Repository logo
 

Exploration of passive desaturation of in place tailings using wicking geosynthetics

dc.contributor.authorMonley, Kendall O., author
dc.contributor.authorScalia, Joseph, IV, advisor
dc.contributor.authorBareither, Christopher, committee member
dc.contributor.authorRoss, Matthew, committee member
dc.date.accessioned2024-09-09T20:51:04Z
dc.date.available2024-09-09T20:51:04Z
dc.date.issued2024
dc.description.abstractAs global demand for metals and critical minerals increases, so too does the production of tailings. Tailings are what is left behind after extraction of valuable metals and minerals from ore, and consist of finely ground rock, water, unrecoverable metals, chemicals, and organic matter. These residuals are managed in engineered facilities that function to both dewater and store tailings, known as tailings storage facilities (TSF). A common assumption is that the water initially contained in TSFs will drain down to an unsaturated condition after deposition of new tailings ceases. However, a review of literature on geotechnical and hydrotechnical conditions of legacy TSFs (TSFs that have stopped receiving tailings) in arid environments illustrates that achievement of unsaturated conditions in internal fine-grained layers may not always occur. As the tailings are deposited, layers of finer and coarser particles are interbedded. This causes the formation of capillary barriers and may ultimately result in finer-grained layers held at near saturation after drain down. These fine-grained layers are more susceptible to liquefaction concerns and can require costly remedial actions to ensure geotechnical stability. Dewatering is the process of removing water from whole tailings and offers benefits including increasing geotechnical stability and recovering stored water. Tailings dewatering may occur prior to or after deposition into a TSF. In this study, I explore in-situ dewatering via use of capillary (wicking) geotextiles, and the effectiveness of the wicking geotextiles. Beaker and column experiments were created to emulate stratigraphy seen in legacy TSFs. Additionally, shrinkage testing was conducted to compare the final densities and void ratios of samples with and without wicking geotextiles. Column testing reveals the wicking geotextiles accelerated dewatering by 2.8 times the rate of natural drying processes. At the conclusion of testing, the wicking geotextile experiments had reached similar densities and void ratios to control experiments. This novel approach to passively dewatering tailings warrants additional testing.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierMonley_colostate_0053N_18376.pdf
dc.identifier.urihttps://hdl.handle.net/10217/239106
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2020-
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectgeosynthetics
dc.subjectmining
dc.subjectcapillary barriers
dc.subjecttailings
dc.subjectgeotechnical
dc.titleExploration of passive desaturation of in place tailings using wicking geosynthetics
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineCivil and Environmental Engineering
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Monley_colostate_0053N_18376.pdf
Size:
16.92 MB
Format:
Adobe Portable Document Format