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Abstract

Modeling the dependence between uncertainties in decision and risk anal-

yses is an important part of the problem structuring process. We focus on

situations where correlated uncertainties are discrete, and extend the concept

of the copula-based approach for modeling correlated continuous uncertainties

to the representation of correlated discrete uncertainties. This approach re-

duces the required number of probability assessments significantly compared

to approaches requiring direct estimates of conditional probabilities. It also

allows the use of multiple dependence measures, including product moment

correlation, rank order correlation and tail dependence, and parametric fam-

ilies of copulas such as normal copulas, t-copulas and Archimedean copulas.

This approach can be extended to model the dependence between discrete and

continuous uncertainties in the same event tree.
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Modeling Correlated Discrete Uncertainties in Event
Trees with Copulas

1 Introduction

Probabilistic Risk Analysis (PRA) is a key methodology in the assessment of the likelihood

and consequences of a system failure. Over the last thirty years the tool has been applied

to the management of dams and water management systems (Wurbs 2005), the space

shuttle (Paté-Cornell and Fischbeck 1994), nuclear facilities (EPRI 2004), healthcare (Cox

2007), nautical vessel management (Merrick et al. 2002), earthquakes (Budnitz et al.

1998) and terrorism (Ezell and Collins 2010). PRA is generally viewed as a mature

discipline, but Bier and Cox (2007, pg. 280) note, “because of the complexity of the

situations often addressed by PRA and the need for subjective judgments when inputs

are uncertain, PRA still has . . . plenty of opportunity for methodological enhancements

to improve the reliability, applicability, and acceptance of PRA results.” This paper

addresses one such enhancement, modeling the dependence among discrete risks in a

PRA.

Capturing the dependence among discrete risks would also be useful in a decision

analysis setting where the choices of the decision maker are made explicit in a decision

tree (e.g., Bickel and Smith 2006; Bickel, Smith and Meyer 2008). We will use the term

“event tree” to refer to a collection of uncertainties represented by discrete event nodes

that reflects the possible dependence among them. Our focus will be on the uncertainties

in the analysis, but these correlated event trees could be featured in either a PRA or in

a decision tree that also includes decision nodes.

Many uncertainties in PRA are represented as binary consequences because the events

either occur or do not occur, or because that is a reasonable approximation of reality (e.g.,

Levenson 1995). For example the uncertain outcome of an oil and gas prospect may be
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simplified as either successful in finding hydrocarbons, i.e. “wet”, or a dry hole (e.g.,

Bickel and Smith 2006). Discrete uncertainties with more than two branches are also

common in decision and risk analyses. Some are naturally discrete, such as the number of

times a terrorist could attack a target (zero, one, two or three). Other discrete events in

probability trees are discrete approximations of continuous distributions. For example, the

uncertain reserves of a successful oil well might be classified as low, medium, or high with

those terms being associated with representative values from a continuous distribution,

such as its 10th, 50th, and 90th percentiles. We will emphasize the distinction between

naturally discrete probability distributions and discretized approximations to continuous

distributions, as this distinction has implications regarding the appropriate approach to

model dependencies among uncertainties.

The creation of an event tree is made much more challenging when there are depen-

dencies among the events that should be modeled, and this is often the case. For example,

the IAEA states (IAEA 2010, pg. 40) “dependent failures have often been found to be

one of the dominant contributors to the [reactor] core damage frequency” in its discussion

of the safety assessment of nuclear power plants. The significance of event dependence

is exacerbated when discrete events are used to model the actions of an adversary in the

context of two-player risk analysis and those actions are highly dependent upon precursor

events (see discussions in Parnell et al. 2010 and Ezell and Collins 2010).

Event trees offer a natural way to show the dependence of one uncertainty on another

in a graphical format. Typically, these dependence relationships are assessed by speci-

fying the conditional distribution of each uncertainty given the discrete outcomes of the

preceding uncertainty(s). Unfortunately, this approach is often impractical for subjective

risk assessment, as the number of required conditional distributions grows exponentially

with the number of dependent events (Keefer 2004). As a result, the risk analyst may

ignore some or all of these dependencies in order to simplify the analysis (e.g. Stabell
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2000, Delfiner 2003). As discussed in Keefer (2004), Abbas (2006) and Bickel and Smith

(2006), this type of simplification may cause significant errors.

In this paper we extend the copula-based approach (Clemen and Reilly 1999, Wang

and Dyer 2012) for modeling correlated continuous uncertainties to the representation of

correlated discrete uncertainties. In both of these approaches, the analyst must obtain

the parameters of continuous probability distributions from historical data or from assess-

ments from experts and obtain a measure of the dependence between them in the form

of an estimate of correlation as discussed by Clemen, Fisher, and Winkler (2000). For

example, one of two correlated continuous distributions might be a beta distribution with

estimated parameter values α and β and the other might be a normal distribution with es-

timated values for the mean and the standard deviation. If the normal distribution is to be

conditioned on the beta distribution, then a three outcome discrete event approximation

to the beta would be made using one of the approximately moment matching approaches

such as the extended Pearson-Tukey (EPT) method (Keefer 1983). While there are many

approaches to discretize continuous distributions (see Hammond and Bickel 2013), each

of them would be applicable with the proposed methodology. For convenience, we will

assume the analyst has chosen the EPT discretization method in our illustrative examples.

Then the continuous copula-based approaches would estimate three continuous normal

distributions conditioned on the three outcomes of the discrete approximation to the

beta distribution using the measure of correlation between them. In turn, each of these

three conditional distributions would be discretized using the EPT method so that they

would also be approximately moment matching discrete distributions. In summary, these

three conditional discrete event nodes are approximations of the conditional continuous

distributions obtained from one of the original continuous marginal distributions and a

measure of its dependence on the other continuous distribution.

In this paper, we show how to construct the dependent event tree when uncertainties
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are discrete, as a complement to the Wang and Dyer (2012) approach, hereafter W&D.

The approach for discrete uncertainties has to be modified because W&D requires that all

marginal distributions are continuous and differentiable. We also extend both approaches

so that copulas can be used to capture dependence when there are both continuous and

discrete uncertainties in the same event tree.

A natural question that arises is the following. Since the W&D approach uses a

discretization of the first uncertainty and calculates continuous conditional distributions

that are then discretized, why not simply discretize both distributions initially using the

EPT and use this new methodology on these two discrete approximations? As we shall

discuss, the results of this latter approach would be different from the results using the

W&D approach for the continuous distributions, and the implications of this observation

offer some insights regarding the methods for discretizing continuous distributions that

have heretofore been accepted as standard practice in many decision and risk analysis

applications.

The remainder of this paper is organized as follows. We begin by assuming that we

have discrete uncertainties and derive a copula approach for modeling their dependence.

Section 2 provides a closed-form solution for the discrete dependence relationship between

two binary uncertainties when product moment correlations are provided, and contrasts

the copula-based approach with other methods when the closed-form solution cannot be

obtained. Section 3 develops the analytical form of the joint and conditional probabilities

for binary uncertainties based on copulas when product moment correlations or rank order

correlations are provided and compares our example to other methods while Section 4 ex-

tends our approach to n-branch uncertainties. In section 5 we develop a copula approach

to capture dependencies when there are both natural continuous and discrete uncertain-

ties in the same event tree and highlight the differences between this new approach for

discrete uncertainties and W&D. Section 6 compares the distinction between discretizing
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a naturally continuous uncertainty and then using this discrete copula approach and ap-

plying the W&D approach to the continuous uncertainties directly. Section 7 provides a

summary and conclusion.

2 Estimation of Discrete Conditional Probabilities

Using Correlations

We begin with an analysis of a pair of binary uncertainties to serve as a basis of comparison

with more complex cases, and derive a closed-form solution for the probabilities of one

event conditioned on another. However, a similar closed-form solution for the dependence

relationships does not exist when there are more than two binary uncertainties or when

discrete uncertainties have more than two outcomes.

2.1 Conditional Probabilities for Correlated Binary Uncertain-

ties

Suppose we have two dependent binary uncertainties representing whether or not the

events X1 and X2 occur with marginal probabilities p1 and p2 respectively. For simplicity,

we refer to both the uncertainties and the related events as X1 and X2 in this section. We

use 1 and 0 as indicator outcomes for these events, so that p1 is equal to the probability

that the outcome associated with event X1 = 1, and p2 is the probability that the outcome

associated with event X2 = 1. Similarly p12 is the joint probability that X1 = 1 and

X2 = 1, and p2|X1=k is the conditional probability that X2 = 1 given X1 = k, k ∈ (0, 1).

The product moment correlation r12 is defined in terms of the dependence between these
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indicator outcomes, and is independent of any consequences associated with them. This

is equivalent to the representation of discrete binary events used by Bickel and Smith

(2006).

Using the definition of the marginal probability of X2, p2, and the product moment

correlation between these binary uncertainties, r12, we have

p2 = p1p2|X1=1 + (1− p1)p2|X=0 and

r12 = E(X1X2)−E(X1)E(X2)√
V ar(X1)V ar(X2)

= E(X2|X1)E(X1)−E(X1)E(X2)√
V ar(X1)V ar(X2)

=
p2|X1=1p1−p1p2√
p1−p2

1

√
p2−p2

2

.

Given these two equations in two unknowns, the formulas for the conditional proba-

bilities of X2 givenX1 can be derived as

p2|X1=1 =
√

1−p1

p1

√
p2 − p2

2r12 + p2, and p2|X1=0 = p2 −
√

p1

1−p1

√
p2 − p2

2r12.

Bickel, Smith and Meyer (2008) provide the same relationship in a different form.

We now consider a third binary uncertainty representing whether or not the event

X3 occurs that is also dependent on the binary uncertainties X1 and X2. There are

four conditional probability relationships that include X3 which need to be specified,

p3|X1=0,X2=1, p3|X1=1,X2=0, p3|X1=0,X2=0 and p3|X1=1,X2=1. However, with the given marginal

probability p3 and correlations r13 and r23, we have only the following three equations

relating the conditional probabilities of event X3 to events X1 and X2:

p3|X1=0,X2=1 =
r23

√
p2−p2

2

√
p3−p2

3+p2p3−p3|X1=1,X2=1p2|X1=1p1

p2|X1=0(1−p1)
,

p3|X1=1,X2=0 =
r13

√
p1−p2

1

√
p3−p2

3+p1p3−p3|X1=1,X2=1p2|X1=1p1

(1−p2|X1=1)p1
, and

p3|X1=0,X2=0 =
p3(1−p1−p2)−r13

√
p1−p2

1

√
p3−p2

3−r23

√
p2−p2

2

√
p3−p2

3+p3|X1=1,X2=1p2|X1=1p1

(1−p2|X1=0)(1−p1)
.

We lack a relationship for p3|X1=1,X2=1 in the underlying dependence structure and there-

fore cannot find a unique solution for these conditional probabilities. We refer to this

situation as one that is under-specified.

In general, when there are n uncertainties, only n marginal probabilities and n(n−1)
2
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pairwise correlations can be specified. The number of conditional probabilities required to

define the joint binary distribution grows exponentially, but the correlation information

only grows combinatorially. This leads to situations with fewer equations than unknowns,

so the required conditional probabilities cannot be uniquely determined. In some special

cases with equal marginal probabilities or with an exchangeable correlation matrix where

pairwise correlations are all the same, the joint distribution is uniquely specified (Lunn and

Davies 1998, Oman and Zucker 2001, Papathomas 2008). However, for a binary event tree

with more than two uncertainties, there is no general unique solution for the conditional

probabilities as a function of the marginal probabilities and the pairwise product moment

correlations.

2.2 Approaches to Deal with Under-specification

The problem of under-specification has long been recognized in the literature (e.g.,

Sarin 1979; Abbas 2006; Bickel and Smith 2006). Numerous approximation methods

have been developed to specify a unique joint probability distribution given the available

partial information.

Keefer (2004) introduced the underlying event model, which requires the assessment

of only one conditional probability in addition to the marginal probabilities, and deter-

mines the entire joint probability distribution assuming that all random variables are

conditionally independent given another “hidden” or “underlying” random variable. The

potential error associated with using the underlying event model has been discussed by

Abbas (2006) and Bickel and Smith (2006) because of its assumptions of independence

among most binary events and its ability to accommodate only positive dependence.

Jaynes (1957) first developed the principle of maximum entropy (ME) to avoid the

need to elicit the complete joint probability of uncertainties. For example, adopting the
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notation of Abbas (2006) for maximum entropy formulation, when there are three bi-

nary uncertainties X1, X2 and X3, maximum entropy is defined as p∗1,2,3 = argmax
p1,2,3

−∑
1,2,3

p1,2,3log(p1,2,3), where p1,2,3 = p3|X1=1,X2=1. The ME method specifies the joint dis-

tribution that maximizes entropy and is closest to the uniform distribution, subject to

information that is available. An equivalent approach is to choose the joint distribution

that minimizes the Kullback-Leibler divergence to a uniform distribution that assumes

independence (Kullback and Leibler 1951).

ME has been proposed and used in modeling uncertainties in decision analysis (e.g.

Abbas, 2006; Bickel and Smith, 2006; Bickel, Smith and Meyer, 2008). Abbas (2006)

illustrated the use of the ME method to obtain a joint probability distribution using lower

order joint probability assessments in the context of a semiconductor testing application.

He showed that errors due to the inappropriate assumption of event independence can lead

to suboptimal decisions. Bickel and Smith (2006) developed a practical ME framework

for evaluating sequential exploration strategies in oil exploration. In the case where the

exploration prospects are dependent, they applied the ME method to construct a full

joint distribution for all outcomes from the marginal and pairwise assessments. Based

on the constructed discrete joint distributions and a dynamic programming model, their

methodology can determine the optimal exploration strategies.

More recently, Montiel and Bickel (2013) augmented the ME approximation with

the analytic center (AC) method which maximizes the product of the joint probabilities

instead of maximizing the entropy in the ME method, and also proposed using the average

of all simulated joint distributions that are consistent with the lower order assessments.

They show that these methods produce results similar to the ME method by using the oil

exploration example introduced by Bickel and Smith (2006). In practice, these methods

require customized coding and the determination of when it is appropriate to assume that

the average of a large number of simulated candidate joint distributions is representative of
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the true joint distribution; these issues are exacerbated when the number of uncertainties

is large.

Like the ME approach, copulas can also be used to provide the additional information

that avoids under specification and yields a unique joint distribution given marginal proba-

bilities and dependence information (c.f. Jouini and Clemen 1996; Embrechts, et al., 1999;

Cherubini et al., 2004). A copula allows a joint distribution of random variables to be ex-

pressed as a function of the marginal distributions. For a random vector X = (X1, ..., Xn)

with Fi(Xi) denoting the marginal distribution of each Xi, Sklar (1959) showed that there

always exists a function C such that F (X1, ..., Xn) = C(F1(X1), ..., Fn(Xn)). The func-

tion C is called a copula. It fully captures the dependence structure among the random

variables, and is independent from the choice of the marginal distributions.

The copula function C is itself a distribution function for uniform random variables

since the marginal CDFs are standard uniform distributions. Let U1 = F1(X1), ...,

Un = Fn(Xn), the joint CDF can be given by the copula C(U1 = u1, ..., Un = un) =

F (F−1
1 (u1), ..., F−1

n (un)), where F−1 denotes the inverse cumulative distribution function,

and Ui, i = 1, ..., n, is a uniform variable defined over [0,1].

The use of a copula allows the independent consideration of the marginal probabilities

and the dependence structure. The joint distribution of X = (X1, ..., Xn) can be recon-

structed from the copula and the marginal distributions Fi(Xi), i = 1, . . . , n. Using just

these marginal distributions and information about the dependence structure, it is pos-

sible to model continuous dependent multivariate uncertainties in an event tree (Clemen

and Reilly 1999, Wang and Dyer 2012). Here we focus on capturing the correlation among

discrete uncertainties as opposed to continuous uncertainties.

The separation of the marginal probabilities and the dependence between those prob-

abilities in a copula suggests an effective algorithm for constructing event trees: (1) de-

termine the marginal probability distributions; (2) estimate the correlations among these
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probability distributions; (3) combine the dependence information with the marginal prob-

ability distributions to calculate the desired conditional probabilities in the constructed

binary event tree.

In the following sections we apply our approach to a variety of settings and discuss

implementation issues. We will make specific assumptions and about the measures of

dependence and the appropriate copula family, and in practice these choices are important

issues. W&D provide a detailed discussion of a variety of dependence measures and

copula families that can be applied to generate correlated continuous event trees and

that are equally applicable for discrete event trees. For more information about assessing

correlation readers are referred to Clemen, Fisher, and Winkler (2000).

3 Modeling Dependence among Discrete Uncertain-

ties using Copulas

In this section we start with a demonstration of the use of copulas to capture depen-

dence between a pair of binary uncertainties. We then extend the analysis to situations

with more than two binary uncertainties and compare our approach to ME using an

example from Bickel and Smith (2006).

3.1 The Case of Binary Uncertainties

The copula function for a pair of dependent binary uncertainties is

F (X1, X2) = C(F1(X1), F2(X2)) = C(u1, u2) = F (F−1
1 (u1), F−1

2 (u2))

As before, we define pi such that Xi = 1 with probability pi and Xi = 0 with probability

1− pi where pi is the 100pthi percentile of the uniform distribution and rij is the product

moment correlation between uncertainties Xi and Xj. For instance, the joint distribution
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of both X1 = 1 and X2 = 1 can be represented by a copula:

F (X1 = 1, X2 = 1) = C(p1, p2) =
´ p1

0

´ p2

0
c(u1, u2)du1du2.

When the dependence structure between the random variables is captured by a bivari-

ate normal copula, C is given by C(F1(X1), F2(X2)) = Φρ12(Φ−1(F1(X1)),Φ−1(F2(X2)),

where Φ is the cumulative distribution function for a standard bivariate normal distribu-

tion function with mean zero and correlation ρ12 and the marginal cumulative distributions

of F1(X1) and F2(X2) are transformed by the inverse of the standard normal distribution

CDF function Φ−1.

The normal copula shares the same dependence structure as the multivariate normal

distribution; it uses pair-wise Pearson product moment correlations to measure depen-

dence and allows arbitrary marginal distributions for the uncertainties. Because this

copula uniquely determines the dependence structure, there is a one-to-one relationship

between the product moment correlation ρ12 for the normal copula function and the

product moment correlation r12 between the original uncertainties. Cairo and Nelson

(1997) provide efficient algorithms to determine the normal copula correlations through

a correlation matching technique when Pearson product moment correlations are used

to measure dependence. For example, the correlation matching formulation of bivariate

normal copulas satisfies the following equation:

r12 =
´∞
−∞

´∞
−∞ z1z2φ(z1, z2, ρ12)dz1dz2,

where φ is the density function for a standard bivariate normal distribution function with

mean zero and correlation ρ12, and z1 and z2 are standard normal variables.

With bivariate normal copulas, the joint probability of X1 = 1, X2 = 1, can be defined

as

F (X1 = 1, X2 = 1) =
´ Φ−1(p1)

−∞

´ Φ−1(p2)

−∞ φ(z1, z2, ρ12)dz1dz2.
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The other joint probabilities can be calculated using the relationships between the

marginals or using copulas. For instance, F (X1 = 1, X2 = 0) = p2 − F (X1 = 1, X2 = 1),

or alternatively,

F (X1 = 1, X2 = 0) =
´ Φ−1(p1)

−∞

´∞
Φ−1(p2)

φ(z1, z2, ρ12)dz1dz2.

The conditional probabilities may be written

F (X2 = j|X1 = i) = F (X1=i,X2=j)
F (X1=i)

, i, j = 0, 1; e.g.,

p2|X1=1 =
F (X1 = 1, X2 = 1)

p1

=

´ Φ−1(p1)

−∞

´ Φ−1(p2)

−∞ z1z2φ(z1, z2, ρ12)dz1dz2

p1

(1)

This equation differs from the development in W&D. As we will discuss in section 5.1,

the W&D method works only for continuous distributions. Intuitively, W&D calculates

the conditional percentiles of the subsequent continuous uncertainty while keeping the

conditional probabilities constant consistent with the EPT method. When the uncertain-

ties are discrete, it is meaningless to calculate the conditional percentiles of the discrete

uncertainties because all possible discrete outcomes are already predetermined (e.g. head

and tail of the flip coins). Therefore, in the proposed method uniquely designed for the

discrete uncertainties, we calculate the conditional probabilities while keeping the discrete

outcomes as given.

The copula family utilized in the analysis implies a unique dependence structure for

the underlying binary uncertainties and hence a unique event tree structure. From our

previous derivation, we know that there is unique solution for the bivariate tree with

only two uncertainties. Therefore, if the normal copula is the underlying copula for this

dependence structure, the joint probabilities calculated from the normal copulas must

agree with the formulas derived directly from the marginal probabilities and the product

moment correlation.

Substituting (1) into r12 =
p2|X1=1p1−p1p2√
p1−p2

1

√
p2−p2

2

and assuming a normal copula we can derive
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the following relationship

r12 =
´Φ−1(p1)
−∞

´Φ−1(p2)
−∞ z1z2φ(z1,z2,ρ12)dz1dz2−p1p2√

p1−p2
1

√
p2−p2

2

=
´∞
−∞

´∞
−∞ z1z2φ(z1, z2, ρ12)dz1dz2.

which can be verified numerically for ρ12 ∈ [−1, 1]. This is an interesting result as it shows

that for any two binary uncertainties, the underlying dependence structure is defined by a

bivariate normal copula; note that we did not assume a normal copula when deriving the

relationship. For a pair of binary uncertainties, the ME and AC methods give the same

result obtained from using the normal copula and these formulas. This is consistent with

previous work demonstrating that the use of a Normal copula leads to a “near-maximum

entropy” result in general (Bethge and Berens 2008, Macke et al. 2009).

In the case of n binary uncertainties, the copulas-based joint and conditional proba-

bilities are given by

F (X1 = i1, . . . , Xn = in) =
´ ub1
lb1

. . .
´ ubn
lbn

c(u1, . . . un)du1 . . . dun, and

F (Xn = in|X1 = i1, ..., Xn−1 = in−1) = F (X1=i1,...,Xn=in)
F (X1=i1,...,Xn−1=in−1)

, respectively,

where ij = 0, 1, j = 1, ..., n, and lbi = {0 Xi = 1
pi Xi = 0

, ubi = {pi Xi = 1
1 Xi = 0

.

With normal copulas defining the underlying dependence structure, the joint proba-

bility is

F (X1 = i1, . . . , Xn = in) =
´ ub1
lb1

. . .
´ ubn
lbn

φ(z1 . . . zn,ΣZ)dz1 . . . dzn,

where ij = 0, 1, j = 1, ..., n, lbi = {Φ
−1(pi) Xi = 0
−∞ Xi = 1

, ubi = { ∞ Xi = 0
Φ−1(pi) Xi = 1

.

3.2 A Numerical Example with Binary Uncertainties

As previously discussed, with a pair of binary uncertainties there is no under specifi-

cation as there is an exact equation relating the correlation and the joint and conditional

probabilities. We will illustrate the case of three binary uncertainties using a subset of

the event tree in Bickel and Smith (2006). In their example there are six sites where an

oil well could be drilled, and each has a unique probability of success, which is defined

as being “wet”. We focus on the first three drilling opportunities to provide a visual
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comparison of the conditional probabilities generated by each approach, but the example

could easily be expanded to include all six.

Figure 1 shows the marginal probability of well i being wet, pi, and the correlations

between each of the first three wells from this example. Using this data and the spread-

sheet provided by the authors, the resulting ME event tree is shown in Figure 2. The

positive correlation between the wells is captured by the conditional probabilities calcu-

lated by the ME algorithm. For example, the conditional probability p3|X1=1,X2=1 = 0.717

is greater than the marginal probability p3 = 0.53 for the success of well 3, and the joint

probability (shown in bold at end of each branch) of all three wells being “wet” is 0.148

compared to 0.091 if all three wells were independent.

Figure 1: Marginal Probabilities and Pearson Correlation (r) for First
Three Wells in Bickel & Smith (2006)

P(Wet) Well i / j 1 2 3
Well 1 0.35 1 1.0000 0.1468 0.1470
Well 2 0.49 2 1.0000 0.2357
Well 3 0.53 3 1.0000
Marginal Probabilities Correlation Matrix

The application of the copula approach with a normal copula described in the previ-

ous section resulted in the event tree shown in Figure 3. For example, the conditional

probability p2|X1=1 is calculated as

p2|X1=1 = F (X1=1,X2=1)
F (X1=1)

=
´Φ−1(p1)
−∞

´Φ−1(p2)
−∞ z1z2φ(z1,z2,ρ12)dz1dz2

p1

=
´Φ−1(0.35)
−∞

´Φ−1(0.49)
−∞ z1z2φ(z1,z2,ρ12)dz1dz2

0.35
= 0.590.

Consistent with the observations of Bethge and Berens (2008) and Macke et al. (2009)

that this would be a “near maximum entropy” solution, the results rounded to three

decimal places are almost identical; the only difference is p3|X1=1,X2=1 = 0.716 with the

Normal copula versus 0.717 with ME. Thus the copula approach provides a closed-form
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Figure 2: Event Tree for the Three Well Example using ME

solution that closely approximates the ME solution. We also constructed the complete

tree for the 6 wells example in Bickel and Smith (2006) and confirmed the “near maximum

entropy” solution of the normal copulas-based tree (entropy = 3.331) compared to the

optimization-based tree by Bickel and Smith (2006) (entropy= 3.332).

3.3 Comments on the Copulas-based Approach and the Optimization-

based Approaches

As illustrated in Figures 2 and 3, the ME and copula approach offer similar solutions

to the same problem; while we do not demonstrate it here, the AC approach could also be

used. Further, the copula and optimization-based approaches can address the exponential
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Figure 3: Event Tree the Three Well Example using the Normal Copula
and the Pearson Correlation (r)

growth in the required number of assessments. For example, Bickel and Smith (2006)

assess all pairwise conditional probabilities and show how one could achieve the same level

of information about the joint distribution if one assessed the same number of pairwise

correlations.

The proposed copulas-based approach does offer some advantages over the ME and

AC approaches. First, the copulas-based approach provides a closed-form solution for

the joint and conditional probabilities that can be solved numerically. In comparison, the

calculation of the maximum entropy distribution of correlated variables with pre-specified

marginal distributions requires the solution of nonlinear coupled integral equations sub-

ject to local optima, with no exact solution for discrete marginal distributions (Larralde

2012). Second, this approach allows relatively easy incorporation of nonlinear measures
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of association, such as rank order correlation and tail dependence, in the same general

framework, while the ME and AC will require customized coding for each application

(for example, see Montiel and Bickel (2012) for a discussion of the constraints for rank

correlations). Third, as demonstrated above the use of the multivariate normal copula

provides a computationally more efficient approximation to the ME method that shares

the benefits of a “near-maximum entropy” result while reducing its practical limitations

(Bethge and Berens 2008; Macke et al. 2009). In addition, as we discuss in Section 5, the

proposed approach allows the mix of dependent continuous and discrete uncertainties in

the constructed event tree, which has not been discussed in the previous literature.

4 The Case of Discrete Uncertainties with More than

Two Events

As discussed in sections 2 and 3, while a closed form solution relating dependence to

marginal and conditional probabilities exists for a pair of binary uncertainties, when there

are more than two uncertainties we encounter under-specification. The same is true for a

pair of uncertainties when at least one has more than two events.

4.1 Extending the Copula-based Method to Uncertainties with

More than Two Events

The copulas-based approach can be extended to the general case of dependent uncer-

tainties with more than two discrete events as we illustrate with a simple example of two

uncertainties Xi, i = 1,2 with discrete probabilities pui , p
m
i , pdi of three outcomes, u =

up, m = middle, d = down and the Pearson product moment correlation r12. We define

the 3-outcome indicator variable Xi = 1 with probability pui ; Xi = 0 with probability pmi ,
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and Xi = −1 with probability pdi . Note that the choice of 1, 0, -1 as indicator variable

outcomes is an arbitrary one as long as these outcomes are equally spaced, e.g. 1, 0, -1.

The results will be the same for any positive affine transformation of the indicator vari-

ables due to the relationship raX+b,cY+d = acCOV (X,Y )
aσXcσY

= COV (X,Y )
σXσY

= rXY for the product

moment correlation.

If we define Xi = −1 if ui ≤ pdi , Xi = 0 if pdi < ui ≤ pdi + pmi and Xi = 1 otherwise,

where pi is the 100pthi percentile of the uniform distribution, the joint distribution can be

defined by copulas. For n events, the copulas-based joint and conditional probabilities

are given by

F (X1 = i1, . . . , Xn = in) =
´ ub1
lb1

. . .
´ ubn
lbn

c(u1, . . . un)du1 . . . dun, and

F (Xn = in|X1 = i1, ..., Xn−1 = in−1) = F (X1=i1,...,Xn=in)
F (X1=i1,...,Xn−1=in−1)

, respectively,

where ij = −1, 0, 1, j = 1, ..., n, and lbi = {
pdi + pmi Xi = 1
pdi Xi = 0
0 Xi = −1

, ubi = {
1 Xi = 1

pdi + pmi Xi = 0
pdi Xi = −1

.

If we apply normal copulas to model the underlying dependence structure, then

F (X1 = i1, . . . , Xn = in) =
´ ub1
lb1

. . .
´ ubn
lbn

φ(z1, . . . zn,ΣZ)dz1 . . . dzn, where ij = −1, 0, 1, j =
1, ..., n,

and lbi = {
Φ−1(pdi + pmi ) Xi = 1

Φ−1(pdi ) Xi = 0
−∞ Xi = −1

, ubi = {
∞ Xi = 1

Φ−1(pdi + pmi ) Xi = 0
Φ−1(pdi ) Xi = −1

.

To build the multivariate copula-based event tree for discrete (X1, . . . Xn), we begin

with X1 and then recursively compute the conditional probabilities for the discrete un-

certainties Xk(k = 2, . . . , n), conditioning on each of the indicator variable values of the

previous realizations for (X1, . . . Xk−1). Throughout the tree, the indicator variable val-

ues of these approximations do not change, but the conditional probabilities assigned for

the branches of a chance node vary with the conditioning scenarios using the logic of the

copulas approximation. The fact that the probabilities, not the indicator values, vary to

capture the correlation will be explored again in Section 6.
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4.2 A Numerical Example of Discrete Uncertainties with More

than Two Events

We will illustrate the use of modeling dependence between two discrete events with

a hypothetical example regarding two uncertainties in the risk analysis of a twin engine

plane: encountering birds on takeoff (B) and engine failure (F ). As shown in Figure 4, we

either do or do not encounter birds and the aircraft is assumed to have only two engines

so we either have zero, one, or two engine failures on takeoff. The event tree on the left

side of Figure 4 is based on the assumption that B and F are independent and therefore

shows the hypothetical marginal distributions of each uncertainty. For the sake of clarity

we used an artificially high probability of one or more engine failures but the approach

would apply for any marginal distribution.

Figure 4: Probability of Engine Failure given Encounter with Birds

P (F |B) assuming independence P (F |B) Normal copula, Kendall’s τ = 0.5

Encountering birds at takeoff increases the risk of engine failure, so we would expect

P (F = Two|B = Y es) > P (F = Two|B = No). The conditional probabilities of engine
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failure on the right side of Figure 4 were calculated based on the assumption that the

measures of dependence are provided by a Kendall’s tau with τ = 0.5 and a normal

copula. For example, the conditional probability pF=One|B=Y es is calculated as

pF=One|B=Y es = F (F=One,B=Y es)
F (B=Y es)

=

´Φ−1(p1)
−∞

´Φ−1(pd2+pm2 )

Φ−1(pd2)
z1z2φ(z1,z2,ρ)dz1dz2

p1

=

´Φ−1(0.1)
−∞

´Φ−1(0.000001+0.001)

Φ−1(0.000001)
z1z2φ(z1,z2,ρ12)dz1dz2

0.1
= 0.00934.

Note that the corresponding conditional probabilities of one or two engine failures given

that birds are encountered (Yes) are higher than their marginal values, and even higher

than the corresponding conditional probabilities if birds are not encountered (No).

Many probabilistic risk analyses are conducted to find paths of high probability or high

consequence or both. Comparing the left and right sides of Figure 4, P (F = Two|B =

Y es) is about (0.1×9.99E−06)/(0.1×1.00E−06) = 9.9 times higher when we explicitly

capture the assumed dependence of Engine Failure on Birds Encountered. Assuming that

B and F are independent if they are not could lead to errors in estimating the risk of air

travel under different scenarios based on this hypothetical example.

5 Event Trees with both Continuous and Discrete

Uncertainties

In reality many decision and risk analyses involve a mix of discrete and continuous

uncertainties, and we can extend the proposed approach to handle these situations. While

we illustrate the combination of discrete and continuous uncertainties with the simplest

case of one discrete and one continuous uncertainty, the process can be generalized to mul-

tiple discrete and continuous uncertainties in any sequence. The discussion in this section
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also allows us to contrast the technical aspects of the proposed discrete approach with

the continuous W&D approach; in section 6, we demonstrate the practical distinctions

between the two.

5.1 Extending the Copula-based Approach for Mixed Uncer-

tainties

For the case of two conditional continuous uncertainties that were the focus of W&D,

for each given conditional percentile Pr(X2 ≤ x2|X1 = x1) = α2, Darsow et al. (1992)

show that Pr(X2 ≤ x2|X1 = x1) = ∂C
∂F1(x1)

(F1(x1), F2(x2)) = ∂C
∂u1

(u1, u2). Hence, the

dependent uniform variable u2 = Pr(X2 ≤ x2) is the inverse function of the realization of

u1 = α1 and the choice of the percentile α2 for the conditional distribution X2 ≤ x2|X1 =

x1. Let ∂C
∂u1

(u1, u2) = cu1(u2) = α2, then u2 = c−1
u1

(α2). As illustrated in W&D, with a

given copula we know the partial derivative and can derive the closed-form formula for

u2. When the underlying copula is normal, ∂C
∂u1

(u1, u2) = Φ(Φ−1(u2)−rΦ−1(u1)√
1−r2 ) and u2 =

Φ(rΦ−1(α1) +
√

1− r2Φ−1(α2)). When we attempt to model discrete uncertainties, we

have to modify the approach taken to find the conditional percentiles which represents

the primary extension to W&D.

The combined methodology depends on the sequence of the uncertainties: continuous

before discrete or vice versa. When a discrete uncertainty is preceded by a continuous

uncertainty, we use the discretized continuous uncertainties to calculate the parameters

to be used by the discrete uncertainty. When a continuous uncertainty is preceded by

a discrete uncertainty, we use the discrete version of the copulas-based conditional per-

centiles to calculate the parameters to be used by the subsequent continuous uncertainty.

We begin with the situation that is visually the most similar to W&D in an event tree,

a discrete distribution conditioned on a continuous distribution and then move on to the

reverse order.
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When a discrete event follows a continuous uncertainty in the sequence we can use the

W&D approach for the continuous variables and then numerically calculate the integral

bounds for the subsequent discrete uncertainty. First, we build the discrete approxima-

tion for the preceding continuous uncertainty X1 with the 5th, 50th and 95th percentiles

according to the EPT method, which corresponds to the realizations of 0.05, 0.5, and

0.95 for u1, the unconditional percentile of X1. We can numerically calculate the integral

bound of X1:
´ ub1
lb1

c(u1)du1 =
´ ub1

0
c(F (x1))du1 = Pr(X1 ≤ x1) = F (x1). With the calcu-

lated integral bound for X1, we can then apply the proposed approach on the following

discrete uncertainty X2 and generate the event structure.

When the preceding uncertainty is discrete, the copula is not differentiable in terms

of this discrete uncertainty and we need to apply the discrete version of the conditional

percentile (Darsow et al. 1992),

Pr(X2 ≤ x2|X1 = x1) = ∆C
∆F1(x1)

(F1(x1), F2(x2)) = ∆C
∆u1

(u1, u2),

where ∆C(u1, u2) = C(u1, u2)− C(u1 −∆u1, u2) = Pr(X2 ≤ x2|X1 = x1)∆u1.

The dependent uniform variable u2 = Pr(X2 ≤ x2) is the implicit solution of

´ u1

0

´ u2

0
c(ua, ub)duadub −

´ u1−∆u1

0

´ u2

0
c(ua, ub)duadub = Pr(X2 ≤ x2|X1 = x1)∆u1.

which can be calculated numerically. We can then apply the dependent discrete event

tree approach by using the inverse marginal transformations to transform the discrete

approximation for the standard uniform random uX into the corresponding discrete ap-

proximation for the original random vector X = F−1
X (uX) where FX is the marginal

distribution function of the variable X.

When the number of uncertainties increases, we iteratively apply the continuous ap-

proach and the discrete approach as appropriate for the event structure.
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5.2 A Numerical Example with Continuous and Discrete Un-

certainties

To apply our approach we define two generic uncertainties: a continuous uncertainty

X with normal marginal N(0, 1), and a correlated discrete uncertainty Y (Y = 1 with

probability 0.2; Y = 0 with probability 0.6, and Y = −1 with probability 0.2). If

we assume that the discrete Y is conditioned on the continuous X and use a normal

copula with Spearman correlation ρ = 0.5, we generate the event tree on the left side of

Figure 5. First, we build the discrete approximation for X with the 5th, 50th and 95th

percentiles according to the EPT method, which corresponds to the realizations of 0.05,

0.5, and 0.95 for u1, the unconditional percentile of X. We then numerically calculate the

integral bound of X. For instance, when X = Low, we can calculate ub1 as -0.8965 from
´ ub1

0
c(F (x1))du1 = F (x1) = 0.185 . With the calculated integral bound for X, we can

then apply the proposed approach to the subsequent discrete uncertainty Y . For example,

the conditional probability pY=Low|X=Low is calculated as

pY=Low|X=Low = F (X=Low,Y=Low)
F (X=Low)

=
´ ub1
−∞
´Φ−1(pd2)

−∞ z1z2φ(z1,z2,ρ12)dz1dz2

p1

=
´−0.8965
−∞

´Φ−1(0.2)
−∞ z1z2φ(z1,z2,ρ12)dz1dz2

0.185
= 0.456.

If we exchange the order of the uncertainties X and Y in the event tree and main-

tain the same normal copula and Spearman ρ = 0.5 the process is modified as follows

and generates the event tree on the right side of Figure 5. For example, the uniform

variable uX for the conditional scenario X = Low|Y = Low is numerically calculated

from C(uX , uY ) − C(uX , uY − ∆uY ) = Pr(X ≤ Low|Y = Low)∆uY as 0.014, where

uY and ∆uY are the percentile of Low and the difference of the two adjacent percentiles

(Low and Medium) for discrete uncertainty Y respectively, and Pr(X ≤ Low|Y = Low)

is the conditional probability 0.185 following the EP-T method. We can then calculate
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X = F−1
X (uX) = Φ−1(0.014) = −2.193, where FX is the marginal distribution function of

the continuous variable X.

Figure 5: Combining Discrete and Continuous Distributions
(Normal copula and Spearman’s Rho ρ = 0.5)

Discrete Y given Continuous X Continuous X given Discrete Y

6 Comparison of Discrete and Continuous Copula-

Based Methods

In this section we compare the application of the methodology for discrete uncertainties

developed in this paper with the application of the approach in W&D that was designed for
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continuous uncertainties. While the two approaches appear similar, there are important

differences that result from the technical properties highlighted in Section 5. To motivate

the comparison we begin with a discussion of a common practice in decision and risk

analyses: discretizing continuous uncertainties before considering the exact distribution

and dependence relationships with other uncertainties.

We have described a method for capturing the dependence between discrete uncer-

tainties such as categorical uncertainties (e.g., Success/Failure) and for uncertainties with

discrete outcomes (e.g., number of engine failures). Discrete uncertainties have a piece-

wise CDF so that we can set, for example, Xi = −1 if ui ≤ pdi , Xi = 0 if pdi < ui ≤ pdi +pmi

and Xi = 1 otherwise. However, this approach is not suitable for application to nat-

urally continuous uncertainties that have been discretized. If we apply a discretization

method to a continuous uncertainty, each outcome is a representative point of a range of

values and the probability associated with the outcome is the probability of a point being

selected from its corresponding range.

For example, the EPT method approximates a continuous distribution using a three-

point discrete distribution with probabilities 0.185, 0.630, and 0.185 assigned to the 5th,

50th, and 95th percentiles of the continuous distribution. The 5th percentile is the represen-

tative value for the lower tail, and the 18.5% probability associated with the 5th percentile

is chosen to minimize the error associated with this approximation (Clemen and Reilly,

2013); it is not the probability of an outcome equal to the 5th percentile value. These

percentile values and probabilities of the EPT method and other discretization methods

are chosen in order to approximate important properties of the corresponding continuous

distribution, and typically attempt to match the first, second and perhaps other central

moments of the continuous distribution (Hammond and Bickel, 2013).

As a result, the integral bounds are not equal to the associated probability for each

discretized outcome. If we apply this method for modeling the dependence among discrete

25



uncertainties to discretized continuous uncertainties, the conditional distributions will not

be moment matching. In contrast, the application of the W&D approach for correlated

continuous distributions does result in discrete conditional distributions that are moment

matching.

As an example of the implications of applying this copula approach to discretized

continuous distributions, consider an analysis that includes the sales of a product (Sales)

and the costs of the raw materials per unit (CostPerUnit) required to manufacture the

product. We assume that continuous distributions for Sales and Costs have been estimated

from empirical data analysis or from an expert, and that Sales ∼ Beta(2, 8, 0, 1000)

and CostPerUnit ∼ Beta(7, 4, 0, 10). Then the analyst could apply EPT or any of

the standard discretization schemes (see Hammond and Bickel 2013 for a summary) to

represent the continuous uncertainty with three (or more) specific outcomes. We will also

assume a moderately positive Spearman rank correlation between Sales and CostPerUnit,

ρ = 0.4.

The W&D approach uses a copula to capture the correlation between the two contin-

uous uncertainties and then discretizes the resulting continuous marginal and conditional

distributions. The left side of Figure 6 shows the EPT discretization of the continuous con-

ditional distributions of CostPerUnit; the expected value of CostPerUnit is shown above

each chance node in bold and the standard deviation is shown in parentheses. There is

no closed-form for the conditional distribution of a Beta distribution given the outcome

of another Beta, so we used the simulation approach of Clemen and Reilly (1999) and

confirmed the W&D moments in the left side of Figure 6 to three decimal places. Thus,

the W&D approach will be approximately moment matching, subject to the error in the

EPT discretization method used here. .

Notice that the outcomes associated with the conditional discrete distributions of cost

per unit change as the 5th, 50th , and 95th percentiles of the corresponding continuous
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distributions will be different. However, the probabilities of 0.185, 0.630, and 0.185 stay

constant and provide discrete approximations to these conditional continuous distributions

that that are approximately moment matching.

Figure 6: Probability of CostPerUnit given Sales

Wang and Dyer (2012) Approach, Applying Copula-Base Discrete method
Pearson Correlation = 0.4, Normal Copula on Discretized Uncertainties

An alternative approach would apply the EPT method to Sales and CostPerUnit

before considering possible dependence between the two uncertainties. For our assumed

distributions, the 5th, 50th and 95th percentiles are 41.02, 179.62, 429.14 and 3.93, 6.45 and

8.50, for Sales and CostPerUnit, respectively. As shown in the right side of Figure 6, this

approach results in discrete approximations to the conditional CostPerUnit distributions

that reflect their dependence on Sales by changing the probabilities of these same three

CostPerUnit levels (3.93, 6.45 and 8.50). The conditional moments do not match for the
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two approaches.

For example, E[CostPerUnit|Sales = High] is 7.29 when we apply W&D but it

is 7.08 if we discretize the continuous variables before applying the copula; a similar

discrepancy holds for the standard deviation of CostPerUnit. These differences will be

larger as we increase the absolute value of the correlation between the two uncertainties.

This demonstrates that the conditional distributions approximated by discretizing the

continuous distributions first and using the copula approach for discrete distributions are

not approximately moment matching.

The explanation for the inconsistency lies in the observation that once the dependent

distribution has been discretized, there no longer exists a continuous distribution whose

moments can be matched. Therefore, the use of the W&D approach should be preferred

given correlated continuous uncertainties if a copula is applied to simplify the modeling

of dependence.

However, there is a deeper issue. As mentioned previously, common practice in appli-

cations of decision analysis is to discretize a continuous variable without first identifying

the continuous distribution family and its parameters. For example, we could choose

three levels of the Sales uncertainty that represent high, medium and low sales and ask

the decision maker to provide the probabilities of those levels of sales. For ease of expo-

sition, we assume that the same levels identified in the right side of Figure 6 are chosen

as representative levels for CostPerUnit.

The decision maker is required to estimate the probabilities in Figure 6 for three condi-

tional distributions, one for each assumed level of Sales, but using the same support from

the probability mass function. For example, when estimating the top three probabilities

in Figure 6, the decision maker should imagine the conditional continuous distribution of

CostPerUnit given that Sales are high and then determine the appropriate probabilities

for CostPerUnit values of 8.50, 6.45 and 3.93. This requires the decision maker to sub-
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jectively estimate the appropriate probabilities for these outcomes that would result in

a discrete distribution that is moment matching to the implied continuous distribution,

which would be cognitively challenging as discussed by Bansal and Gutierrez (2014). This

observation implies that more accurate discrete approximations of conditional distribu-

tions are likely to result from the use of continuous distributions and the methodology

of W&D rather than by discretizing continuous distributions prior to using both corre-

lations and copulas as we have described, or using subjective assessments of conditional

probabilities.

7 Conclusion

Event trees expand rapidly in terms of the number of uncertainties and the number

of endpoints to be calculated grows even more quickly, particularly when the event tree

is part of a decision tree. This increases the computational burden, but it is also difficult

and time consuming to obtain the required conditional probabilities for dependent discrete

uncertainties. However, with the correlated event tree methods used here, we only need

to assess the marginal distributions and a lower order measure of dependence such as

correlation, and we can then calculate the conditional probabilities in closed form. While

the ME approach requires the same, smaller number of assessments, copulas can capture

a variety of dependent structures as a function of different dependence measures; an

example would be tail dependence using a Frank Copula with Kendall’s tau.

The W&D approach is only applicable to dependent continuous and differentiable

uncertainties and cannot be applied to other situations. The proposed approach was

specifically developed to construct a dependent event tree when uncertainties are discrete

and can be extended to accommodate combinations of dependent naturally discrete and
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continuous uncertainties in the same event tree as illustrated in Section 5. Like the

W&D method for continuous correlated uncertainties, this approach is a computationally

efficient and practical method to model the under-specified dependence among discrete

uncertainties with the use of an event tree. The analyst can reassess one or more of

the initial distributions without the cumbersome task of updating all of the conditional

probabilities; the copula will make the adjustments.

Another important insight from our work is a novel demonstration of the issues aris-

ing from discretizing continuous distributions before accounting for dependence among

them. As we show in Section 6, discretizing prior to applying the copula does not lead

to moment matching for the conditional distributions. When working with discrete un-

certainties it is impossible to provide the required inputs for an EPT discretization; what

is the 95th percentile of a coin flip or an engine failure. This increases the difficulty

of the assessment task from premature discretization – the need to specify probabilities

for fixed supports for the uncertainties – and provides further justification for maintain-

ing continuous uncertainties continuous until dependence has been addressed. While we

expect practitioners to continue to discretize uncertainties prior to assessing conditional

probabilities or correlations, our analysis provides a methodology to test the implications

of this simplification.
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