Mitigating source water risks with improved wildfire containment

Gannon, Benjamin M., author
Wei, Yu, author
Thompson, Matthew P., author
Fire, publisher
Journal Title
Journal ISSN
Volume Title
In many fire-prone watersheds, wildfire threatens surface drinking water sources with eroded contaminants. We evaluated the potential to mitigate the risk of degraded water quality by limiting fire sizes and contaminant loads with a containment network of manager-developed Potential fire Operational Delineations (PODs) using wildfire risk transmission methods to partition the effects of stochastically simulated wildfires to within and out of POD burning. We assessed water impacts with two metrics—total sediment load and frequency of exceeding turbidity limits for treatment—using a linked fire-erosion-sediment transport model. We found that improved fire containment could reduce wildfire risk to the water source by 13.0 to 55.3% depending on impact measure and post-fire rainfall. Containment based on PODs had greater potential in our study system to reduce total sediment load than it did to avoid degraded water quality. After containment, most turbidity exceedances originated from less than 20% of the PODs, suggesting strategic investments to further compartmentalize these areas could improve the effectiveness of the containment network. Similarly, risk transmission varied across the POD boundaries, indicating that efforts to increase containment probability with fuels reduction would have a disproportionate effect if prioritized along high transmission boundaries.
Rights Access
water supply
wildfire containment
potential fire operational delineations
Monte Carlo simulation
transmission risk radar
extreme rainfall event
Associated Publications