Modeling correlated discrete uncertainties in event trees with copulas
Date
2015-07-14
Authors
Wang, Tianyang, author
Dyer, James S., author
Butler, John C., author
Risk Analysis, publisher
Journal Title
Journal ISSN
Volume Title
Abstract
Modeling the dependence between uncertainties in decision and risk analyses is an important part of the problem structuring process. We focus on situations where correlated uncertainties are discrete, and extend the concept of the copula‐based approach for modeling correlated continuous uncertainties to the representation of correlated discrete uncertainties. This approach reduces the required number of probability assessments significantly compared to approaches requiring direct estimates of conditional probabilities. It also allows the use of multiple dependence measures, including product moment correlation, rank order correlation and tail dependence, and parametric families of copulas such as normal copulas, t‐copulas, and Archimedean copulas. This approach can be extended to model the dependence between discrete and continuous uncertainties in the same event tree.
Description
Includes bibliographical references (pages 31-32).
Published as: Risk Analysis, vol. 36, no. 2, February 2016, pp. 396–410. https://doi.org/10.1111/risa.12451.
Published as: Risk Analysis, vol. 36, no. 2, February 2016, pp. 396–410. https://doi.org/10.1111/risa.12451.
Rights Access
Subject
copulas
decision analysis
dependence
discrete uncertainties
event trees
probabilistic risk analysis