Improving radiation data quality of USDA UV-B monitoring and research program and evaluating UV decomposition in DayCent and its ecological impacts
dc.contributor.author | Chen, Maosi, author | |
dc.contributor.author | Gao, Wei, advisor | |
dc.contributor.author | Davis, John, committee member | |
dc.contributor.author | Moore, John, committee member | |
dc.contributor.author | Conant, Rich, committee member | |
dc.contributor.author | Denning, Scott, committee member | |
dc.date.accessioned | 2016-01-11T15:13:42Z | |
dc.date.available | 2016-01-11T15:13:42Z | |
dc.date.issued | 2015 | |
dc.description.abstract | Solar radiation impacts many aspects of the Earth's atmosphere and biosphere. The total solar radiation impacts the atmospheric temperature profile and the Earth's surface radiative energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar ultraviolet (UV) radiation impacts plant’s physiology, microbial activities, and human and animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential mechanisms include the production of labile materials from direct and indirect photolysis of complex organic matters, the facilitation of microbial decomposition with more labile materials, and the UV inhibition of microbes population. However, the mechanisms behind UV decomposition and its ecological impacts are still uncertain. Accurate and reliable ground solar radiation measurements help us better retrieve the atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. Incorporating the UV decomposition into the DayCent biogeochemical model helps to better understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the goal of the first part of this research and examining the importance of UV radiation in the biogeochemical model DayCent is the goal of the second part of the work. Thus, although the dissertation is separated into two parts, accurate UV irradiance measurement links them in what follows. In part one of this work the accuracy and reliability of the current operational calibration method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data result from an improved cloud screening algorithm that utilizes an iterative rejection of cloudy points based on a decreasing tolerance of unstable optical depth behavior when calibration information is unknown. A MODTRAN radiative transfer model simulation showed the new cloud screening algorithm was capable of screening cloudy points while retaining clear-sky points. The comparison results showed that the cloud-free points determined by the new cloud screening algorithm generated significantly (56%) more and unbiased Langley offset voltages (VLOs) for both partly cloudy days and sunny days at two testing sites, Hawaii and Florida. The VLOs are proportional to the radiometric sensitivity. The stability of the calibration is also improved by the development of a two-stage reference channel calibration method for collocated UV-MFRSR and MFRSR instruments. Special channels where aerosol is the only contributor to total optical depth (TOD) variation (e.g. 368-nm channel) were selected and the radiative transfer model (MODTRAN) used to calculate direct normal and diffuse horizontal ratios which were used to evaluate the stability of TOD in cloud-free points. The spectral dependence of atmospheric constituents' optical properties and previously calibrated channels were used to find stable TOD points and perform Langley calibration at spectrally adjacent channels. The test of this method on the UV-B program site at Homestead, Florida (FL02) showed that the new method generated more clustered and abundant VLOs at all (UV-) MFRSR channels and potentially improved the accuracy by 2-4% at most channels and over 10% at 300-nm and 305-nm channels. In the second major part of this work, I calibrated the DayCent-UV model with ecosystem variables (e.g. soil water, live biomass), allowed maximum photodecay rate to vary with litter's initial lignin fraction in the model, and validated the optimized model with LIDET observation of remaining carbon and nitrogen at three semi-arid sites. I also explored the ecological impacts of UV decomposition with the optimized DayCent-UV model. The DayCent-UV model showed significant better performance compared to models without UV decomposition in simulating the observed linear carbon loss pattern and the persistent net nitrogen mineralization in the 10-year LIDET experiment at the three sites. The DayCent-UV equilibrium model runs showed that UV decomposition increased aboveground and belowground plant production, surface net nitrogen mineralization, and surface litter nitrogen pool, while decreased surface litter carbon, soil net nitrogen mineralization and mineral soil carbon and nitrogen. In addition, UV decomposition showed minimal impacts (i.e. less than 1% change) on trace gases emission and biotic decomposition rates. Overall, my dissertation provided a comprehensive solution to improve the calibration accuracy and reliability of MFRSR and therefore the quality of radiation products. My dissertation also improved the understanding of UV decomposition and its long-term ecological impacts. | |
dc.format.medium | born digital | |
dc.format.medium | doctoral dissertations | |
dc.identifier | Chen_colostate_0053A_13287.pdf | |
dc.identifier.uri | http://hdl.handle.net/10217/170317 | |
dc.language | English | |
dc.language.iso | eng | |
dc.publisher | Colorado State University. Libraries | |
dc.relation.ispartof | 2000-2019 | |
dc.rights | Copyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright. | |
dc.subject | cloud screening | |
dc.subject | DayCent | |
dc.subject | in-situ calibration | |
dc.subject | multi-filter rotating shadowband radiometer | |
dc.subject | uv decomposition | |
dc.title | Improving radiation data quality of USDA UV-B monitoring and research program and evaluating UV decomposition in DayCent and its ecological impacts | |
dc.type | Text | |
dcterms.rights.dpla | This Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). | |
thesis.degree.discipline | Ecology | |
thesis.degree.grantor | Colorado State University | |
thesis.degree.level | Doctoral | |
thesis.degree.name | Doctor of Philosophy (Ph.D.) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Chen_colostate_0053A_13287.pdf
- Size:
- 3.28 MB
- Format:
- Adobe Portable Document Format