/∂xn∂xn−1

∂2g/∂xn∂x1 ∂2g/∂xn∂x2 . . . . . . ∂2g/∂x2n




.

We now work out a relation among the n-th column of Mg with the previous columns.

For any i ≤ n− 1, we have

∂2g/∂xn∂xi = ∂2f(x1 + a1x1, ..., xn−1 + an−1xn)/∂xn∂xi

= ∂/∂xn[∂f(x1 + a1x1, ..., xn−1 + an−1xn)/∂xi]

= ∂f/∂xi |(a1,..,an) .

The last equality holds because ∂f(x1 + a1xn, .., xn−1 + an−1xn)/∂xi is a degree one form,

so taking the derivative with respect to xn yields the coefficient of xn in

∂f(x1 + a1xn, .., xn−1 + an−1xn)/∂xi.

Thus, the second order partial derivative is equal to setting xn = 1 and xi = 0 for i 6= n in

∂f(x1 + a1xn, .., xn−1 + an−1xn)/∂xi.

By a similar argument, we get that ∂2f/∂xj∂xi = ∂/∂xj[∂f/∂xi] = ∂f/∂xi |ej .

So far we have the equations

∂2g/∂xn∂xi = ∂f/∂xi |(a1,..,an) for 1 ≤ i ≤ n− 1 (3.1)

and

∂2f/∂xj∂xi = ∂f/∂xi |ej for 1 ≤ i, j ≤ n− 1. (3.2)
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Fix row i of Mg with 1 ≤ i ≤ n− 1. Then

n−1∑

j=1

aj∂
2f/∂xj∂xi =

n−1∑

j=1

aj∂f/∂xi |ej (by equation (3.2))

=
n−1∑

j=1

∂f(ajx1, ..., ajxn1)/∂xi |ej (fxi
is a form of degree one)

=
n∑

j=1

∂f/∂xi |ajej

= ∂f/∂xi |(a1,...,an) (fxi
has no mixed terms)

= ∂2g/∂xn∂xi (by equation (3.1)).

Now we must show a similar result for the last row of Mg in order to prove the result. The

x2n coefficient of g is g(en) = f(a1, ..., an), so we know that Mg has 2f(a1, .., an) as its

lower right entry.

Above, we showed that

∂2g/∂xn∂xi =
n−1∑

j=1

aj∂
2f/∂xj∂xi, which implies

n−1∑

i=1

ai∂
2g/∂xn∂xi =

n−1∑

i=1

ai

n−1∑

j=1

aj∂
2f/∂xjxi.

Each of the ∂f 2/x2i terms shows up exactly once in the sum and ∂2f/∂x2i is twice the

coefficient of x2i , or 2ci,i. The mixed partial derivatives show up twice in the sum and

∂2f/∂xjxi = ci,j . If we restrict i ≤ j in the sum, we will only count the mixed partial

derivatives once. So instead we write

n−1∑

i=1

ai∂
2g/∂xn∂xi = 2

∑

1≤i≤n−1,i≤j

ci,jaiaj

= 2f(a1, ..., an).
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We have shown that vn =
n−1∑

i=1

aivi, meaning that the columns of Mg are not linearly inde-

pendent. Thus, g is a singular form.

�

The following example shows how one might use the previous result to see that Watson’s

theorem does not apply.

Example 3.2.3. Watson’s theorem does not apply to the extension problem for A =




0 −6

1 0




and B =




0 2

−3 0


. We have previously seen that these matrices are p-adicallly conjugate for

every prime p. We also know that C1 =




−3 0

0 1


 and C2 =




0 2

1 0


 conjugate A to B

over Q. From these matrices, we may obtain the non-singular binary form f = det(xC1 + yC2) =

−3x2 − 2y2. However, one cannot obtain a non-singular form in more than two variables, as we

show now.

Let C3 ∈ Z2×2 be any other conjugating matrix with non-zero determinant. Then C3 = p(A)C1

where p(x) = ax+ b is a linear polynomial in Q[x]. This follows from the fact that A has square-

free characteristic polynomial so that centralizing elements are polynomials in A and that the

minimal polynomial is of degree two.

For the same reason, C2 = q(A)C1 for another rational polynomial q(a). In fact, one can

check that C2 = −1
3
AC1 or AC1 = −3C2.

Then we may see that

C3 = p(A)C1

= (aA+ b)C1

= aAC1 + bC1

= a(−3C2) + bC1.
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This shows that any other conjugating matrix is a linear combination of C1 and C2. By Propo-

sition 3.2.2, the ternary form det(xC1 + yC2 + zC3) is singular. Therefore, we cannot apply

Watson’s constructive method to obtain an extension.

The previous example is illustrative of what happens more generally. The following is a con-

sequence of Proposition 3.2.2.

Corollary 3.2.4. Let f be a square-free quadratic monic polynomial and A,B ∈ Mf which are

locally conjugate matrices. Let {C1, ..Cs} be a set of matrices with relatively prime determinants

such that C−1
i ACi = B. Then if s > 2, the form det(

s∑

i=1

xiCi) is singular.

Proof: Note that all the matrices Ci are of the form p(A)C1 for a linear polynomial p(x) ∈ Q[x].

Suppose C2 = (aA + b)C1. If s > 2, there is a third matrix C3 which we express as C3 =

(cA+ d)C1. Now if a 6= 0 then

C3 = c(A+ d)C1

=
1

a
(C2 − bC1) + dC1

=
1

a
C2 +

(−b+ da

a

)
C1.

Since C3 is a linear combination of C1 and C2, the form det(
s∑

i=1

xiCi) is singular.

On the other hand, if a = 0, then C2 = bC1. In this case, the form det(x1C1+x2C2) is singular.

�

3.2.2 Transforming quadratic forms

Even though Watson’s result is not relevant, his paper outlines some classic techniques for

manipulating quadratic forms which do not require non-singularity [34].

Definition 3.2.5. [33] We say that a form f represents another form g if there is an integral

matrix H with non-zero determinant such that g(x) = f(Hx). If det(H) = 1, we say that H gives

a unimodular transformation of f .
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If f represents g, then f realizes 1 if g realizes 1. We will therefore find a simpler form g which

is represented by f . If Mf is the coefficient matrix of f , then the coefficient matrix of f(Hx) is

H t(Mf)H.

Diagonalization of forms

We now discuss how to diagonalize f . By this, we mean we can find a form g =
∑
aix

2
i which

is represented by f . We list the steps for diagonalizing a form f . These steps are standard, and can

be found in [33], for example.

Step 1: Clear mixed terms x1xj for j > 2.

If one starts with a form that is not already diagonal, there is a non-zero mixed term. One

can assume without loss of generality (by interchanging variables) that the x1x2 term is non-zero.

From there, one can clear out the terms x1xj for j > 2 via a unimodular transformation by making

use of the Euclidean algorithm. Suppose that the term x1xj is non-zero. Then we have f =

a1x
2
1+ ax1x2+ bx1xj +“ other terms ” with a, b non-zero integers. We may interchange variables

so that a ≥ b.

Suppose a = bq + r. Then the substitution xj 7→ xj − qx1 (and all other variables are fixed) is

represented by a unimodular matrix U . Here, U differs from the identity matrix only by −q in row

j, column i.

Then g = f(Ux) = a1x
2
1 + rx1x2 + bx1xj + “ other terms ”. By applying the Euclidean

algorithm several times, one eventually gets g = a1x
2
1 + dx1x2 + bx1xj + “ other terms ” where

d = gcd(a, b). So b = dk for some k ∈ N.

Suppose the substitution x2 7→ x2 − kxj (and all other variables fixed) is given by the unimod-

ular matrix V . Then

g(V x) = a1x
2
1 + dx1(x2 − kxj) + bx1xj + “ other terms ”

a1x
2
1 + dx1x2 + (−dk + b)x1xj + “ other terms ”

= a1x
2
1 + dx1x2 + 0x1xj + “ other terms ”.
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This procedure may be repeated until all the quadratic form’s mixed terms x1xj for j > 2 are

cleared.

Step 2: Clear x1x2 term.

After applying the first step, we obtain the form f̃ = a1x
2
1 + cx1x2 + f(0, x2, .., xn). The term

cx1x2 can also be cleared out by using something like completing the square.

Let d = gcd(c, 2a1). One can cancel the term cx1x2 by the substitution x1 7→ x1 − c
d
x2,

x2 7→ 2a1
d
x2. If H is the matrix representing this transformation, then it has determinant 2a1

d
.

Then f̃(Hx) = a1x
2
1 + F (x2, ..., xn) with F = (

4a2a21−a1c2

d2
)x22 + “ other terms ”.

Step 3: Repeat.

One may now repeat steps 1 and 2 for F , relabeling the variables xi as xi−1. Eventually one

will obtain a diagonal form which is represented by f .

Changing the leading coefficient of a form

We also discuss a classic result for quadratic forms regarding altering the leading coefficient of

the form. We say that a is an integer which is properly represented by f if there is a primitive

tuple (t1, ..., tn) such that f(t1, .., tn) = a [33]. The next theorem and its proof can be found

in [33].

Theorem 3.2.6. If a is an integer which is properly represented by f , then f represents a form f̃

with a as its leading coefficient. More specifically, the matrix U with f̃(x) = f(Ux) has the tuple

(ti) as its first column and is unimodular.

Proof: This result is easy for binary forms. If f(t1, t2) = a for a primitive tuple (t1, t2), then

there are integers z1 and z2 such that t1z2 − t2z1 = 1 so that the substitution x 7→ t1x + z1y,

y 7→ t2x+ z2y given by




t1 z1

t2 z2


 is unimodular. The leading term of f(t1x+ z1y, t2x+ z2y),

which can be found by setting x = 1, y = 0, is f(t1, t2) = a.

Say the result holds for (n − 1)-ary forms. Let f be an n-ary form with f(t1, ..., tn) = a and

(ti) a primitive tuple. Let h be the largest number which divides ti for i ≥ 2. One can write
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t = (t1, hz1, hz2, ..., hzn−1). Here, we have that h is relatively prime to t1 and the zi are relatively

prime.

Let T be the (n− 1)× (n− 1) unimodular matrix with the tuple (zi) in the first column. Since

(t, h) = 1, there are integers a and b with t1a− hb = 1. Now,

U =




1

T







t1 b

h a

In−2




=




t1 b

hz1 ∗ ∗ ∗ ∗
... ∗ ∗ ∗ ∗

hzn ∗ ∗ ∗ ∗




is an n× n unimodular matrix with ti in the first column.

Again, the leading coefficient of f̃(x) = f(Ux) is found by setting x1 = 1 and all other

variables equal to 0. So the leading coefficient is f̃(1, 0, .., 0) = f(t1, t1, .., tn) = a.

�

To summarize, we can consider a diagonal form g in place of our original form f . If we can

also alter the leading coefficient of g in a particular way, this will provide us with a method for

solving the conjugacy extension problem in some cases.

3.2.3 Limited method for conjugacy extension problem

We now discuss a class of quadratic forms for which there is a nice answer to the conjugacy

extension problem. What we discuss next is still only a method since this approach only works for

a quadratic form if it realizes a number satisfying several conditions. It is not easy in general to

determine whether a quadratic form realizes such a number.

We will now consider a situation in which finding the extension over which a form realizes 1 is

easy. Say f = det(
∑
xiCi) is a quadratic form which represents a diagonal form g =

∑
aix

2
i . Also

suppose there are two coefficients, call them ai and aj , of this diagonal form which are relatively

prime. Then there are integers q and r such that aiq + ajr = 1. Letting xi =
√
q, xj =

√
r and

xk = 0 for all other variables yields a solution to g = 1. Then A and B are conjugate over the

extension Z[
√
q,
√
r].
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While diagonalizing a form is straightforward, one cannot guarantee that there will be two

relatively prime coefficients. Applying the previous theorem to change the leading coefficient

before diagonalizing may be necessary.

Let us now restrict our focus to binary quadratic forms. Suppose that f = ax2 + bxy + cy2. If

f(t1, t2) = ã with (t1, t2) = 1, then there are integers s and r with t1r − t2s = 1, and the matrix


t1 s

t2 r


 represents a transformation which changes f to f̃ = ãx2 + b̃xy + b̃2−d

4ã
y2 (see [33]).

Here, b̃ = 2(at1s+ ct2r + bt2s) + b (notice that b̃ and b have the same parity) and d = −4ac+ b2,

the discriminant of f .

After diagonalizing f̃ , one obtains g = ãx2 + −dã
gcd(2ã,b̃)2

y2. In order for these coefficients to be

relatively prime, it is necessary that ã divides b̃ so that g = ãx2+−d
ã
y2 if b̃ is odd and g = ãx2+−d

4ã
y2

if b̃ is even. If b̃ is even, so is b, and the discriminant is divisible by four. The coefficients of g must

be integers, so if ã divides b̃, then it must also divide the discriminant. Even with these conditions

on ã, it is still possible that ã and d
ã

(or d
4ã

) are not relatively prime. This can happen if and only

if ordp(ã) < ordp(d) (or ordp(ã) < ordp(d/4)). Also note that we cannot have ordp(ã) > ordp(d)

since d
ã

is an integer. Thus, we have the following.

Proposition 3.2.7. A quadratic form f = ax2 + bxy + cy2 may be diagonalized with relatively

prime coefficients iff it properly realizes an integer ã (so f(t1, t2) = ã and there are integers s and

r with t1r − t2s = 1) satisfying the following conditions:

1. ã | b̃ = 2(at1s+ ct2r + bt2s) + b

2. If b̃ is odd, then ordp(ã) = ordp(d) for every prime p dividing ã.

3. If b̃ is even, then condition 3 must hold for every odd prime dividing ã and we must have

ord2(ã) = ord2(d)− 2.

There are several conditions on the number which the given binary quadratic form must satisfy

in order to use this method. We will now give an example in which we were able to diagonalize

our form with relatively prime coefficients.

43



Example 3.2.8. The matrices A =




−1 3

3 −10


 and B =




−22 3

−81 11


 are conjugate

over GL2(Z) and have characteristic polynomial with discriminant 32 · 13. We have that

C1 =




−27 7

0 1


 and C2 =




−47 12

5 1


 are matrices in GLn(Q) which conjugate A to B

and which have relatively prime determinants.

We consider the quadratic form f = det(xC1 + yC2) = −27x2 − 109xy − 107y2. Due to

the fact that a = −27 ∤ d = 32 · 13, we wish to see whether f properly realizes an integer which

satisfies the conditions of the previous proposition.

We find that f(5,−2) = −13 divides d = 32 · 13. We let ã = −13 and check that it satisfies

the necessary conditions. Notice also that ord13(13) = ord13(d) = 1. Transforming by the matrix

U1 =




5 −2

−2 1


, we obtain f̃ = −13x2 − 13xy + 3y2. We also

have that b̃ = −13, so that ã | b̃. All of the conditions on ã are satisfied, so we may diagonalize

f̃ via the matrix U2 =




1 1

0 −2


 to obtain g = −13x2 + 25y2, which has relatively prime

coefficients.

Since −13(−2) + 25(−1) = 1, we see that g(
√
2i, i) = 1. Keeping track of the transformation

that were applied to f , we see that

1 = g(
√
2i, i)

= f̃(
√
2i+ i,−2i)

= f(5(
√
2i+ i) +−2(−2i),−2(

√
2i+ i)− 2i)

= f((5
√
2 + 9)i, (−2

√
2− 4)i).
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Then (5
√
2 + 9)iC1 + (−2

√
2− 4)iC2 is an element of SL2(Z[

√
2i, i]) which conjugates A to

B.

In this chapter we considered the conjugacy extension problem by asking whether certain ho-

mogeneous forms realize a unit over an extension. We discussed a method by Dade, which is not

constructive. The algebraic extension we are after is defined by a polynomial h ∈ E[x] where E is

some ring of algebraic integers. While such an h exists, the difficulty is that there is no bound on

the degree of E. As we saw in Example 3.1.2, the degree of h may also be very large, making it

even more difficult to determine h.

We also considered a more constructive result by Watson which applies to particular quadratic

forms [34]. However, this result requires non-singular quadratic forms in at least three variables.

In Proposition 3.2.4, we saw that no such quadratic form can arise from the determinant of a linear

combination of conjugating matrices.

Finally, we considered more standard transformations that can be applied to quadratic forms.

If we can diagonalize a quadratic form so that it has relatively prime coefficients, one can easily

obtain the desired extension from the Euclidean algorithm. The limitation of this method is deter-

mining whether a quadratic form properly represents a number ã satisfying all of the conditions of

Proposition 3.2.7. This approach does not help to build an extension constructively because even

if we know that a given form should theoretically realize a particular integer, it is not clear how to

select the corresponding primitive tuple (t1, t2).

We will now move away from homogeneous forms and approach the conjugacy extension prob-

lem from a different perspective. In the next chapter, we will show that the Latimer and MacDuffee

correspondence for GLn(Z)-conjugacy which we discussed in Chapter 1 can be generalized to de-

scribe GLn(R)-conjugacy for any integral domain R. This will allow us to translate the conjugacy

extension problem to a question about analogues of fractional Z[α]-ideals.
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Chapter 4

The Latimer and MacDuffee correspondence for

arbitrary integral domains

Throughout this chapter, let f be a square-free monic polynomial of degree n in Z[x]. In

[21], Latimer and MacDuffee give a correspondence between GLn(Z)-conjugacy classes of Cf and

certain fractional ideal classes associated to f . We will discuss how the Latimer and MacDuffee

(LM) correspondence can be generalized by replacing the ring of integers with any integral domain.

Let us briefly review the details of this correspondence in its original context.

4.1 LM correspondence over Z

The LM correspondence gives a theoretical description of GLn(Z)-conjugacy for integral ma-

trices in Mf , the set of matrices with characteristic polynomial f .

In order to describe the correspondence more concretely, we discuss a bijection given by

Taussky [32] in the case that f is irreducible and a generalization of this bijection due to Marseglia

[24] in the case that f has multiple irreducible factors.

Case 1: f is irreducible

In the case that f is irreducible with root α, Taussky provides a bijection ϕ from the fractional

Z[α]-ideal classes to the GLn(Z)-classes of Cf by

ϕ : I(α)/∼=Z[α] → Mf/∼Z

[I] 7→ [A]

whereA is the multiplication-by-αmatrix with respect to a Z-basis {v1, .., vn} of I . In other words,

if v = (v1, .., vn)
t, then Av = αv.

46



The following example illustrates how we may use this bijection to obtain representatives of

the GL2(Z)-conjugacy classes within Mf for f = x2 + 11x+ 1.

Example 4.1.1. Let α denote the root of f = x2 + 11x + 1. Letting K = Q[x]/(f), we see that

hK = |Pic(OK)| = 1. However, this does not mean that there is only one GL2(Z)-conjugacy

class of Cf . Extra care must be taken because OK = 1Z ⊕ (α+7
3
)Z 6= Z[α]. Actually, the set

{Z[α],OK} is a full set of representatives for the Z[α]-ideal classes in I(α), and so there are two

GL2(Z)-conjugacy classes.

To find the representatives of the conjugacy classes, we compute the multiplication-by-α matrix

with respect to a Z-basis of each of these fractional ideals. For OK , we have that

α · 1 = −7 · 1 + 3 ·
(
α + 7

3

)

and

α ·
(
α + 7

3

)
=
α2 + 7α

3

=
−1− 4α

3

= 9 · 1− 4

(
α + 7

3

)
.

Thus,




−7 3

9 −4


 is a representative of the conjugacy class corresponding to the ideal class

of OK .

Corresponding to the class of Z[α] is the conjugacy class of Ct
f . Thus, the GL2(Z)-conjugacy

classes in Mf are given by the set of representatives








−7 3

9 −4


 ,




0 1

−1 −11








.

Next we review Marseglia’s bijection for the more general case of matrices with square-free

characteristic polynomial.
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Case 2: f has distinct irreducible factors

In the case that f has m distinct irreducible factors over Z[x], we will describe a bijection due

to Marseglia [24]. The following definitions are found in [24] and in Chapter 1 of this dissertation.

Recall that in this case, we let α = (α1, .., αm), where αi is a root of the i-th irreducible factor.

Here, Z[α] denotes the ring of tuples of the form (p(α1), .., p(αm)) where p(x) ∈ Z[x], and there

is a natural inclusion Z →֒ Z[α] by identifying an integer z with a constant tuple. In this context,

the set I(α) denotes all the fractional Z[α]-ideals (Z[α]-submodules in K =
m∏

i=1

Q(αi) which are

also free Z-modules of rank n).

We say that I and J are equivalent if they are isomorphic as Z[α]-modules, or equivalently, if

there is a non-zero divisor x ∈ ∏
Q(αi) such that I = xJ .

As in the irreducible case, there is a bijection

ϕ : I(α)/∼=Z[α]
→ Mf/∼Z

[I] 7→ [A]

where A is the multiplication-by-(α1, .., αm) matrix with respect to a Z-basis for I . Note that

multiplication here is component-wise.

4.2 LM correspondence over an integral domain R

We will give two separate proofs that the LM correspondence still holds if we replace Z by any

integral domain. The first proof is more theoretical in nature and is based on results in [12] by Estes

and Guralnick. The second proof aligns very closely to a proof in [24] due to Marseglia except

that some objects are replaced, but we include it since it illustrates the bijection more concretely.

In order to emphasize to which version of the LM correspondence we are referring, let us

introduce the following notation. We will write LM-R to indicate the LM correspondence for

describing GLn(R)-conjugacy for any integral domainR. We will use LM-Z to refer to the original

LM correspondence.
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4.2.1 A theoretical proof

Estes and Guralnick actually proved that LM-R holds for any integral domain R in the case

that f is irreducible [12]. We will now introduce some notation and results of Estes and Guralnick

before showing that LM-R holds for f square-free in R[x].

Estes and Guralnick set the following notational conventions, assuming that R is an integral

domain:

1. S := Frac(R) is the fraction field of R.

2. A := R[α] is a rank n projective R-module. Just as in the case over Z when f has m distinct

irreducible factors, we let α denote an m-tuple.

3. MA := {M : M is a faithful left A-module and a projective R-module of rank n}. If one

considers the A-module isomorphism classes of MA, this corresponds to GLn(R)-conjugacy

classes of Cf . This is because we may consider modules in MA to be of the form Rn(T )

where T is a matrix with characteristic polynomial f .

4. MA(S) := {M ∈ MA : S ⊗R M ∼= S ⊗R A}. Here, we mean isomorphism as S ⊗R A-

modules.

5. IA(S) := {I : I is a left A-module in S ⊗R A and a projective R-module of rank n with

(S ⊗R A)I = S ⊗R A}. Objects in IA(S) are the analogues of fractional Z[α]-ideals in our

new context.

6. For the sets defined in 3-5, we may apply Cls() to take the A-module isomorphism classes

of any of those sets. Note that we obtain LM-R when the isomorphism classes in MA

correspond to those in IA(S); we express this by saying Cls(MA) = Cls(IA(S)).

Keeping with the previously defined notation, we list the following theorem due to Estes and

Guralnick [12].

49



Theorem 4.2.1. ( [12])

1. Cls(MA(S)) = Cls(IA(S)).

2. If S is the fraction field of an integral domain R, then MA = MA(S) if and only if

HomR(A, R) ∈ MA(S).

3. If HomR(A, R) ∈ MA(S), then LM-R holds.

The theorem in [12] is actually stated more generally, but the version given above is enough for

our purposes. For the proof of part 1, see Theorem 1 of [12] and Theorem 2 of [12] for the proof

of part 2. Since we will use the third part of this theorem, we show how that follows from the other

two parts in the proof below.

Proof: For LM-R to hold means that Cls(IA(S)) = Cls(MA).

HomR(A, R) ∈ MA(S) =⇒ MA(S) = MA (Item 2.)

=⇒ Cls(MA(S)) = Cls(MA)

=⇒ Cls(IA(S)) = Cls(MA) (Item 1.)

�

Theorem 4.2.1 says that in order to prove the LM-R correspondence, it is enough to show

that HomR(A, R) ∈ MA(S). Estes and Guralnick prove that LM-R holds in the case that f is

irreducible (see Corollary 2 of [12]). The proof is quite succinct, so we provide it next.

Proposition 4.2.2. (Estes and Guralnick)

Let R be an integral domain and let f be an irreducible monic polynomial in R[x]. The GLn(R)-

conjugacy classes of Cf are in correspondence with the R[α]-isomorphism classes of IR[α](S).
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Proof: We have

HomR(A, R) ∼=A Rn(Ct
f )

∼=A Rn(Cf ) (because the companion matrix is conjugate to its transpose)

∼=A A

so HomR(A, R) ∈ MA(S), implying that LM-R holds.

�

Before proving LM-R for multiple distinct irreducible factors, we must discuss the trace-dual

of an object in IA(S) and state a few lemmas.

Since f has no repeated roots over R[x] (nor over S[x]), f is separable over S[x]. Let F be

the splitting field of f over S. Given I ∈ IA(S), we have I = ⊕viR for some vi ∈ S(α). The

trace-dual of I is denoted I t and is given by I t = ⊕v∗iR where {v∗i } is a dual-basis with respect

to the R-module homomorphism TrF/S : I → R which assigns to an input x the trace of the

multiplication-by-x matrix with respect to {vi}.

This means that Tr(viv
∗
j ) = δi(j), the Kronecker delta function. If f has m irreducible factors,

note that δi(j) =





1 i = j

0 i 6= j

, where r denotes the constant m-tuple for any r ∈ R.

Lemma 4.2.3. Define φ : I t → HomR(I, R) by φ(x) = ϕx where ϕx(y) = Tr(xy). Then φ is an

R-module isomorphism.

The proof of this result is standard, so we give it in the appendix.

While we usually write α to denote the m-tuple of the roots of the fi, we alternate between

working with tuples and components of the tuples in the following proof. For clarity, we will write

α to denote the m-tuple of roots.
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Lemma 4.2.4. Let f =
m∏

i=1

fi ∈ R[x] be a degree n monic, square-free polynomial and let αi

denote a root of fi. Letting α = (α1, .., αm), an R-basis for R[α]t is { 1
f ′(α)

, α
f ′(α)

, ..., α
n−1

f ′(α)
}. There-

fore, R[α]t = 1
f ′(α)

R[α] and R[α]t ∼=R[α] R[α].

In Theorem 3.7 of [6], Conrad shows that Z[α]t = 1
f ′(α)

Z[α] where f ∈ Z[x] is the square-free

minimal polynomial of α. The following proof only differs from Conrad’s proof in a few places.

First, we consider f with coefficients in a general integral domain R rather than just over Z, so we

consider f ′ as the formal derivative. We are only ever working with polynomials throughout the

proof, so the argument carries through. Second, we show that the result holds for m-tuples in R[α]

by using Galois conjugates. Although this proof is very similar to Conrad’s proof, we provide all

of the details for completeness.

Proof:

Let S = Frac(R). Since f is separable over S, we will work over the splitting field of f over

S. Let F = S(α1, ..., αn) be this splitting field, labeling the roots so that we still have fi(αi) = 0

for i = 1, ...,m.

In S[x], we may write f = (x−α1)(c0(α1)+ ...+ cn−1(α1)x
n−1) where ci(α1) is a polynomial

in α1 with coefficients in R. To se this, note that if f =
n∑

j=1

rjx
j , then we have

f(x)

(x− α)
=
f(x)− f(α)

x− α

=
1

x− α

∑
ri(x

i − αi)

=
∑

ri
xi − αi

x− α

=
n∑

i=1

ri

i−1∑

j=0

αi−1−jxj

=
n−1∑

j=0

(
n∑

i=j+1

riα
i−1−j)xj
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Thus, we have that cj(α) =
n∑

i=j+1

riα
i−1−j . Next, we justify two claims which will give us a

particular R-basis for R[α]t.

Claim 1: An R-basis for R[α]t is { ci(α)
f ′(α)

}.

First, we prove the identity

n∑

i=1

1

f ′(αi)

f(x)

(x− αi)
= 1 over R. Note that the polynomial on the

left-hand side has degree less than n, so it is enough to show that the equality holds after evaluating

at αj for j = 1, .., n.

Because f =
n∏

i=1

(x− αi) in F (x), we have

n∑

i=1

1

f ′(αi)

f(x)

(x− αi)
=

n∑

i=1

∏
k 6=i(x− αk)

f ′(αi)
, and so

n∑

i=1

1

f ′(αi)

f(αj)

(αj − αi)
=

n∑

i=1

∏
k 6=i(αj − αk)

f ′(αi)

=

∏
k 6=j(αj − αk)

f ′(αj)
.

Applying the product rule, we obtain

f ′ = d
dx

∏
(x−αi) =

∏
k 6=j(x−αk)+(x−αj)

d
dx

∏
k 6=j(x−αk), and so f ′(αj) =

∏
k 6=j(αj −αk).

Therefore,

n∑

i=1

1

f ′(αi)

f(αj)

(αj − αi)
=

∏
k 6=j(αj − αk)

f ′(αj)
=

∏
k 6=j(αj − αk)∏
k 6=j(αj − αk)

= 1 for j = 1, ..., n.

We have verified that

n∑

i=1

1

f ′(αi)

f(x)

(x− αi)
= 1.
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Now for k < n, we may again evaluate

n∑

i=1

αk
i

f ′(αi)

f(x)

(x− αi)
at each of the αj to obtain

n∑

i=1

αk
i

f ′(αi)

f(x)

(x− αi)
= xk. (4.1)

Using the factorization from the beginning of the proof, we also have that

n∑

i=1

αk
i

f ′(αi)

f(x)

(x− αi)
=

n∑

i=1

αk
i

f ′(αi)
(c0(αi) + ...+ cn−1(αi)

n−1xn−1).

Equating the coefficient in front of xj on both sides of equation (1.1), we have

n∑

i=1

αk
i

f ′(αi)
cj(αi) = 0 if j 6= k and

n∑

i=1

αk
i

f ′(αi)
cj(αi) = 1 if j = k,meaning that

TrF/S

(
αk
1cj(α1)

f ′(α1)

)
=

n∑

i=1

αk
i cj(αi)

f ′(αi)
= δj(k).

We may also consider TrF/S(
αk
1cj

f ′(α1)
) = tr(Mjk) whereMjk denotes the multiplication-by-

αk
1cj

f ′(α1)

matrix on R[α1]. If Mjk = (mli) ∈ Rn×n, then we have that
αk
1cj

f ′(α1)
· αl

1 =
n∑

i=1

mliα
i
1. Using the

previous argument, we have that tr(M) =





1 j = k

0 j 6= k

.

Let us now extend this result to the tuple α. Since α1, .., αm are Galois conjugates, there are

elements σi ∈ Gal(F/S) with αi = σi(α1). Recalling that the ci are polynomials with coeffi-

cients in R, we see that σi(
αk
1cj(α1)

f ′(α1)
· αl

1) = σi(
n∑

i=1

mliα
i
1) =⇒ αk

i cj(αi)

f ′(αi)
· αl

i =
n∑

j=1

mljα
j
i so

that the multipication-by-
αk
i cj(αi)

f ′(αi)
matrix is the same as the multiplication-by-

αk
1cj(α1)

f ′(α1)
matrix. Then

TrF/S

(
αk
i cj(αi)

f ′(αi)

)
= δj(k) for i = 1, ...,m.
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Thus,
αkcj(α)

f ′(α)
·αl =

n∑

j=1

mljα
j and tr((mlj)) =





1 j = k

0 j 6= k

, so { ci(α)
f ′(α)

} is an R-basis for R[α]t.

Claim 2: R[α] = ⊕c0(α)R⊕ ...⊕ cn−1(α)R.

Recall that if f =
∑

i=1

rix
i, then

ci(α1) =
n∑

j=i+1

rjα
j−1−i
1 . (4.2)

The transition matrix which has the coefficients of cn−j with respect to the basis {αk
1} in the j-th

column is upper triangular with determinant rn−1
n . Since f is monic, rn = 1 and so the transition

matrix is an element of GLn(R).

Applying σl to equation 1.2, we have that cj(αl) =
n∑

j=i+1

rjα
j−1−i
l . Then cj(α) =

n∑

j=i+1

rjα
j−1−i

and so the transition matrix has determinant rn
n−1 = 1.

Thus, R[α] =
⊕n

i=1 α
iR =

⊕n
i=1 ci−1(α)R.

Combining claims 1 and 2, we haveR[α]t =
n⊕

i=1

ci−1(α)

f ′(α)
R =

1

f ′(α)

n⊕

i=1

ci−1(α)R =
1

f ′(α)
R[α].

Note that f ′(α) is not a zero divisor in R[α]. Supposing it is, we would have f ′(αi) = 0

for some i ∈ [1, ...,m] and (x − αi) | gcd(f, f ′). This contradicts that f is square-free. Then

R[α]t = 1
f ′(α)

R[α] implies that R[α]t ∼= R[α] as R[α]-modules.

�

We will return to denoting an m-tuple of roots by α rather than α.
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Theorem 4.2.5. Let R be an integral domain and let f be a polynomial which is square-free over

R[x]. The GLn(R)-conjugacy classes of Cf are in correspondence with the R[α]-isomorphism

classes of IR[α](S).

Referring back to Theorem 4.2.1, it is enough to show that HomR(R[α], R) ∈ MR[α](S).

Proof:

In Lemma 4.2.3, we listed the standard R-module isomorphism φ : I t → HomR(I, R) defined

by φ(x) = ϕx where ϕx(y) = Tr(xy). In the case that I = R[α], we may show that φ is also an

R[α]-module homomorphism.

In order to do this, we first define an R[α]-module action on HomR(R[α], R) by x · ϕt := ϕxt.

This is an action because Tr is R-linear.

For any y ∈ R[α], φ(yx) = ϕyx = y · ϕx = y · φ(x), so φ is an R[α]-module isomorphism.

Thus R[α]t ∼= HomR(R[α], R) as R[α]-modules via φ.

From Lemma 4.2.4, we have that R[α]t = 1
f ′(α)

R[α] and so R[α]t ∼=R[α] R[α].

We have HomR(R[α], R) ∼=R[α] R[α]
t ∼=R[α] R[α], so HomR(R[α], R) is a faithful left R[α]-

module. Since φ is anR-module isomorphism, HomR(R[α], R) is a projectiveR-module of rank n.

We also have that S⊗RHomR(R[α], R) ∼=S⊗RR[α] S⊗RR[α]. Thus, HomR(R[α], R) ∈ MR[α](S).

�

4.2.2 The LM-R bijection

We will give an alternate proof that LM-R holds by giving a slight modification of Marseglia’s

proof of Theorem 8.1 in [24]. Changes include replacing Z by R and making analogous substitu-

tions. This proof is helpful because it demonstrates the bijection more concretely than the previous

proof.

First let us define objects analogous to those in [24].

We define a fractional R[α]-ideal to be an R[α]-submodule of S(α) which is a free R-module

of rank n. Just as before, if f =
m∏

i=1

fi over R[x] and fi(αi) = 0, we consider R[α] to consist of

polynomials in α = (α1, .., αm). We will reuse Estes and Guralnick’s notation from the last section
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and let IA(S) denote the set of fractional R[α]-ideals. This is compatible with the definition of

IA(S) in the previous section because a fractional R[α]-ideal is a sub-R[α]-module of S(α) and

since S(α) ∼=R[α] S ⊗R R[α]. We also have that (S ⊗R A)I = S ⊗R A since S(α)I = S(α).

We may partition IA(S) into R[α]-module isomorphism classes. We say that I and J are

equivalent in IA(S) if and only if they are isomorphic as R[α]-modules. This is equivalent to there

being a non-zero divisor x ∈ S(α) =
m∏

i=1

S(αi) such that I = xJ . We will maintain Estes and

Guralnick’s notation and let Cl(IA(S)) denote the set of fractional ideal classes.

If I ∈ IA(S), then we may write I = ⊕viR where {vi} is an R-basis for I . Then we define

φ : IA(S) → CGLn(S)
f /∼R

I 7→ [T ]

where T is the multiplication-by-αmatrix with respect to anR-basis {vi} of I . With this definition,

φ is a function independent of the choice of basis for I . This is because if we take another basis

given by the vector v′, we have v′ = Uv for U ∈ GLn(R), and then φ(I) = [UTU−1] since

(UTU−1)Uv = UTv = Uαv = αUv.

This map is defined analogously to the map in [24], which Marseglia denotes by φ. From now

on, we will write it as φZ to distinguish the map

φZ : I(α) → Mf/∼Z

I 7→ [T ]

(here T is the multiplication-by-α matrix with respect to a Z-basis of I) from its generalization,

the map φ defined previously.

57



Theorem 4.2.6. The map φ defined before induces a bijection φ̃ : Cl(IA(S)) → CGLn(S)
f /∼R.

For completeness, we give the full proof of Theorem 4.2.6 even though it agrees with Marseglia’s

proof of Theorem 8.1 in [24], apart from the replacement of some objects and with more details

provided in some places.

Proof:

φ̃ is a function:

Suppose we have I, J ∈ IA(S) and I ∼= J as A-modules. Then there is an A-module isomor-

phism ϕ : I → J . Still suppose that {vi}ni=1 is an R-basis for I and that φ(I) = [T ]. Letting ϕ(vi)

be the basis for J , we have that

Tϕ(v) = ϕ(Tv) (ϕ is R-linear)

= ϕ(αv)

= αϕ(v).

From this we conclude that φ̃(I) = φ̃(J), showing that φ̃ is well-defined.

φ̃ is injective:

Suppose that there are I, J ∈ IA(S) so that φ̃(I) = [A], φ̃(J) = [B] and U−1AU = B.

Suppose {wi}ni=1 is an R-basis for J and w = (w1, .., wn)
t so that Bw = αw. Let w′ = Uw give a

new R-basis for J . We have

Aw′ = AUw

= UBU−1Uw

= UBw

= Uαw

= αUw

= αw′
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so that I and J correspond to the same matrix with respect to these bases. Now let ϕ : I → J be

the R-module isomorphism defined by ϕ(vi) = w′
i. Then

ϕ(αv) = ϕ(Av)

= Aϕ(v) (ϕ is R-linear)

= Aw′

= αw′

= αϕ(v)

so that ϕ is an R[α]-module isomorphism. Then I ∼= J via ϕ.

φ̃ is surjective:

We do this by defining a map ψ : CGLn(S)
f → Cl(IA(S)) which induces an injective map ψ̃ on

the conjugacy classes which is the inverse to φ̃.

For A ∈ CGLn(S)
f , define ψ(A) as follows. Let α = (α1, .., αm). For each αi find an eigenvector

vi withAvi = αivi. Putting the eigenvectors in as rows in am×nmatrix, let wj denote the column

vectors of this matrix, so wj ∈
∏

Q(αi). Let ψ(A) = [I] where I = ⊕wiR.

ψ is well-defined:

The definition of ψ depends on the choice of eigenvectors. A different choice is just given by

scaling each eigenvector by a non-zero element λi ∈ S(αi). Let λ denote the tuple of these scalars.

Since

S(α) → S(α)

s = (p(α1), ...p(αm)) 7→ λs = (λ1p(α1), ...λrp(αm))

is an automorphism, we have that I ∼= λI as R[α]-modules. From the map ψ, we get an induced

map on conjugacy classes ψ̃ : CGLn(S)
f /∼R → Cl(IA(S)).
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φ̃ is well-defined:

Suppose B = U−1AU for U ∈ GLn(R). Then in defining ψ(B), one may take U−1vi to be the

eigenvectors ofB. This replaces the wj by U−1wj , and ⊕U−1wjR = ⊕wjR since U−1 ∈ GLn(R).

[I] is in the codomain of ψ̃:

Note that αwj =
∑
aj,hwh ∈ I . This shows that I is an R[α]-module and that αw = Aw so that

ϕ(ψ(A)) = [A].

Next is the argument that S ⊗R I = S(α) so that I ∈ IA(S). Now, S ⊗R I is an S-vector

space, and it can be made into a S(α)-vector space via the matrix A. Since f is square-free over

S[x], the matrix A is semi-simple and so there is a decomposition S ⊗R I =
k⊕

i=1

Vi where the Vi

are S-vector spaces which are stable under the action of A.

Suppose that the minimal polynomial of A|Vi
is gi. Since Vi is irreducible, we have that gi

is irreducible over S[x] of degree dim(Vi). Then we have

k∏

i=1

gi(A)(v) = 0 for all v ∈ S ⊗R I ,

meaning that f |
k∏

i=1

gi since f is the minimal polynomial of A. If f =
r∏

i=1

fi where the fi are

irreducible factors, then we must have that fi = gi (possibly after relabeling) and m = k. So we

may assume that A|Vi
has minimal polynomial fi and dim(Vi) = deg(fi).

If min(A|Vi
) = fi and fi(αi) = 0, then A acts as αi on Vi, so that Vi is an S(αi)-vector space.

We have an eigenvector v of A corresponding to αi, so SpanS(αi)
(v) ⊆ Vi and so dimS(αi)(Vi) ≥ 1.

Then dimS(Vi) = [S(αi) : S]dimS(αi)(Vi) ≥ ni where ni = deg(fi) (because fi is irreducible over

S). Thus, dim(S ⊗R I) =
∑

dim(Vi) ≥
∑
ni = n and so S ⊗R I = S(α).

Since ψ̃ is the inverse map to φ̃, the map φ̃ is a bijection.

�

This result has implications for the conjugacy extension problem. First, note that the func-

tion ψ in Theorem 4.2.6 is defined analogously to the corresponding map in Theorem 8.1 of [24]

(let us denote the latter map by ψZ to distinguish it from ψ). In either context, the basis of the

corresponding ideal depends only on eigenvectors of the integral matrix in question.
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Let us make this more precise. Suppose we consider conjugacy of an integral matrix A with

characteristic polynomial f . Say that ψZ(A) = [I] and I = ⊕viZ. After clearing denominators

each vi can be expressed as a polynomial in α, say vi = pi(α) for pi ∈ Z[x]. Recall that α denotes

a m-tuple of roots where m is the number of irreducible factors of f in Z[x].

Now consider conjugacy over an integral domain R containing Z. Since f may factor further

in R[x], let α̃ denote the tuple of roots of irreducible factors of f over R[x]. Since a square-free

polynomial in Z[x] is square-free in R[x] as long as Z ⊆ R, LM-R holds. (To see this, note that if

f is square-free in Z[x], then it is square-free in Q[x]. Then there are polynomials a, b ∈ Q[x] with

af + bf ′ = 1. If S = Frac(R) and Z ⊆ R, then Q ⊂ S. So af + bf ′ = 1 over S, meaning that f

is square-free over S[x] and thus over R[x].)

Then we have that ψ(A) = [Ĩ] where Ĩ := ⊕ṽiR and ṽi := pi(α̃). We know that {ṽi} is an

R-basis for Ĩ because in the proof of Theorem 4.2.6, it was shown that ψ(A) has full rank.

In the following example, we see how ψZ(A) and ψ(A) are related in the case that we begin

with an irreducible polynomial f which factors further over R.

Example 4.2.7. Consider f = x4 − 2 and let R = Z[ 4
√
2]. Over R[x], we have that f factors as

f = (x2 +
√
2)(x − 4

√
2)(x + 4

√
2). Letting α1 denote a root of x2 +

√
2, we denote the tuple of

roots by α̃ = (α1,
4
√
2,− 4

√
2).

The GL4(Z)-conjugacy class of Ct
f corresponds to Z[α]. We have ψZ(Ct

f ) = [Z[α]]. We may

express Z[α] as a free Z-module by writing Z[α] =
4⊕

i=1

αi−1Z.

The GL4(R)-conjugacy class of the companion matrix corresponds to the ideal class of ψ(A) =

[Z̃[α]] where Z̃[α] = R[α̃] =
4⊕

i=1

(αi−1
1 ,

4
√
2
i−1
, (− 4

√
2)i−1)R. In general, elements in R[α̃] are of

the form (p(α1), p(
4
√
2), p(− 4

√
2)) where p ∈ R[x].

Instead of always writing R[α̃], we will just write R[α] from now on, since what we mean by

α is clear from the factorization of f over R[x].

The following proposition tells us that we can describe the relationship between I and Ĩ via the

tensor product.
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Proposition 4.2.8. Suppose that I = ⊕viZ. Then ϕI : R⊗Z I → ⊕ṽiR, defined on simple tensors

by ϕ(r ⊗ (v1z1, .., vnzn)) = r(v1z1, .., vnzn), and then extended in the natural way, is an R[α]-

module isomorphism which is independent of the choice of basis vi. Furthermore, if J = ⊕wiZ,

then R⊗ I ∼= R⊗ J as R⊗ Z[α]-modules if and only if ⊕ṽiR ∼= ⊕w̃iR as R[α]-modules.

See the appendix for the proof.

The previous proposition allows us to denote the extension of a Z[α]-ideal I = ⊕viZ to a ring

R (which has Z as a subring) by R⊗Z I . So we write R⊗ I to denote the R[α]-ideal ⊕ṽiR.

To summarize, if the GLn(Z)-conjugacy class of a matrix A corresponds to the Z[α]-class of

I = ⊕viZ, then the GLn(R)-conjugacy class of A corresponds to the R[α]-class of R⊗ I .

According to theorem 4.2.6, there is a bijection ψ̃ : CGLn(S)
f /∼R → Cl(IA(S)). For the purposes

of the conjugacy extension problem, we wish to restrict our attention to the GLn(R)-conjugacy

classes of CGLn(Q)
f and we have the restricted bijection

CGLn(Q)
f /∼R → R⊗Z IZ[α]

[A] 7→ [R⊗ ψZ([A])]

Extending scalars of Z[α]-ideals from Z to R is compatible with many ideal operations, as we

see next. Recall that (I : J) := {x ∈ K : xJ ⊆ I}.

Proposition 4.2.9. If I and J are fractional Z[α]-ideals, and R is a ring containing Z, then

(R⊗ I : R⊗ J) = R⊗ (I : J).

Proof: Suppose I = ⊕viZ, J = ⊕wiZ, and (I : J) = ⊕xiZ. Then xiwj ∈ ⊕viZ for any

i, j ∈ [1...n] by definition. Since also xiwj ∈ ⊕viR, we have that

R⊗ (I : J) = ⊕xiR ⊆ (R⊗ I : R⊗ J).

The xi areR-linearly independent and (R⊗I : R⊗J) is of rank n, so (R⊗I : R⊗J) = R⊗(I : J).

�
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In the next chapter, we will discuss how the results of this section can be used to implement an

algorithm which tests for GLn(R)-conjugacy. First, we must introduce some terminology due to

Marseglia [24] which addresses the subtlety that arises when Z[α] is not equal to OK =
∏OQ(αi),

the ring of integers in K =
∏

Q(αi).

In Example 4.1.1, we saw that because Z[α] is not the ring of integers K = Q[x]/(f), the set

of fractional Z[α]-ideal classes is more than just the Picard group of OK . To handle this issue, we

must consider all of the Z[α] ideals which contain 1 (and so contain Z[α]). Recall that we say that

a Z[α]-ideal which is also a ring with identity is an over-order of Z[α]. In Lemma 2.2 of [24],

Marseglia shows that the set of over-orders of Z[α] is the set {O ∈ IZ[α] : OO = O}, and he later

notes that there are finitely many over-orders.

The Z[α]-ideal classes may be partitioned according to these over-orders. The multiplicator

ring of a fractional I , denoted by (I : I), is defined to be the largest over-order O of Z[α] such

that I is an O-module.

It is not too difficult to see that equivalent fractional ideals must have the same multiplicator

ring, for if I = xJ , then (I : I) = (xJ : xJ) = x 1
x
(J : J) = (J : J). Also note that (O : O) = O

since O2 = O, and so distinct over-orders are not equivalent to each other. So we may partition

I(α) into sets of ideals which share the same multiplicator ring and then test for equivalence among

ideals in each partition.

We may maintain the same notions of multiplicator ring and over-order for R[α]-ideals. As a

consequence of Proposition 4.2.9, we have that (R⊗I : R⊗I) = R⊗(I : I), and so these notions

are compatible.

Next, we discuss how the result of this section allow us to relate local conjugacy of integral

matrices to weak equivalence of ideals.

4.3 Weak equivalence

Via the LM correspondence, we have translated the problem of determining whether matrices

are GLn(R)-conjugate to determining whether certain fractional ideals are equivalent, or isomor-
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phic as R[α]-modules. There is a notion of local equivalence called weak equivalence [24]. We

will discuss weak equivalence and its connection to local conjugacy of matrices.

For a fractional Z[α]-ideal I , let I(p) := Z(p) ⊗Z I . We say that I(p) is equivalent to J(p) if they

are isomorphic as Z[α](p)-modules. For I = ⊕viZ, Proposition 4.2.8 tells us that I(p) ∼= ⊕ṽiZ(p)

as Z[α](p)-modules. Proposition 4.2.9 tells us that (I(p) : J(p)) = (I : J)(p).

We will now prove a slightly altered version of Proposition 4.1 of [24], which is used to define

weak equivalence. The next proposition replaces

Statement (a) of Proposition 4.1 in [24]: Ip and Jp are isomorphic for every prime p of Z[α]

with

Statement 1. of Proposition 4.3.2: I(p) ∼= J(p) as Z[α](p)-modules for all rational primes p.

In Remark 4.3 of [24], Marseglia notes that the replacement can be easily made. Fractional

ideals I and J are said to be in the same genus if and only if I(p) and J(p) are isomorphic as

Z[α](p)-modules. Therefore, making this replacement shows that weak equivalence coincides with

the classical notion of genus (for more on the genus of an ideal see, for example, the last section in

Chapter 6 of [27]).

Before the stating the next proposition, we need a lemma by Gilmer from [14].

Lemma 4.3.1. (Gilmer)

Let T be a ring with finitely many maximal ideals and let I be a T -ideal. Then I is invertible in T

iff I is principal and generated by a non-zero-divisor.

For any ring R, since ideals in R[α] correspond to ideals in R[x] containing (f), we have

finitely many maximal ideals, one for each irreducible factor fi of f . So we may reference this

lemma with T = R[α] in the proof of the next proposition.

Proposition 4.3.2. The following are equivalent. Fractional Z[α]-ideals I and J which satisfy any

of the following statements are called weakly equivalent.

1. I(p) ∼= J(p) as Z[α](p)-modules for all rational primes p.

2. 1 ∈ (I : J)(J : I)
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3. I and J have the same multiplicator ring. Let O = (I : I) = (J : J). Also, I = (I : J)J

and (I : J) is an invertible O-ideal.

Proof:

1. implies 2.

For an arbitrary prime p, suppose I(p) ∼= J(p) as Z[α](p)-modules. Then there is an non-zero

divisor x in the total quotient ring of Z[α](p) such that xI(p) = J(p). So

(I : J)(J : I)(p) = (I : J)(p)(J : I)(p)

= (I(p) : J(p))(J(p) : I(p))

= (I(p) : xI(p))(xI(p) : I(p))

=
1

x
(I(p) : I(p))x(I(p) : I(p))

= (I(p) : I(p)).

If a ∈ (I : J) so that aJ ⊆ I and b ∈ (J : I) so that bI ⊆ J , then ab ∈ (I : I). We have an

inclusion (I : J)(J : I) →֒ (I : I). We wish to show that this map is surjective.

Let z ∈ (I : I) ⊂ (I : I)(p). Since (I(p) : J(p)) = (I : J)(p)(J : I)(p), we know that z = xpyp

for xp ∈ (I : J)(p) and yp ∈ (J : I)(p). Letting {vi} and {wi} be Z(p)-bases for (I : J)(p) and

(J : I)(p), respectively, we may write xp =
∑

x1i

x2i
vi and yp =

∑ y1i
y2i
wi where xji, yji ∈ Z and

x2i, y2i /∈ (p).

Clearing denominators, we obtain mz =
∑
x1ivi

∑
y1iwi for some integer m with m /∈ (p).

Set x =
∑
x1ivi and y =

∑
y1iwi. Note that x ∈ (I : J) and y ∈ (J : I).

Now fix a prime p1. By the previous argument, there is m1 /∈ (p1) and x1, y1 in (I : J) and

(J : I), respectively, with m1z = x1y1. For each pi dividing m1, we also obtain mi and xi, yi with

miz = xiyi and mi /∈ (pi). The set {m1,m2, ..,mk} is relatively prime, so there are integers ci

with 1 =
∑
cimi. From the equation 1 =

∑
ci

xiyi
z

, we obtain z =
∑
cixiyi ∈ (I : J)(J : I).

Thus, (I : J)(J : I) = (I : I) and 1 ∈ (I : I).
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We do not provide the proof of 2. implies 3.; see the corresponding part of the proof of Propo-

sition 4.1 in [24].

3. implies 1.

This proof is identical to the proof in proposition 4.1 in [24], the only difference being that we

consider the ring Z[α](p) for a rational prime p rather than Z[α]p for a prime p in Z[α]. Since we

may still apply Lemma 4.3.1, the only difference is notational.

�

With this notion of weak equivalence, we may now prove a corollary of LM-R.

Corollary 4.3.3. Let A,B ∈ Zn×n with irreducible characteristic polynomial f and denote a root

of f by α. Let I and J be the fractional Z[α]-ideals which correspond to A and B, respectively,

via LM-Z. Then A and B are locally conjugate if and only if I and J are weakly equivalent.

Proof: Suppose that I = ⊕viZ and J = ⊕wiZ are the fractional Z[α]-ideals corresponding

to A and B, respectively. In the following proof, we will let Ĩp denote ⊕ṽiZ(p). Also recall that

I(p) = Z(p) ⊗ I . Then we have

A and B are locally conjugate ⇐⇒ A ∼Z(p)
B for all primes p

⇐⇒ Ĩp is equivalent to J̃p as Z(p)[α]-ideals ∀ p (by LM-Z(p))

⇐⇒ I(p) ∼= J(p) as Z(p) ⊗ Z[α]-modules (by Proposition 4.2.8)

⇐⇒ I is weakly equivalent to J.

�

This result has implications for adapting Marseglia’s algorithm to test for conjugacy over an

extension. For our purposes, we always start with matrices which are locally conjugate so by

the previous result, their corresponding fractional ideals are weakly equivalent. Proposition 4.3.2

shows that weakly equivalent fractional ideals have the multiplicator ring.
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For R an algebraic extension of Z, we have (R ⊗ I : R ⊗ I) = R ⊗ (I : I) according to

Proposition 4.2.9. So we see that R ⊗ I and R ⊗ J also have the same multiplicator ring. In our

extended algorithm, we do not need to check whether fractional ideals have the same multiplicator

ring; this is immediate given our assumption of local conjugacy.
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Chapter 5

Investigating conjugacy over extensions

5.1 Algorithms

Throughout this section, we preserve the notation used in previous sections. For an integral

domain R, we denote its field of fractions by S.

Marseglia gives an algorithm in [24] for determining whether integral matrices with square-

free characteristic polynomial are GLn(Z)-conjugate. This algorithm makes use of the bijection

ψZ : CGLn(Z)
f → Cl(IZ[α](Q)) discussed in the previous section. Since we may obtain a generalized

bijection, ψ : CGLn(S)
f → Cl(IR[α](S)), over an integral domain R, we may also adapt Marseglia’s

algorithm to test for GLn(R)-conjugacy.

We now give a broad discussion of the steps in an adaptation of Marseglia’s algorithm for

determining whether integral matrices A and B are GLn(R)-conjugate for an integral domain R

which has Z as a subring. From now on, we refer to this algorithm as the GLn(R)-conjugacy

algorithm. As we will note, the algorithm is valid for matrices in Mf for square-free f , but it is

only possible to implement this adapted algorithm in Magma in the case that f is irreducible in

R[x].

5.1.1 The GLn(R)-conjugacy algorithm

The following are the steps of the GLn(R)-conjugacy algorithm.

1. Compute the fractional ideal classes ψ(A) and ψ(B).

If we begin with integral matrices, we may use the restricted bijection

CGLn(Q)
f /∼R → R⊗Z IZ[α]

[A] 7→ [R⊗ ψZ([A])].
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If ψZ(A) = I where I = ⊕viZ, then the GLn(R)-conjugacy class of A corresponds to the

R[α]-class of R⊗ I . In order for A and B to be GLn(R)-conjugate, R⊗ I and R⊗ J must

be in the same fractional R[α]-ideal class.

2. We now consider the multiplicator rings of R ⊗ I and R ⊗ J . If R ⊗ I and R ⊗ J have

different multiplicator rings, then R ⊗ I and R ⊗ J are not equivalent and A and B are not

GLn(R)-conjugate.

Since (R⊗ I : R⊗ I) = R⊗ (I : I) (see Proposition 4.2.9), we have that

(R⊗ I : R⊗ I) = (R⊗ J : R⊗ J) ⇐⇒ (I : I) = (J : J)

⇐⇒ A and B are locally conjugate.

So for the purposes of the conjugacy extension problem, we automatically get that

(R ⊗ I : R ⊗ I) = (R ⊗ J : R ⊗ J). If O = (I : I) = (J : J), then R ⊗ O is the shared

multiplicator ring of R⊗ I and R⊗ J .

Before discussing the final step of the algorithm, we discuss the subtlety of defining the frac-

tional ideals within the proper ring. Since R⊗O is the largest over-order of R[α] such that R⊗ I

and R⊗ J are R⊗O-modules, we have that R⊗ I ∼ R⊗ J iff R⊗ IO = x(R⊗ JO) for some

x ∈ R[α].

We also know that in R ⊗O, we have R ⊗ I = R ⊗ (I : J)J since I = (I : J)J as O-ideals

according to Proposition 4.3.2. Then R⊗I = x(R⊗J) in R⊗O iff (R⊗I : R⊗J) = x(R⊗O).

It is important that we define the ideals within R ⊗ O rather than just R[α] because it is possible

that (R ⊗ I : R ⊗ J) 6= xR[α] but (R ⊗ I : R ⊗ J) = x(R ⊗ O) as we see in the next example

over R = Z.

Example 5.1.1. Consider f = x2 − 65 and let K = Q(α) ∼= Q[x]/(f). In this case, we

have two over-orders, Z[α] and OK = 1Z ⊕
(
1+α
2

)
Z. The matrix corresponding to the class
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of OK is




−1 2

32 1


. Taking U =




0 −1

−1 11


 ∈ GL2(Z), we obtain a conjugate matrix,

B := U−1AU =




−1 32

2 1


.

Now, ψZ(B) = [I] where I = 1Z⊕
(
1+α
32

)
Z. Since A and B are GL2(Z)-conjugate, we know

that J is in the same ideal class as OK . Let us still go through the process of verifying this to

demonstrate why we should work over the correct over-order of Z[α].

One may compute that (I : I) = OK . So over OK , we have that I = (I : OK)OK and

(I : OK) = I . So we must test whether I is principal. The following Magma transcript shows the

importance of defining I over OK before testing this.

> _<x>:=PolynomialRing(Integers());

> f:=x^2-65;

> K<a>:=NumberField(f);

> OK:=RingOfIntegers(K);

>Za:=sub<OK|a>

Za is the sub Z-module of OK generated by α, so Za=Z[α].

>I:=ideal<Za|1,(1+a)/32>;

> IsPrincipal(I);

false

> I:=ideal<OK|1,(1+a)/32>;

> IsPrincipal(I);

true

This demonstrates that I is not principal in Z[α] (nor should it be because then we would have

that B ∼Z Cf , which is not true), but it is principal in OK .
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Thus, the final step of the algorithm is to test whether the colon ideal defined over R ⊗ O is

principal.

3. If (R⊗ IO : R⊗ JO) = x(R⊗O), then R⊗ I = x(R⊗ J) as R⊗O-modules and A and

B are GLn(R)-conjugate. If R ⊗ I = ⊕ṽiR and R ⊗ J = ⊕w̃iR, the conjugating matrix is

the change of basis between {ṽi} and {xw̃i}.

If (R ⊗ IO : R ⊗ JO) is not principal, then R ⊗ I and R ⊗ J are not equivalent, meaning

that A and B are not GLn(R)-conjugate.

This algorithm is valid for matrices with square-free characteristic polynomial, but it is only

in the irreducible case that we can easily implement this generalized algorithm in Magma. If f is

irreducible inR[x], then Step 3 may be carried out using the subroutine IsPrincipal. In the case that

the characteristic polynomial has multiple irreducible factors in R[x], then the fractional ideals are

defined within an algebra of the form
∏

i S(αi), where S = Frac(R). In Magma, the IsPrincipal

function may not be applied to such fractional ideals since they do not live in an étale algebra

defined over Q. Therefore, it is not obvious how one might implement this algorithm in Magma in

the non-irreducible case.

Next, we illustrate how the generalized algorithm may be used in an example.

Example 5.1.2. The matrix A =




−2 3

26 2


 has irreducible characteristic polynomial

f = x2 − 82. Let α denote a root of f .

We will show that A is not GL2(Z)-conjugate to Cf , but that it is GL2(R)-conjugate to Cf for R

the ring of integers of the number field L = Q(β) ∼= Q[x]/(x4 − 28x2 + 32). Note that f remains

irreducible in R[x]. (We will later discuss how we chose this ring R.)

Let us first make use of LM-Z to consider GL2(Z)-conjugacy of these matrices. We compute

ψZ(A) by finding that (3, α + 2)t is an eigenvector of A with eigenvalue α. Then ψZ(A) = [I]

where I = 3Z⊕ (α + 2)Z. Similarly, ψZ(Cf ) = [1Z⊕ αZ].
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In this situation, Z[α] is the ring of integers of K = Q(α) ∼= Q[x]/(f). Since Z[α] is the only

over-order, we know that I and Z[α] both have multiplicator ring Z[α]. The fact that I and Z[α]

are weakly equivalent corresponds to the fact that A and Cf are locally conjugate.

Next, we find that (I : Z[α]) = I is not principal as a Z[α]-ideal, and so we conclude that A is

not GL2(Z)-conjugate to Cf .

Now let us apply the generalized algorithm to consider conjugacy over R = OL. Since f

remains irreducible over R, we simply have that ψ(A) = [R ⊗ I] where R ⊗ I = 3R ⊕ (α + 2)R

and ψ(Cf ) = [1R⊕ αR].

Since (R ⊗ I : R ⊗ I) = R ⊗ (I : I) = R ⊗ Z[α] = R[α], we see that R ⊗ I and R[α] share

the same multiplicator ring.

Next, we find that (R ⊗ I : R[α]) = R ⊗ I is principal as an R[α]-ideal. Letting x denote the

generator so that R⊗ I = xR[α], we compute the change of basis between the R-bases {x, x · α}

and {3, α + 2} of R⊗ I .

Letting (v1, v2, v3, v4) denote the coordinates of an element in R with respect to the Z-basis

{1, 1
2
β, 1

4
β2, 1

16
(β3 − 2β2)}, we find that the transition matrix C is




(1816703,−701754,−3735950, 4702848) (16450528,−6354814,−33828528, 42587180)

(772459,−298397,−1588478, 1999726) (6995027,−2702056,−14384806, 18107996)


.

Furthermore, we can check that determinant of C is a unit in R, and C−1AC = Cf .

5.1.2 Complexity

We now briefly discuss the complexity of the GLn(R)-conjugacy algorithm in the case that

R = Z. Keeping with the notation used thus far, we assume that the input matrices, denoted A

and B, have characteristic polynomial f of degree n and root α. We consider the run time of the

algorithm in terms of n and dK , the discriminant of K = Q[x]/(f).

Some steps of the algorithm will run in polynomial time. For instance, the first step of the algo-

rithm entails finding the corresponding ideal class representatives associated to the given matrices.
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This amounts to computing eigenvectors of the matrix, which takes polynomial time in n (see for

instance, [13]).

However, the third step entails testing whether a particular fractional Z[α]-ideal is principal.

For a number field K, the problem of testing for principality of fractional OK-ideals is considered

to be no simpler than the problem of computing the class group and unit group of OK [19]. The

most efficient known algorithm for solving the latter problem is Buchmann’s algorithm [3], which

has run time d
1/2
K (log(dK))

O(n) [22]. Thus, it appears that the GLn(R)-conjugacy algorithm has

run time which is exponential in n.

In the next section, we compute examples of solving the conjugacy extension problem in

Magma. Due to the limitations of IsPrincipal discussed previously, we primarily consider inte-

gral matrices in Mf where f is irreducible in R[x].

5.2 Subfields of the Hilbert class field

We will now discuss how class field theory can be used to generate candidates for solutions to

the conjugacy extension problem. Suppose we are working with locally conjugate integral matrices

in Mf with f irreducible, and let α denote a root of f . If the matrices are not GLn(Z)-conjugate,

then the ideals, I and J , corresponding to those matrices, are not equivalent.

However, we know that I and J are weakly equivalent and so they share the same multiplicator

ring, call it O. We know that (I : J) is invertible in O by Proposition 4.3.2. Lemma 2.5 of [24]

tells us that if I is an invertible O-ideal, then (I : I) = O, so (I : J) has multiplicator ring O.

Since I and J are not equivalent as O-ideals, that means that (I : J) is not principal in O. We

will now give the definition of the Hilbert class field and discuss how it provides an extension in

which (I : J) is principal.

Definition 5.2.1. (see Chapter 6, Section 4 of [4])

For a number field K, the Hilbert class field of K is the maximal unramified abelian extension of

K. Denoting the Hilbert class field by L, we have that Gal(L/K) is isomorphic to the ideal class

group so that [L : K] = hK .
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We may now state the following useful theorem from class field theory, known as the Principal

Ideal Theorem.

Theorem 5.2.2. (See Theorem 4.2 of [4]).

Let K = Q(α) ∼= Q[x]/(f) and let L be the Hilbert class field of K. In the ring of integers OL,

every fractional OK-ideal becomes principal.

For any over-order O of Z[α], we have that O ⊆ OK and so we have the following composition

of maps:

Pic(O) → Pic(OK) → Pic(OL)

I 7→ IOK 7→ IOL

By the Principal Ideal Theorem, for any I ∈ Pic(O), we know that IOK becomes principal in

OL. In other words, IOL is principal for any invertible fractional O-ideal I , including (I : J).

At first glance, OL seems to solve the conjugacy extension problem. However, some difficulties

arise since α ∈ OL, meaning f no longer remains irreducible in OL[x]. Suppose that f =
m∏

i=1

fi

over OL. Determining whether matrices are OL-conjugate amounts to determining whether a

fractional OL[α]-ideal in Lm is principal. This does not immediately follow from the fact that the

ideals formed by isolating each component become principal.

Let us illustrate what we have discussed so far in an example.

Example 5.2.3. Let f = x2 + 5 and K = Q[x]/(f). The fractional ideal I = 2Z ⊕ (α + 1)Z is

not principal and corresponds to A =




−1 2

−3 1


 via the LM-Z correspondence. Since Z[α] is

the ring of integers of K, the only over-order is Z[α], meaning I is weakly equivalent to Z[α] and

A is locally conjugate to Cf .

Let L denote the Hilbert class field of K. Due to the fact that hK = 2 in this example, we have

that [L : Q] = [L : K][K : Q] = hK · 2 = 4.

74



More specifically, L = Q(β) ∼= Q[x]/(x4 + 12x2 + 16). Let us also discuss the LM−R

correspondence for R = OL. Since α ∈ OL, we have that f = (x − α)(x + α) in R[x]. Then

R[α] = R[(α,−α)] and we have the embedding R →֒ R[(α,−α)] by considering elements in R

as constant tuples.

The GL2(R)-conjugacy class of A corresponds to the fractional R[(α,−α)]-ideal class of

R⊗ I = (2, 2)R⊕ (α+1,−α+1)R. Considering each component, we know that 2R⊕ (α+1)R

and 2R ⊕ (−α + 1)R are each principal. However, this does not imply that R ⊗ I is principal as

an R[(α,−α)]-ideal. We will determine whether R⊗ I is principal by considering solutions to an

R-linear system. We will do this by making use of the Z-basis B = {1, 1
2
β, 1

4
β2, 1

8
β3} for R. We

will denote the i-th basis element of B by Bi.

In order forR⊗I to be principal, there must be a generator (γ1, γ2) ∈ L(α)×L(−α) = L×L

and there must exist (ri, ri) ∈ R with

(2, 2)(r1, r1) + (α + 1,−α + 1)(r2, r2) = (γ1, γ2)

(2, 2)(r3, r3) + (α + 1,−α + 1)(r4, r4) = (γ1α,−γ2α).

We also require that the determinant of this change of basis is a unit in R. However, we will be

able to show that the system does not have a solution even before considering determinants.

As mentioned previously, we cannot easily test whether R⊗I is principal using the IsPrincipal

function since R⊗ I is defined within L× L, an algebra which is not an étale Q-algebra.

Considering each component separately, we see that both 2R⊕ (α+1)R and 2R⊕ (−α+1)R

become principal inR. In fact, 2R⊕(α+1)R = 2R⊕(−α+1)R = (g) where g = B1−2B1−B4.

If (2, 2)R⊕ (α + 1,−α + 1)R = (γ1, γ2)R⊕ (γ1α,−γ2α)R, then

2R⊕ (α + 1)R = (γ1)

and

2R⊕ (−α + 1)R = (γ2).
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So we must have γ1 = gu1 and γ2 = gu2 for some units u1 and u2 in R. Scaling the equations by

u−1
1 , we may assume that γ1 = g and γ2 = gu for some u ∈ R×.

If R⊗ I is principal, there must be a solution (r1, r2, r3, r4) over R satisfying the equations

2r1 + (α + 1)r2 = g 2r3 + (α + 1)r4 = gα

2r1 + (−α + 1)r2 = gu 2r3 + (−α + 1)r4 = −guα.

Working with respect to the basis B, we will translate this to solving a linear system over the

integers. Throughout this example, let Mx denote the multiplication-by-x matrix on R with respect

to the basis B. Let r1 =
4∑

i=1

xiBi and r2 =
4∑

i=1

yiBi, T1 = [2I4 | Mα+1] and T2 = [2I4 | M−α+1].

For an element x ∈ OL, we will denote the coefficient vector of x with respect to B by [x]B. We

will also let




x

y


 denote the vector (x1, .., x4, y1, ..y4).

Then solving

2r1 + (α + 1)r2 = g

2r1 + (−α + 1)r2 = gu

over R is equivalent to solving

T1




x

y


 =Mg[1]B and T2




x

y


 =Mg[u]B over Z.

A solution to the above system must satisfy the equation

(T1 − T2)




x

y


 =Mg([1− u]B). (5.1)

Thus, we will consider integral solutions to Equation 5.1. Note that here, the matrix T1 − T2 =

[04×4 |M2α].
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For a given unit u, we can attempt to solve equation (5.1) using the Smith normal form. There

are matrices P ∈ GL4(Z) and Q ∈ GL8(Z) with P (T1 − T2)Q = S where

S =




2

2

10

10

04×4




.

We know Equation 5.1 has an integral solution




x

y


 = Q




v4×1

z4×1


 exactly if the vector

v =

(
PMg[1− u]B
(2, 2, 10, 10)t

)
has integral components (this division is component-wise). Note that z

denotes any vector in Z4 . The null space of T1 − T2 is SpanZ(e1, e2, e3, e4) ⊆ Z8, meaning that

given a solution (r1, r2) ∈ R2, the set of all solutions is {(r, r2) : r ∈ R}.

We now ask whether (2, 2, 10, 10)t is in the column space of PMg. We find that the solution

space of PMgx = (2, 2, 10, 10)t is given by SpanZ((−1,−1, 1,−4)t). In order for Equation 5.1 to

have a solution, we must have that [1− u]B is some integral multiple of (−1,−1, 1,−4)t.

We will consider whether it is possible for there to be a unit u ∈ R such that

1− u = k(−B1 − B2 + B3 − 4B4), or

u = 1 + k(B1 + B2 − B3 + 4B4) for k ∈ Z.

Note that if u = 1, this corresponds to k = 0. In this situation, the solution set to Equation 5.1

is 0 + SpanZ(e1, e2, e3, e4). Written as a tuple in R2, solutions are given by {(r1, r2) = (r, 0) :

r ∈ R}.

Thus, any solution to

2r1 + (α + 1)r2 = g

2r1 + (−α + 1)r2 = g
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must satisfy r2 = 0. From the previous constraint, we see that there is a unique solution, the tuple

(g
2
, 0).

We repeat the same argument for the system

2r3 + (α + 1)r4 = gα

2r3 + (−α + 1)r4 = −gα.

A solution to the previous system must satisfy (T1 − T2)




x

y


 =Mg([2α]B).

Using the Smith normal form, we find that PMg([2α]B) = (−4,−10,−14,−10) is not divisible

by (2, 2, 10, 10), meaning there is no solution to the second system when u = 1. This work shows

that as R[(α,−α)]-ideals, (2, 2)R⊕ (α + 1,−α + 1) 6= (γ, γ)R for any γ ∈ L.

We now consider whether there are other units which could lead to a solution to equation (5.1)

by making a norm argument. If

u = 1 + k(B1 + B2 − B3 + 4B4) for some k ∈ Z, then

±1 = NL/Q(u) =
∏

σ∈Gal(L/Q)

1 + kσ(B1 + B2 − B3 + 4B4)

= 500k4 + 700k3 + 270k2 + 10k + 1

One may check that 500k4 + 700k3 + 270k2 + 10k + 1 = −1 has no integer root and that the

only integer root of 500k4 +700k3 +270k2 +10k+1 = 1 is k = 0, but we already addressed that

case. This shows that for any u ∈ R× \ {1}, PMg[1 − u]B is not a multiple of (2, 2, 10, 10)t, and

so there is no integral solution to equation (5.1).

We have shown that (2, 2)R⊕ (α+ 1,−α+ 1)R 6= (g, ug)R[α] for any u ∈ R×. Thus, R⊗ I

is not a principal R[(α,−α)]-ideal. We conclude that A is not conjugate to Cf over the ring of

integers of the Hilbert class field of K.
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This example shows that if L denotes the Hilbert class field of Q[x]/(f), then OL does not

necessarily provide an algebraic extension over which locally conjugate matrices in Mf are con-

jugate. Although fractional Z[α]-ideals become principal in OL, the fact that f factors further

over OL means that OL-conjugacy classes correspond to objects within a product of number fields.

Computing whether such objects are principal is non-trivial and does not immediately follow from

the fact that each component becomes principal.

To avoid the computational difficulties that arise in the non-irreducible case, we may attempt

to find a subfield K ′ of L which has the property that α /∈ K ′ so that f remains irreducible in K ′

and we get the following extension of fields:

L = Q(α, β) = K(x)/(f)

K = Q(α) ∼= Q[x](α) ∼= /(f) K ′ = Q(β)

Q

We also want a subfield K ′ of L such that (I : J) is principal in OK′ ⊗Z O, where O is

the over-order of (I : J). If we can find such a subfield, then A and B are OK′-conjugate. We

cannot guarantee that such a subfield exists, but this line of thinking provides a helpful method for

searching for solutions to the conjugacy extension problem.

The following is an example in which the method of searching through subfields of the Hilbert

class field was successful.

Example 5.2.4. Let f = x2 − 15 and K = Q(α) ∼= Q[x]/(f), which has class number 2.

We have that Z[α] is the maximal order and (2, α + 1) is a non-principal ideal corresponding

to A =




−1 7

2 1


. Since there is only one over-order, all fractional Z[α]-ideals are weakly

equivalent and so A is locally conjugate to Cf .

Let L denote the Hilbert class field of K. Since hK = 2, we have [L : Q] = 2[K : Q] = 4. In

Magma we find that there are three degree 2 subfields of L. One of these subfields can be defined

by g = x2 + 2x− 11. Letting K ′ = Q[x]/(g), we find that f remains irreducible over K ′.
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We will work over the sub-ring OK′ [α] of OL. Letting y denote the primitive element of L, we

have that B = {1, y, 1
4
(y2 + 2y + 10), 1

12
(y3 + 6y + 4)} is a Z-basis for OK′ [α]. Denote the i-th

basis element by Bi.

We find that I is principal as an OK′ [α]-ideal, with generator γ = −170−89B2+20B3+17B4.

Then {2, α + 1} and {γ, γα} are both OK′-bases for I . Letting β denote a root of g, we find that

γ = 2(−β − 8) + (α + 1)(β + 2)

and

γ · α = 2(8β + 22) + (α + 1)(−β − 14).

Thus, the transition matrix




−β − 8 8β + 22

β + 2 −β − 14


 conjugates A to Cf . The determinant of this

conjugating matrix is a unit in OK′ .

Example 5.2.5. This method was the means by which we obtained R in example 5.1.2. For f =

x2− 82 and K = Q[x]/(f), we found that K ′ = Q[x]/(x4− 28x2+32) is a subfield of the Hilbert

class field of K with the desired properties. For one, f remains irreducible over OK′ [x]. We also

find that the non-principal ideal I = 3Z ⊕ (α + 2)Z with multiplicator ring OK (in this case,

Z[α] = OK so there is only one over-order) is principal as an OK′ [α]-ideal. This is how we found

that the matrix A in example 5.1.2 is GL2(OK′)-conjugate to Cf .

While we have seen some examples in which we were able to solve the conjugacy extension

problem with the ring of integers of a certain subfield of the Hilbert class field, we cannot always

find a subfield that satisfies the necessary criteria. Let us go back to the number field from Example

5.2.3.

Example 5.2.6. Let f = x2 + 5. Recall that A =




−1 2

−3 1


corresponds to the non-principal

Z[α]-ideal I = 2Z ⊕ (α + 1)Z. Since the only over-order of Z[α] is itself, A is locally conjugate

to Cf .
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The Hilbert class field of K is L = Q[x]/(x4 + 12x2 + 16). There are three proper subfields

of L. In two of these subfields, call them F1 and F2, f is irreducible. However, OFi
⊗Z I is not

principal as an OFi
[α]-ideal for i = 1, 2.

This agrees with our findings from Example 5.2.3. We previously showed thatA is not conjugate

to Cf over OL, so they cannot be conjugate over the ring of integers of any proper subfield of L.

If L denotes the Hilbert class field of Q[x]/(f), it is of course possible that matrices in Mf

could be conjugate over OL, but not over OF for any proper subfield F of L. However, since

f factors further over OL, determining whether an ideal is principal becomes quite difficult as

we saw in Example 5.2.3. While the Hilbert class field does not necessarily solve the conjugacy

extension problem, we have had some success in finding proper subfields F of L in which f

remains irreducible and ideals are principal after extending to OF .

In this section, we saw that the Hilbert class field of K is the maximal unramified abelian

extension of K. We may have more success in solving the conjugacy extension problem if we

search through subfields of a larger extension of K, so we will now discuss the notion of a ray

class field, which generalizes the Hilbert class field by allowing for ramification at finitely many

primes.

5.2.1 Subfields of the ray class field

In the previous section, we gave a method for searching through subfields of the Hilbert class

field of Q[x]/(f) in an attempt to solve the conjugacy extension problem for matrices in Mf . We

will now discuss how we can transfer this method to a slightly different context. We may do this

because there is analogue of the Principal Ideal Theorem for ray class fields. First we need some

definitions.

Definition 5.2.7. (See Chapter 2, Section 1 of [4].)

A modulus m of K is a formal product of infinite primes, which are real embeddings of K into

C, and primes of K. We can write a modulus m as m = m0m∞ where m0 is a finite product of
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the primes of K (and so it is an ideal of OK) and m∞ is a formal product of a subset of the real

embeddings of K (embeddings of K into C with real image).

For a modulus m = m0m∞ we say that

x ≡ 1 mod m ⇐⇒





ordp(x− 1) ≥ ordp(m0) for all p | m0

σ(x) > 0 for all σ | m∞

(see Section 2.3 of [1]). Note that in the above, ordp(x) denotes the power of p in the factorization

of x.

We may now define the ray class group of K with modulus m.

Definition 5.2.8. [1]

Let Im denote the set of ideals of OK which are relatively prime to m0.

Let Km = {x ∈ K : x ≡ 1 mod m} and Pm = {I ∈ Im : I = (x) for some x ∈ Km}. Then the ray

class group with modulus m is defined to be the quotient Clm = Im/Pm.

The ray class group is a generalization of the usual ideal class group. As with the ideal class

group, it is known that the ray class group is a finite abelian group [1]. We wish to discuss the

conductor of a ray class group, as it is important to the description of ray class fields.

Definition 5.2.9. [1] For two moduli n and m, we say that n | m if n0 | m0 and n∞ ⊆ m∞. If

n | m, then there is a surjection

ϕ : Clm → Cln

aPm 7→ aPn.

We say that n is admissible if ϕ is injective. The conductor of Clm is the smallest admissible

modulus, and we denote it by f.
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Corresponding to ray class groups, there are objects called ray class fields. The conductor

gives the primes that ramify in the ray class field. We say that an infinite prime ramifies in Km if it

extends to an embedding of C which is not real [4].

Theorem 5.2.10. [1]

For a number field K, the ray class field with modulus m, denoted by Km, is the maximal abelian

extension of K which is ramified exactly at the primes dividing the conductor f of Clm. This ray

class field has the property that Gal(Km/K) ∼= Clm.

Note that when m = OK , the ray class field, Km, is the Hilbert class field. For this reason, we

can denote the Hilbert class field by K(1).

We now state a result for ray class fields which is analogous to the Principal Ideal Theorem for

Hilbert class fields.

Theorem 5.2.11. (See Theorem 2 in [31].)

LetKf be the ray class field with conductor f = f0f∞ ofK. Then every ideal I in If has the property

that IOKf
is principal.

Suppose K = Q(α) ∼= Q[x]/(f). For Z[α]-ideals I and J , the previous theorem tells us that

the ideal (I : J)OKf
is principal as long as f0 is chosen to be relatively prime to (I : J). As before,

such a ray class field does not automatically solve the conjugacy extension problem since f factors

further over Kf[x]. However, we can extend our previous method involving the Hilbert class field

to ray class fields by once again searching for a subfield F of Kf with the properties:

1. f remains irreducible in F [x]

2. (I : J)OF is a principal ideal.

Once again, there is no obvious reason why such a proper subfield of a given ray class field

should be guaranteed to exist. There are many different choices of modulus that one can make, so

even if a subfield with the desired properties cannot be found in one ray class field, perhaps such a

subfield can be found in another.
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Since ray fields have larger degree over K than the Hilbert class field, we will generally have

more subfields to consider. However, this presents some computational difficulties since it can be

expensive to work with fields of high degree. We only tried this method in a small number of

examples because of these challenges.

We return now to the matrices which we observed were not conjugate over the ring of integers

of the Hilbert class field in Example 5.2.3 .

Example 5.2.12. Let f = x2 + 5 and K = Q[x]/(f). The GL2(Z)-conjugacy classes of matrices

within Mf are given by representatives

Cf =




0 1

−5 0


 and A =




−1 2

−3 1


 .

The fractional ideal corresponding to A is I = 2Z⊕ (α+1)Z. In order to find a ringR over which

A and B are conjugate, we search for a ring so that 2R⊕ (α + 1)R is principal.

We will consider subfields of a particular ray class field to find such an R. Note that because

f defines an imaginary quadratic field, there are no real embeddings to consider, and so we only

need to work with a K-modulus of the form m0. Computing the norm, we find that N (I) = 2, and

so we may pick any modulus relatively prime to 2.

In Magma, we compute the ray class field Km with modulus m = 3OK . We check that this ray

class field has conductor 3OK , and we find that it is defined by x8+12x6+158x4−228x2+3721.

We obtain a proper subfield F of Km with the desired properties.

We have F = Q(β) ∼= Q[x]/(x4− 12x3+158x2+228x+3721). A Z-basis for OF is given by

B = {1, 1
8
(β − 1), 1

64
(β2 − 2β + 1), 1

1024
(β3 − 3β2 + 3β − 513)}. Letting Bi denote the i-th basis

element, we obtain that

C =




−B2 −1− B4

3 + B2 + 3B4 −1− 2B − 2− B4




is a matrix in GL2(OF ) which conjugates Cf to A.
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This example shows that while we may not be able to find a suitable subfield of the Hilbert class

field which solves the conjugacy extension problem, ray class fields may provide an answer. This

method using the ray class field was successful in a few more examples. Due to the computational

difficulties of working in a large field extension, we did not attempt this method in many cases.

In the final chapter, we summarize our results and include the data of additional examples in

which we applied the methods discussed in this chapter.
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Chapter 6

Summary

We now summarize the progress we made in addressing the conjugacy extension problem.

In [12], Estes and Guralnick prove that the Latimer and MacDuffee correspondence holds over any

integral domain R (we call this LM-R for short) if one considers GLn(R)-conjugacy for matrices

in Mf with f irreducible in R[x]. Theorem 4.2.1 extends this result by showing that LM-R holds

for matrices with square-free characteristic polynomial.

Say A and B are locally conjugate with corresponding fractional ideals I and J , respectively.

As a corollary of LM-R for R = Z(p), we obtain that I and J are weakly equivalent. Then I and

J have the same multiplicator ring; let O = (I : I) = (J : J). We showed in Proposition 4.2.9

that for a ring R with subring Z, we have that R⊗O is the multiplicator ring of R⊗ I and R⊗ J .

Considering R ⊗ I and R ⊗ J as fractional R ⊗O-ideals, the matrices A and B are R-conjugate

iff R⊗ (I : J) is principal.

We used this theory to adapt Marseglia’s algorithm in [24] to the context of GLn(R)-conjugacy

for R an integral domain. We implemented the GLn(R)-conjugacy algorithm in Magma in the

case that R is the ring of integers of a number field and the matrices in question have character-

istic polynomial f which is irreducible in R[x]. While the algorithm can theoretically be adapted

for f square-free, there is an obstacle to implementing an algorithm when f is not irreducible.

Suppose we consider matrices with square-free characteristic polynomial f =
k∏

i=1

fi where each

fi is irreducible with root αi. If we wish to consider OK-conjugacy for a number field K then

by LM-OK , we must work with fractional ideals within the K-algebra
∏
K(αi). The IsPrincipal

function can only be applied to ideals defined within such an algebra if K = Q. Since determining

whether a certain ideal is principal is crucial to testing for OK-conjugacy of matrices, we could

only implement an algorithm in Magma in the case of irreducible characteristic polynomial.

Next we considered whether the Hilbert class field of K = Q[x]/(f) could provide a means

for solving the conjugacy extension problem for matrices in Mf . This is natural to consider
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since every fractional OK-ideal becomes principal in the ring of integers of the Hilbert class field.

From now on, let K(1) denote the Hilbert class field of K. Since f factors further in OK(1)
[x],

testing whether a fractional ideal is principal is difficult, as we noted in the previous discussion.

In Example 5.2.3, we provided an example of a fractional ideal in a product of number fields

which is not principal although it is principal in each component. The matrices considered in this

example are not conjugate over OK(1)
. Thus, the ring of integers of the Hilbert class field does not

necessarily solve the conjugacy extension problem.

To avoid the subtlety that arises when f factors further, we searched through proper subfields

of the Hilbert class field in which f remains irreducible. In some cases, we were able to find a

subfield of K(1) such that the fractional ideal in question is principal in its ring of integers. Such a

subfield of the Hilbert class field need not exist, but we were able to use this method to answer the

conjugacy extension problem in several examples.

In a few examples in which the method with the Hilbert class field failed, we found subfields

of certain ray class fields which provided an answer to the conjugacy extension problem. We did

not consider the method with ray class fields in all examples because the degree of a ray class field

can be large enough to make computations with its subfields very expensive.

6.1 Data

We now provide some data which demonstrates the frequency with which the Hilbert class field

method works in a collection of examples. We consider various irreducible polynomials f with the

property that K = Q[x]/(f) has class number greater than one. We obtained number fields K of a

specified degree, range of discriminants, and range of class numbers from the LMFDB [20].

We summarize our results in some tables. In the first column, we list the irreducible character-

istic polynomial f . The third column gives the class number ofK. The fourth column lists a matrix

A which is not Z-conjugate to the companion matrix of f . This last column records whether A is

conjugate to Cf over a proper subfield of K(1), the Hilbert class field of K. If so, the polynomial

defining the subfield is given in most cases. If the polynomial takes too much space to display, we
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just write “Yes” to indicate that the method we outlined was successful. A “No” in the last column

indicates that there is no proper subfield F of the Hilbert class field such that f is irreducible over

F [x] and A is OF -conjugate to Cf . We did not actually attempt to determine in every example

whether the matrices were conjugate over a subfield F of K(1) if f factors further in F [x]. This is

because we cannot easily determine whether the ideal of interest is principal in that case.

The following table lists some examples when f defines a real quadratic field. The discriminant

of the fields K in the table range from from 1 to 100 if hK = 2 and from 1 to 500 if hK = 3 or

hK = 4.

Table 6.1: Hilbert class field method for Mf with f real quadratic.

f disc(f ) hK A Conjugate over subfield of K(1)?

x2 − 10 23 · 5 2

(
−1 3
3 1

)
x2 − 2

x2 − 15 22 · 3 · 5 2

(
−1 2
7 1

)
x2 + 2x− 11

x2 − x− 16 5 · 13 2

(
0 2
8 1

)
x2 − 52

x2 − x− 21 5 · 17 2

(
0 3
7 1

)
x2 − 2205

x2 − x− 57 229 3

(
−2 3
17 3

)
x3 + 957x2 + 206910x− 3157132

x2 − x− 64 257 3

(
−1 2
31 2

)
x3 + 270x2 − 1498824

x2 − 79 22 · 79 3

(
−2 3
25 2

)
x3 − 66x2 + 1089x− 1058

x2 − x− 80 3 · 107 3

(
−1 2
39 2

)
x3 − 33x+ 9

x2 − x− 117 7 · 67 3

(
−2 3
37 3

)
No

x2 − x− 118 11 · 43 3

(
0 2
59 1

)
x3 + 90x2 − 102168

x2 − x− 36 5 · 29 4

(
−1 2
17 2

)
x4 − 44x2 + 464

x2 − 82 23 · 41 4

(
−2 3
26 2

)
x4 − 28x2 + 32

x2 − x− 111 5 · 89 4

(
−2 3
35 3

)
Yes
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Note that for all the polynomials f given in the table, the field K = Q[x]/(f) has Z[α] as its

ring of integers. Then every fractional Z[α]-ideal has over-order Z[α], meaning that all matrices in

Mf are locally conjugate.

Note that for all polynomials f listed in the table, the class group of K = Q[x]/(f) is cyclic.

Thus, for each example in which the method did work, letting F be the number field given by the

polynomial in the last column, there is a single GL2(OF )-conjugacy class within Mf .

For the sample of polynomials f given in the table, searching through the subfields of the

Hilbert class field worked in all cases except when f = x2−x− 117. Corresponding to the matrix


−2 3

37 3


 is the non-principal Z[α]-ideal I = 3Z ⊕ (α + 2)Z. This means that for the Hilbert

class field K(1) of Q[x]/(x2−x−117), there was no proper subfield F of K(1) in which f remains

irreducible and the ideal OF ⊗ I is principal. However, the ray class field method was successful

in this example. We provide the details next.

Example 6.1.1. Consider f = x2 − x − 117, which has discriminant disc(f) = 7 · 67. There

are three Z-conjugacy classes but the class group is cyclic, so we just need to find extension over

which A =




−2 3

37 3


 is conjugate to Cf

We will discuss how to obtain a ring R such that there is one GL2(R)-conjugacy class within

Mf by considering subfields of a particular ray class field of K = Q[x]/(f).

The norm of I = 3Z ⊕ (α + 2)Z is 3, so we may consider a ray class field with modulus

relatively prime to 3. In this example, we choose to work with the modulus p = 7Z ⊕ (3 + α)Z.

This is a prime ideal of OK with p2 = 7OK . (We do not have results which narrow down which

moduli relatively prime to the norm of the ideal should be considered, but it is interesting to note

that the modulus in this example divides the discriminant of f ).

Letting m = p, we find that the ray class field Km has degree 18 over Q. The conductor of Km

equals the modulus p. Searching through the proper subfields of Km, we find that the subfield F

defined by the cubic polynomial
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x3+c2x
2x+ c1x+ c0 where

c2 = 22427531465691

c1 = 87019205503941567942935016 and

c0 = −169863356476213700999189634845323984727

has the property that there is a single GL2(OF )-conjugacy class within Mf .

We write an element in OF as (c1, c2, c3, c4) where ci denotes the coefficient with respect to the

i-th element of a particular Z-basis for OF . For

a = (−125710942708475, 750246916436719,−1153803406920806),

b = (28731787124879,−171472222144795, 263706827403713),

c = (11235025718269,−67050991899409, 103117601946829), and

d = (−2486645014964, 14840376776716,−22822989218387),

the matrix C =




a b

c d


 has unit determinant and conjugates the companion matrix to A.

Next we try the method with the Hilbert class field for some imaginary quadratic fields defined

by the polynomials f in the following table. The table lists number fields K with discriminant

ranging from -100 to -1 and class number ranging from 2 to 4.

One will notice that in this sample of number fields defined by f , there are several examples in

which the method of Hilbert class field subfields did not work. In some of these cases, we found

that ray class field method works. Since there are no real embeddings of these fields into C, there

are no infinite primes to consider.
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Table 6.2: Hilbert class field method for Mf with f imaginary quadratic.

f disc(f ) hK A Conjugate over subfield of K(1)?

x2 − x+ 4 −3 · 5 2

(
−1 2
−3 2

)
x2 + 2x+ 4

x2 + 5 −22 · 5 2

(
−1 2
−3 1

)
No

x2 + 6 −23 · 3 2

(
0 2
−3 0

)
x2 − 8x+ 64

x2 − x+ 9 −5 · 7 2

(
−2 3
−5 3

)
x2 + 7

x2 + 10 −23 · 5 2

(
0 2
−5 0

)
x2 + 2

x2 − x+ 13 −3 · 17 2

(
−1 3
−5 2

)
x2 + 8x+ 19

x2 + 13 −22 · 13 2

(
−1 2
−7 1

)
No

x2 + 22 −23 · 11 2

(
0 2

−11 0

)
x2 − 40x+ 576

x2 − x+ 23 −7 · 13 2

(
−3 5
−7 4

)
x2 + 7

x2 − x+ 6 −23 3

(
0 2
−3 1

)
x3 + 6x2 + 9x− 23

x2 − x+ 8 −31 3

(
−1 2
−5 2

)
No

x2 − x+ 15 −59 3

(
−2 3
−7 3

)
x3 − 3x2 − 124844

x2 − x+ 21 −83 3

(
−2 3
−9 3

)
x3 − 3x2 − 17107628

x2 − x+ 14 −5 · 11 4

(
0 2
−7 1

)
No

x2 + 14 −23 · 7 4

(
−2 3
−6 2

)
No

x2 + 17 −22 · 17 4

(
−2 3
−7 2

)
No

x2 + 21 −22 · 3 · 7 4

(
−2 5
−5 2

)
Yes (see below)

For f in the table besides f = x2 + 21, the fields K = Q[x]/(f) have cyclic class group. One

may also check that Z[α] is the ring of integers of K for each of these fields. So if a polynomial
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is given in the last column, then it defines a number field F such that which there is just one

GL2(OF )-conjugacy class within Mf .

In the next example, we discuss the case of the last polynomial f with non-cyclic class group

in more detail.

Example 6.1.2. If f = x2 + 21, then we find that the Hilbert class field K(1) of Q[x]/(f) has

defining polynomial x8+84x6+3038x4−12348x2+405769. The matrix




−2 5

−5 2


 corresponds

to the non-principal fractional ideal I = 5Z ⊕ (α + 2)Z. There are two subfields F of K(1) in

which I is principal and f is irreducible.

For the subfield F1 given by x2 + 1078x + 405769 we can check that OF1 ⊗ I is princi-

pal. Since the class group of Q(
√
−21) is not cyclic, there is another generator of class group,

J = −7Z ⊕ αZ. The matrix corresponding to J is




0 −7

3 0


. The fractional ideal OF1 ⊗ J is

not principal, so there are two GL2(OF1)-conjugacy classes within Mf , given by representatives


0 1

−21 0


 and




0 −7

3 0


.

For the subfield F2 defined by x4−32x3+1616x2−21760x+396544, we find that both OF2⊗I

and OF2 ⊗ J are principal. Then Mf consists of a single GL2(OF2)-conjugacy class.

The following table summarizes what we found when we applied the ray class field method

for some of the examples which were not solved by the Hilbert class field method. In column 3 of

the following table, we list N (I), the norm of a non-principal fractional Z[α]-ideal I . The fourth

column gives a conductor f of K = Q[x]/(f) which is relatively prime to N (I). The last column

gives a polynomial which defines a proper subfield of the ray class field with conductor f. In the

ring of integers R of this subfield, there is a single GL2(R)-conjugacy class within Mf .

Note that the conductor in the last row is a prime ideal in Z[α] which has the property that

(2Z⊕ αZ)2 = (2).
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Table 6.3: Ray class field method for Mf with f imaginary quadratic.

f N (I) f Conjugate over subfield of Kf?

x2 + 5 2 3Z[α] x2 − 74x+ 3721

x2 + 13 2 3Z[α] x4 − 1548x3 − 3055050x2 − 2822525676x+ 3324557815569

x2 + 14 3 2Z⊕ αZ x2 − 232x+ 29584

Next, we consider the Hilbert class field method for some examples of number fields which

are defined by cubic polynomials f . If we consider the six non-isomoprhic cubic fields with class

number 2 and discriminant ranging from -1000 to 1000, the method fails, so we do not list these

fields in the next table.

The following table includes cubic fields K with discriminant ranging from -1000 to 1000

for class number 3. Of course, all class groups of K are cyclic. We will no longer list a matrix

which is not Z-conjugate to Cf . Instead, we will list the number of over-orders of Z[α]. If the

last column lists a polynomial, then it defines a number field F such that the number of GL3(OF )-

conjugacy class of matrices in Mf coincides with the number of over-orders of Z[α]. Otherwise,

no proper subfield of the Hilbert class field has ring of integers over which the matrices in Mf are

all conjugate.

Table 6.4: Hilbert class field method for Mf with f cubic.

f disc(f ) hK #Over-orders Conjugate over subfield of K(1)?

x3 − x2 + 5x+ 1 −22 · 3 · 72 3 1 x3 − 3x2 − 60x+ 251
x3 − 3x− 10 −23 · 34 3 2 No

x3 − x2 − 4x+ 12 −22 · 132 3 2 x3 − 3x2 − 114x+ 467
x3 + 6x− 1 34 · 11 3 1 No

x3 − x2 + 5x− 6 −72 · 19 3 1 x3 + 3x2 − 8376x− 303407
x3 − x2 + 5x− 13 −22 · 5 · 72 3 2 x3 + 3x2 − 60x+ 127

There are seven non-isomorphic cubic fields with discriminant ranging from -2000 to 2000

with class number 4 or 5. For all of these fields, the method failed.

In the next table, we will list quartic polynomials f for which the method worked. Instead of

listing all those fields for which the method failed, we will just mention that we checked the seven
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non-isomorphic quartic fields with class number 2 and discriminants ranging from -2,500 to 2,500,

the four fields with class number 3 and discriminants in -5,000 to 5,000, and the four fields with

class number 4 and discriminants from -10,000 to 10,000.

Table 6.5: Hilbert class field method for Mf with f quartic.

f disc(f ) hK #Over-orders Conjugate over subfield of K(1)?

x4 + 4x2 + 1 28 · 32 2 1 x2 − 10x+ 73

x4 + 9 28 · 32 2 3 x2 − 10x+ 73

x4 − x3 + 4x2 + x+ 1 23 · 232 3 1 x3 + 30x2 − 45x− 12501

x4 − 2x3 + 4x2 + 2x+ 1 26 · 53 4 1 x4 + 6x3 + 111x2 + 526x+ 761

x4 − x3 + x2 − 6x+ 6 23 · 32 · 53 4 1 x4 + 32x2 + 544x2 + 4608x+ 15616

x4 + 5x2 + 10 23 · 32 · 53 4 2 x4 + 32x3 + 384x2 − 512x+ 4096

In the previous table, the class groups are all cyclic. Then the last column gives a polynomial

which defines a number field F so that the number of GL4(OF )-conjugacy classes within Mf is

given by the number of over-orders of Z[α].

6.2 Open problems

There is still much progress to be made in solving the conjugacy extension problem. For an

integral domain R, we focused our attention on GLn(R)-conjugacy of matrices with irreducible

characteristic polynomial because otherwise, we must consider R[α]-modules where α denotes a

tuple of roots. We have noted that testing for GLn(R)-conjugacy amounts to determining whether

a fractional R[α]-ideal is principal, which is much more challenging in the non-irreducible case.

When working with ideals within an algebra A which is a product of number fields, the IsPrincipal

function in Magma is only valid if A is a Q-algebra. For this reason, we were only able to imple-

ment an algorithm which tests for GLn(R)-conjugacy in the irreducible case. An open problem

is to develop an algorithm which tests whether an ideal is principal and produces its generator in

the case that A is an R-algebra. Once that is accomplished, one could implement an algorithm for

GLn(R)-conjugacy in the square-free case.
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In considering matrix conjugacy for matrices in Mf with irreducible f , we have offered a

method of searching through subfields of the Hilbert class field of Q[x]/(f) to find a field F over

which f remains irreducible and a particular fractional ideal is principal in OF . In the previous

subsection, we gave several examples in which the method worked as well as several in which the

method failed. An open problem is to try to find a nice classification for the the type of fields for

which this method is successful.

We also gave a similar method which searches through subfields of the ray class field of

Q[x]/(f). While this method provides more options than the Hilbert class field method, com-

putational difficulties arise when the degree of ray class field is very large. A natural question to

ask is whether there are certain ray class fields we should consider, and whether the primes divid-

ing the discriminant of f are related in any way to the conductors of these ray class fields. An open

problem is to determine how often this method will successfully answer the conjugacy extension

problem.

Making use of the generalized Latimer and MacDuffee correspondence allowed us to see that

the conjugacy extension problem is equivalent to the problem of finding a field extension in which

an ideal becomes principal. This is easy to test as long as the characteristic polynomial f is irre-

ducible and does not factor further in that extension. While our approach did not always succeed,

it seems to be more tractable than Dade’s non-constructive method for determining the extension

over which a homogeneous form realizes a unit. For instance, in Example 3.1.2, we tried to use

Dade’s method to solve the conjugacy extension problem for matrices with characteristic polyno-

mial f = x2 − x − 117. This method would result in a number field of at least degree 462. In

Example 6.1.1, we searched through subfields of a particular ray class field and found a field F

of degree 3 such that the matrices in Mf are GL2(OF )-conjugate. It remains to be determined

whether ray class fields provide an answer to the conjugacy extension problem in general.
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Appendix A

Proofs

Lemma 4.2.3

Define φ : I t → HomR(I, R) by φ(x) = ϕ(x) where ϕx(y) = Tr(xy). Then φ is an R-module

isomorphism.

Proof:

Note that φ is R-linear because Tr is R-linear.

If I t = ⊕v∗iR then φ is determined by φ(v∗i ) = ϕv∗i
. Suppose that φ(

∑
aiv

∗
i ) = φ(

∑
biv

∗
i ) so

that ϕ∑
aiv∗i

= ϕ∑
biv∗i

. This means that for all vj , j = 1, .., n we have

ϕ∑
aiv∗i

(vj) = ϕ∑
biv∗i

(vj)

Tr(
∑

aiv
∗
i vj) = Tr(

∑
biv

∗
i vj)

∑
aiTr(v∗i vj)

∑
biTr(v∗i vj)

aj = bj

for j = 1, .., n so that
∑
aiv

∗
i =

∑
biv

∗
i and φ is injective.

Let ϕ ∈ Hom(I, R) and say ϕ(vi) = ri. We also have
∑
rjϕv∗j

(vi) = ri for j = 1, ..., n so that

ϕ =
∑
rjϕv∗j

.

Now,
∑
rjϕv∗j

(x) =
∑
rjTr(v∗jx) = Tr(

∑
rjv

∗
jx) =

∑
ϕ∑

rjv∗j
(x). Thus, φ(

∑
rjv

∗
j ) =

ϕ∑
rjv∗j

=
∑
rjϕv∗j

= ϕ and φ is surjective.

�

99



Proposition 4.2.8 Suppose that I = ⊕viZ and Ĩ = ṽiR. Then

ϕI : R⊗Z I → Ĩ

defined on simple tensors by

r ⊗ (v1z1, .., vnzn) 7→ r(v1z1, .., vnzn)

and then extended in the natural way, is an R[α]-module isomorphism which is independent of the

choice of basis vi. Furthermore, if J = ⊕wiZ, then R ⊗ I ∼= R ⊗ J as R ⊗ Z[α]-modules if and

only if ⊕ṽiR ∼= ⊕w̃iR as R[α]-modules.

We prove this proposition by proving several lemmas.

Lemma 1. Suppose that I = ⊕viZ. Then ϕI : R ⊗ I → Ĩ , defined on simple tensors by

ϕ(ζ ⊗ (v1z1, .., vnzn)) = ζ(v1z1, .., vnzn) and then extended in the natural way, is a R-module

isomorphism which is independent of the choice of basis vi.

Proof: Let us denote ϕI by ϕ. The map

ϕ : R⊗Z ⊕viZ → ⊕viR

ζ ⊗ (v1z1, .., vnzn) 7→ ζ(v1z1, .., vnzn)

is known to be a Z-module isomorphism with inverse

ϕ−1((v1ζ1, ..., vnζn)) = ζ1 ⊗ v1e1 + ...+ ζn ⊗ vnen.

The map ϕ is independent of the choice of basis of I . If we replace vi with v′i, there is a matrix

U ∈ GLn(Z) with v′ = Uv. Clearly, ⊕viR = ⊕v′iR.

For γ ∈ R, we have

γϕ(ζ ⊗ (v1z1, .., vnzn)) = γζ(v1z1, .., vnzn)

= ϕ(γζ ⊗ (v1z1, .., vnzn)

and
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γϕ−1((v1ζ1, ..., vnζn) = γ(ζ1 ⊗ v1e1 + ...+ ζn ⊗ vnen)

= γζ1 ⊗ v1e1 + ...+ γζn ⊗ vnen

= ϕ−1(γ(v1ζ1, ..., vnζn)).

Thus, ϕ and ϕ−1 are R-modules.

�

Lemma 2. The R-module isomorphism ϕZ[α] : R ⊗ Z[α] → R[α] is a ring isomorphism. An

isomorphism of R⊗ Z[α]-modules is just multiplication by element in fraction field of R⊗ Z[α].

Proof:

Denote ϕZ[α] by ϕ0. We can define multiplication on R ⊗ Z[α] by t1t2 = ϕ−1
0 (ϕ0(t1)ϕ0(t2)).

Then ϕ0(t1t2) = ϕ0(ϕ
−1
0 (ϕ0(t1)ϕ0(t2)) = ϕ0(t1)ϕ0(t2) so that ϕ0 is a ring isomorphism.

On simple tensors, this multiplication is given by ζ1 ⊗ p1(α) · ζ2 ⊗ p2(α) = ζ1ζ2 ⊗ p1(α)p2(α).

Since R ⊗ Z[α] is ring isomorphic to R[α], it is an integral domain. Then we have that any

R⊗ Z[α]-module isomorphism is multiplication by element in Frac(R⊗ Z[α]).

�

We may define a R ⊗ Z[α]-module action on R ⊗Z I . Assume that I = ⊕viZ. We define the

action by γ⊗αk · (ζ ⊗ (z1v1, .., znvn) := γζ ⊗ (c1v1, .., cnvn) where




c1
...

cn




= Ak




z1
...

zn




. The

full action by R⊗ Z[α] is defined by extending linearly.
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Similarly, R[α] acts on Ĩ by γαk · (ζ1v1, .., ζnvn) := γ(c1v1, .., cnvn) where


c1
...

cn




= Ak




ζ1
...

ζn




and by extending linearly.

We check that this is an action. This action is well-defined because two elements in R[α] are

equal if they differ by a multiple of the minimal polynomial of α, call it f . (In the irreducible

case, α has the same minimal polynomial over R as over Z). Note that f(α) · (ζ1v1, .., ζnvn) =

(c1v1, .., cnvn) where




c1
...

cn




= f(A)




ζ1
...

ζn




. Now, f(A) = 0 because 0 = f(α)v = f(A)v

and one can say the same for the n Galois-conjugates of v

We now show this is an action. We let ∗ denote component-wise multiplication.

p(α) · ((viyi) + (vizi)) = p(α) · ((yi + zi)v)i)

= p(A)(yi + zi) ∗ (vi)

= p(A)(yi) ∗ (vi) + p(A)(zi) ∗ vi

= p(α) · (viyi) + p(α) · (vizi)

(p1(α) + p2(α)) · (vizi) = (p1(A) + p2(A))(zi) ∗ (vi)

= p1(A)(zi) ∗ (vi) + p2(A)(zi) ∗ (vi)

= p1(α)(vizi) + p2(α)(vizi)
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(p1(α)(p2(α)) · (vizi) = p1(A)p2(A)(zi) ∗ (vi))

= p1(A)(p2(A)(zi) ∗ (vi))

= p1(A)c ∗ vi where c = p2(A)z

= p1(α) · (c1v1, .., cnvn)

= p1(α) · p2(α) · (zivi)

We may define a R ⊗ Z[α] action on R ⊗ ⊕viZ by γ ⊗ αk · (ζ ⊗ (z1v1, .., znvn)) := γζ ⊗

(c1v1, .., cnvn) where




c1
...

cn




= Ak




z1
...

zn




and extending linearly. This is equivalent to defining

the action using the previous action: For t ∈ R ⊗ Z[α] and s ∈ Z⊗ I , let ϕ = ϕI and ϕ0 = ϕZ[α]

and define t · s = ϕ−1(ϕ0(t) · ϕ(s)).

This well-defined since ϕ0 and ϕ−1 are functions. The fact that this is an action follows from

the additive properties of ϕ0, ϕ, the fact that ϕ0 is a ring isomorphism, and since it is defined in

terms of another action. For instance,

(t1 + t2) · s = ϕ−1(ϕ0(t1 + t2) · ϕ(s))

= ϕ−1((ϕ0(t1) + ϕ0(t2)) · ϕ(s))

= ϕ−1(ϕ0(t1) · ϕ(s) + ϕ0(t2) · ϕ(s)) (other action property)

= ϕ−1(ϕ0(t1) · ϕ(s)) + ϕ−1(ϕ0(t2) · ϕ(s))

= t1 · s+ t2 · s

and
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t1 · (t2 · s) = t1 · ϕ−1(ϕ0(t2) · ϕ(s))

= ϕ−1(ϕ0(t1) · ϕ(ϕ−1(ϕ0(t2) · ϕ(s))

= ϕ−1(ϕ0(t1) · (ϕ0(t2) · ϕ(s))

= ϕ−1((ϕ0(t1)ϕ0(t2)) · ϕ(s)) (other action property)

= ϕ−1(ϕ0(t1t2) · ϕ(s))

= t1t2 · s

Lemma 3. Let I ∈ IZ[α]. For ease of notation, let ϕ = ϕI and let ϕ0 = ϕZ[α].

1. For x ∈ R[α] and y ∈ R⊗ I we have x · ϕ(y) = ϕ(ϕ−1
0 (x) · y).

2. For x ∈ R[α] and y ∈ Ĩ , we have ϕ−1(x · y) = ϕ−1
0 (x) · ϕ−1(y).

Proof:

Note that because the actions and maps are R-linear, it is enough to show the results for αk.

Suppose that Ak = (aij).

Proof of statement 1:

ζkα
k · ϕ(y) = ζkα

k · γ(z1v1, ..., znvn)

= ζkγ((z1a11 + ...+ zna1n)v1, .., (z1an1 + ...+ znann)vn)

and

ϕ(ϕ−1
0 (x) · y) = ϕ(ζk ⊗ αk · γ ⊗ (z1v1, ...znvn))

= ϕ(ζkγ ⊗ ((z1a11 + ...+ zna1n)v1, .., (z1an1 + ...+ znann)vn))

= ζkγ((z1a11 + ...+ zna1n)v1, .., (z1an1 + ...+ znann)vn).
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Proof of statement 2:

ϕ−1(ζkα
k · y) = ϕ−1(ζk((γ1a11 + ...+ γna1n)v1, ..., (γ1an1 + ...+ γnann)vn)

=
n∑

j=1

ζk(γ1aj1 + ...+ γjnajn)⊗ vjej

On the other hand,

ϕ−1
0 (ζkα

k) · ϕ−1(y) = (ζk ⊗ αk) · (γ1 ⊗ v1e1 + ...+ γn ⊗ vnen)

= ζkγ1 ⊗ (a11v1 + ...+ an1vn) + ...+ ζkγn ⊗ (a1nv1 + ...+ annvn)

=
n∑

j=1

ζk(γ1αj1 + ...+ γnαjn)⊗ vjej

The last equality holds because if we isolate the summand with vj we have

ζk(γ1 ⊗ aj1vjej + ...+ γn ⊗ ajnvjej) = ζk(γ1aj1 ⊗ vjej + ...+ γnajnvjej)

= ζk(γ1αj1 + ...+ γnαjn)⊗ vjej

because aij ∈ Z.

�

Lemma 4. Define ϕ̃ : R ⊗ IZ[α]/∼ → IR[α]/∼ by ϕ̃(R ⊗ I) = ϕI(R ⊗ I) = Ĩ . Then ϕ̃ is an

injective map.

Proof: We show that ϕ̃ is well-defined.

Suppose that R⊗ I and R⊗ J are isomorphic as R⊗ Z[α]-modules. Then there are elements

r, s ∈ R ⊗ Z[α] such that r(R ⊗ I) = s(R ⊗ J). Since s(R ⊗ J) is isomorphic to R ⊗ J , we can

assume that r(R⊗ I) = R⊗ J for some r ∈ R⊗ Z[α].
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Note that the actions are the same as the ring multiplication definitions. We have

ϕ̃(r(R⊗ I)) = ϕ̃({r · t : t ∈ R⊗ I})

= {ϕI(r · t) : t ∈ R⊗ I}

= {ϕI(ϕ
−1
Z[α](r̃) · t) : t ∈ R⊗ I} for r̃ ∈ R[α] (because ϕZ[α] is an isomorphism)

= {r̃ · ϕI(t) : t ∈ R⊗ I} (by Lemma 3)

= r̃ · ϕ̃(R⊗ I)

= r̃Ĩ

and r̃Ĩ is in the same class as Ĩ .

We show that ϕ̃ is injective. We will do this by defining ϕ̃′(Ĩ) := ϕ−1
I (Ĩ) = R ⊗ I . It is easy

to see that as long as ϕ̃′ is a function, it is the inverse to ϕ̃.

Suppose that ϕ̃(R ⊗ I) ∼ ϕ̃(R ⊗ J), so rĨ = J̃ for some r ∈ R[α] (you can make the same

argument as above). Then

ϕ̃′(rĨ) = ϕ̃−1({r · t : t ∈ Ĩ})

= {ϕ−1
I (r · t) : t ∈ Ĩ}

= {ϕ−1
Z[α](r) · ϕ−1

I (t) : t ∈ Ĩ} (by Lemma 3)

= {r̃ · ϕ−1
I (t) : t ∈ Ĩ} where r̃ ∈ R⊗ Z[α]

= r̃ϕ̃′(Ĩ)

= r̃(R⊗ I)

and r̃(R⊗ I) is in the same class as Z⊗ I . Therefore, ϕ̃′ = ϕ̃−1 and ϕ̃ is injective.

�
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Now that we have given the proofs of all the necessary lemmas, we may prove the main propo-

sition.

Proposition 4.2.8 Suppose that I = ⊕viZ. Then ϕI : R ⊗Z I → ⊕ṽiR, defined on simple tensors

by ϕ(r ⊗ (v1z1, .., vnzn)) = r(v1z1, .., vnzn), and then extended in the natural way, is an R[α]-

module isomorphism which is independent of the choice of basis vi. Furthermore, if J = ⊕wiZ,

then R⊗ I ∼= R⊗ J as R⊗ Z[α]-modules if and only if ⊕ṽiR ∼= ⊕w̃iR as R[α]-modules.

Proof: Lemmas 1-3 show that ϕI is an R[α]-module isomorphism. While the map

ϕ̃ : R⊗ IZ[α]/∼ → IR[α]/∼

R⊗ I 7→ Ĩ

from Lemma 4 is not surjective, the image is Im(ϕ̃) = {Ĩ : I ∈ IZ[α]}. Since ϕ̃ is an injective

map, it follows that R⊗ I ∼= R⊗J as R⊗Z[α]-modules if and only if Ĩ ∼= J̃ as R[α]-modules. �
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