Repository logo
 

Geometry considerations for high-order finite-volume methods on structured grids with adaptive mesh refinement

dc.contributor.authorOverton-Katz, Nathaniel D., author
dc.contributor.authorGuzik, Stephen, advisor
dc.contributor.authorGao, Xinfeng, advisor
dc.contributor.authorWeinberger, Chris, committee member
dc.contributor.authorBangerth, Wolfgang, committee member
dc.date.accessioned2022-08-29T10:17:12Z
dc.date.available2022-08-29T10:17:12Z
dc.date.issued2022
dc.description.abstractComputational fluid dynamics (CFD) is an invaluable tool for engineering design. Meshing complex geometries with accuracy and efficiency is vital to a CFD simulation. In particular, using structured grids with adaptive mesh refinement (AMR) will be invaluable to engineering optimization where automation is critical. For high-order (fourth-order and above) finite volume methods (FVMs), discrete representation of complex geometries adds extra challenges. High-order methods are not trivially extended to complex geometries of engineering interest. To accommodate geometric complexity with structured AMR in the context of high-order FVMs, this work aims to develop three new methods. First, a robust method is developed for bounding high-order interpolations between grid levels when using AMR. High-order interpolation is prone to numerical oscillations which can result in unphysical solutions. To overcome this, localized interpolation bounds are enforced while maintaining solution conservation. This method provides great flexibility in how refinement may be used in engineering applications. Second, a mapped multi-block technique is developed, capable of representing moderately complex geometries with structured grids. This method works with high-order FVMs while still enabling AMR and retaining strict solution conservation. This method interfaces with well-established engineering work flows for grid generation and interpolates generalized curvilinear coordinate transformations for each block. Solutions between blocks are then communicated by a generalized interpolation strategy while maintaining a single-valued flux. Finally, an embedded-boundary technique is developed for high-order FVMs. This method is particularly attractive since it automates mesh generation of any complex geometry. However, the algorithms on the resulting meshes require extra attention to achieve both stable and accurate results near boundaries. This is achieved by performing solution reconstructions using a weighted form of high-order interpolation that accounts for boundary geometry. These methods are verified, validated, and tested by complex configurations such as reacting flows in a bluff-body combustor and Stokes flows with complicated geometries. Results demonstrate the new algorithms are effective for solving complex geometries at high-order accuracy with AMR. This study contributes to advance the geometric capability in CFD for efficient and effective engineering applications.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierOvertonKatz_colostate_0053A_17305.pdf
dc.identifier.urihttps://hdl.handle.net/10217/235701
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2020-
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.titleGeometry considerations for high-order finite-volume methods on structured grids with adaptive mesh refinement
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineMechanical Engineering
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OvertonKatz_colostate_0053A_17305.pdf
Size:
12.08 MB
Format:
Adobe Portable Document Format