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ABSTRACT 
 
 
 

IMPROVING RADIATION DATA QUALITY OF USDA UV-B MONITORING AND 

RESEARCH PROGRAM AND EVALUATING UV DECOMPOSITION IN DAYCENT AND 

ITS ECOLOGICAL IMPACTS 

 
 
 

Solar radiation impacts many aspects of the Earth’s atmosphere and biosphere. The total 

solar radiation impacts the atmospheric temperature profile and the Earth’s surface radiative 

energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar 

ultraviolet (UV) radiation impacts plant’s physiology, microbial activities, and human and 

animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen 

patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential 

mechanisms include the production of labile materials from direct and indirect photolysis of 

complex organic matters, the facilitation of microbial decomposition with more labile materials, 

and the UV inhibition of microbes’ population. However, the mechanisms behind UV 

decomposition and its ecological impacts are still uncertain.  

Accurate and reliable ground solar radiation measurements help us better retrieve the 

atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. 

Incorporating the UV decomposition into the DayCent biogeochemical model helps to better 

understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the 

goal of the first part of this research and examining the importance of UV radiation in the 

biogeochemical model DayCent is the goal of the second part of the work. Thus, although the 
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dissertation is separated into two parts, accurate UV irradiance measurement links them in what 

follows. 

In part one of this work the accuracy and reliability of the current operational calibration 

method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used 

by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is 

improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS 

spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data 

result from an improved cloud screening algorithm that utilizes an iterative rejection of cloudy 

points based on a decreasing tolerance of unstable optical depth behavior when calibration 

information is unknown. A MODTRAN radiative transfer model simulation showed the new 

cloud screening algorithm was capable of screening cloudy points while retaining clear-sky 

points. The comparison results showed that the cloud-free points determined by the new cloud 

screening algorithm generated significantly (56%) more and unbiased Langley offset voltages 

(VLOs) for both partly cloudy days and sunny days at two testing sites, Hawaii and Florida. The 

VLOs are proportional to the radiometric sensitivity.  

The stability of the calibration is also improved by the development of a two-stage 

reference channel calibration method for collocated UV-MFRSR and MFRSR instruments. 

Special channels where aerosol is the only contributor to total optical depth (TOD) variation (e.g. 

368-nm channel) were selected and the radiative transfer model (MODTRAN) used to calculate 

direct normal and diffuse horizontal ratios which were used to evaluate the stability of TOD in 

cloud-free points. The spectral dependence of atmospheric constituents’ optical properties and 

previously calibrated channels were used to find stable TOD points and perform Langley 

calibration at spectrally adjacent channels. The test of this method on the UV-B program site at 
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Homestead, Florida (FL02) showed that the new method generated more clustered and abundant 

VLOs at all (UV-) MFRSR channels and potentially improved the accuracy by 2-4% at most 

channels and over 10% at 300-nm and 305-nm channels. 

In the second major part of this work, I calibrated the DayCent-UV model with 

ecosystem variables (e.g. soil water, live biomass), allowed maximum photodecay rate to vary 

with litter’s initial lignin fraction in the model, and validated the optimized model with LIDET 

observation of remaining carbon and nitrogen at three semi-arid sites. I also explored the 

ecological impacts of UV decomposition with the optimized DayCent-UV model. The DayCent-

UV model showed significant better performance compared to models without UV 

decomposition in simulating the observed linear carbon loss pattern and the persistent net 

nitrogen mineralization in the 10-year LIDET experiment at the three sites. The DayCent-UV 

equilibrium model runs showed that UV decomposition increased aboveground and belowground 

plant production, surface net nitrogen mineralization, and surface litter nitrogen pool, while 

decreased surface litter carbon, soil net nitrogen mineralization and mineral soil carbon and 

nitrogen. In addition, UV decomposition showed minimal impacts (i.e. less than 1% change) on 

trace gases emission and biotic decomposition rates. 

Overall, my dissertation provided a comprehensive solution to improve the calibration 

accuracy and reliability of MFRSR and therefore the quality of radiation products. My 

dissertation also improved the understanding of UV decomposition and its long-term ecological 

impacts. 
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INTRODUCTION 
 
 
 

Solar radiation passing through the Earths’s atmosphere is reflected, absorbed, and 

scattered by atmospheric constituents (such as clouds, aerosols, water vapor, trace gases, and 

other molecules) and the Earth’s surface. Therefore, solar radiation impacts the atmospheric 

temperature profile as well as the Earth’s and surface radiative energy budget (Ramanathan et al. 

1989). Furthermore, solar radiation reaching the Earth’s surface fuels many ecosystem processes. 

Solar visible (VIS) radiation, especially photosynthetically active radiation (PAR), is the energy 

source of plants’ photosynthesis (Monteith and Unsworth 2008). Solar UV radiation inhibits 

microbial activities (Caldwell et al. 2007) and impacts live plants’ leaf area, respiration, water-

use efficiency, Nitrogen fixation, production (yield accumulation), morphogenesis, and 

secondary metabolites (Gehrke et al. 1995; Rozema et al. 1997; Zepp et al. 1998; Reddy et al. 

2013; Kakani et al. 2003a, 2003b; Formánek et al. 2014). In addition, exposure to high solar UV 

radiation (especially in the UV-B region) has adverse impacts on human and animal health 

(Caldwell et al. 1986; Madronich 1993; Teramura et al. 1990). 

Traditional litter decomposition models focus on the roles of microbes on decomposition. 

These models use climate variables (precipitation and temperature) and litter quality variables 

(carbon/nitrogen and lignin/nitrogen ratios) to predict litter mass loss rates (Parton et al. 2007; 

Gallo et al. 2009). However, many studies in dry and hot terrestrial ecosystems (Austin and 

Vivanco 2006; Day et al. 2007; Rutledge et al. 2010) and in aquatic ecosystems (Kieber et al. 

1989; Miller and Zepp 1995; Anesio et al. 1999) found that the decomposition of plant litter or 

dissolved organic matter is faster than the expectation of traditional models. Furthermore, 

decomposing surface litter does not immobilize nitrogen and the decomposition rate is unrelated 
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to initial nitrogen contents in some arid ecosystems (Parton et al. 2007; Brandt et al. 2010). 

These patterns suggest that abiotic processes (such as UV decomposition) rather than microbial 

activity are the major drivers of decomposition in those ecosystems (Brandt et al. 2010). The 

mechanistic detail of photodegradation remains uncertain. It is reported that solar (UV) radiation 

may directly photolyze a molecule through fragmentation, intramolecular rearrangement, or 

electron transfer (King et al. 2012; Lee et al. 2012) and indirectly photolyze a non-light-

absorbing molecule by promoting the production of reactive intermediates (George et al. 2005; 

Messenger et al. 2009; Cory et al. 2010; Feng et al. 2011; King et al. 2012). However, 

uncertainties exist on the specific carbon compounds that are affected by photodegradation, with 

some evidence for higher loss rates for either cellulosic or lignin pools (Rozema et al. 1997; 

King et al. 2012). It is also reported that solar UV radiation indirectly influences decomposition 

by providing microbes more labile material from photodegradation (Austin and Vivanco 2006; 

Gallo et al. 2006; Henry et al. 2008) and from leaching fats and lipids by breaking down cell 

walls (Vähätalo et al. 1998; Day et al. 2007; Lin and King 2014), inhibiting microbial population 

(Gehrke et al. 1995; Zepp et al. 1998; Moody et al. 1999), and altering microbial community 

composition (Moorhead and Callaghan, 1994; Gallo et al. 2006). Adair et al. (2015) developed 

and calibrated a three-C-pool decomposition model that simulates both biotic decomposition and 

photodegradation of litter. Their model selection results supported flows related to UV radiation 

induced direct photolysis, facilitation effects, and microbial inhibition effects. Since 

decomposition of plant litter and soil organic matter is a key process that influences the balance 

of carbon and nitrogen between the atmosphere and biosphere (Adair et al. 2008; Harmon et al. 

2011) in arid and semi-arid areas which cover more than 30% of land surface and are expanding 
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(Brandt et al. 2009; Austin 2011), it is important to explore the mechanisms of UV 

decomposition, incorporate them into models, and assess their ecological impacts. 

It is important that we get accurate and reliable ground solar radiation measurements 

because the accuracy of solar radiation measurement is critical for retrieving atmospheric 

constituents (Leontieva and Stamnes 1996; Kiedron et al. 1999; Michalsky et al. 2001; 

Alexandrov et al. 2002b, 2009; di Sarra et al., 2008; Mazzola et al. 2010; Kassianov et al. 2011; 

Yin et al. 2011), validating satellite radiation products (Wielicki et al. 1995), and evaluating 

ecosystem impacts caused by solar radiation. 

The UV-B Monitoring and Research Program (the UV-B program) is a data collection 

and research program of the United States Department of Agriculture (USDA). The UV-B 

program is comprised of two unique components: 1) a ground-based solar (UV) radiation 

monitoring network; and 2) an integrated assessment system that studies interactions between 

climate stress factors (including UV radiation) and ecosystems (http://uvb.nrel.colostate.edu). 

The UV-B program has been measuring solar ultraviolet (UV) and visible (VIS) radiation 

across U.S. since 1992 (Bigelow et al. 1998). It utilizes UV and VIS versions of the Multi-Filter 

Rotating Shadowband Radiometer (MFRSR) to observe direct normal, diffuse, and total 

hemispheric solar radiation at 7 UV channels (300, 305, 311, 317, 325, 332, 368 nm) with 2-nm 

full bandwidth at half maximum (FWHM) and at 7 VIS channels (unfiltered, 415, 500, 610, 665, 

870, 940 nm) with 10-nm FWHM bandwidth (Bigelow et al. 1998). The measured voltages are 

converted to irradiances with the responsivity coefficients obtained via laboratory lamp 

calibration or in-situ calibration. Although routine lamp calibrations for the entire UV-B network 

are desirable, the annual comparison with National Institute of Standards and Technology 

radiation sources has become cost prohibitive. Therefore, the UV-B program currently uses the 
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Langley method as the main technique for calibration of the instruments while a more limited 

number still receive lamp calibrations at the Central UV Calibration Facility (CUCF) at NOAA 

in Boulder, CO. There are two major problems with the current Langley computer program 

(hereafter referred to as the Langley Analyzer.) The first problem is that the original cloud 

screening algorithm in the Langley Analyzer shows poor performance at some sites and no 

alternative algorithm is available. The original cloud screening module compares measurements’ 

voltages in local windows. This strategy only works when there are extended clear-sky periods. 

For sites typified by periods of broken cloudiness, it will miss clear-sky points in short intervals 

as well as in transitional periods between cloudy and clear conditions. As a result, there may not 

be sufficient data to perform Langley calibration; or some cloud points are passed to calibration 

and result in severely biased calibration coefficients. Most cloud screening algorithms available 

are designed for calibrated radiation values (e.g. Long and Ackerman 2000; Augustine et al. 

2003) and their derived products (such as aerosol optical depth) (Smirnov et al. 2000; 

Alexandrov et al. 2004; Mazzola et al. 2010). Some methods require collocated ancillary 

measurements, such as total-sky imagers (di Sarra et al. 2008) and aerosol optical depth such as 

provided by the AERONET program (Krotkov et al. 2005). Although some of them show good 

performance, they cannot be utilized by the UV-B program to screen voltage measurements 

before calibration. The second problem is that the stability assumption of total optical depth 

(TOD) is hard to meet at most UV-B program sites because aerosol optical depth (Augustine et 

al. 2003) or optical depth of other atmospheric constituents may have systematic variation of 

AOD over the course of a calibration period (Alexandrov et al. 2002). As a result, the Langley 

regression gives biased calibration coefficients. There have been some studies that recognized 

this issue and proposed alternative assumptions to mitigate the problem. For example, instead of 
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requiring the stable total optical depth, the general method (Forgan 1994) only requires that the 

aerosol extinction efficiency as well as the particle radius and the refraction index to be stable 

and allows the aerosol abundance to vary with time. These are less strict requirements, however, 

they are not always reliable especially when aerosol properties change. Besides, they only apply 

to the special channels where no gaseous absorption contributes significantly to TOD variation. 

The Ratio-Langley method (Forgan, 1986) assumes that the TOD difference between two 

channels where gaseous absorption is negligible are more likely to be stable. This assumption 

shows a similar problem as the original Langley assumption: the TOD difference may also have 

systematic variation over time leading to biased ratio of calibration coefficients.  

Accurate UV irradiance data is the single entity linking the two topics of this 

dissertation−the product of one topic and the input of the other, but otherwise the methodologies 

of the two topics are entirely separable. Thus they are treated as such in the description of the 

work that follows. The dissertation is separated into two parts, each focusing on one topic 

mentioned above. 

In the first part (Part I, Chapter 1-3), my objective is to improve the accuracy and 

reliability of the current operational calibration method for (UV)-MFRSR. The objective is 

fulfilled by following steps: 

(1) developing a new cloud screening algorithm for voltage measurements that screens 

cloudy (high TOD) points but retains most clear-sky points in the transitional region and in short 

time windows; and  

(2) Finding practical strategies that ensure the critical TOD stability assumption of the 

Langley method without additional measurements. 
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In the second part (Part II, Chapter 4), my objective is to modify and validate the UV 

decomposition module of the DayCent biogeochemical model and to explore the potential long-

term impacts of UV decomposition on ecosystem processes in semi-arid ecosystems, such as 

plant production, carbon and nitrogen storage in litter and soil, and trace gas emissions. 
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Part I: Improving in-situ calibration accuracy and reliability of (UV) Multi-Filter Rotating 

Shadowband Radiometer measurements 
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CHAPTER 1: THE CALIBRATION METHODS FOR MULTI-FILTER ROTATING 

SHADOWBAND RADIOMETER: A REVIEW1 

 
 
 

Introduction 

Climate change has received more and more concern in the last few decades. The amount 

and distribution variation of gaseous and particle components in the Earth’s atmosphere that alter 

the radiative forcing balance are believed to be the main cause of such change. In the 

Intergovernmental Panel on Climate Change (IPCC) report (AR4), water vapor is considered the 

most important greenhouse gas (positive radiative forcing), and carbon dioxide (CO2) is the 

second-most important one. Trace gases such as methane, nitrous oxide, ozone, and several 

others also contribute to the greenhouse effect. Although water vapor has positive radiative 

forcing, Ramanathan et al. (1989) found that clouds had a net global cooling effect on the earth 

based on the radiative forcing data from the spaceborne Earth Radiation Budget Experiment 

(ERBE). The contribution of aerosols to overall radiative forcing is significant as well, although 

the effect is highly variable due to high uncertainty of the mean aerosol radiative forcing (Feister 

et al. 2007). Charlson et al. (1992) showed that aerosol particles can scatter short wavelength 

solar radiation and modify the shortwave reflective properties of clouds, which lead to increased 

planetary albedo and have cooling effects on the planet. The magnitude of the global average of 

                                                 
1 This chapter includes the complete published manuscript (minimal modifications were made to 
meet formatting requirements): 
Chen M, Davis J, Tang H, Ownby C, Gao W (2013), The calibration methods for Multi-Filter 
Rotating Shadowband Radiometer: A review. Frontiers of Earth Science, 7(3): 257–270. 
doi:10.1007/s11707-013-0368-9.  
The link to the published article is http://link.springer.com/article/10.1007/s11707-013-0368-9. 
The final publication is available at link.springer.com 

http://link.springer.com/article/10.1007/s11707-013-0368-9
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the aerosol radiative forcing is comparable to that of anthropogenic greenhouse gas forcing but 

opposite in sign. However, the different geographical and temporal distribution of these forcings 

precludes any simple compensation. Ramanathan et al. (2001) concluded that increased albedo 

caused by aerosols leads to large reductions of solar irradiance reaching the Earth's surface, 

changing the atmospheric temperature profile and the pattern of rainfall. 

In addition to the changing temperature profile effect of climate change, the change in 

shortware solar irradiance reaching the Earth’s surface because of variation in clouds, gases, and 

aerosols in the atmosphere is also significant. Surface radiative energy budget studies must know 

the effect of clouds and other interference on shortwave irradiance (Long and Ackerman 2000). 

Solar radiation in the visible region is the driving force for photosynthesis (Monteith and 

Unsworth 2008), while that in the ultraviolet region (especially in the UV-B section) is 

considered an adverse condition for vegetation growth and crop yield accumulation (Kakani et 

al. 2003a, 2003b) and human and animal health (Caldwell et al. 1986; Madronich 1993; 

Teramura et al. 1990). Both solar irradiance and aerosols have direct impact on human health 

(Lighty et al. 2000). Aerosols also impact surface visibility conditions, as radiation reflected 

from aerosol particulates contributes to direct irradiance (Chow et al. 1994). 

In the annual report of the Atmospheric Radiation Measurement (ARM) Climate 

Research Facility (FY 2011, http://www.arm.gov/publications/annual-reports/docs/doe-sc-arm-

11-024.pdf?id = 94), it is concluded that global climate models (GCMs) are one of the primary 

tools for simulating climate change. These models require knowledge of clouds and aerosols, and 

their effects on the Earth’s energy balance. Remote sensing of solar radiation (ground-based, 

airborne, or satellite-based) is widely used for retrieving properties of these parameters. The 

validation of satellite retrieval algorithms for surface irradiance requires accurate surface 
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measurement (Wielicki et al. 1995). Ground based sun photometric measurement can also be 

used to produce aerosol, ozone, UV radiation, precipitable water vapor, and cloud climatology 

(Leontieva and Stamnes 1996; Kiedron et al. 1999; Michalsky et al. 2001a; Alexandrov et al. 

2002b, 2009; di Sarra et al. 2008; Mazzola et al. 2010; Kassianov et al. 2011; Yin et al. 2011). 

There are various types of instruments that provide sun photometric measurements, for example: 

(i) CIMEL sun radiometers, which are the key instruments at Aerosol Robotic Network 

(AERONET) (Holben et al. 1998) sites; and (ii) Multi-Filter Rotating Shadowband Radiometers 

(MFRSR) (Alexandrov et al. 2008). An advantage of the MFRSR is that it can be operated 

automatically and its cost is relatively low, making the construction of networks for distributed 

data collection feasible. The growing international deployment of the MFRSR makes it a 

potentially important tool for climate research (Alexandrov et al. 2002). 

Except for the direct/diffuse and total/diffuse MFRSR component ratios which cancel out 

the dependency on absolute calibration (Kaskaoutis et al. 2008), the successful application of 

MFRSR measurements relies on stable and accurate calibration, which converts the instrument 

reading to actual radiation, and gives the angular correction and spectral response function. The 

calibration parameters determined before deployment can shift dramatically and quickly in the 

field, which requires frequent recalibration (laboratory or in situ) to produce reliable radiation 

measurements. 

In this paper, we present a description of the ultraviolet and visible versions of MFRSR 

instrument, its data collection, and issues related to the challenge of calibration. We review the 

published calibration efforts, including both laboratory lamp and in situ calibration methods. 
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The UV- and VIS- MFRSR 

The VIS-MFRSR (Figure 1.1) is the visible version of the MFRSR. It is environmentally 

sealed and thermally stabilized at around 40°C, and uses state-of-the-art interference filter 

photodiode detectors (http://uvb.nrel.colostate.edu/UVB/ins_vismfrsr.jsf). It contains six 

narrowband channels (415, 500, 615, 673, 870, and 940 nm), each with a 10 nm full-width at 

half maximum (FWHM) bandwidth (http://uvb.nrel.colostate.edu/UVB/ins_vismfrsr.jsf). The 

seventh channel is an unfiltered silicon (Si) photodiode responsive to 3001040 nm 

(http://uvb.nrel.colostate.edu/UVB/ins_vismfrsr.jsf). 

The UV-MFRSR is the ultraviolet version of the MFRSR. It is environmentally sealed 

and thermally stabilized at around 42°C, and uses seven state-of-the-art interference filter 

photodiode detectors (center wavelengths at 300, 305, 311, 317, 325, 332, and 368 nm), each 

with a 2 nm FWHM bandwidth (Bigelow et al. 1998; 

http://uvb.nrel.colostate.edu/UVB/ins_uvmfrsr.jsf). The 300 and 305 channels use silicon-

carbide (SiC) photodiodes, and the 311 through 368 channels use silicon (Si) photodiodes 

(http://uvb.nrel.colostate.edu/UVB/ins_uvmfrsr.jsf).  

According to Alexandrov et al. (2008), the programs that are running MFRSR networks 

in the United States include the USDA UV-B Monitoring and Research Program (UVMRP) 

(Bigelow et al. 1998), the DOE Atmospheric Radiation Measurement (ARM) Program 

(Ackerman and Stokes 2003), the NOAA Surface Radiation (SURFRAD) Network (Augustine et 

al. 2005), and the NASA Solar Irradiance Research Network (SIRN). 

The basic geometry of the MFRSR can be seen in Figure 1.1 and Figure 1.2. 

The shadow-band is an arched metal strip that blocks a strip of sky with an umbral angle 

(Zp) of 3.27°, which is more than sufficient to block the solar disk (Harrison et al. 1994b). A 
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self-contained microprocessor calculates the solar position by using an approximation for the 

solar ephemeris, which controls the rotation of the shadow-band to certain positions. The 

stepping precision and error may limit accuracy to ± 0.3°. After the instrument is installed at a 

site, a onetime adjustment for latitude and azimuth alignment to the Earth’s pole is performed. 

Unlike a sun photometer, the MFRSR doesn’t measure the direct beam irradiance 

directly. Instead, the MFRSR derives the direct beam from its principal measurements. To collect 

one data record, a set of four measurements are taken (Hodges and Michalsky 2011): 

(1) The initial measurement (total horizontal, t_hor) is taken when the shadow-band is in 

the home position (Figure 1.1 Nadir/home position); 

(2) The first of two side-band measurements (first side band, fsb) is taken when the 

shadow-band is 9° off the sun blocking direction (Figure 1.1: Two additional measurements 

compensate for sky blocked during shaded measurement); 

(3) The sun-blocked measurement (blk) is taken (Figure 1.1: Blocked measurement made 

with band shading diffuser); 

(4) The second of two side-band measurements (second side band, ssb) is taken when the 

shadow-band is 9° off the sun blocking direction (the other side of the step (2), Figure 1.1: Two 

additional measurements compensate for sky blocked during shaded measurement). 

These four measurements are made every 20 s (15 s for UV-MFRSR) and averaged into 

3-min intervals for the USDA UVMRP, and 2-min intervals for the SURFRAD network. 

 

Dark current bias removal (offset correction) 

Extraneous voltages that are not the result of radiation incidence but the inherent noise of 

the instrument should be removed (Bigelow et al. 1998; Hodges and Michalsky 2011). Under 
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normal operations, the nighttime data (voltages measured one hour prior to and one hour after the 

time of minimum solar elevation over a three-day period preceding the current data processing 

day) are averaged to estimate this offset, which is subtracted from all the measurements in the 

daytime before any further calculation. 

The measurements of steps (2) and (4) permit a first-order correction for the excess sky 

blocked by the shadow-band for the step (3) measurement. The diffuse horizontal (dif_hor) is 

expressed as 

  _ _ / 2dif hor blk t hor fsb ssb        (1.1) 

The direct horizontal (dir_hor) is expressed as 

 _ _ _dir hor t hor dif hor    (1.2) 

 

Cosine response correction 

Radiation incident on a flat horizontal surface originating from a point source with a 

defined zenith position will have an intensity value proportional to the cosine of the zenith angle 

of incidence. When the sun is directly overhead, the theoretical cosine correction is one. This is 

called the cosine-response. Ideally, spectroradiometers are designed to have a directional 

response which is exactly the same as the cosine-response. However, the actual instruments 

rarely match this ideal (Feister et al. 1997; Michalsky et al. 1995; Seckmeyer and Bernhard, 

1993). The magnitude of this discrepancy (known as cosine error) can vary from a few percent to 

10% or 20%, depending on the atmospheric conditions (i.e. cloudiness and aerosol optical depth 

(Feister et al. 1997)) and the characteristics of the system (Blumthaler and Bais 1996; Bais 1997; 

Bais et al. 1998). The cosine correction table, which considers errors regarding both the azimuth 

angle and zenith angle of incidence, is provided for each MFRSR by the manufacturer or the 
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calibration laboratory. With this table, one obtains the cosine corrected direct (cor_dir_hor) and 

diffuse (cor_dif_hor) horizontals: 

 
_ _ _ / ( cos )

_ _ _ / ( cos )

cor dif hor dif hor diffuse ine correction

cor dir hor dir hor direct ine correction


   (1.3) 

The cosine corrected total horizontal (cor_t_hor) is the sum of these two values: 

 _ _ _ _ _ _cor t hor cor dif hor cor dir hor    (1.4) 

Now, the direct normal (dir_norm) is calculated as: 

 _ _ _ / cosdir norm cor dir hor    (1.5) 

where, the θ is the zenith angle of incidence or solar zenith angle. 

The measurements or derived quantities in Eqs. (1.1) to (1.5) are voltages. The 

conversion of voltage to irradiance requires a calibration factor (c): 

 /I V c     (1.6) 

where, λ represents the MFRSR channel or effective wavelength. 

 

Laboratory lamp calibration 

Major tasks of laboratory lamp calibration 

There are many facilities that provide laboratory calibration, such as the Central UV 

Calibration Facility (CUCF), NOAA, Boulder, Colorado; Yankee Environmental Systems 

(YES), Inc.; and the Atmospheric Radiation Measurement Program (ARM) Southern Great 

Plains (SGP) Central Facility (CF). Generally, laboratory calibration includes three important 

tasks: 

(1) Standard lamp calibration, which determines the calibration factor cλ for each 

channel; 
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(2) Angular response determination, which generates angular correction tables; and 

(3) Spectral Response Function (SRF) of each filter detector (channel) determination, 

which is also known as the filter function. 

The second and third tasks can only be determined via lamp calibration, while the first 

part can also be determined via in situ calibration methods or via calibration of a reference 

instrument, which is the method AERONET uses to routinely calibrate its sun photometers. 

 

Limitations of laboratory calibration 

Hickey (1970) and Booth et al. (1994) found that the difference between the solar and 

lamp spectra is not negligible when working with moderate bandwidth radiometers (i.e. UV-

MFRSR). A solution to this problem is introducing a calibration constant that references both the 

lamps and solar spectra (Booth et al. 1994). However, applying this method for routine network 

calibration requires the circulation of the field instrument to be collocated with the reference 

spectroradiometer for an adequate period while the gaps in the monitoring record at each site are 

minimized, which is hard to sustain (Bigelow et al. 1998). Alexandrov et al. (2009) emphasizes 

that MFRSR filters may experience rapid sensitivity loss; i.e. Alexandrov et al. (2002) reported 

the loss of filter transmittance approximately by a factor of 3 for two MFRSR channels during 

the first 200 days of instrument operation, followed by gradual stabilization. 

Augustine et al. (2003) pointed out that periodic calibration throughout the year is 

necessary because the extraterrestrial signal will slowly change due to filter drift. 
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In situ calibration 

Langley method 

The attenuation of the Sun’s direct beam irradiance through the Earth’s atmosphere can 

be described by the Bouguer-Lambert law (Beer’s law, Slusser et al. 2000): 

  2
0, ,exp TotalI R I m       (1.7) 

where I is the band-pass direct normal irradiance reaching surface at channel λ. R is the 

ratio of the mean and instantaneous distances of the earth from the sun. 

0, 0, t t t t tI I F d F d       is the normalized band-pass extraterrestrial solar irradiance at channel 

λ, where tF is the filter function, or SRF, of the channel λ at wavelength t  and 0, tI   is the 

corresponding extraterrestrial solar irradiance (Slusser et al. 2000). 

There are many sources that provide 0, tI   of various spectral resolutions; one of them is 

the Atmospheric Laboratory for Applications and Science (ATLAS) mission with the Solar 

Spectral Irradiance Measurements (SOLSPEC) spectrometer (Thuillier et al. 1998). Molling et 

al. (2010) pointed out that 0,I   can change by as much as 0.2% over a few days, depending on 

sunspot activity. From 1978 to 2002, solar input at the top of atmosphere increased at a rate of 

0.05% per decade (Willson and Mordvinov 2003). Schmid et al. (1998) compared the uncertainty 

of several 0,I  and determined that since the uncertainty due to atmospheric conditions is at least 

one magnitude larger, it is acceptable that one considers 0,I  as a constant and known value for 

calibration. 

The band-pass total optical depth at channel λ is ,Total  , and m is the airmass. In Slusser et 

al. (2000), Wilson and Forgan (1995), and Schmid and Wehrli (1995), the term   ,Total m  is 
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described as the sum of the optical depth of each scatterer or absorber and the corresponding 

airmass:   ,i i
i

m , where i indicates the ith scatterer or absorber. It is noted that im can vary 

slightly for different scatterers and absorbers (i.e. ozone, air molecules, and aerosols) due to their 

different altitude concentration profiles (Thomason et al. 1983). The airmass m is defined as the 

ratio of the path length of solar radiation incident at zenith angle z and the zenith path length. For 

solar zenith angles up to 75°,  1/m cos z is accurate enough. For higher solar zenith angles, 

more accurate approximation equations should be used (Kasten and Young 1989). 

For each MFRSR channel λ, the calibration factor can also be expressed as (Bigelow et 

al. 1998): 

 0, 0,/c V I     (1.8) 

where, 0,V  is the corresponding voltage measured by the MFRSR as if it is deployed at 

the top of the atmosphere (airmass = 0). Applying Eqs. (1.8) and (1.6) to Eq. (1.7), they get 

  2
0, ,exp TotalV R V m       (1.9) 

Taking the natural logarithm on both sides of Eq. (1.9), 

  2
0, ,ln / ln TotalV R V m       (1.10) 

For each direct beam measurement at channel , there are two unknown terms: 0,lnV 

and ,Total  . Generally, one equation with two unknowns does not have a definite solution. The 

Langley method introduces an additional constraint to solve these two unknown variables: the 

total optical depth is stable during the morning or afternoon calibration period (Bigelow et al. 

1998). With this additional constraint, 0,lnV   and ,Total   may be solved simultaneously with a 

linear regression where 0,lnV   is the intercept and ,Total   is the negative of the slope (Bigelow et 



 
24 

al. 1998). Note that cloudy measurements should be removed before one performs this linear 

regression. The subsection below will discuss the cloud screening methods. 

 

Two corrections for UV Langley regression (Slusser et al. 2000) 

For the visible channels, only the variation of aerosol optical depth may significantly 

affect the performance of the Langley regression (Slusser et al. 2000). In UV channels, 

especially channels under 320 nm, the ozone cross section changes rapidly with wavelength. The 

finite band-pass correction factor is defined as the ratio of the surface direct beam irradiance at 

the wavelength of the peak of the filter function and the band-pass surface direct beam irradiance 

(Slusser et al. 2000). Slusser et al. (2000) used the Tropospheric Ultraviolet & Visible Radiation 

Model (TUV, https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-

radiation-model) to calculate the irradiances for the finite band-pass correction factor. The TUV 

model uses parameters airmass range [1.2, 2.2] and total column ozone, 300 DU. 

The other correction factor accounts for the difference between ozone airmass and the 

molecular airmass (Slusser et al. 2000). Komhyr (1980) described the calculation details of 

ozone and molecular airmass. Instead of the correction factor, one can do the Langley regression 

using the reduced or weighted airmass, red i i im m     , described by Forgan (1988) to 

eliminate the airmass effects (Slusser et al. 2000). 

Janson and Slusser (2003) reported that the mean annual drifts in sensitivity for the seven 

nominal wavelengths of the UV-MFRSR instrument are: 300nm − 0.9%, 305nm − 3.5%, 311nm 

− 3.5%, 317nm − 4.3%, 325nm − 3.8%, 332nm − 3.7%, 368nm − 3.5%. 

 



 
25 

The choice of airmass range 

The reasons for limiting of airmass to a certain range include: (i) The uncertainty of the 

cosine angle correction and the shadow-band correction of MFRSR at high incident angles is 

increased (Mazzola et al. 2010; Alexandrov et al. 2004); (ii) High solar zenith angles have higher 

chances of cloud contamination due to a decreased probability gap for vertically developed 

clouds (Smirnov et al. 2000); (iii ) Airmass near 1 usually indicates a higher probability of 

turbulent atmospheric conditions, which is not optimal for the AOD stability assumption of the 

Langley method. 

This choice of airmass range is not unique. Mazzola et al. (2010) and Alexandrov et al. 

(2004) selected the 2.0 to 5.0 range; Harrison and Michalsky (1994) chose the 2.0 to 6.0 range; 

and Forgan (1994) used the 2.5 to 5.5 range. 

 

Cloud screening 

Beer’s law requires that no clouds are in the path of the direct solar beam. Clouds can 

attenuate the direct solar irradiance, or, if near the solar disk, contribute to more diffuse solar 

radiation. 

di Sarra et al. (2008) identified cloud-free periods using images from the Total Sky 

Imager, visual observations of the sky, and data from the broadband channel of the MFRSR. 

It is possible for one to perform manual selection of data points presenting the clear sky 

and radiatively stable conditions (Augustine et al. 2003). Mazzola et al. (2010) pointed out that 

screening the cloudy points using the visual examination is time-consuming and cannot be 

applied routinely. Alexandrov et al. (2004) commented that the results of manual screening 

depended on the skill of the examiner. 
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The cloud screening module of the Langley Analyzer (LA) is a set of filters on the series 

of lnV – airmass points. The following description is based on the interpolation of the C source 

code of the LA program. In the UVMRP version of LA, points with voltage less than 0.02V are 

discarded. The user can specify the points that fall into permissible airmass ranges (i.e. [2.0, 

6.0]). The rest points in the desired airmass ranges are referred to as the permissible points 

hereafter. The permissible points within a morning/afternoon are first sorted by airmass in 

ascending order. The detection of cloud periods is implemented by searching for segments with 

the beginning points where lnV starts to increase and the ending points where lnV starts to 

decrease again in that series. Additionally, concavity in the series is checked by setting 

thresholds on the slope of lnV. To test this algorithm for more than a half day, the algorithm 

should be applied to the data of each half day and the returned clear sky points combined into 

one vector. 

The cloud screening algorithm developed by Long and Ackerman (2000) is originally 

designed for irradiance series provided by calibrated pyranometers, which are broadband 

radiometers with an effective 160° field of view centered on the zenith. The screening process is 

iterative, with each step involving four tests. The first test sets maximum and minimum limits of 

the airmass normalized downwelling total shortwave irradiance to eliminate obvious cloudy 

points. The second test sets maximum limits of the airmass normalized downwelling diffuse 

irradiance to eliminate haze or thin cloud points. The third test eliminates points that have a 

change of irradiance in a given time outside of a certain range. The fourth test checks the 

variation in the measurements by using a normalized diffuse ratio. The points that pass these four 

tests are tentatively clear-sky points and are used to adjust the threshold values for the next 
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iteration. When two consecutive iteration steps return the same set of points, the iteration stops 

and those points are the final clear-sky points. 

Augustine et al. (2003) applied the cloud screening algorithm of Long and Ackerman 

(2000) to the SURFRAD broadband solar data in a two month period. They used the determined 

clear-sky periods for Langley calibration of the 500 nm channel of the collocated MFRSR 

because they believed that the noise was reduced and a confident extrapolation to lnV0 by simple 

linear regression was feasible. The example (Fig. 3 in (Augustine et al. 2003)) shows that the 

regression line passes the majority of the screened points. Many MFRSR networks do not have 

broadband solar data to do the cloud screening, which limits its application to automatic 

calibration of MFRSR in those programs. 

The cloud screening method of Mazzola et al. (2010) “renormalizes” AODs to a common 

range by: (i) 10 min AOD average is subtracted from each instantaneous AOD value; (ii) add the 

typical value of AOD (namely 0.2) to step 1 results; (iii ) calculate the relative standard deviation 

of step 2 results over each 10 min period; (iv) label the points from step 3 with a value greater 

than 0.08 as cloudy points. 

Smirnov et al. (2000) developed an automatic cloud screening algorithm on the time 

series of aerosol optical depth derived from calibrated sunphotometers of AERONET. First, the 

data quality is checked. The points with negative values of AOD (< -0.01) or values lower than 

the stratospheric background AOD (Shaw 1982) (varying with wavelength) are identified as 

cloudy or poor quality. Second, the triplet stability criterion is applied. The three measurements, 

each made 30 s apart, constitute a triplet. The points with AOD range in a triplet exceeding 

Max{0.02, 0.03*AOD} are identified as cloudy. The empirical threshold value for any 

wavelength is 0.02 when AOD is lower than 0.7. When the AOD level is high (> 0.7, indicating 
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biomass burning or extremely hazy conditions, etc.), the threshold value is relaxed to be 

0.03*AOD. Third, the diurnal stability is checked. The points with a standard deviation of AOD 

at 500 nm (or 440 nm) for the entire day that is larger than 0.015 are identified as cloudy. Fourth, 

the smoothness criteria are applied. It is assumed that the second derivative of the time series of 

optical depth is very sensitive to that caused by nearby cloudy points. To ensure a coherent 

threshold value, they designed the logarithmic second derivative (D) of optical depth: 
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  

          (1.11) 

They recursively removed the points with maximum optical depth until D   16. Then 

they applied the diurnal stability check again and repeated the third and fourth steps until no 

elimination occurred. Fifth, the 3-σ criterion is applied. Any points that are outside of the 3- σ 

range of the mean AOD at 500 nm or Angstrom coefficient α (440870 nm) are identified as 

cloudy. 

Based on the variability analysis of derived optical depth, Alexandrov et al. (2004) 

developed an automated cloud screening algorithm using single channel direct beam 

measurements of a VIS-MFRSR. Their algorithm is based on the inhomogeneity parameter (ε) 

(Cahalan 1994; Cairns et al. 2000): 

 
 exp ln

1
     (1.12) 

where the over-line refers to averaging over time. The inhomogeneity parameter, ε, can 

vary from 0 for completely homogeneous to 1 for extremely inhomogeneous air conditions 

(Alexandrov et al. 2004). To better separate aerosols and some types of clouds [thin cirrus, 

marine boundary layer clouds (Alexandrov et al. 2004)], ε is modified as: 
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 exp ln

1
 
      (1.13) 

where const       is the renormalized optical depth. The statistical distribution of 

values of the inhomogeneity parameter ε’ over a month shows two distinctive maxima that 

correspond to the aerosol and cloud modes respectively (Alexandrov et al. 2004). Aerosols have 

a lower ε’ than clouds. The threshold value of ε’ between the two modes is 42 10 , below which 

are considered clear and above which are considered cloudy. It is noted that this approach can 

misidentify a very short clear sky interval between clouds as being cloudy (Alexandrov et al. 

2004), although the probability of this situation is small. 

 

Reasons for the failure of the Langley method [summarized by (Augustine et al. 2003)] 

(1) A change in aerosol optical depth over the course of a calibration period (Augustine et 

al. 2003). The assumption of AOD stability is critical to the Langley method, for which Forgan 

(1986) made a sensitivity analysis: A change in aerosol optical depth of 0.003 will produce an 

error of about 1 percent in the calibration coefficient (Augustine et al. 2003). For a 368 nm 

channel, a change of absolute aerosol optical depth at 0.003 represents less than 0.6% change in 

optical depth. But the observed percent change of a typical sea-level station is between 3% and 

10% (Augustine et al. 2003). Wilson and Forgan (1995) mentioned methods to overcome the 

limitations that are due to atmospheric variability; all involve information that is not commonly 

available for a long-term operational MFRSR such as deployment of another calibrated 

instrument or knowing calibration information in a certain channel (Augustine et al. 2003). 

(2) Effects of atmospheric noise such as that from subvisual cirrus (Shaw 1976, 

Augustine et al. 2003). Thin clouds may have optical depth as low as aerosols. However, Beer’s 
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law is not valid for cloudy conditions, which means including such points in a Langley 

regression may significantly bias the regression intercept (0lnV ) (Augustine et al. 2003). 

(3) Instrument errors. This covers some complicated situations. For example, the internal 

temperature of the MFRSR is supposed to be maintained constantly at around 40°C or 42°C; 

however, in summer at some southern sites, the actual internal temperature can be 10°C higher 

than the defined constant near noon (Augustine et al. 2003). The diurnal variation of voltages 

due to this factor can result in a biased intercept (0lnV ) (Augustine et al. 2003). Alexandrov et al. 

(2007) mentioned that the precision of instrument alignment should be considered. The AOD 

errors induced by a 1° tilt are on the order of 0.01. 

(4) Harrison et al. (1994b) report that the relatively large field of view of an MFRSR 

makes it vulnerable to the adverse effects of enhanced forward scattering by aerosols or thin 

cirrus cloud particles whose dimensions are large compared to the wavelength of the 

measurement (Augustine et al. 2003).  

 

Two variants of Langley method 

On-site calibration technique: Krotkov et al. (2005) calculate V0 (325, 332, and 368 nm 

channels) of UV-MFRSR using Beer’s law with all components of optical depth prepared before 

calibration. Total column ozone is obtained from climatological mean ozone values, aerosol 

optical depth is extrapolated / interpolated in both wavelength and temporal dimensions from 

AERONET-CIMEL measurements, and Rayleigh optical depth is calculated using the method by 

Bodhaine et al. (1999). Extraterrestrial spectral solar irradiance is taken from SUSIM AtLAS-3 

measurements. There is only one unknown variable in Eq. (1.10): V0, which can be calculated for 

each time point. The daily mean V0 is calculated by iteratively removing points outside of three 
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times the standard deviation. The stability of this method is about ± 2% in summer and larger in 

fall-winter seasons. This method requires accurate aerosol optical depth availability before 

calibration, which limits its application in most MFRSR sites. 

The main modification Lee et al. (2010) proposed to the standard Langley method 

involves the acquisition of the maximum value composite (MVC) of the largest irradiance 

(voltage) values during a several day window in each small airmass interval. The abnormal 

values are eliminated by applying a threshold on the standard deviation of relative difference in 

each bin. The window sizes vary from 5 to 30 days. The comparison of the derived AOD using 

this method to the interpolated AOD of AERONET showed that the relative error of AOD for 5, 

7, and 10 days are about 20% and equal to 7.5% for 30 days. 

 

Ratio-Langley method (Forgan 1986) 

Forgan (1986) pointed out that the variation of aerosol optical depth by changes of 

particle number, the aerosol size distribution, or both, affects all channels at different degrees 

depending on the optical efficiency as a function of particle size and wavelength. 

In the two channels (1 and 2 ) where gaseous absorption is negligible or constant with 

time, they found that the difference of total optical depth between them (   1 2t t  ) is the 

combination of a constant (dominated by molecular scattering and absorption) and a varying 

term caused by aerosols (Forgan 1986). Dividing the Beer’s Law equations at 1 and 2 , and 

taking a logarithm on both sides, they got the following equation: 

       011
1 2

2 02

( )
ln ln

( )

VV t
t t m t

V t V
               (1.14) 
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Their sensitivity analysis on the Angstrom exponential formula showed that for aerosol 

distributions dominated by large particles (i.e. marine environments),    1 2 0a at t   , which 

suggests that a Langley-like regression on Eq. (1.14) will give a more accurate and stable 

intercept term 01 02/V V  (Forgan 1986). 

Strictly speaking, the ratio-Langley method alone cannot provide calibration coefficients 

for any individual channel. Instead, it provides the ratio of calibration coefficients at two 

channels ( 01 02/V V ). If the calibration coefficient at one channel is determined by other means, all 

calibration coefficients can be calculated using the ratio results (Forgan 1986). 

 

General method (Forgan 1994) 

The fundamental assumptions of the general method are that the relative size distribution 

f is dependent only on particle radius r and the multiplier A is only a function of time t (Forgan 

1994). With these assumptions, the aerosol size distribution can be expressed as

( ) / ln ( ) ( )N t r A t f r   (Forgan 1994). The aerosol optical depth (τa) for this distribution at time 

t and wavelength λ is given by (Forgan 1994) 

 2( , ) ( ) ( , ) ( ) lna extt A t Q r r f r d r       (1.15) 

where extQ  is the extinction efficiency, which is a function of the wavelength and the 

particle radius. It is seen that the only term in this expression that is dependent on time is the 

multiplier A. Therefore, the optical depth at any time t can be related to that at the reference time 

t0, 0 0( , ) ( , ) ( ) / ( )a at t A t A t    (Forgan 1994). The ratio of optical depths at any time t between 

two wavelengths (λ0 and λ1) is a constant (defined as01 , Forgan 1994): 



 
33 

 

1 0 1 0

0 0 0 0

0 1
01

0 0

1

0

( , ) ( , ) ( ) / ( )

( , ) ( , ) ( ) / (

( , )

( , )

)

( , )
tan

( , )

a a

a a

aa

aa

t t A t A t

t t A t A t

t
cons

t

t

t
t

   
   

  
  


  

  (1.16) 

for all t. 

If the Beer-Lambert’s law is valid on both wavelengths, one can derive the logarithm of 

the calibration factor of the target wavelength ( 0_1lnV ) and the constant (01 ) through a least 

squares regression on the following expression (Forgan 1994): 

 
 

   1 1 1
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ln ( ) ( ) ( , ) ( , )
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m m g g
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V t m t t m t

m t t V

   
  

     
    (1.17) 

The three terms on the left side of the equal sign are measurements (1( )V t ) or calculable 

values (airmass, molecular scattering, and absorption optical depths). There are two ways of 

providing the aerosol optical depth at the other wavelength 0( ) ( , )a am t t  : (i) using a well-

calibrated sun photometer; or (ii) using solar Aureole Measurements (Forgan 1987; Forgan 

1994). 

 

Comprehensive calibration with atmospheric quantities retrieval (Alexandrov et al. 2002) 

This method provides for the simultaneous determination of the instrument’s calibration 

coefficients together with the retrieval of physical quantities (Alexandrov et al. 2002). This 

method is designed for 5 channels (415870 nm) of VIS-MFRSR. The basic equation used is 

Beer’s law. The major improvement of this method is that it relaxes the strong assumption of 

stability of aerosol optical depth to that of aerosol spectral extinction properties during the 

calibration period (determined by composition and particle size distribution) (Alexandrov et al. 
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2002). This method does not require any additional measurements from other instruments. 

Depending on the wavelength, the significant components of the total optical depth may include 

Rayleigh, aerosol, nitrogen dioxide, and ozone. There are several methods for approximating the 

Rayleigh optical depth with comparable results (Hansen and Travis 1974; Bucholtz 1995; 

Bodhaine et al. 1999). They remove it to get the adjusted total optical depth. They manually 

select clear-sky points. There are four main steps of this method: 

(1) The first step of the retrieval algorithm is the determination of the 870 nm optical 

depth and calibration coefficient. 

The reason for the choice of 870 nm channel is that diffuse flux is only affected by 

aerosols, which means the vertical distribution of gaseous absorbers (nitrogen dioxide and 

ozone) can be unknown (Alexandrov et al. 2002). 

The direct to diffuse irradiance ratio from the same MFRSR is independent of 

instrumental calibration. The retrieval of optical depth from direct-diffuse ratio relies on the 

simplified analytical relationship (Alexandrov et al. 2002): 

 
 01 /1

1 cos
A

R 
         (1.18) 

where A is the surface albedo; / /dir dif dir difI I V V    is the corresponding direct-diffuse 

ratio; and 0 is the zero surface reflectivity. The scattering angle integrated reflection function,

R , can be seen as an implicit function of optical depth (Alexandrov et al. 2002). The retrieved 

aerosol optical depth depends only weakly on surface albedo, so although the surface albedo is 

an unknown quantity, a reasonable assumption of low surface albedo (< 50%) results in the 

uncertainty of ± 0.01 in the optical depth inverted from Eq. (1.18) (Alexandrov et al. 2002). This 
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calibration procedure works well even for days with highly variable optical depth (Alexandrov et 

al. 2002). 

(2) The second step is an analytical solution of a set of linear equations to retrieve aerosol 

optical properties. 

The assumption is that the aerosol spectral extinction i
extQ  is more stable while the 

aerosol optical depth is changing systematically during the day (Alexandrov et al. 2002). Starting 

from Beer’s law, Alexandrov et al. (2002) defined the un-calibrated optical depth for the ith 

channel as 

 
0

ln i
i i i

V
s

V
           (1.19) 

where lni is c  and ic is the calibration coefficient for channel i; 
2 3i i a i NO i Oq x x     

is the total optical depth for channel i; 5/i
i ext extq Q Q  is the Mie-scattering extinction ratio 

normalized to the fifth (870 nm) channel (Alexandrov et al. 2002). 5q  is equal to 1, all other iq  

are unknown but assumed to be invariant over the calibration period; a is the aerosol optical 

depth of channel 5;i  and i are the effective spectral absorption coefficients for nitrogen dioxide 

and ozone, respectively, for channel i: 1 0  , 5 0  , 5 0  , all others are measured values from 

previous studies; 
2NOx and 

3Ox are the column nitrogen dioxide and column ozone in Dobson 

units, respectively; and is the cosine of the solar zenith angle (Alexandrov et al. 2002). From 

step (1), one already has 5s and a . Substituting them into Eq. (1.19), they obtain the following 

equations: 

 
 
 3 3 5 3

4 4 5 4

F B x s A

F B x s A

  
     (1.20) 
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where,  

 1
5x      (1.21) 

  1
1 1 2 2 21 1i i i iF b g b             (1.22) 

  1 1 2 2 21 1i i i iB q b q g q b q      (1.23) 

  1 1 2 2 21 1i i i iA s b s g s b s      (1.24) 

where,  3,4i ; /ij i jb   and /ij i jg   are the spectrally weighted nitrogen dioxide and 

ozone absorption coefficient ratios, which can be treated as known values, respectively 

(Alexandrov et al. 2002). In Eq. (1.20), the calculation of the left-hand side, Eq. (1.22), at each 

time step only involves measurements and known values (Alexandrov et al. 2002). On the right-

hand side, x and 5s are measurements and retrieved value; bothiB and iA  are unknown but 

constant over the calibration period since the calibration factors is and the aerosol extinction 

ratios iq are expected to be constant over the period (Alexandrov et al. 2002). Therefore, one can 

retrieve the unknowns (3B , 4B , 3A , and 4A ) in Eq. (1.20) with a linear regression similar to 

Langley regression. 

The two aerosol size distribution parameters, the effective radius effr and the effective 

variance eff , are used to build a look-up table for 3B  and 4B  via Eq. (1.23) and Mie theory 

(Alexandrov et al. 2002). The combination of effr and eff that matches the regression results of 

3B  and 4B  are the solutions. To reduce the influence of error in measurements and calibrations, 

they limit eff  to a small value to average out the oscillations and the corresponding effr is 

referred to as “monodistribution radius” (Alexandrov et al. 2002). Now only 3B is needed to 
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retrieve effr , which is considered to generate more stable result than4B . Once effr  is determined, 

the aerosol optical depth, at any wavelength, can be calculated from the Mie spectral extinction 

parameter and a (Alexandrov et al. 2002). 

(3) The third step is the retrieval of the nitrogen dioxide and ozone column amounts, as 

well as the first two channel calibration coefficients. 

The aerosol optical depths retrieved from step (2) are removed from Eq. (1.19). Since

1 0  , the unknown optical depth left for channel 1 (415 nm) is due to nitrogen dioxide. 

Assuming the stability of nitrogen dioxide over the calibration period, one can solve 1s and the 

average column nitrogen dioxide (
2NOx ) together with regression (Alexandrov et al. 2002). 

By removing the aerosol and nitrogen dioxide optical depth from Eq. (1.19), one can 

solve 2s and the column ozone (
3Ox ) together with regression on channel 2 (Alexandrov et al. 

2002). 

(4) The fourth step is the determination of the calibration coefficients for the rest of the 

channels. 

The last two calibration coefficients, 3s  and 4s , can be calculated using Eq. (1.24); 1s  and

2s are retrieved in step (3) (Alexandrov et al. 2002). 

 

Nonlinear optimization with Bi-channel Langley and Angstrom law constraints 

The calibration method of Chen et al. (2012) relies on two essential constraints: (i) the 

AOD difference between channels is constant over time, which is fulfilled by the bi-channel 

Langley method; and (ii ) the AOD ratio between channels is constant over time, which is 

implemented by the Angstrom law. The technique “bi-channel Langley method” is similar to the 
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“ratio-Langley method” described in the previous section. These constraints are applied in two 

consecutive optimization steps to solve the calibration factors (V0) and AOD in the target 

channels using the trust region based nonlinear optimization module called CONDOR (Vanden 

Berghen and Bersini 2005). Two channels are the minimum requirement for this method, while 

multiple channels in the 368 to 870 nm range can be solved simultaneously with this method. 

The example shows better agreement of AOD derived from this method than that of the standard 

Langley method to the collocated AERONET AOD, which implies improvement in the retrieved 

calibration factors. Note that Angstrom law is empirical and may not be suitable for some cases, 

which limits its application. 

 

Water vapor channel calibration 

Alexandrov et al. (2009) reviewed the papers that describe the retrieval of precipitable 

water vapor (and determination of calibration factors in some papers) using ground based 

radiometers at 940 nm channel: Fowle (1912, 1915), Reagan et al. (1987b, 1995), Thome et al. 

(1992, 1994), Michalsky et al. (1995b, 2001b), Schmid et al. (1996, 2001, 2003), Shiobara et al. 

(1996), Halthore et al. (1997), Cachorro et al. (1998), Plana-Fattori et al. (1998, 2004), Ingold et 

al. (2000), Kiedron et al. (2003), Livingston et al. (2007). 

The calibration methods for the 940 nm channel can be characterized by the “Modified 

Langley plot” fitting technique (Reagan et al. 1987a; Bruegge et al. 1992; Alexandrov et al. 

2009). 

The transmission of water vapor (waterT ) is modeled as a function of the water vapor 

column (u ) (Michalsky et al. 1995b, 2001b), 

   exp
b

waterT k m u      (1.25) 
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where k andb are constants for a particular filter. For the purpose of determining k andb , m is 

set to 1. Rearranging the terms (Michalsky et al. 1995b, 2001b), 

     ln ln 1 ln lnwaterT k b u      (1.26) 

One can calculate the effective transmission of water vapor (convolution of the 

normalized SRF and the atmospheric transmission of water vapor over wavelength of the filter 

pass-band) as a function of u  using a radiative transfer model (Michalsky et al. 1995b). Once the 

expected range of u is covered, one can perform a least squares fit to Eq. (1.26) to obtain k andb  

for the particular filter/instrument (Michalsky et al. 1995b). 

Beer’s law for the 940 nm channel considers the water vapor absorption, 

   2
940 0,940 ,940 ,940exp aerosol Rayleigh waterV R V m T        (1.27) 

Taking the natural logarithm of Eq. (1.27) and rearranging it (Michalsky et al. 1995b), 

        2
940 ,940 ,940 0,940ln ln b b

aerosol RayleighV R m V k m u          (1.28) 

The calculation of Rayleigh at any given wavelength has been discussed (Bodhaine et al. 

1999). The value of ,940aerosol may be estimated by extrapolating on the log logaerosol  plot 

(Krotkov et al. 2005). Similar to the Langley method, assuming the water vapor column remains 

constant in the calibration period, one can perform a linear regression on Eq. (1.28) to determine 

the intercept,  0,940ln V , and the slope, bu , simultaneously (Michalsky et al. 1995b). 

Alexandrov et al. (2009) found that the fundamental assumption of this technique: the 

stability of the precipitable water vapor (PWV) column, which is similar to that of the standard 

Langley method, rarely occurs in reality, except for very dry sites like the Arctic (Kiedron et al. 

2001) or high mountains (Schmid et al. 1998). In other cases this technique cannot provide 

accurate calibration factors or PWV with low uncertainty (Michalsky et al. 2001b). Because of 



 
40 

this, research that involves a 940 nm channel usually uses lamp calibration instead of this 

technique (Alexandrov et al. 2009; Hodges and Michalsky 2011). 

 

Conclusions 

The MFRSR, both the visible and ultraviolet versions, is a widely deployed radiometer 

that has measured surface shortwave radiation with high sampling rate for about two decades. It 

has been used for validating satellite observation and retrievals and for monitoring important 

properties of gases, aerosols, and clouds in the atmosphere. Except for the parameters that can be 

derived from the ratio of its measured components, which are not impacted by calibration error, 

most applications require accurate calibration factors, angular correction, and spectral response 

functions provided by calibration. Although the laboratory lamp, or reference, calibration can 

provide all the information needed to convert the readings to actual radiation, in situ calibration 

methods are implemented routinely to fill the gaps between lamp calibrations. In situ calibration 

with collocated AOD measurements can provide accurate calibration factors. However, 

information of AOD is not available for most deployed MFRSR units, which limits its 

application. In situ calibration methods based on Beer’s law with no ancillary AOD 

measurements are fundamentally underdetermined problems. They assume some properties, such 

as AOD, TOD, precipitable water vapor, effective size of aerosol particles, and angstrom 

coefficient, are invariant over time in order to create equations solvable by linear regression or 

nonlinear optimization. Since these artificial assumptions are not universal and some of them 

rarely happen, there is no single in situ calibration method that is suitable for all sites at all times. 

In practice, daily calibration factors derived from these methods should be time-smoothed with 

or without lamp calibration information to restrain error. 
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Figure 1.1 Basic geometry of a MFRSR (Hodges and Michalsky, 2011) 
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Figure 1.2 Cut-out view of a MFRSR (Hodges and Michalsky, 2011) 
 



 
43 

REFERENCES 

 
 
 
Ackerman T P, Stokes G (2003), The atmospheric radiation measurement program. Phys Today, 

56(1): 38–45. doi:10.1063/1.1554135 

Alexandrov, D, Kiedron P, Michalsky J J, Godges G, Flynn C J, Lacis A A (2007), Optical depth 
measurements by shadow-band radiometers and their uncertainties. Appl Opt, 46(33): 
8027–8038 

Alexandrov M D, Lacis A A, Carlson B E, Cairns B (2002), Remote sensing of atmospheric 
aerosols and trace gases by means of multi-filter rotating shadowband radiometer. part I: 
retrieval algorithm. J Atmos Sci, 59(3): 524–543. doi:10.1175/1520-
0469(2002)059<0524:RSOAAA>2.0.CO;2 

Alexandrov M D, Lacis A A, Carlson B E, Cairns B (2002b), Remote sensing of atmospheric 
aerosols and trace gases by means of multi-filter rotating shadowband radiometer. part II: 
climatological applications. J Atmos Sci, 59(3): 544–566. doi:10.1175/1520-
0469(2002)059<0544:RSOAAA>2.0.CO;2 

Alexandrov M D, Lacis A A, Carlson B E, Cairns B (2008), Characterization of atmospheric 
aerosols using MFRSR measurements. J Geophys Res, 113(D8): D08204. 
doi:10.1029/2007JD009388 

Alexandrov M D, Marshak A, Cairns B, Lacis A A, Carlson B E (2004), Automated cloud 
screening algorithm for MFRSR data. Geophys Res Lett, 31(4): L04118. 
doi:10.1029/2003GL019105 

Alexandrov M D, Schmid B, Turner D D, Cairns B, Oinas V, Lacis A A, Gutman S I, Westwater 
E R, Smirnov A, Eilers J (2009), Columnar water vapor retrievals from multifilter 
rotating shadowband radiometer data. J Geophys Res, 114(D2): D02306. 
doi:10.1029/2008JD010543 

Augustine J A, Cornwall C R, Hodges G B, Long C N, Medina C I, DeLuisi J J (2003), An 
automated method of MFRSR calibration for aerosol optical depth analysis with 
application to an Asian dust outbreak over the United States. J Appl Meteorol, 42(2): 
266–278. doi:10.1175/1520-0450(2003)042<0266:AAMOMC>2.0.CO;2 

Augustine J A, Hodges G B, Cornwall C R, Michalsky J J, Medina C I (2005), An update on 
SURFRAD —The GCOS Surface Radiation budget network for the continental United 
States. J Atmos Ocean Technol, 22(10): 1460–1472. doi:10.1175/JTECH1806.1 

Bais A F (1997), Spectrometers: operational errors and uncertainties, Solar Ultraviolet Radiation 
Modeling, Measurements and Effects. In: Zerefos C S, Bais A F, eds .Vol. 52 of NATO 
ASI Series I, Global Environmental Change. Berlin: Springer-Verlag, 163–173 



 
44 

Bais A F, Kazadzis S, Balis D, Zerefos C S, Blumthaler M (1998), Correcting global solar 
ultraviolet spectra recorded by a brewer spectroradiometer for its angular response error. 
Appl Opt, 37(27): 6339–6344 

Bigelow D S, Slusser J R, Beaubien A F, Gibson J H (1998), The USDA ultraviolet radiation 
monitoring program. Bull Am Meteorol Soc, 79(4): 601–615. doi:10.1175/1520-
0477(1998)079<0601:TUURMP>2.0.CO;2 

Blumthaler M, Bais A F (1996), Cosine corrections of global sky measurements, In: Kjeldstad B, 
Johnsen B, Koskela T, eds. The Nordic Intercomparison of Ultraviolet and Total Ozone 
Instruments at Izana October 1996. Helsinki: Finnish Meteorological Institute, 161–172 

Bodhaine B A, Wood N B, Dutton E G, Slusser J R (1999), On Rayleigh optical depth 
calculations. J Atmos Oceanic Technol., 16: 1854–1861 

Booth C R, Mestechkina T, Morrow J H (1994), Errors in the reporting of solar spectral 
irradiance using moderate bandwidth radiometers: an experimental investigation. In: 
Ocean Optics XII, Proc SPIE Int Soc Opt Eng, 2258, 654–663 

Bruegge C J, Conel J E, Green R O, Margolis J S, Holm R G, Toon G (1992), Water vapor 
column abundance retrievals during FTFE. J Geophys Res, 97(D17): 18759–18768. 
doi:10.1029/92JD01050 

Bucholtz A (1995), Rayleigh-scattering calculations for the terrestrial atmosphere. Appl Opt, 
34(15): 6339–6344 

Cachorro V E, Utrillas P, Vergaz R, Duran P, de Frutos A M, Martinez-Lozano J A (1998), 
Determination of the atmospheric water-vapor content in the 940-nm absorption band by 
use of moderate spectral-resolution measurements of direct solar irradiance. Appl Opt, 
37(21): 4678–4689 

Cahalan R F (1994), Bounded cascade clouds: Albedo and effective thickness. Nonlinear Process 
Geophys, 1(2/3): 156–167. doi:10.5194/npg-1-156-1994 

Cairns B, Lacis A A, Carlson B E (2000), Absorption within inhomogeneous clouds and its 
parameterization in general circulation models. J Atmos Sci, 57(5): 700–714. 
doi:10.1175/1520-0469(2000)057<0700:AWICAI>2.0.CO;2 

Caldwell M M, Camp C W, Warner C W, Flint S D (1986), Action spectra and their role in 
assessing biological consequences of solar UV-B radiation change. In: Worrest R C, 
Caldwell M M, eds. Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and 
Plant Life. Berlin: Springer-Verlag, 87–111 

Charlson R J, Schwartz S E, Hales J M, Cess R D, Coakley J A Jr, Hansen J E, Hofmann D J 
(1992), Climate forcing by anthropogenic aerosols. Science. New Series, 255(5043): 
423–430 



 
45 

Chen M, Davis J, Tang H, Gao Z, Gao W (2012), A multi-channel calibration method for multi-
filter rotating shadow-band radiometer. Proc SPIE 8513. Remote Sensing and Modeling 
of Ecosystems for Sustainability, IX: 851305 doi:10.1117/12.929454 

Chow J C, Watson J G, Fujita E M, Lu Z, Lawson D R (1994), Temporal and spatial variations 
of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmospheric 
Environment, 28(12): 2061–2080 

di Sarra A, Fua D, Cacciani M, Di Iorio T, Disterhoft P, Meloni D, Monteleone F, Piacentino S, 
Sferlazzo D (2008), Determination of ultraviolet cosine-corrected irradiances and aerosol 
optical thickness by combined measurements with a Brewer spectrophotometer and a 
multifilter rotating shadowband radiometer. Appl Opt, 47(33): 6142–6150. 
doi:10.1364/AO.47.006142 

Feister U, Grewe R, Gericke K (1997), A method for correction of cosine errors in measurements 
of spectral UV irradiance. Sol Energy, 60(6): 313–332. doi:10.1016/S0038-
092X(97)00030-3 

Forgan B W (1986), Sun photometer calibration by the ratio-Langley technique. In: Forgan B W, 
Fraser P J, eds. Baseline Atmospheric Program, Bureau of Meteorology, Melbourne, 
Australia, 22–26 

Forgan B W (1987), A technique for calibrating sunphotometers using solar aureole 
measurements. In: Forgan B W, Ayers G P, eds. Baseline, Bureau of Meteorology, 
Melbourne, Australia, 1989, 15–20 

Forgan B W (1988), Bias in solar constant determination by the Langley method due to 
structured aerosol: Comment. Appl Opt, 27(12): 2546–2548 

Forgan B W (1994), General method for calibrating Sun photometers. Appl Opt, 33(21): 4841–
4850. doi:10.1364/AO.33.004841 

Fowle F E (1912), The spectroscopic determination of aqueous vapor. Astrophys J, 35(3): 149–
162. doi:10.1086/141923 

Fowle F E (1915), The transparency of aqueous vapor. Astrophys J, 42(5): 394–411. 
doi:10.1086/142220 

Halthore R N, Eck T F, Holben B N, Markham B L (1997), Sun photometric measurements of 
atmospheric water vapor column abundance in the 940-nm band. J Geophys Res, 
102(D4): 4343–4352. doi:10.1029/96JD03247 

Hansen J E, Travis L D (1974), Light scattering in planetary atmospheres. Space Sci Rev, 16(4): 
527–610. doi:10.1007/BF00168069 

Harrison L, Michalsky J (1994), Objective algorithms for the retrieval of optical depths from 
ground-based measurements. Appl Opt, 33(22): 5126–5132 



 
46 

Harrison L, Michalsky J, Berndt J (1994b), Automated multifilter rotating shadow-band 
radiometer: an instrument for optical depth and radiation measurements. Appl Opt, 
33(22): 5118–5125 

Hickey J R (1970), Laboratory Methods of Experimental Radiometry Including Data Analysis, 
In: Landsberg H E, Van Mieghem J, eds., Adv Geophys, 14: 227-267. 
doi:10.1016/S0065-2687(08)60158-2 

Hodges G B, Michalsky J J (2011), Multifilter Rotating Shadowband Radiometer (MFRSR) 
Handbook with Subsections for the Following Derivative Instruments: Multifilter 
Radiometer (MFR) Normal Incidence Multifilter Radiometer (NIMFR), U.S. Department 
of Energy, Office of Science, Office of Biological and Environmental Research, 
DOE/SC-ARM/TR-059 

Holben B N, Eck T F, Slutsker I, Tanré D, Buis J P, Setzer A, Vermote E, Reagan J A, Kaufman 
Y J, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998), AERONET—A federated 
instrument network and data archive for aerosol characterization. Remote Sens Environ, 
66(1): 1–16. doi:10.1016/S0034-4257(98)00031-5 

Ingold T, Schmid B, Matzler C, Demoulin P, Kampfer N (2000), Modeled and empirical 
approaches for retrieving columnar water vapor from solar transmittance measurements 
in the 0.72, 0.82, and 0.94 mm absorption bands. J Geophys Res, 105(D19): 24327–
24343. doi:10.1029/2000JD900392 

Janson G T, Slusser J R (2003), Long-term stability of UV multifilter rotating shadowband 
radiometers. Ultraviolet ground- and space-based measurements. Models and Effects Iii 
Book Series: Proceedings of the Society of Photo-Optical Instrumentation Engineers, 
5156: 94–100 (SPIE) doi:10.1117/12.508195 

Kakani V G, Reddy K R, Zhao D, Mohammed A R (2003b), Effects of ultraviolet-B radiation on 
cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot (Lond), 91(7): 817–
826. doi:10.1093/aob/mcg086 

Kakani V G, Reddy K R, Zhao D, Sailaja K (2003a), Field crop responses to ultraviolet-B 
radiation: a review. Agric Meteorol, 120(14): 191–218. 
doi:10.1016/j.agrformet.2003.08.015 

Kaskaoutis D G, Kambezidis H D, Kharol S K, Badarinath K V S (2008), The diffuse-to-global 
spectral irradiance ratio as a cloud-screening technique for radiometric data. J  Atmos 
Solar-Terrestrial Phys, 70(13): 1597–1606 

Kassianov E, Barnard J C, Berg L K, Flynn C, Long C N (2011), Sky cover from MFRSR 
observations. Atmos. Meas. Tech., 4: 1463–1470, doi:10.5194/amt-4-1463-2011. 

Kasten F, Young A T (1989), Revised optical air mass tables and approximation formula. Appl 
Opt, 28(22): 4735–4738. doi:10.1364/AO.28.004735 



 
47 

Kiedron P, Berndt J, Michalsky J, Harrison L (2003), Column water vapor from diffuse 
irradiance. Geophys Res Lett, 30(11): 1565-1568. doi:10.1029/2003GL016874 

Kiedron P, Michalsky J, Schmid B, Slater D, Berndt J, Harrison L, Racette P, Westwater E, Han 
Y (2001), A robust retrieval of water vapor column in dry Arctic conditions using the 
rotating shadowband spectroradiometer. J Geophys Res, 106(D20): 24007–24016. 
doi:10.1029/2000JD000130 

Kiedron P W, Michalsky J J, Berndt J L, Harrison L C (1999), Comparison of spectral irradiance 
standards used to calibrate shortwave radiometers and spectroradiometers. Appl Opt, 
38(12): 2432–2439. doi:10.1364/AO.38.002432 

Komhyr W D (1980), Operations Handbook—Ozone Observations with a Dobson 
Spectrophotometer, WMO Global Ozone Res. Monit. Proj. Report 6, World Meteorol. 
Organ. Geneva 

Krotkov N, Bhartia P K, Herman J, Slusser J, Labow G, Scott G, Janson G, Eck T F, Holben B 
(2005), Aerosol ultraviolet absorption experiment (2002 to 2004), part 1: ultraviolet 
multifilter rotating shadowband radiometer calibration and intercomparison with CIMEL 
sunphotometers. Opt Eng, 44(4): 041004. doi:10.1117/1.1886818 

Lee K H, Li Z, Cribb M C, Liu J, Wang L, Zheng Y, Xia X, Chen H, Li B (2010), Aerosol 
optical depth measurements in eastern China and a new calibration method. J Geophys 
Res, 115: D00K11. doi:10.1029/2009JD012812 

Leontieva E, Stamnes K (1996), Remote Sensing of Cloud Optical Properties from Ground-
Based Measurements of Transmittance: A Feasibility Study. J Appl Meteor, 35(11): 
2011–2022 

Lighty J S, Veranth J M, Sarofim A F (2000), Combustion aerosols: factors governing their size 
and composition and implications to human health. J Air Waste Manag Assoc, 50(9): 
1565–1618. doi:10.1080/10473289.2000.10464197 

Livingston J, Schmid B, Redemann J, Russell P B, Ramirez S A, Eilers J, Gore W, Howard S, 
Pommier J, Fetzer E J, Seemann S W, Borbas E, Wolfe D E, Thompson A M (2007), 
Comparison of water vapor measurements by airborne Sun photometer and near-
coincident in situ and satellite sensors during INTEX/ITCT 2004. J Geophys Res, 
112(D12): D12S16. doi:10.1029/2006JD007733 

Long C N, Ackerman T P (2000), Identification of clear skies from broadband pyranometer 
measurements and calculation of downwelling shortwave cloud effects. J Geophys Res, 
105(D12): 15609–15626. doi:10.1029/2000JD900077 

Madronich S (1993), UV radiation in the natural and perturbed atmosphere. In: Tevini M, ed., 
UV-B Radiation and Ozone Depletion: Effects on Humans, Animals, Plants, 
Microorganisms, and Materials. Lewis Publishers, Boca Raton, Florida, 17-69 



 
48 

Mazzola M, Lanconelli C, Lupi A, Busetto M, Vitale V, Tomasi C (2010), Columnar aerosol 
optical properties in the Po Valley, Italy, from MFRSR data. J Geophys Res, 115(D17): 
D17206. doi:10.1029/2009JD013310 

Michalsky J J, Harrison L C, Berkheiser W E III (1995), Cosine response characteristics of some 
radiometric and photometric sensors. Sol Energy, 54(6): 397–402. doi:10.1016/0038-
092X(95)00017-L 

Michalsky J J, Liljegren J C, Harrison L C (1995b), A comparison of Sun photometer derivations 
of total column water vapor and ozone to standard measures of same at the Southern 
Great Plains Atmospheric Radiation Measurement site. J Geophys Res, 100(D12): 
25,995–26,003. doi:10.1029/95JD02706 

Michalsky J J, Min Q, Kiedron P W, Slater D W, Barnard J C (2001b), A differential technique 
to retrieve column water vapor using sun radiometry. J Geophys Res, 106(D15): 17,433–
17,442. doi:10.1029/2000JD900527 

Michalsky J J, Schlemmer F A, Berkheiser W E, Berndt J L, Harrison L C, Laulainen N S, 
Larson N R, Barnard J C (2001a), Multi-year measurements of aerosol optical depth in 
the Atmospheric Radiation Measurement and Quantitative Links programs. J Geophys 
Res, 106(D11): 12099–12107. doi:10.1029/2001JD900096 

Molling C C, Heidinger A K, Straka W C III and Wu X (2010), Calibrations for AVHRR 
channels 1 and 2: review and path towards consensus. International Journal of Remote 
Sensing, 31(24): 6519–6540 

Monteith J L, Unsworth M H (2008), Principles of environmental physics, 3rd ed. Oxford: 
Academic 

Plana-Fattori A, Dubuisson P, Fomin B A, de Paula Corrêa M (2004), Estimating the 
atmospheric water vapor content from multi-filter rotating shadow-band radiometry at 
Sao Paulo, Brazil. Atmos Res, 71(3): 171–192. doi:10.1016/j.atmosres.2004.02.002 

Plana-Fattori A, Legrand M, Tanre D, Devaux C, Vermeulen A, Dubuisson P (1998), Estimating 
the atmospheric water vapor content from Sun photometer measurements. J Appl 
Meteorol, 37(8): 790–804. doi:10.1175/1520-0450(1998)037<0790:ETAWVC>2.0.CO;2 

Ramanathan V, Cess R D, Harrison E F, Minnis P, Barkstrom B R, Ahmad E, Hartmann D 
(1989), Cloud-radiative forcing and climate: results from the Earth radiation budget 
experiment. Science, 243(4887): 57–63. doi:10.1126/science.243.4887.57 

Ramanathan V, Crutzen P J, Kiehl J T, Rosenfeld D (2001), Aerosols, climate, and the 
hydrological cycle. Science, 294(5549): 2119–2124. doi:10.1126/science.1064034 

Reagan J, Thome K, Herman B, Stone R, Deluisi J, Snider J (1995), A comparison of columnar 
water-vapor retrievals obtained with near-IR solar radiometer and microwave radiometer 
measurements. J Appl Meteorol, 34(6): 1384–1391 



 
49 

Reagan J, Pilewskie P, Herman B, Ben-David A (1987b), Extrapolation of Earth-based solar 
irradiance measurements to exoatmospheric levels for broad-band and selected 
absorption-band observations. IEEE Trans Geosci Rem Sens, GE-25(6): 647–653. 
doi:10.1109/TGRS.1987.289733 

Reagan J A, Thome K, Herman B, Gall R (1987a), Water vapor measurements in the 0.94 
micron absorption band: Calibration, measurements, and data applications. In: 
Proceedings, International Geoscience and Remote Sensing Symposium, ’87 Symposium, 
Ann Arbor, Mich. IEEE, 63–67 

Schmid B, Hegg D A, Wang J, Bates D, Redemann J, Russell P B, Livingston J M, Jonsson H H, 
Welton E J, Seinfeld J H, Flagan R C, Covert D S, Dubovik O, Jefferson A (2003), 
Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia 
using airborne Sun photometer and airborne in situ and ship-based lidar measurements. J 
Geophys Res, 108(D23): 8656-8677. doi:10.1029/2002JD003361 

Schmid B, Michalsky J J, Slater D W, Barnard J C, Halthore R N, Liljegren J C, Holben B N, 
Eck T F, Livingston J M, Russell P B, Ingold T, Slutsker I (2001), Comparison of 
columnar water-vapor measurements from solar transmittance methods. Appl Opt, 
40(12): 1886–1896 

Schmid B, Spyak P R, Biggar S F, Wehrli C, Sekler J, Ingold T, Matzler C, Kampfer N (1998), 
Evaluation of the applicability of solar and lamp radiometric calibrations of a precision 
Sun photometer operating between 300 and 1025 nm. Appl Opt, 37(18): 3923–3941 

Schmid B, Thome K J, Demoulin P, Peter R, Matzler C, Sekler J (1996), Comparison of modeled 
and empirical approaches for retrieving columnar water vapor from solar transmittance 
measurements in the 0.94 mm region. J Geophys Res, 101(9): 345–349, 358 

Schmid B, Wehrli C (1995), Comparison of Sun photometer calibration by use of the Langley 
technique and the standard lamp. Appl Opt, 34(21): 4500–4512. 
doi:10.1364/AO.34.004500 

Seckmeyer G, Bernhard G (1993), Cosine error correction of spectral UV irradiances. In: 
Stamnes K H, ed. Atmospheric Radiation, Proc. SPIE, 2049: 140–151 

Shaw G E (1976), Error analysis of multi-wavelength sun photometry. Pure Appl Geophys, 
114(1): 1–14. doi:10.1007/BF00875487 

Shaw G E (1982), Solar spectral irradiance and atmospheric transmission at Mauna Loa 
Observatory. Appl Opt, 21(11): 2007–2011 

Shiobara M, Spinhirne J D, Uchiyama A, Asano S (1996), Optical depth measurements of 
aerosol, cloud, and water vapor using Sun photometers during FIRE Cirrus IFO II. J Appl 
Meteorol, 35(1): 36–46. doi:10.1175/1520-0450(1996)035<0036:ODMOAC>2.0.CO;2 



 
50 

Slusser J, Gibson J, Bigelow D, Kolinski D, Disterhoft P, Lantz K, Beaubien A (2000), Langley 
method of calibrating UV filter radiometers. J Geophys Res, 105(D4): 4841–4849. 
doi:10.1029/1999JD900451 

Smirnov A, Holben B N, Eck T F, Dubovik O, Slutsker I (2000), Cloud screening and quality 
control algorithms for the AERONET database. Remote Sens Environ, 73(3): 337–349. 
doi:10.1016/S0034-4257(00)00109-7 

Teramura A H, Sullivan J H, Ziska L H (1990), Interaction of Elevated Ultraviolet-B Radiation 
and CO(2) on Productivity and Photosynthetic Characteristics in Wheat, Rice, and 
Soybean. Plant Physiol, 94(2): 470–475. doi:10.1104/pp.94.2.470 

Thomason L W, Herman B M, Reagan J A (1983), The effect of atmospheric attenuators with 
structured vertical distributions on air mass determinations and Langley plot analysis. J 
Atmos Sci, 40(7): 1851–1854 

Thome K J, Herman B, Reagan J (1992), Determination of precipitable water from solar 
transmission. J Appl Meteorol, 31(2): 157–165. doi:10.1175/1520-
0450(1992)031<0157:DOPWFS>2.0.CO;2 

Thome K J, Smith M W, Palmer J M, Reagan J A (1994), Three-channel solar radiometer for the 
determination of atmospheric columnar water vapor. Appl Opt, 33(24): 5811–5819. 
doi:10.1364/AO.33.005811 

Thuillier G, Hers M, Simon P C, Labs D, Mandel H, Gillotay D (1998), Observation of the solar 
spectral irradiance from 200 to 870 nm during the ATLAS 1 and ATLAS 2 mission by 
the SOLSPEC spectrometer. Metrologia, 35(4): 689–695. doi:10.1088/0026-
1394/35/4/79 

Vanden Berghen F, Bersini H (2005), CONDOR, a new parallel, constrained extension of 
Powell’s UOBYQA algorithm: experimental results and comparison with the DFO 
algorithm. Journal of Computational and Applied Mathematics, 181(1): 157–175. 
doi:10.1016/j.cam.2004.11.029 

Wielicki B A, Cess R D, King M D, Randall D A, Harrison E F (1995), Mission to Planet Earth: 
role of clouds and radiation in climate. Bull Am Meteorol Soc, 76: 2125–2153 

Willson R C, Mordvinov A V (2003), Secular total solar irradiance trend during solar cycles 21–
23. Geophys Res Lett, 30(5): 1199-1202. doi:10.1029/2002GL016038 

Wilson S R, Forgan B W (1995), In situ calibration technique for UV spectral radiometers. Appl 
Opt, 34: 5475–5484 

Yin B, Min Q, Duan M, Bartholomew M J, Vogelmann A M, Turner D D (2011), Retrievals of 
cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband 
Radiometer measurements. J Geophys Res, 116(D23): D23208. 
doi:10.1029/2011JD016192 



 
51 

CHAPTER 2: A NEW CLOUD SCREENING ALGORITHM FOR GROUND-BASED 

DIRECT-BEAM SOLAR RADIATION2 

 
 
 

Introduction 

Ground-based solar radiation measurement systems are generally considered simple, 

reliable, and necessary to validate satellite measurements and retrievals (Smirnov et al. 2000; 

Krotkov et al. 2005). Separation of clear-sky and cloudy portions in measurements is an essential 

requirement that all these ground systems have to fulfill during in-situ calibration and while 

producing retrievals of atmospheric properties [e.g. aerosol optical depth (AOD)]. One of the 

most common in-situ calibration methods for direct-beam-measuring instruments [e.g. 

sunphotometer and Multi-Filter Rotating Shadow-band Radiometer (MFRSR)] is Langley 

regression (Stephens 1994), which can only be applied on cloud-screened data. 

The U.S. Department of Agriculture (USDA) UV-B Monitoring and Research Program 

(UVMRP) has been observing solar UV radiation at 37 sites across United States for over a 

decade. The primary instrument it uses is the Ultraviolet version of MFRSR (UV-MFRSR). The 

UV-MFRSR receives the direct normal, diffuse horizontal, and total horizontal solar radiation at 

seven UV channels characterized by 2-nm full width at half maximum (FWHM) bandpasses and 

are nominally centered at wavelengths of 300, 305, 311, 317, 325, 332, and 368 nm (Slusser et 

al. 2000).  

                                                 
2 This chapter includes the complete published manuscript (minimal modifications were made to 
meet formatting requirements): 
Chen M, Davis J, Gao W (2014), A New Cloud Screening Algorithm for Ground-Based Direct-
Beam Solar Radiation. Journal of Atmospheric and Oceanic Technology, 31(12): 2591-2605. 
doi: 10.1175/JTECH-D-14-00095.1. ©American Meteorological Society. Used with permission. 
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Chen et al. (2013) reviewed ground-based cloud screening methods published over the 

last two decades. There are four common types of cloud screening. In the first type, cloud 

screening is performed on uncalibrated voltage data–the standard Langley analysis or its variants 

fall into this category. In the second type, cloud screening is performed on calibrated irradiance 

data. In the third type, cloud screening is performed on derived AOD data. In the fourth type, 

cloud screening is performed using collocated auxiliary equipment/data, such as a Total Sky 

Imager (TSI). Here we briefly review some common algorithms. 

If the cloud screening method is based on ratios of measured voltages or irradiances 

rather than their absolute quantities, then this cloud screening method can apply to both the first 

and second types because the uncalibrated voltage data and the calibrated irradiance data have a 

constant ratio. Most type 2 cloud screening algorithms are not designed for the purpose of 

calibration. It is desirable to have a cloud screening algorithm suitable for both applications. 

The current cloud screening module used by the UVMRP is the Langley Analyzer (LA), 

which was developed at the Atmospheric Solar Radiation Group at SUNY-Albany NY. This 

technique, which uses the methodology described in Harrison and Michalsky (1994), is a two-

step filter on a series of log transformed voltage (lnV) and airmass points. In the first step, points 

are sorted by airmass in ascending order and segments beginning at the point where lnV starts to 

increase and ending at the point where lnV starts to decrease are classified as cloudy (Chen et al. 

2013). In the second step, the concavity test, the points with the slope of lnV exceeding a given 

threshold are cloudy. One of the LA variants developed by Lee et al. (2010) uses the maximum 

value composite (MVC) technique to acquire the largest voltage values in narrow airmass 

intervals. Those composite values are considered to be close to voltages measured under clear-

sky conditions. 
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Long and Ackerman (2000) developed a cloud screening algorithm for irradiance data 

from pyranometers. The downwelling irradiances—the total and the diffuse components are 

normalized by airmass. Applying thresholds on these two airmass-normalized components 

eliminates scenes containing optically thick clouds or haze, as well as high thin clouds, such as 

cirrus. Applying thresholds on irradiance variation over time and in comparison to a normalized 

diffuse ratio may eliminate some other cloudy points. When new cloudy points are detected in 

these processes, threshold values mentioned above will be adjusted and a new iteration of 

screening is triggered. Otherwise, the surviving points are the final clear-sky points. 

Alexandrov et al. (2004) proposed an automated cloud screening algorithm for the time 

series of AOD derived from a single MFRSR channel. The method renormalizes the AOD time 

series by removing the local AOD average and calculates the corresponding inhomogeneity 

index (ε’) for each point. The statistical distribution of ε’ over a long period will show two 

distinctive maxima that correspond to the aerosol and cloud modes respectively. Applying a 

threshold between the two maxima, the method separates the clear-sky points and cloudy points. 

Smirnov et al. (2000) developed an automatic cloud screening algorithm on the time 

series of AOD derived from calibrated sunphotometers of  the Aerosol Robotic Network 

(AERONET). Essentially, this algorithm requires that clear-sky points 1) are within a certain 

AOD range, 2) have stable and smooth AOD in nearby points, and 3) do not exceed a certain 

standard deviation of AODs from the daily AOD average. 

The limitations of the existing cloud screening algorithms include:  

1) being able to perform only on the time series of optical depth (e.g. the index of 

inhomogeneity algorithm; Alexandrov et al. 2004), which requires accurate calibration that may 

not be available at current step; 
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2) requiring consideration of the variation of nearby points or points in a relatively short 

window (e.g. in Index of Inhomogeneity algorithm, the measurements taken within 5 minutes (or 

17 points) are used to determine the cloudiness of the center point); or 

3) missing some clear intervals due to their short duration or contamination by slight 

noise. For example, in LA, the slope between nearby points cannot exceed a certain threshold. 

This paper proposes a new method that examines the surface-measured direct-beam 

irradiance (voltage) with the purpose of identifying the clear-sky points in the data. The main 

improvements of the proposed method include the following: 1) cloudy points can be compared 

to all points within a time (airmass) window of any length; 2) clear-sky transitional points and 

short clear-sky segments can survive the screening; and 3) the method does not require the 

Langley offset voltage and provides more clear points, which may be missed by the other 

methods. 

The following sections will describe the new TOD pairing cloud screening algorithm, 

show its advantages mentioned above compared to other methods (especially the LA method), 

and its ability to obtain more Langley offsets on the cloud-screened data. 

 

The algorithm description 

The basis 

Beer’s Law tells us that 

  ,expt LO Total t tV V m    (2.1) 

Where, tm is the airmass at time t; tV is the cosine corrected voltage of the direct beam at 

time t at one channel; LOV is the corresponding voltage as if measured at the top of the 
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atmosphere (airmass=0; also known as the Langley voltage offset); ,Total t  ( tTOD ) is the total 

optical depth (TOD in the nadir direction) at t. 

Taking the natural logarithm and rearranging, Eq. (2.1) can be recast as: 

 1 1ln lnt t LO t tTOD m V m V    (2.2) 

It is noted that the Beer’s Law is based on the single scattering assumption, which cloudy 

measurements do not obey. However, the purpose of this work is to distinguish cloudy points 

from clear points rather than to give an accurate optical depth at each point. The value of cloud 

plus aerosol optical depth value can be derived from the signal of a well-calibrated radiometer 

after subtraction of the Rayleigh scattering and gaseous absorption. By definition, cloudy points 

have higher total optical depth values than clear points. Therefore, clear points tend to distribute 

around the upper envelope in the (tm , ln tV ) coordinate system, while the cloudy points scattered 

lower than the envelope. This is one of the few assumptions on which the current cloud 

screening algorithm depends.  

 

The transformed coordinate system 

Instead of the original measurement pair (tm , tV ), we use the transformed pair (1
tm ,

1 lnt tm V ) in the following discussion. The benefit of this transformation is that the tTOD can be 

examined at any time t directly because the slant paths have already been corrected or 

normalized by moving thetm term to the right-hand side of the Eq. (2.2).  

Figure 2.1 illustrates the transformed coordinate system. The mathematical basis for the 

whole figure is given by Eq. (2.2). In the normal Langley calibration method LOV  is used with the 

extraterrestrial irradiance to determine the responsivity of the instrument and it is assumed here 
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that LOV  or its natural logarithm ln LOV  is constant during a short time range (e.g. one day). If the 

TODs were zeroes, the ground measurements (tV ) would be close to the extraterrestrial 

counterpart ( LOV ), which is constant by our assumption. The pair of (1tm , 1 lnt LOm V ) would be on 

a straight line (the blue dash line) approaching the origin. According to Eq. (2.2), any measurement 

with TOD greater than zero would have a tV  less thanLOV . Therefore, the blue dashed line is the 

upper limit for ground measurements because the real TODs are greater than zero, because of the 

Rayleigh scattering and gaseous absorptions.  When measurements are taken on a clear day, the 

TODs would be stable and Eq. (2.2) applied to these measurements could be treated as a linear 

regression problem, where 1
tm  is the independent variable, 1 lnt tm V  is the dependent variable, 

LRTOD  is the intercept of the regression line, and ln LOV  is the slope of the regression line. The 

green dash line (the linear regression line) on black solid circles (clear-day measurements) gives 

an example of such a regression. Note that the TOD at any time is given as the vertical difference 

between the extraterrestrial line and the clear-sky line. 

The coordinate transformed measurements are sorted by 1
tm  in ascending order. When 

applying the algorithm to more than half of a day, it is possible that multiple points have the 

same 1
tm . In our procedure, the first occurrence of such points is kept while the rest are 

removed. Since more than one-half day may be considered, the usage of the word “time” refers 

to the corresponding 1
tm . 

 

The outline of the algorithm 

At the beginning, the algorithm treats every measurement as an indeterminate point, 

which means the cloudiness of this measurement has not been determined. The methodology of 
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the procedure is to start by comparing the TOD of this point with other points to determine 

whether it is cloudy; and if it is not definitely cloudy, then to use it in determining whether other 

points are cloudy. The point whose cloudiness is to be determined is called the target point. All 

indeterminate points within a certain “time” range surrounding but excluding the target point 

constitute the local window for that target point.  

The procedure pairs an indeterminate point in the local window with all other 

indeterminate points in the same local window. For a pair of such points, a particular type of 

weighted average TOD is calculated. If the two points of a pair represent nearly clear-sky points, 

then the TOD difference between the target and the weighted average of such a pair is an 

indicator of the target point’s cloudiness. The sections below mathematically explain why the 

algorithm uses the weighted TOD average rather than the standard average in comparing with the 

target’s TOD. Then a description is given of how to calculate the TOD difference between the 

target and a paired points’ weighted averages without knowing the value of LOV .  

Figure 2.2 gives an example of a target (the purple pentagon) and one pair of points in its 

local window (green triangles).  

In practice, comparing the target’s TOD to the average of only one pair may not be 

determinate due to the possibility of including cloudy points in the pair. Therefore, an 

assumption is made that there are many pairs of clear-sky points in the local window and the 

differences between the target’s TOD and those pairs’ weighted TOD averages would cluster at 

one value. Then, we calculate the TOD differences between the target and all pairs’ weighted 

averages in the local window. With the assumption above, outliers of the TOD differences are 

removed and the mean TOD difference of the remaining pairs is considered as a more robust 
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indicator of the target’s cloudiness. If the mean TOD difference is positive and greater than a 

reasonable threshold, then the target is definitely cloudy.  

When applying the screening routine described above on every indeterminate point, the 

examining order does not matter and doing so completes one iteration. Cloudy points will retain 

the cloudy status and be excluded in the future operations. A new iteration is triggered if any new 

cloudy points are found in the last iteration. If there were no new cloudy points found in the last 

iteration, the cloud screening finishes. The surviving indeterminate points are considered clear 

points. 

Following the algorithm design, the points with higher TODs are more likely to be 

labeled cloudy in the early iterations, while the points with TODs close to the baseline are more 

likely to survive the screening as would be anticipated. 

 

Algorithm Implementation 

Pairing and TOD differences 

The explicit expressions for the total optical depth at each point in the local window are: 

 

1 1
0 0 0 0

1 1

1 1
1 1 1 1
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 

 
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 

 

 

 (2.3) 

Where, Np is the number of indeterminate points in the local window of the target (Tgt). 

Since there should be at least one pair in the local window, the minimum value for Np is 2. There 

is no maximum limitation for Np. In practice, the window size for UVMRP data is set to 256, 
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which is large enough to include all points in a day (UVMRP data are measured every 20 

seconds and the average recorded every three minutes). 

The explicit expression for the total optical depth at the target Tgt is: 

 1 1ln lnTgt Tgt LO Tgt TgtTOD m V m V    (2.4) 

Defining 1
km  as the difference between the reciprocal of airmass at the kth point ( 1

km ) 

and that at the target ( 1
Tgtm ): 

 1 1 1
k k Tgtm m m      (2.5) 

With Eq. (2.5) and Eq. (2.4), Eq. (2.3) can be rewritten as 

 

   
   
   

1 1 1 1
0 0 0 0

1 1 1 1

1 1 1 1
1 1 1 1

ln ln

...

ln ln

...

ln ln

Tgt LO Tgt

k Tgt k LO Tgt k k

Np Tgt Np LO Tgt Np Np

TOD m m V m m V

TOD m m V m m V

TOD m m V m m V

   

   

      

     

     

     

 (2.6) 

Since no two points have the same airmass, direct TOD comparison between the target 

and any local window point is impossible when LOV  is unknown (see APPENDIX 2.A). For the 

same reason, it is also almost impossible to compare target’s TOD with a standard TOD average 

of two local window points (see APPENDIX 2.B).  

The standard average is a special case of a linear combination. Fortunately, for our 

purpose—comparing the target’s TOD to a pair of local window points (A and B)—any linear 

combination of ATOD  and BTOD  fulfills the requirement. The derivation of Eq. (2.7) to Eq. 

(2.11) shows how to calculate the TOD difference between the target and a pair points’ weighted 

average without knowing the calibration term. 
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Defining ABwTOD as the weighted TOD average of points A and B, 

 
 A A B B

AB
T

M TOD M TOD
wTOD

M

    (2.7) 

where, AM , BM , and TM  are three nonzero real value multipliers. We are free to define 

the relationship between the three multipliers as:  

 T A BM M M   (2.8) 

Since AM  and BM  can be any nonzero real values, we can set 1
A BM m  , 1

B AM m 
and get the following equation: 

 1 1 0A A B BM m M m      (2.9) 

Replacing ATOD  and BTOD  with Eq. (2.6) and applying Eq. (2.8) and (2.9), Eq. (2.7) 

can be recast as 

 
1 1

1 ln ln
ln A A A B B B

AB Tgt LO
T

M m V M m V
wTOD m V

M

          (2.10) 

Using Eq. (2.4) and Eq. (2.10), we define PTOD as the difference between the target’s 

TOD ( TgtTOD ) and the weighted TOD average of points A and B ( ABwTOD ): 

 1 1
1 ln ln

ln

P Tgt AB

A A A B B B
Tgt TgtP

T

TOD TOD wTOD

M m V
TOD

M m V
m V

M

 

  
         (2.11) 

It is noted that all LOV  terms cancel out in Eq. (2.11), which means that the calculation of 

PTOD  does not depend on the Langley voltage offset. Since points A and B represent any two 

local window points, this advantage applies for all other pairs. 
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Outliers 

In practice, examining the difference between the target’s TOD and a single pair’s 

average TOD in the window may not be conclusive because of the possibility of including 

cloudy points in the pair.  Figure 2.3 shows an example of the histogram ofPTOD . The x axis is 

PTOD with the bin size of 0.05. The y axis is the frequency (number of cases) of the target’s 

pairs’ PTOD  falling into the bins. It is seen that the histogram of PTOD  has an obvious cluster 

center and long tails on both sides. Since there are ample clear-sky-point pairs in this example, 

the cluster center represents clear-sky-point pairs’ PTOD  and the tails represent pairs 

containing cloudy points. Figure 2.4 illustrates the effect of pair points’ cloudiness in calculating

PTOD . Figure 2.4a shows the case when both pair points (A and B) are clear. In this case, no 

matter where target’s location—left, right, or between—relative to the A−B pair, all PTOD  

values are the same. Figure 2.4b shows the case when pair point A (left) is cloudy and pair point 

B (right) is clear. In this case, targets on the left side of point B will have PTOD  lower than 

PTOD compared to Figure 2.4a, while the target on the right side of point B will have PTOD  

higher than PTOD  compared to Figure 2.4a. Figure 2.4c shows the case when pair point A 

(left) is clear and pair point B (right) is cloudy. In this case, targets on the left side of point A 

will have PTOD  higher than PTOD  compared to Figure 2.4a, while the target on the right 

side of point A will have PTOD  lower than PTOD  compared to Figure 2.4a. Since the 

assumption has been made that there are many pairs of clear-sky points in the local window, it 

will result in PTOD  clustering to one value—the peak in Figure 2.3—near PTOD  for Figure 

2.4a, and PTOD  for other cases will deviate from the clustered value and appear less 
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frequently—the tails in Figure 2.3. Therefore, the algorithm can remove the PTOD  outliers 

(points outside of two standard deviations from the mean PTOD value) from all pairs in the 

local window (the tails in Figure 2.3) to limit the influence of potential cloudy points. The 

process is repeated two to five times varying by sites.  

In Eq. (2.12), RP  are the sets of remaining pairs (near the peak in Figure 2.3), which are 

also considered as clear-sky pairs and TgtTOD is the mean difference between the TOD of the 

target and the weighted TOD of the remaining clear-sky pairs, which is the simple average of

PTOD on the remaining pairs (RP ): 

 
( )

R

P
AB P

Tgt
R

TOD

TOD
size P



  

 (2.12) 

 

Threshold 

Since cloudy points have higher total optical depth values than clear points, we can set a 

threshold value TODT , above which the target’s TOD is too high compared to the weighted TODs 

of clear-sky pairs in the local window. Therefore, the condition of Tgt TODTOD T   suffices to 

determine the target to be cloudy.  

If the purpose of using this cloud screening algorithm is to identify the clearest points in a 

period and to obtain the Langley offset from those points, a lower value of TODT  (e.g. 0.008) is 

preferred. If the purpose is to identify points that are not contaminated by thick clouds and to 

study the other constituents in the atmosphere (e.g. aerosols and trace gases), a higher value of 

TODT is preferred. 

The flowchart of the whole cloud screening algorithm is presented in Figure 2.5. 
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Accuracy Assessment 

Although it has been assumed that there are adequate clear-sky points to obtain a cluster 

of AODs near the clear-sky value, nevertheless it is useful to confirm that the points identified as 

clear actually are. As an example of how this can be achieved, the measured diffuse to direct 

ratio (DDR) can be compared to the modeled value for a clear sky. The UV-MFRSR provides 

both the direct normal and diffuse horizontal irradiance measurements simultaneously. Before 

calibration, these irradiances are measured in units of millivolts. However, the direct normal and 

diffuse horizontal irradiance ratio (DDR) of the calibrated irradiances and uncalibrated voltages 

are the same because the same responsivity is used to convert both voltage measurements to their 

respective irradiance values. If the AOD, the Rayleigh optical depth (ROD), the ozone optical 

depth, solar geometry, and site location are known, then a radiative transfer routine such as the 

moderate spectral resolution radiative transport model (MODTRAN, http://modtran5.com/, 

Anderson et al. 2009; Berk et al. 2006) for UV and visible channels or the tropospheric UV 

model (Madronich, 1993) for UV channels are capable of simulating DDR. Solar geometry and 

site location are measured and known properties. ROD is a function of ground pressure and site 

location (Bodhaine et al. 1999) and is relatively stable over a day. Ozone optical depths are 

negligible at 368-nm channel. When it is important, the total column ozone amount data are 

available from satellite. By elimination, AOD is the main unknown source that affects the DDR 

simulation. Therefore, AODs can be estimated by matching the MODTRAN modeled and UV-

MFRSR-measured DDRs on points indicated as clear. Using the retrieved mean AOD value, the 

direct normal irradiances at the clear-sky points are simulated by MODTRAN. The Langley 

regression can be applied to the measurements indicated as clear and theLOV  obtained, which is 

used to calibrate the direct normal voltage data. The closer the direct normal irradiances from the 
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Langley calibration and MODTRAN simulation, the more accurate the LOV . An accurate LOV

suggests that the points selected by the cloud screening algorithm are clear-sky points. Figure 2.6 

summarizes the accuracy assessment procedure described above. 

 

Results 

The HI02 site at Mauna Loa, Hawaii is a climatology site operated by USDA UV-B 

Monitoring and Research Program (UVMRP). Because of its high altitude (3409 m) and great 

distance from any continents, its atmosphere is less affected by varying aerosol loading and is 

relatively stable, which makes HI02 a good site for applying Langley regression. The original 

Langley analysis at HI02 gives more LOV hits with lower fluctuation compared to other UVMRP 

sites. To demonstrate that the new cloud screening method has the ability of selecting good 

points for calibration, the LOV s from linear regression on clear points given by the new cloud 

screening method and those from the original Langley analysis at HI02 in 2013 are compared. 

Figure 2.7 shows a comparison of the relative differences of LOV (sun-earth distance factor 

normalized) between values derived from linear regression of Eq.(2.2) on the points passing the 

new cloud screening algorithm and those from the original Langley analysis. The circles 

represent the sunny-day cases when almost all points are measured with no cloud contamination 

and the squares represent the partly-cloudy cases. Except for some sporadic outliers, the relative 

difference is about -2% to 0%. On sunny days, the points remaining after applying the new cloud 

screening algorithm are usually the same as those passing the internal cloud screening module in 

the Langley analysis. The relative difference of LOV at around -1% in a such case is believed to 
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result from the fact that the coordinate system of (
1

tm
,

1 lnt tm V
) used in this paper gives 

relatively balanced weights to both points with high and low airmass in the linear regression. It is 

also evident that the relative differences of LOV  between the sunny-day cases and the partly 

cloudy cases compare well, which suggests that the new cloud screening algorithm gives points 

that generate unbiasedLOV in partly-cloudy cases as compared to the sunny-day cases. 

The stable atmosphere at HI02 site is optimal for Langley calibration; however, for many 

sites where air pollution, clouds and the combination of both are frequent, the Langley method is 

not as reliable as a means of calibration. In contrast, the FL02 site at Homestead, Florida is 

characterized by frequent and fast-moving stratocumulus clouds. The internal cloud screening 

module of the original Langley analysis often misses short periods of clear points. As a result, 

there may not be sufficient clear points to calculateLOV . Figure 2.8 shows the FL02 368-nm 

channel’s LOV s (sun-earth distance factor normalized) in 2013 from the original Langley 

analysis and those from the linear regression of the points passing the new cloud screening 

algorithm. The latter gives about 56% more LOV s than the original LA in 2013. The mean value 

of LOV s using the new cloud screening algorithm is about 2.8% lower than that of the original 

LA and the standard deviation is about 4% higher.  

Figure 2.9 shows an example of the cloud screening performance of the original Langley 

analysis (upper) and the new method (lower) at FL02 site on 26 September 2013. The point sets 

for the two methods are the same: morning points with an airmass range between 1.5 and 3.0. 

For the Langley analysis 12 points survived from its cloud screening procedure and 5 clear 

points (3 in transition between clear and cloudy and 2 in short clear periods) are missed in 

comparison to the new method. After the removal of regression outliers, the Langley analysis 
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allows 9 points, which is less than its minimum requirement (12 points), and therefore the 

original Langley analysis does not generate LOV on that day. The new cloud screening method 

picks up all five clear points missed by the original Langley analysis and has 17 points for the 

further linear regression process. Although 2 of them are the regression outliers, there are still 15 

points left to generate LOV on that day. The LOV  (raw, without sun-earth distance normalization) 

generated using the clear points that survived the new cloud screening algorithm is 1576.40. One 

can calculate the corresponding LOV  (norm, sun-earth distance normalized) as 1584.29, which is 

in the middle of all LOV (norm) in 2013 at FL02. This example shows the new cloud screening 

algorithm’s ability of picking up clear points in transitional regions and in short clear-sky 

periods. It also shows that the calibration based on Langley regression can benefit from including 

those clear points.  

To demonstrate the performance of LOV  generated in the last example (FL02, 368nm, 26 

September 2013), the simulation of direct normal irradiance using the radiative transfer model 

MODTRAN is conducted. The AOD is determined by matching the MODTRAN modeled and 

UV-MFRSR measured DDRs on clear-sky points. The mean AOD value for this case is 0.103 at 

550nm (or 0.154 at 368nm channel). The values of important input parameters to the 

MODTRAN model are listed in APPENDIX 2.C. Figure 2.10 displays the MODTRAN-

simulated and the new-method-calibrated direct normal irradiance at FL02 on 26 September 

2013. The clear-sky points’ irradiances are plotted with dark blue circles and the cloudy points’ 

irradiances are plotted with light blue circles. The MODTRAN simulations are the small red 

points. It is seen that all clear-sky points’ irradiances are close to the MODTRAN results, 

including the five points saved by the new cloud screening method but missed by the LA cloud 
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screening module. The five points are indicated by the arrows in Figure 2.10. The mean square 

error (MSE) for this case is 2.87e-5 while the MSE value for a day inappropriate for Langley 

analysis may be two to three magnitudes higher. It suggests that the clear-sky points have nearly 

equal AOD values. It is also evident that cloudy points determined by the new cloud screening 

algorithm have much lower irradiances than clear-sky points (Figure 2.10).  

Table 2.1 lists the statistics of LOV s before and after applying the new cloud screening 

algorithm to measurements of 368-nm irradiances at five UVMRP sites in 2013. For the 

relatively clearer sites, HI02 and NM02, the number of LOV s increased slightly and the annual 

mean value of LOV s decreased by 1% after substituting the cloud screening module in the 

original Langley analysis. For sites where cloudy measurements are more frequent—that is 

FL02, OK02, and CO02—the number of LOV s increased between 33.8% to 56.7% and the 

annual mean value of LOV s decreased between 2.51% to 3.41%. The increased number of LOV s 

suggests that the new TOD pairing cloud screening algorithm picks up significantly more LOV s 

at cloudy sites. The larger decrease in the annual mean value of LOV  at cloudy sites suggests the 

potential for improving calibration accuracy at those sites. 

 

Summary 

A new cloud screening algorithm for narrowband direct-beam measurements is 

developed. The mathematical basis of this algorithm is Beer’s law. Measurements are 

reorganized to a converted coordinate system that emphasizes the relative magnitude of 

measurements’ total optical depth (TOD). Instead of examining the fluctuation of a target 
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measurement with nearby points, this algorithm calculates the TOD difference between a target 

and pairs of all indeterminate points and considers the target a cloudy point if the TOD 

difference exceeds a certain threshold value. All points are in indeterminate status at the 

beginning of cloud screening. Each point is examined with all other indeterminate points. If new 

cloudy points are found, a new iteration of examination is triggered. The cloud screening finishes 

when no new cloudy points are found in the last iteration. The surviving indeterminate points are 

considered clear points. The new cloud screening method is verified by comparing the Langley 

voltage offsets ( LOV s) determined from the clear-sky intervals to values generated by linear 

regression in the original calibration program LA. The results at the relatively clear site at Mauna 

Loa Observatory, HI shows that values of LOV s from partly cloudy days are not biased in 

comparison to those from sunny days. The results at the more cloudy site at Homestead, FL 

shows that 56% more LOV s are identified with the new cloud screening method than with the 

original Langley analysis, while the differences in means and standard deviations between the 

two methods are less than 3% and 4%, respectively. The new TOD pairing cloud screening 

algorithm picks up significantly more LOV s at cloudy sites. The larger decrease of the annual 

mean value of LOV s at relatively cloudy sites than at relatively clear sites suggests the potential 

for improving calibration accuracy at cloudy sites. The result also shows that the new cloud 

screening method is capable of picking up clear points in short clear windows and in transitional 

regions. 
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Table 2.1 The statistics of LOV s (normalized by a sun-earth distance factor) before and after 

applying the new cloud screening algorithm at 368 nm channel at five UVRMP sites in 2013. 

 LOV  

Source* 
Num. ( LOV ) Mean( LOV ) 

Percent difference 

( LOV ) 

HI02 
oLA 274 1748.64 

-1.11% 
CSLA 289 1729.28 

FL02 
oLA 83 1631.45 

-2.85% 
CSLA 130 1585.60 

NM02 
oLA 242 1388.49 

-1.03% 
CSLA 250 1374.13 

OK02 
oLA 106 1565.01 

-3.41% 
CSLA 152 1511.72 

CO02 
oLA 148 1946.82 

-2.51% 
CSLA 198 1897.92 

* oLA: Original Langley Analysis; CSLA: Langley Analysis with the new cloud screening. 
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Figure 2.1 Illustration of the transformed coordinate system. The blue line can only approach the 
origin in the first quadrant. The black solid circles represent ground measurements under stable 
atmosphere. 
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Figure 2.2 Illustration of a target point (Tgt, the purple pentagon) and one of its pair (points A 
and B, green triangles) in the transformed coordinate system. The blue line approaching the 
origin has the same meaning as the blue line in Figure 2.1. 
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Figure 2.3 An example of the histogram of  for a certain target point at a certain iteration 

step. The x axis is with the bin size of 0.05. The y axis is the frequency (number of 

cases) of the target’s pairs’  falling into the bins. 
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Figure 2.4 Illustrates of the effect of pair points’ cloudiness in calculating . The subplot 

(a) represents the case when both pair points (A and B) are clear. The subplot (b) represents the 
case when pair point A (left) is cloudy and pair point B (right) is clear. The subplot (c) represents 
the case when pair point A (left) is clear and pair point B (right) is cloudy. 
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Figure 2.5 The flowchart of the new TOD pairing cloud screening algorithm. The details of the 
process “Examine Tgt Cloudiness” is presented separately in the box below with a dashed 
outline. “Vcc” stands for the cosine corrected voltage. “ascd.” stands for ascending. “RecAM” 
stands for the reciprocal of airmass. 
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Figure 2.6 Schematic diagram of validation of cloud screening performance via comparing direct 
normal irradiances from Langley analysis and the radiative transfer model (MODTRAN). 
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Figure 2.7 The relative differences of daily (sun-earth distance factor normalized) between 

values derived from linear regression of Eq.(2.2) on the points passing the new cloud screening 
algorithm and those from the original Langley analysis at 368nm channel at Mauna Loa, HI in 
2013. 
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Figure 2.8 s (defined as  normalized by a sun-earth distance factor) from the original 

Langley analysis (green squares) and those from the linear regression of the points passing the 
new cloud screening algorithm (blue circles) at 368nm channel at Homestead, FL (FL02) in 
2013. 
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Figure 2.9 An example of the cloud screening performance of the original Langley analysis 
(subplot a) and the new method (subplot b) at FL02 site on Sep 26, 2013. 
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Figure 2.10 MODTRAN simulated and the new method calibrated direct normal irradiance at 
FL02 on 26 September 2013. Points indicated by the arrows are the additional points 
characterized as clear by the new algorithm. 
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CHAPTER 3: TWO-STAGE REFERENCE CHANNEL CALIBRATION FOR COLLOCATED 

UV AND VIS MULTI-FILTER ROTATING SHADOWBAND RADIOMETERS3 

 
 
 

Introduction 

Solar radiation fuels many ecosystem processes and is measured for studies of 

ecosystems, models used in regional and national assessments. Solar visible (VIS) radiation, 

especially photosynthetically active radiation (PAR), is the energy source of plants’ 

photosynthesis. Solar UV radiation impacts live plants’ photosynthesis, production, 

morphogenesis, and secondary metabolites (Gehrke et al. 1995; Rozema et al. 1997; Reddy et al. 

2013). UV is also considered as an important abiotic factor that accelerates litter and soil organic 

matter decomposition in arid and semi-arid ecosystems (Parton et al. 2007; Mayer et al. 2012) 

and therefore has potential influence on global carbon balance (Foereid et al. 2011). It is clear 

that accurate measurements of solar radiation in VIS and UV regions are important for studies of 

terrestrial ecosystems. 

The U.S. Department of Agriculture (USDA) UV-B Monitoring and Research Program 

(UVMRP, or the UV-B program) has been measuring solar UV and VIS radiation at 37 sites 

across United States for over a decade (Chen et al. 2014). The UV-B program uses both UV and 

VIS versions of Multi-Filter Rotating Shadowband Radiometer (MFRSR) to observe direct 

normal, diffuse, and total solar radiation at 7 UV channels with 2-nm full width at half maximum 

                                                 
3 This chapter includes the complete published manuscript (minimal modifications were made to 
meet formatting requirements): 
Chen M, Davis J, Sun Z, Gao W (2015), Two-stage reference channel calibration for collocated 
UV and VIS Multi-Filter Rotating Shadowband Radiometers. Proceeding SPIE, Remote Sensing 
and Modeling of Ecosystems for Sustainability XII: 96100L. doi:10.1117/12.2185500. 
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(FWHM) (i.e. 300, 305, 311, 317, 325, 332, 368 nm) and at 7 VIS channels with 10-nm FWHM 

(i.e. unfiltered, 415, 500, 610, 665, 870, 940 nm) (Bigelow et al. 1998). The measurements 

(voltages) are made every 12 seconds and the 3-minute average values are stored in the UV-B 

program database (Bigelow et al. 1998). 

To calibrate two MFRSRs in-situ, the UV-B program uses the Langley method as set 

forth in an algorithm described in Langley Analysis (LA) (Bigelow et al. 1998; Harrison and 

Michalsky 1994). Langley Analysis is based on Beer’s Law: 

  ,expt LO Total t tV V m      (3.1) 

where, tm is the airmass at time t, tV is the cosine corrected voltage of the direct beam at 

time t at one channel, LOV is the corresponding voltage as if measured at the top of the 

atmosphere (airmass=0) and is also known as the (raw) Langley voltage offset, and ,Total t  

( tTOD ) is the total optical depth (TOD in nadir direction) at time t. For N measured ( tm , tV ) 

pairs, there are N equations [a set of Eq. (3.1)] and N+1 unknown variables in the equation set, 

namely N of time variables tTOD  and one LOV . Without additional information or simplification, 

it is an underdetermined linear system with no solution. LA assumes that all measurement pairs 

not eliminated by cloud screening have the same total optical depth (TOD). If the assumption 

holds and the N pairs survive the cloud screening, the number of unknown variables is reduced 

from N+1 to two and the system has an approximate solution by linear regression when N>2. 

To avoid violating this assumption, cloudy measurements are excluded in LA because 

they usually have higher and more variable TOD values than clear-sky measurements. The 

measured ( tm , tV ) pairs are screened with two types of cloud screening algorithms. Both types 

determine a point’s cloudiness by examining the magnitude of its signal drop (or the TOD 
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increase), but the first type compares the target point to the local reference points (Chen et al. 

2013), while the second type compares the target point to the global reference points (Chen et al. 

2014).  

Cloud-free conditions contain the clear-sky condition and the hazy condition. Under the 

hazy condition, TOD values may change significantly and may not be detected especially if the 

change is monotonic. Therefore, successful screening of cloudy points does not guarantee the 

validity of the same TOD assumption in LA.  

TOD is the sum of atmospheric constituents’ optical depths including Rayleigh optical 

depth (ROD), aerosol optical depth (AOD), ozone optical depth (OZOD), and water vapor 

optical depth (WVOD). Alexandrov et al. (2002) found that the conventional Langley technique 

does not yield accurate results when AOD is changing systematically during the calibration 

period. The variation of other atmospheric components may also contribute significantly to TOD 

instability (e.g. OZOD in the UVB channels and WVOD in the 940 nm channel). Because the 

components of optical depth may change, cloud-free points may still have systematic variation in 

TOD while they are aligned to a line in the Langley plot. Changing TOD significantly affects LA 

(Figure 3.1). The figure shows the results of the LA on two adjacent days at the Pawnee, 

Colorado site (the UV-B program site code: CO02) giving contrasting LOV results at 368 nm 

channel: 3025.7 mV on 18 August and 1950.2 mV on 19 August (both in 2012). If the 

radiometer functions normally, it is expected that the long term trend of LOV is relatively stable 

(Figure 3.2) and the valid Langley Analysis in the deployment period gives closeLOV . The 

contrasting LOV  suggests that the points for LA have monotonic variation in TOD values in at 

least one of these two days. It is also observed that the same MFRSR deployed at the site of high 
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latitude and extensive clear sky shows much more stable time series of LOV than when it is 

deployed at the site of low latitude (data not presented).  

To avoid violating the Langley Analysis assumption and to improve the accuracy of LOV  

in all (UV-) MFRSR channels, a two-stage calibration algorithm for a pair of collocated UV-

MFRSR and VIS-MFRSR is tested. In the first stage, the calibration of a special channel is 

performed using both the direct normal and diffuse horizontal measurements using a radiative 

transfer model. In the second stage, the calibration modifies the original Langley Analysis by 

selecting its participating points with stable TOD values in the adjacent calibrated channel(s).  

 

Method 

The 368 nm channel 

In all UV and VIS MFRSR channels, the 368 nm and 870 nm channels are special in that 

OZOD and WVOD are negligible and aerosol is the only main source of optical depth variation 

in these two channels. Alexandrov et al. (2002) uses the direct-diffuse ratio and Mie theory to 

retrieve aerosol optical depths and the calibration coefficient at 870 nm channel. In this study, 

the UV-MFRSR 368 nm channel is chosen because its effective wavelength is in the middle of 

all channels and the error propagation from such channel to the most distant channel in UVB 

region may be smaller. 

For a given day, the cloud screening algorithm described by Chen et al. (2014) is applied 

on the 368 nm channel. If the number of remaining points is less than 12, it is very likely that 

there are not enough clear sky points as reference points for a reliable cloud screening result. In 

such case, the entire day is considered as cloudy and no Langley Analysis on that day is 
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performed. Otherwise, applying Langley Analysis on the cloud-free points gives the ,368,LO dV (i.e. 

the estimatedLOV  at 368 nm channel in the day d).  

The next step is to evaluate how the assumption of LA, the participating points having the 

same total optical depth, is met in the dataset.  

The direct diffuse ratio (DDR) is defined as the ratio between direct normal and 

downward diffuse irradiances. The surface DDR can be calculated by the ratio of (UV-) 

MFRSR’s direct normal voltage and diffuse voltage since the numerator and the denominator of 

DDR use the same multiplier LOV in the conversion of radiation from voltage. A radiative transfer 

model [MODTRAN (http://modtran5.com/, Anderson et al. 2009; Berk et al. 2006) or TUV 

(https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model, 

Madronich 1993)] is used to create the look-up table of DDR with respect to SZA and AOD at 

the 368 nm channel. With the measured DDR and SZA and the look-up table mentioned above, 

the 368-nm-channel AOD on each cloud-free point ( ,368,t MAOD ) is inversely determined. 

Alexandrov et al. (2002) pointed out that the optical depths inverted from DDR and those 

derived from direct beam do not match, but the discrepancy between them is stable. This means 

that if the inversely found AODs from DDRs are stable, the direct beam AODs are stable. Since 

AOD is the dominant contributor to the variation of TOD at 368 nm channel, it also means the 

direct beam TODs at 368 nm channel are stable. Therefore, the linear regression between 

,368,t MAOD and 1
tm  on all cloud-free points in day d is performed. The slope of such linear 

regression ( ,368
AOD
dSlp  ) indicates the stability of TOD at 368 nm channel at day d. The collection of 

,368
AOD
dSlp in the same deployment period is368

AODSlp . A close-to-zero value of ,368
AOD
dSlp indicates the 

cloud-free points in the day have very close ,368,t MAOD , the TOD stability requirement of the 
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Langley Analysis is likely to be met, and ,368,LO dV  given by the Langley Analysis is likely to be 

accurate.  

The original time series ,368LOV  and the corresponding 368
AODSlp are obtained by applying 

the procedure described above in the same deployment period day by day. ,368LOV may show large 

uncertainty due to the possibility of monotonic TOD variation in cloud-free points. A moving 

average smoothing with the weight (Wd,368) derived from ,368
AOD
dSlp is implemented to obtain ,368

sm
LOV  

(the smooth time series of ,368LOV ). The moving window size is two months in this study. One 

way of transforming ,368
AOD
dSlp into Wd,368 of range [0, 1] is expressed as 

 
    ,368 368

,368

368 368

ln min ln
1

max ln min ln

AOD AOD
d

d AOD AOD

Slp Slp
W

Slp Slp

        (3.2) 

where, ln(*) is the natural logarithm of the input and |*| is the absolute value of the input. 

The idea of evaluating the accuracy of Langley Analysis with the assistance of 

MODTRAN in one day is presented in Figure 3.3. 

The uncertainty of ,368
sm

LOV ( 368
LOV ) is estimated by the following equation: 

 
   ,368 ,368 368

368

,368

LO

sm
LO LOV

sm
LO

V V W

V



        (3.3) 

where, 368W is the collection of ,368dW  at 368 nm channel. The numerator of Eq. (3.3) is 

the standard deviation of the 368W weighted residuals between the original time series of,368LOV

and the corresponding ,368
sm

LOV ; and the denominator of Eq. (3.3) is the mean value of ,368
sm

LOV . 

Rearranging Eq. (3.1) at 368 nm channel, the total optical depth at 368 channel is calculated by:  
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 ,368, ,368
,368

ln lnsm
LO d t

t
t

V V
TOD

m

      (3.4) 

where, ,368,
sm

LO dV is ,368
sm

LOV in day d. With a given uncertainty368
LOV , Eq. (3.4) is modified to 

estimate the upper and lower limit of ,368tTOD  at time t ( ,368tTOD ): 

 

  
 

368 ,368, ,368

,368

368

,36,36 88

ln 1 ln

ln 1

LO

LO

V sm
LO d t

t

t

t

V

t
t

V V
TOD

m

TO TOD
m

D





   
  

     (3.5) 

From Eq. (3.5), the uncertainty of ,368tTOD  at time t ( ,368
TOD
t ) is:  

 

   368 368

,368

368
,368

ln 1 ln 1

2

LO LOV V

TOD

TO

O

t
t

D
t

t

T D

m

m



    


     (3.6) 

where, 368
TOD is the upper limit of ,368

TOD
t : 

 
   368 368

368

ln 1 ln 1

2

LO LOV V

TOD          (3.7) 

 

Other channels 

For channels other than the 368 nm channel, especially channels lower than 325 nm, both 

AOD and OZOD contribute to the variation of TOD significantly. It is possible to create a 

similar DDR lookup table with respect to SZA, AOD and OZOD, although it may be time 

consuming. However, the inverse search of AOD and OZOD from the measured DDR and SZA 

is ambiguous. Because it is possible that the same DDR at the same SZA can be achieved by 

many combinations of AOD and OZOD. Therefore, the quality of ,LOV  other than the AOD 
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dominated channels (e.g. 368 nm channel) cannot be evaluated by the assistance of MODTRAN 

without additional information. 

The spectral dependence of optical properties has been found in many literatures.  

For Rayleigh extinction, Bodhaine et al. (1999) developed an equation in the class of 

“ratio of polynomials” to calculate ROD as a function of wavelength and surface pressure. If 

surface pressures are available, ROD may be removed from TOD to emphasize the variation in 

AOD and OZOD.  

The spectral dependence of aerosol extinction properties has been widely utilized. Taylor 

et al. (2008) imposes correlations between the retrieval parameters with an exponential function 

of wavelength in the retrieval of AOD in UV channels via the optimal estimation technique. 

Forgan (1994) hypothesized in the “General Method” that the aerosol extinction efficiency (Qext) 

as a function of wavelength (as well as the particle radius and the refraction index) is relatively 

stable over time. Alexandrov et al. (2002) uses the retrieved/optimized aerosol size parameters 

(i.e. the effective radius and variance) as Mie theory inputs to calculate the aerosol extinction 

ratios between MFRSR channels. Dubovik et al. (2000) states that aerosol optical thickness can 

be strongly wavelength dependent, which can be characterized by the Ångström parameter α. 

Chen et al. (2012) utilized the Ångström law as one of the constraints in calibration of multiple 

visible channels in MFRSR simultaneously.  

The ozone (absorption) cross section has strong and stable correlation between 

wavelengths with relatively small temperature dependence (Chehade et al. 2013). The (vertical) 

OZOD is a function of ozone cross section and total column ozone. Among the two, ozone cross 

sections at all wavelengths are relatively stable over time. Therefore, a stable OZOD in one 

channel over a short period indicates a stable total column ozone in that period; and a stable total 
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column ozone suggests a stable OZOD in other channels in the same time period. The channels 

have to be adjacent for the inference of OZOD stability from a lower ozone cross section channel 

( l  ) to a higher ozone cross section channel (h ) in that for the same amount of variation in 

total column ozone, the magnitude of OZOD variation is higher in h than in l . The uncertainty 

of extending OZOD stability is the smallest between adjacent channels.  

Since the variation of TOD is mainly controlled by the sum of OZOD and AOD in the 

UVB region, a stable TOD in one channel may result from a combination of varying ozone 

amounts and aerosol loadings. The change of AOD between wavelengths is usually smaller than 

that of OZOD in the UVB region, but the aerosol type change could cause quite large TOD 

uncertainty in target channel. If the TODs in two channels are both stable, it is more likely that 

ozone and aerosol are both stable as well. Therefore, in the UVB region, the high stability of 

TOD in two channels may further constrain the uncertainty in inferring the high stability of TOD 

in the third adjacent channel. In wavelengths where only AOD controls TOD variation, the high 

stability of TOD in one channel may be sufficient.  

With the constraints of spectral dependence discussed above, one solution for calibrating 

channels other than the 368 nm channel is to use one or two well calibrated adjacent channel(s) 

as the reference channel(s) [RC(s)] to select the points that are most clustered within a small 

TOD range at each RC simultaneously. If the number of the most clustered points (MCP) in the 

RC(s) in the day is sufficient (e.g. more than 12), a standard Langley regression is performed on 

those points in the adjacent target channel (TC) and the , ,TCLO dV  for the day d is determined. By 

applying the procedure day by day, the time series of , TCLOV  is obtained. The following 

smoothing process on , TCLOV  produces the smooth and continuous time series of , TC

sm
LOV  . Once the 
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TC

TOD  is determined, the target channel’s calibration is finished and it can serve as a reference 

channel to calibrate its adjacent channels. 

The idea for estimating the uncertainties at 368 nm channel [i.e. Eq. (3.3) to Eq. (3.7)] 

can be extended to other channels with slight modification. 

Let ,LOV  and ,
sm

LOV  be the time series of LOV at channel   before and after smoothing. The 

uncertainty of ,
sm

LOV   ( LOV ) is estimated by the following equation: 

 
  , ,

,

LO

sm
LO LOV

sm
LO

V V

V

 







       (3.8) 

where,  * and  *  are the standard deviation and the mean of a given vector. The 

difference between LOV and 368
LOV is that Eq. (3.8) does not have the weight term (368W ) as in Eq. 

(3.3) due to the ambiguity in retrieving AOD and OZOD from DDR.  

Rearranging Eq. (3.1) at channel , the total optical depth at channel  is calculated by: 

 , , ,
,

ln lnsm
LO d t

t
t

V V
TOD

m
 

      (3.9) 

where, , ,
sm

LO dV   is ,
sm

LOV  in day d. 

Similar to Eq. (3.6), for a determinedLOV , the uncertainty of ,tTOD  at time t ( ,
TOD
t  ) is: 

 

   
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LO LOV V

T

TOD
t
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 
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   (3.10) 

where, TOD  is the upper limit of ,
TOD
t  : 

 
   ln 1 ln 1

2

LO LOV V

TOD  
         (3.11) 
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Pseudo code 

The summary of the algorithm is presented in the pseudo code below. The algorithm is 

suitable for all narrow-band channels of UV-MFRSR and MFRSR (except for the 940 nm 

channel) in the same deployment period at the same site. 

1. [Calib1] Calibrating the 368 nm channel: 

Loop (dates, subscript: d) { 

a. Applying the cloud screening algorithm developed by Chen et al. (2014) on 

the measurement points (tm , ,368tV ) in day d. 

b. Performing Langley Analysis (LA) on cloud-free points at 368 nm channel in 

day d and generating ,368,LO dV  for day d; 

c. Using the lookup table of DDR with respect to SZA and AOD at 368 nm 

channel created in MODTRAN to evaluate the quality (,368
AOD
dSlp ) of ,368,LO dV ; 

} 

d. Collecting ,368LOV from ,368,LO dV in all dates; 

e. Collecting 368
AODSlp  from ,368

AOD
dSlp  in all dates and transforming them into the 

weighting vector W368 with the range of [0, 1] [Eq. (3.2)]; 

f. Applying the (W368) weighted  moving average smoothing (window size: 61-day) 

on ,368LOV  to determine the smooth and continuous time series,368
sm

LOV  in all dates; 

g. Estimating the uncertainty of ,368
sm

LOV [ 368
LOV , Eq. (3.3)] and the upper limit of the 

uncertainty of ,368tTOD  [ 368
TOD , Eq. (3.7)]. 
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2. [Calib2] Calibrating the target channel (TC orTC  )  from one adjacent reference channel 

(RC or RC ): 

a. Setting the half of the allowed TOD range in search of the most clustered points 

in RC: ,0.5
RC RC

TOD
t     ; 

Loop (dates, subscript: d) { 

 Loop (time, subscript: t) { 

b. Calculating the total optical depth at RC at time t ( , RCtTOD  , 3-minute 

interval) using Eq. (3.9) and the current day’s , ,RC

sm
LO dV  ; 

} 

Loop (time, subscript: t) { 

c. Finding the points set (tP  ) in the day with their total optical depth at RC 

in the range of , ,,
RC RC RC RCt tTOD TOD        ; 

d. Recording the number of points oftP in tC ; 

e. Optionally, Finding the airmass range ( tAMR  ) of tP and updating tC

with t t tC C AMR  ; 

} 

f. Finding the highest tC and calling the corresponding points set (tP ) the most 

clustered points for day d: MCP ; 

g. Performing Langley Analysis (LA) on MCP at the target channel and 

generating , ,TCLO dV  for day d; 

} 
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h. Applying the moving average smoothing (window size: 61-day) on , TCLOV   to 

determine the smooth and continuous time series, TC

sm
LOV   in all dates; 

i. Estimating the uncertainty of , TC

sm
LOV   [ LO

TC

V , Eq. (3.8)] and the upper limit of the 

uncertainty of , TCtTOD   [
TC

TOD  , Eq. (3.11)]. 

3. [Calib3] Calibrating the target channel (TC orTC  )  from two adjacent reference 

channels ([RC1 and RC2] or [ 1RC  and 2RC ]): 

a. Setting the half of the allowed TOD range in search of most clustered points in 

RC1: 
1 1,0.5

RC RC

TOD
t     and in RC2: 

2 2,0.5
RC RC

TOD
t    ; 

Loop (dates, subscript: d) { 

 Loop (time, subscript: t) { 

b. Calculating the two total optical depths at RC1 and RC2 at time t 

(
1, RCtTOD  and 

2, RCtTOD  ) using Eq. (3.9) and the current day’s
1, ,RC

sm
LO dV 

and 
2, ,RC

sm
LO dV  ; 

} 

Loop (time, subscript: t) { 

c. Finding the points set (tP  ) in the day with their total optical depth at 

RC1 in the range of 
1 1 1 1, ,,

RC RC RC RCt tTOD TOD         and their total 

optical depth at RC2 in the range of 
2 2 2 2, ,,

RC RC RC RCt tTOD TOD        , 

simultaneously; 

d. Recording the number of points oftP in tC ; 
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e. Optionally, Finding the airmass range ( tAMR  ) of tP and updating tC

with t t tC C AMR  ; 

} 

f. Finding the highest tC and calling the corresponding points set (tP ) the most 

clustered points for day d: MCP ; 

g. Performing Langley Analysis (LA) on MCP at the target channel and 

generating , ,TCLO dV  for day d; 

} 

h. Applying the moving average smoothing (window size: 61-day) on , TCLOV   to 

determine the smooth and continuous time series, TC

sm
LOV   in all dates; 

i. Estimating the uncertainty of , TC

sm
LOV   [ LO

TC

V , Eq. (3.8)] and the upper limit of the 

uncertainty of , TCtTOD   [
TC

TOD  , Eq. (3.11)]. 

In this study, the calibration procedure of all UV- and VIS-MFRSR narrow band 

channels at one site follows the sequence in Figure 3.4. At the beginning, the method “Calib1” 

described in the pseudo code with the assistance of the MODTRAN DDR lookup table is used to 

obtain the calibration coefficients ( ,368
sm

LOV ) and the upper limit of TOD uncertainty (368
TOD ) at 

368 nm channel. Using the 368 nm channel as the reference channel, the calibration coefficients 

and the upper limit of TOD uncertainty at 415 channel (,415
sm

LOV  and 415
TOD ) are retrieved using the 

one reference channel method “Calib2” described in the pseudo code. So far, there are two 

channels calibrated with uncertainty estimates. The ,
sm

LOV  and TOD  at the rest channels are 

retrieved gradually using the method “Calib3” described in the pseudo code and calibration 
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coefficients and uncertainty estimates of two most adjacent channels that have already been 

calibrated (
1, RC

sm
LOV  , 

2, RC

sm
LOV  , 

1RC

TOD  , and 
2RC

TOD  ).  

 

Results and Discussion 

The new two-stage reference channel calibration algorithm was applied on the pair of 

UV-MFRSR and MFRSR at the UV-B program site FL02 at Homestead, Florida in the 

deployment period between Mar 14, 2013 and Dec 31, 2013. The original Langley Analysis 

results for the same site and time period were extracted from the UV-B program database. Figure 

3.5 shows comparison of LOV time series obtained from the original Langley Analysis and the 

new method at 8 (UV-) MFRSR channels. The original Langley LOV (red points) have wider 

range than the new Langley LOV  (green points). There are obvious time gaps when the original 

Langley Analysis did not generate any LOV  (e.g. 34 days between Jul 2 and Aug 4 at 368 nm 

channel, 20 days between Jul 15 and Aug 4 at 300 nm channel, and 185 days between Jun 29 and 

Dec 31 at 870 nm channel). There are also time periods when the number of the original Langley 

LOV  is not sufficient to generate a reliable smooth time series (e.g. purple line, July to December 

at 610 nm channel). The smooth time series of the LOV show large difference between the original 

and the new Langley methods at 300, 305 (not presented), and 870 nm channels. 

Table 3.1 listed three statistics: the number of successful Langley Analysis days, the 

(weighted) standard deviation of the residual, and the mean relative difference, to quantitatively 

express the difference between the original and new Langley methods.  

The standard deviation of the residual (rsd ) is defined as 
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and the weighted standard deviation of the residual (wrsd ) is defined as 
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where, N is the length of the input vector (X ), ix is the ith element of X , iw is the 

corresponding weight of ix , *
ix is the corresponding element of the smoothed vector of X ( *X ), 

M is number of nonzero elements in X . For example, at 415 nm channel, X is ,415LOV and *X  is

,415
sm

LOV ; at 368 nm channel, iw  is calculated by Eq. (3.2). 

The relative difference between two scalars x and y  may be defined as  /x y x  . The 

mean relative difference between two vectors (X andY ) may be calculated by the 1L  relative 

error norm: 

 
1

1 N
i i

i i

x y

N x
  ,  (3.14) 

where, N is the length of X or Y , ix is the ith element of X , iy is the ith element of Y . 

The No. ( LOV ) in Table 3.1 shows that the new Langley method generated significantly 

more Langley LOV  (specifically, 1.73 to 6.86 times more or 48 to 129 more successful LOV days) 

than the original Langley Analysis. On average, the new method generates LOV every 2.6 days at 

368 nm channel and every 2 day at other channels. In comparison, the original Langley Analysis 

generates LOV every 4 to 13 days. More daily LOV usually means less time gaps to be filled in the 
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smoothing process. As a result, it is seen in Figure 3.5 that the new method’s smooth time series 

of LOV  (blue line) has less dramatic variation compared to the original Langley Analysis (purple 

line).  

The standard deviation of LOV residual in Table 3.1 shows that on average the new 

Langley method’s daily LOV is closer to its smooth value (specifically, 1.16 to 4.45 times closer) 

than the original Langley Analysis. In the smoothing process, LOV far away from its running 

mean value is more likely to be excluded in the calculation of smooth time series. For example, 

the UV-B program currently uses two standard deviation as a threshold to exclude outliers and 

long LOV gaps are common after the filtering. As a result, the time series of LOV with higher 

residual standard deviation has fewer usable points to generate the smooth time series, making 

the smooth time series less constrained and bumpier.  

The combination of more Langley LOV and smaller standard deviation of LOV residual 

means that the new Langley method generates more accurate and reliable time series ofLOV  than 

the original Langley Analysis. However, the new method’s performance improvement at the 368 

nm channel is not as much as that at other channels. This suggests that the mechanisms behind 

the two calibration stages are quite different. The 368 nm channel is the starting channel for the 

new Langley method. There is no reference channel that can be used to find TOD stable points 

for Langley regression at the channel. It still rely on the cloud screening algorithm to select 

qualified regression points at the channel. The increase of No. (LOV ) from 66 to 114 is mainly 

due to the cloud screening algorithm developed by Chen et al. (2014) picking up more clear-sky 

points in short and/or transitional periods. Usually the survived points from the cloud screening 

algorithm have the lowest TOD values, but those points may not be the best points set for 
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Langley regression for two reasons: (1) those points may have systematic variation in TOD; and 

(2) those points may not reside in the most clustered TOD interval in the day. The MODTRAN 

DDR lookup table may detect the first problem (systematic TOD variation), assign a lower 

weight to LOV violating the TOD stability assumption during the smoothing process, and improve 

the reliability of the smooth time series of LOV . However, since there is no reference channel 

available for the 368 nm channel, the new method is not able to choose points in the most 

clustered TOD interval, missing some potentialLOV .  

Table 3.1 also shows that the mean relative differences of the smooth LOV time series 

between the two methods are less than 3% in the most channels except for in the 300 and 305 nm 

channels (i.e. 10.28% and 9.08%, respectively). This suggests that at least one of the two 

methods may have large systematic bias inLOV . It is unclear why the large differences happened 

only on these two channels. The maximum relative differences of the smooth LOV time series 

between the two methods are higher than 5% in most channels and higher than 15% in 300 and 

305 nm channels. 

 

Conclusions 

The performance of original Langley Analysis method at most UV-B program sites is not 

as reliable as that at the Hawaii site. We attributed the variation in Langley Analysis performance 

to the monotonically changing total optical depths (TOD) in the cloud screened points. A new 

two-stage reference channel calibration method is developed for a pair of collocated UV-MFRSR 

and MFRSR. In the first stage, the 368 nm channel is calibrated by the Langley method with two 

main improvements. The first improvement is to use the cloud screening algorithm developed by 
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Chen et al. (2014) to include cloud-free points in short and/or transitional periods. The second 

improvement is to limit the influence of the Langley offset (LOV ) obtained from data points 

violating TOD stability assumption by the radiative transfer model (i.e. MODTRAN) simulation. 

MODTRAN is used to create the lookup table of the direct normal and diffuse horizontal ratio 

with respect to aerosol optical depth and solar zenith angle to evaluate the quality of LOV by 

giving lower weights to those generated from points with monotonic variation in AOD at the 368 

nm channel. With one or two calibrated channels as reference channel(s), the most stable points 

in the reference channel(s) were selected and Langley regression was applied on the same time 

points to generate LOV  in the adjacent un-calibrated channel. All stage-two (UV-) MFRSR 

channels (except for the 940 nm and unfiltered channels) were calibrated by gradually 

implementing this strategy. The test of this method on the UV-B program site at Homestead, 

Florida (FL02) showed that (1) The long-term trend of the original Langley LOV  is impacted by 

the monotonic changing AOD at the 368nm channel; and (2) more clustered and abundant LOV  at 

all channels are generated compared with the new Langley method.  

 

 

 

 



 
101 

Table 3.1 The statistics of LOV (sun-earth distance normalized) between the original Langley 

Analysis (oLA) and the new method (tsrcLA) on 12 (UV-) MFRSR channels at the UV-B site 
FL02 during the time period between Mar. 14, 2013 and Dec. 31, 2013. The term “No. ( LOV )” 
represents the number of successful Langley Analysis days. The acronym “RD” represents 
relative difference between two LOV sources [Eq. (3.14)]. The 368 nm channel uses Eq. (3.13) to 

calculate the weighted standard deviation of LOV residual (*), while other channels use Eq. (3.12) 

to calculate the standard deviation of LOV residual. 

Channel LOV  

source 

No. 
( LOV ) 

Standard 
deviation of 

LOV residual 

Mean LOV RD; % (Max LOV

RD; %) 

300 nm 
oLA 22 8041.19 

10.28 (18.51) 
tsrcLA 151 4109.85 

305 nm 
oLA 42 1629.87 

9.08 (15.17) 
tsrcLA 160 701.24 

311 nm 
oLA 39 410.83 

2.81 (8.02) 
tsrcLA 145 126.79 

317 nm 
oLA 77 111.40 

1.96 (7.93) 
tsrcLA 146 37.85 

325 nm 
oLA 62 163.27 

2.31 (7.44) 
tsrcLA 144 36.68 

332 nm 
oLA 56 150.49 

2.67 (7.09) 
tsrcLA 148 37.32 

368 nm 
oLA 66 119.34 

1.95 (5.94) 
tsrcLA 114 102.06 * 

415 nm 
oLA 26 35.75 

0.97 (3.41) 
tsrcLA 155 23.71 

500 nm 
oLA 42 115.81 

0.90 (3.07) 
tsrcLA 148 46.82 

610 nm 
oLA 49 25.58 

1.38 (8.42) 
tsrcLA 159 11.11 

665 nm 
oLA 60 43.40 

0.89 (3.43) 
tsrcLA 165 13.07 

870 nm 
oLA 58 97.40 

1.77 (3.64) 
tsrcLA 159 26.68 
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Figure 3.1 Langley plots at two adjacent days showing that systematic variation in TOD may 
significantly affects the accuracy of Langley VLO (raw). The data are selected from the UV-B 
program CO02 site (Pawnee, Colorado) UV-MFRSR measurements at 368 nm channel on 
August 18 & 19, 2012. 
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Figure 3.2 The time series of VLO (sun-earth distance factor normalized) at the UV-B program 
CO02 site in 2012 showing relatively stable VLO trend over time. 
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Figure 3.3 Schematic diagram of evaluation of the Langley VLO accuracy at 368 channel with the 
assistance of the radiative transfer model MODTRAN. 
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Figure 3.4 Illustration of the calibration sequence for a pair of collocated UV-MFRSR and 
MFRSR using the new two-stage algorithm. The phrase “MODTRAN DDR LUT” represents the 
direct-diffuse ratio lookup table created by the radiative transfer model MODTRAN. The details 
of creating the lookup table are described under the “The 368 nm channel” subsection in the 
“Method” section. The terms m  and V  represent the measurements of airmass and cosine 

corrected voltage for a (UV-) MFRSR channel . The terms ,
sm

LOV  and TOD  represent the time 

series of smoothed LOV and the corresponding estimated TOD uncertainty at channel . The 

phrases “Calib1”, “Calib2”, and “Calib3” represent the calibration procedures summarized in the 
“Pseudo code” section. 
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Figure 3.5 The original Langley VLO time series (red), the new Langley VLO time series (green), 
and their smooth time series (purple and blue lines) at 300, 311, 325, 368, 415, 500, 610, and 870 
channels at the UV-B program FL02 site in 2013. The channel labels are presented at the right-
bottom corner of each subplot. The VLO is sun-earth distance normalized in unit millivolt. 
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APPENDIX 2.A TOD COMPARISON (DIRECT) 

 
 
 

The quantity 1DTOD is defined as the difference between the target’s TOD ( TgtTOD ) and 

one local point’s TOD: 

 1D Tgt kTOD TOD TOD    (3.15) 

Where, k lies within the target’s local window. Using Eq. (2.4) and Eq. (2.6) on point k, 

we get 

 1 1 1
1 ln ln lnD k LO Tgt Tgt k kTOD m V m V m V        (3.16) 

In Eq. (3.16), 1
km  is a non-zero value because every point (both the target and the local 

window points) has a unique airmass and LOV  is the unknown calibration parameter. Therefore, it 

is impossible to calculate directly.  

Using a coarsely estimated LOV to do the TOD comparison was found to be impractical. 

First, it is unknown how the responsivity of the instrument may change based on its previous 

behavior. It could be stable for years but it could also drop or increase quickly in a short period. 

Second, the tTOD  calculation using Beer’s law [Eq. (2.2)] shows that the bias of the daily LOV  

approximation is constant, while the airmass varies a lot in a day. As a result, the bias in tTOD

varies a lot in a day. The comparison of such tTOD with varying magnitudes of bias will make it 

extremely complicated if not impossible to set a threshold for excluding cloudy points. 
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APPENDIX 2.B TOD COMPARISON (STANDARD AVERAGE) 

 
 
 

The quantity 2DTOD is defined as the difference between the target’s TOD ( TgtTOD ) and 

the standard average of any two local points’ (A and B) TODs: 

  2 / 2D Tgt A BTOD TOD TOD TOD    (3.17) 

where, the points A and B lie within the target’s local window. Using Eq. (2.4) and Eq. 

(2.6) on points A and B, we get 

 
1 1 1 1

1
2

ln ln
ln ln

2 2
A B A A B B

D LO Tgt Tgt

m m m V m V
TOD V m V

          (3.18) 

Eq. (3.18) contains the unknown calibration parameter (LOV ), which makes it impossible 

to calculate 2DTOD directly. Although it is possible that 1 1
A Bm m    is or close to zero for some 

situations (when 1
Am  and 1

Bm have opposite signs and their absolute values are the same or 

close), normally it is not true (especially not true for the target in the early morning, late 

afternoon, and near solar noon, when most 1Am  and 1
Bm  have the same sign).  
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APPENDIX 2.C IMPORTANT MODTRAN PARAMETERS 

 
 
 

To simulate the 368-nm-channel direct normal and the diffuse horizontal solar irradiance 

at FL02 on 26 September 2013, the following MODTRAN parameters are used. The parameters 

are for MODTRAN, version 5.3. 

Card 1 

MODEL = 1: Tropical Atmosphere 

ITYPE = 3: Vertical or slant path to ground 

IEMSCT = 4: Execute in spectral solar radiance mode with no thermal scatter 

IMULT = 1: Execute with multiple scattering 

Card 1A 

DIS = T:  Use DISSORT discrete ordinate multiple scattering algorithm 

DISALB = T: Calculate spectral albedo and diffuse transmittance 

NSTR = 8: Number of streams to be used by DISORT 

O3STR = ‘   a0.2784’: Column Ozone amount (ATM-cm), data source: EOS Aura OMI daily 
level 3 global 0.25° gridded data (http://gdata1.sci.gsfc.nasa.gov/daac-
bin/G3/gui.cgi?instance_id=omi). 

LSUNFL = T: Read a user-specified TOA solar irradiance data. 

LBMNAM = T: Read the root name of the band model parameter data. 

Card 1A1 

DATA/SUN01SAO2010.dat: Data provided by Chance and Kurucz (2010). 

Card 1A2 

01_2009: The root name of 1.0 band model. 

Card 2 

IHAZE = 1: RURAL extinction 
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VIS = -0.103: Negative of the 550 nm vertical aerosol optical depth. 

GNDALT = 0.000: Altitude of surface relative to sea level (km) 

Card 3 

H1ALT = 0.000: Initial altitude (km) 

OBSZEN = 180.000: Initial zenith angle (degrees) as measured from H1ALT. 

Card 3A1 

IPARM = 2: Method of specifying solar geometry on Card 3A2. 

IPH = 2: Select Mie-generated database of aerosol phase functions. 

IDAY = 269: Day of Year (26 September 2013) 

ISOURC = 0: Extraterrestrial source is the sun. 

Card 3A2 

PARM1: Azimuth angle, which varies at each observation. 

PARM2: Solar zenith angle, which varies at each observation. 

Card 4 

V1 = 26789.: Initial frequency in wavenumber (cm-1). 

V2 = 27526.: Final frequency. 

DV = 1: Frequency increment. 

FWHM = 2: Slit function Full Width at Half Maximum. 

FLAGS(7:7) = F: Write a spectral flux (.flx) file. 

MLFLX = 1:  Number of atmospheric levels for which spectral fluxes are output. 
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Part II: Assessing ecological impacts of UV litter decomposition using DayCent  
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CHAPTER 4: ASSESSING ECOLOGICAL IMPACTS OF UV LITTER DECOMPOSITION 

USING DAYCENT 

 
  
 

Introduction 

 The carbon (C) and nitrogen (N) balance between atmosphere and terrestrial biosphere is 

driven by two fundamental processes of production and decomposition (Zepp et al. 1998; Austin 

and Vivanco 2006; Adair et al. 2008; King et al. 2012). The physical and biological mechanisms 

behind the production are relatively well understood (King et al. 2012). It is known that mean 

annual precipitation, seasonal rain pattern, and interaction of precipitation and temperature are 

the key controlling parameters of net primary production (Austin 2011). However, the 

mechanisms behind the litter decomposition are not fully clear (Dirks et al. 2010; Austin 2011; 

King et al. 2012). Decomposition is the primary process by which C and N are cycled between 

plants, soil, and the atmosphere (Brandt et al. 2009). Decomposition releases N for plant 

production and microbial activity (Parton et al. 2007; Song et al. 2013). Decomposition of plant 

litter and soil organic matter releases CO2 into atmosphere (~53-57 Pg C yr-1, Harmon et al. 

2011) at much higher rate than fossil fuel carbon emission (~7.8 Pg C yr-1, IPCC 5th assessment 

report). The small changes in litter and soil decomposition rate could result in large variation in 

atmospheric CO2 concentration (Adair et al. 2008; Bond‐Lamberty and Thomson 2010). 

Plant litter decomposition influences the formation of soil organic matter, the 

mineralization of organic nutrients, and the carbon balance in terrestrial ecosystems (Moorhead 

and Callaghan 1994; Austin and Ballaré 2010, Dirks et al 2010). In mesic ecosystem, the rate of 

litter decomposition is determined by litter chemistry especially lignin contents (phenolics) and 

lignin/nutrient ratios (Melillo et al. 1982; Mlambo and Mwenje 2010). Usually, litter with a low 
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C/N ratio and low lignin content decompose fast and, roots, which have more lignin, decompose 

slower (Zhao et al. 2014).  This pattern is predicted by traditional decomposition models that 

focus on the roles of microbes on decomposition. These models use climate variables 

(precipitation and temperature) and litter quality variables (C/N, lignin/N) to predict litter mass 

loss rates (Gallo et al. 2009).  

In semi-arid/xeric ecosystem, however, litter decomposition is faster than prediction of 

models which are only driven by climate and litter chemistry (Moorhead and Callaghan 1994; 

Austin and Vivanco 2006; Parton et al. 2007; Vanderbilt et al. 2008; Gallo et al. 2009; Brandt et 

al. 2010; King et al. 2012). Furthermore, decomposing surface litter does not immobilize 

nitrogen and the decomposition rate is unrelated to initial N contents in some arid ecosystems 

(Parton et al. 2007; Brandt et al. 2010). These patterns suggest that abiotic processes rather than 

microbial activity are the major drivers of decomposition in those ecosystems (Brandt et al. 

2010). Field experiments indeed show that abiotic photodegradation has significant impacts on 

litter decay (e.g. mass loss rate, CO2 emission, and litter chemistry) in arid dessert (Day et al. 

2007), in semi-arid grasslands and shrublands (Austin and Vivanco 2006; Rutledge et al. 2010) 

and in high latitude forest ecosystems (Moody et al. 2001). Day et al. (2007) concluded that 

UVB is responsible for 14%-22% total litter mass loss in arid and hot sites. Foereid et al. (2011) 

found that up to 14% NPP is photodegradable in dry and high radiation ecosystems. Gallo et al. 

(2006) concluded that UV radiation alone, or in combination with microbial activity, is as 

effective at decomposing litter in arid ecosystems as microbial activity alone in mesic 

ecosystems. 

The mechanistic detail of photodegradation remains uncertain. It is reported that solar 

(UV) radiation may directly photolyze a molecule through fragmentation, intramolecular 
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rearrangement, or electron transfer (King et al. 2012; Lee et al. 2012) and indirectly photolyze a 

non-light-absorbing molecule by promoting the production of reactive intermediates (e.g. singlet 

oxygen and hydroxyl radical) created from some molecules (often triplet oxygen) receiving 

energy transferred from radiation absorbing photosensitizers (George et al. 2005; Messenger et 

al. 2009; Cory et al. 2010; Feng et al. 2011; King et al. 2012). However, uncertainties exist on 

the specific carbon compounds that are affected by photodegradation, with some evidence for 

higher loss rates for either cellulosic or lignin pools (Rozema et al. 1997; King et al. 2012). It is 

also reported that UVB radiation has four important indirect impacts on decomposition: (1) 

facilitating microbial decomposition by generation of labile material from photodegradation 

(Austin and Vivanco 2006; Gallo et al. 2006; Henry et al. 2008; Foereid et al. 2010; Andrady et 

al. 2011; Liu et al. 2014); (2) decelerating decomposition by reducing microbial population and 

respiration (Gehrke et al. 1995; Zepp et al. 1998; Moody et al. 1999, 2001; Hughes et al. 2003; 

Day et al. 2007; King et al. 2012; Lin and King 2014) and altering microbial community 

composition by selecting species that can tolerate extreme climate conditions, repair DNA 

efficiently or synthesize photo-protective pigments (Moorhead and Callaghan, 1994; Gehrke et 

al. 1995; Moody et al. 2001; Pancotto et al. 2003, 2005; Gallo et al. 2006); (3) facilitating 

microbial decomposition or leaching by breaking down cell wall and releasing fats and lipids 

(Vähätalo et al. 1998; Day et al. 2007; Lin and King 2014); (4) reducing extracellular enzyme 

activity (Gallo et al. 2006, 2009). 

In this study, we examine the role to photodegradation in litter decomposition using the 

DayCent biogeochemical model with a photodecay submodel. Adair et al. (2015) developed and 

calibrated a three-C-pool decomposition model that simulates both biotic decomposition and 

photodegradation of litter. Their model selection results supported flows related to UV radiation 
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induced direct photolysis, facilitation effects, and microbial inhibition effects. In this study, the 

Adair et al. (2015) photodecay submodel was added to the DayCent biogeochemical model and 

used to simulate the semi-arid short-grass steppe ecosystem at three western U.S. sites. First, the 

model parameters were adjusted to match the observation of soil water content, plant growth 

pattern, actual evapotranspiration, and net ecosystem exchange at a calibration site. Second, the 

model was configured to simulate the LIDET decomposition experiment in 1990s for six 

common litter types at the three sites. A subset of the photodegradation related parameters were 

optimized for each species individually and across species by the global optimization algorithm 

that combined scatter search and nonlinear trust region optimization algorithms. Third, the 

relationship between photodegradation and initial litter chemistry (especially lignin content) was 

explored. The pattern found between litter’s initial lignin content and its potential 

photodecomposition rate was implemented in the DayCent model. The related parameters were 

optimized at the calibration site. Fourth, the modified with the optimized parameters was 

validated at other two sites. Last, the long-term (i.e. 90 years) impacts of photodegradation on 

ecosystem processes such as plant productivity, C and N pools, N mineralization, and trace gases 

emission were explored. 

 

Methods 

Site and Data 

LTER CPER 

The DayCent model was calibrated with the measurements made at the United States 

Department of Agriculture - Agricultural Research Services (USDA-ARS) Central Plains 

Experimental Range (CPER) site (latitude: 40.816° N, longitude: 104.749° W, elevation: 



 
118 

1646m). The CPER site is located at the western edge of the Central Grate Plains with mean 

annual precipitation of 434 mm, mean annual air temperature of 9.31°C, and mean annual total 

solar radiation of 462.63 W/m2 between 1990 and 1999. Much of the precipitation occurs from 

April to June (43%) (Parton et al. 2012). The vegetation at CPER is dominated by Bouteloua 

gracilis (C4 grass) with a mixture of other C4 and C3 grasses, shrubs, forbs, and cacti (Parton et 

al. 2012). Long-term mean annual aboveground net primary productivity (ANPP) is 97 g (dry 

mass) m-2 (Heisler-White et al. 2008), and mean leaf area index is low (<1, Brandt et al. 2007). 

The pastures were subjected to zero, moderate, and heavy grazing treatments with 0%, 40%, and 

65% of annual forage production removed, respectively (Parton et al. 2012).  

Four types of measurements were made and averaged at daily time resolution at CPER site 

between 2001 and 2003. The measurements were net ecosystem exchange (NEE), actual 

evapotranspiration (AET), volumetric soil water content (VSWC), and aboveground live 

biomass,  Both NEE and AET were measured or estimated using the Bowen ratio energy balance 

(BREB) system (Model 023/CO2 Bowen ratio System, Campbell Scientific Inc., Logan, UT, 

USA) (Irmak et al. 2008; Parton et al. 2012). Volumetric soil water content for top 0-15 cm soil 

was measured using water content reflectometers (Model CS615, Campbell Scientific Inc., 

Logan, UT, USA) (Parton et al. 2012). Aboveground live biomass during growing season (i.e. 

late April to end of September) was measured in nine randomly selected one meter squared 

quadrants around the BREB towers (Parton et al. 2012).  

Long-Term Intersite Decomposition Experiment (LIDET4) is a 10-year (1990-1999) 

study of litter decomposition and nutrient dynamics in response to substrate quality and 

                                                 
4 Harmon, M. 2013. LTER Intersite Fine Litter Decomposition Experiment (LIDET), 1990 to 
2002. Long-Term Ecological Research. Forest Science Data Bank, Corvallis, OR. [Database]. 
Available: http://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=TD023. Data were 
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macroclimate (Gholz et al. 2000; Parton et al. 2007). The experiment was conducted at 28 sites 

in North and Central America that reflected a wide variety of natural ecosystems and climates 

(LIDET 1995; Gholz et al. 2000). All 28 sites had nine common litters, fine roots from three 

species and leaf from six species covering a wide range of initial litter chemistry, and one 

‘wildcard’ (LIDET 1995; Adair et al. 2008).  

Three LIDET sites used were Central Plains Experimental Range in Colorado (CPER), 

and Sevilleta (SEV) and Jornada (JRN) in New Mexico. The sites are dry and receive high UV 

radiation, and surface litter decomposition at these sites were not well explained by macroclimate 

and litter quality (Parton et al. 2007; Adair et al. 2008). The LIDET CPER site was the same 

location as USDA-ARS CPER site that was used to calibrate the DayCent decomposition sub-

model. The other two sites, SEV and JRN, were used to test the performance of the calibrated 

DayCent model. The annual aboveground net primary production for SEV and JRN sites were 83 

and 130 g (dry mass)/m2 (Peters et al. 2013). The climatic characteristic and ecosystem type for 

the three selected LIDET sites are summarized in Table 4.1. 

The six common leaf litter species (ACSA, DRGL, PIRE, QUPR, THPL, and TRAE) 

were used to calibrate and validate the model performance in this study. The initial values of 

litter quality indices for these six species are listed in Table 4.2 (extracted from Adair et al. 

2008). 

 

                                                 
provided by the HJ Andrews Experimental Forest research program, funded by the National 
Science Foundation's Long-Term Ecological Research Program (DEB 08-23380), US Forest 
Service Pacific Northwest Research Station, and Oregon State University.  
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DayCent Model 

Original DayCent 

DayCent (Parton et al. 1998; Del Grosso et al. 2001; Del Grosso et al. 2011) is a daily 

time step biogeochemical model that simulates exchanges of water, carbon and nutrients 

(nitrogen [N], potassium [p], and sulfur [S]) among the atmosphere, soil and plants as well as 

plant phenology and management events (e.g. fire, grazing, cultivation, and organic matter 

addition). The DayCent model inputs (Del Grosso et al. 2011) include daily weather data (e.g. 

minimum/maximum temperature, precipitation, and solar radiation), soil properties by layer (e.g. 

each layer’s bulk density, field capacity, wilting point, texture, root fraction, and saturated 

hydraulic conductivity), site location and weather statistics, crop cultivar parameters (e.g. 

temperature and water stress functions, respiration, growth, and death rates, and production 

allocation among plant parts), and management information. The four primary submodels are 

plant production, soil carbon and nutrient dynamics, soil water and temperature dynamics, and 

trace gas fluxes (Del Grosso et al. 2001; Del Grosso et al. 2011). The DayCent model has been 

used extensively to simulate ecosystem dynamics for agricultural ecosystems (Del Grosso et al. 

2005; Stehfest et al. 2007), grasslands and savannas (Parton et al. 2011; Parton et al. 2012) and 

forest systems (Savage et al. 2013) and has been tested using extensively observed data sets (e.g. 

nitrous oxide emission, crop yield, soil C and N [Del Grosso et al. 2008]).  

Plant production (net primary productivity [NPP]) is a function of genetic potential, solar 

radiation, phenology, water and temperature stress, and nutrients availability (Del Grosso et al. 

2008).  The allocation of NPP among plant components (e.g. shoots and mature and juvenile 

roots for crop/grass) is controlled by vegetation type, phenology, and water/nutrient stress (Del 

Grosso et al. 2008). The death rate of plant parts is controlled by soil water, temperature, season, 
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and plant specific senescence parameters (Del Grosso et al. 2011). Soil carbon and nutrient 

dynamics are modeled using a daily version of the Century model (Parton et al. 1987, Parton et 

al. 1988) which simulates carbon and nutrient flows for the surface and soil organic matter pools 

(structural and metabolic litter, microbes, and slow and passive soil organic matter). The model 

simulates the transfer of C and nutrients from dead plant material to litter and soil organic matter 

(SOM) and the major controls on the flows include litter lignin content and the C/N ratio, 

temperature/water decomposition factors, and soil texture (Del Grosso et al. 2001). The nutrient 

pool is supplied by decomposition of SOM, N fixation, and external nutrient addition such as 

fertilization and N deposition (Del Grosso et al. 2001). APPENDIX 4.A summarized the C and N 

fluxes between litter and soil organic matter pools in DayCent. 

The land surface sub-model of DayCent simulates water flow through the plant canopy, 

litter, and soil profile, as well as soil temperature (Parton et al. 1998; Del Grosso et al. 2011). 

Precipitation is first intercepted by vegetation and litter as a function of their biomass and 

evaporated at the potential evapotranspiration rate (PET) (Del Grosso et al. 2001). PET is 

estimated as a function of daily minimum and maximum temperature and top of the atmosphere 

solar radiation at the site. Water inputs (rain, melt snow, and irritation) that are not intercepted 

infiltrate the soil or run off of the soil surface (Del Grosso et al. 2001). The model simulates the 

unsaturated bidirectional flow using Darcy’s law (Parton et al. 1998) and saturated flows using a 

tipping bucket approach. The temperature sub-model calculates temperature at each soil layer as 

a function of daily minimum and maximum temperature, plant biomass, snow cover, soil 

moisture, soil texture, and day length (Del Grosso et al. 2001). 

The N-gas sub-model of DayCent simulates soil N2O, NOx, and N2 gas emissions from 

nitrification and denitrification (Del Grosso et al. 2000; Parton et al. 2001; Del Grosso et al. 
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2011). Nitrifying microbes oxidize NH4+ to NO3
- and release N2O and NOx during the 

intermediate steps (Del Grosso et al. 2011). The rate of nitrification is controlled by soil NH4
+ 

concentration, water content, temperature and pH (Parton et al. 2001). Denitrification is a 

biochemical process in which heterotrophic microbes reduce NO3
- to NOx, N2O, and N2 under 

anaerobic conditions (Del Grosso et al. 2001). Denitrification is controlled by labile C 

availability (e- donor), soil NO3
- concentration (e- acceptor), and O2 availability (competing e- 

acceptor) (Del Grosso et al. 2000). The daily time step allows DayCent to simulate the trace 

gases fluxes through soils in response to short term water content variation (Del Grosso et al. 

2001). 

 

DayCent-Photosyn 

The SIPNET (Simple Photosynthesis and Evapo-Transpiration) model (Braswell et al. 

2005) is a simplified Farquhar plant photosynthesis and respiration model (Savage et al. 2013) 

and is incorporated to create the new DayCent version (DayCent-Photosyn or PhotoCent, 

Straube 2011). The major differences between PhotoCent and DayCent include the capability of 

simulating the global primary production (GPP) and the introduction of the carbon storage pool 

that is fueled by photosynthesis and supports the maintenance respiration, actual NPP and growth 

respiration. The calculation of actual NPP and growth respiration in PhotoCent follows the 

strategy used by DayCent, but the demanded C of the two processes is withdrawn from the 

carbon storage pool.  
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DayCent-UV 

Traditional decomposition models fail to accurately predict the atypical linear pattern of 

aboveground litter mass loss in arid environment, suggesting that photodegradation should be 

considered in a decomposition model (Parton et al. 2007). Adair et al. (2015) thus extended a 

three-pool biotic decomposition model of surface litter (Adair et al. 2008) with three 

modifications related to solar radiation: (1) adding photodegradation fluxes from cellulosic 

(intermediate) and/or lignin (slow) pools to increase abiotic mass loss of litter; (2) allowing a 

fraction of those photodegradation fluxes to enter the labile pool to facilitate litter 

decomposition; and (3) slowing the labile pool’s decomposition to simulate the inhibitive effect 

of solar radiation on microbial activity. The modifications were confronted with LIDET 

observations using a model selection technique based on the small sample size corrected 

Akaike’s Information Criterion (AICc, Burnham and Anderson 2002).  The results suggested that 

all three modifications improved prediction of all standard aboveground LIDET litter types when 

compared to the biotic decomposition model (Adair et al. 2015).  

We used this conceptual framework and results from Adair et al. (2015) to develop a new 

surface litter decay model (DayCent-UV, Figure 4.1).  DayCent-UV has the following flows and 

CO2 loss paths added or modified: (1) the direct C loss as CO2 due to photodecomposition of 

standing dead material; (2) the direct C loss as CO2 during the breakdown of large compounds in 

surface structural; (3) the transfer of photodegraded C and N from surface structural to surface 

metabolic; (4) the decomposition rate of the surface metabolic is reduced by higher solar 

radiation via the metabolic decomposition reducer (mdr); and (5) the decomposition rates 

between the surface active and the surface slow are increased by higher solar radiation via the 

microbial turnover rate increaser (mti).The added flows (1) and (2) increase abiotic mass loss of 
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litter due to photodegradation. The added flow (3) facilitates litter decomposition by providing 

more labile materials. The modified flows (4) and (5) simulate the effects of solar radiation on 

microbial activity. The equations (APPENDIX 4.B) which describe the flows of carbon and 

nitrogen in new DayCent-UV (or PhotoCent-UV) litter decay model and the estimation of daily 

solar radiation from daily minimum and maximum temperatures (APPENDIX 4.C) are presented 

in the online material. 

 

Simulation of LIDET experiment in DayCent 

Surface litter decay in LIDET experiment was simulated in DayCent with surface organic 

matter pool.The surface pool was cleared at the beginning of the simulation, and 100 g of organic 

matter was added as surface organic matter with the C/N ratio and lignin fraction matching the 

leaf litter for the LIDET experiment (Bonan et al. 2013). All flows between the surface pool and 

soil pool were stopped. The quantities of C and N in the surface pool were tracked during the 

simulation as remaining C and N fractions of the initial organic matter. DayCent has four distinct 

pools within the surface organic matter pool: structural and metabolic pools that represent plant 

litter, and microbe and slow pools that represent decomposed organic matter (Figure 4.1). The 

organic matter representing litter bags was added to the structural and metabolic pools. 

Since surface pools were used to represent litter bags, no new litter from standing dead 

and dead fine roots were allowed to enter any surface pools during the 10-yaer period. Similarly, 

the surface pools were not allowed to mix with soil organic matter pools. A full list of CPER 

parameters is presented in APPENDIX 4.E. 
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The fire at the beginning of the simulation cleared all live shoots, standing dead, and 

surface litter. To prevent standing dead from accumulating in the simulation, it was cleared at the 

end of each year. 

 

Model Parameterization 

Use of generalized parameters will likely lead to poor model performance and tuning 

input variables of the model is needed to better represent site-specific conditions (Del Grosso et 

al. 2011). Following the suggested order of model calibration (Del Grosso et al. 2011) and the 

available observed data, the input parameters related to the soil water content, plant growth 

pattern, UVB litter decay, evapotranspiration, and photosynthesis were adjusted. Plant 

production, photosynthesis, and soil water submodels were calibrated with observed daily net 

ecosystem carbon exchange (NEE), soil water (0-20 cm depth) and actual evapotranspiration 

rates, and seasonal changes in live biomass from 2001-2003 (Parton et al. 2012). UVB litter 

decay model was calibrated with LIDET litter decay observations from the Colorado site. LIDET 

observations from two sites in New Mexico (Sevilleta and Jornada) were used as an independent 

validation of the ability of the UVB litter decay model to simulate mass loss and nitrogen release 

from surface litter. 

The observed SGS Colorado site soil texture and soil water data (Parton et al. 2012) were 

used to estimate the field capacity, wilting point and minimum water content for the different soil 

layers. The soil physical properties for each soil layer such as bulk density, saturated hydraulic 

conductivity, snow melt parameter, and live root fractions were also adjusted. The snow 

equivalent precipitation amount was adjusted (increased by 75%) in the winter to early spring 

period based on observed daily rain gauge and lysimeter data showing that the rain gauge 
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substantially underestimated water inputs for snow events. The scaling factor for potential 

evapotranspiration and the damping factor (a multiplier controls unsaturated water flux between 

adjacent soil layers) were reduced and the duration of each rain event were increased in order to 

better represent the observed daily soil water data and actual evapotranspiration data (2001-

2003). Daily maximum and minimum air temperature and precipitation data (1969 to 2010) at 

the Colorado site were obtained from multiple sources (e.g. http://hdl.handle.net/10217/82446 5; 

http://www.ncdc.noaa.gov/cdo-web/; http://www.ars.usda.gov/Main/docs.htm?docid=11120 6; 

http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=2017 7; Parton et al. 2012) with the highest 

quality possible. We used the SGS Colorado soil physical properties (field capacity, wilting 

point, bulk density etc.) and the observed site specific solar radiation and maximum and 

minimum air temperature and precipitation data from multiple sources [NCEP Reanalysis data 

(NARR) 8; http://www.ncdc.noaa.gov/cdo-web/; 

http://dx.doi.org/10.6073/pasta/abf2b27152d632ab2ab27c6c71a8a10a 9; 

http://dx.doi.org/10.6073/pasta/669823a9c848c979d2888912a56678c3 10] for the Sevilleta and 

Jornada sites’ computer runs. 

                                                 
5 Parton, W. J. SGS-LTER Standard Met Data: 1969-2010 Manually Collected Aboveground and 
Belowground Meteorological Data collected on the Central Plains Experimental Range, Nunn, 
Colorado, USA, ARS Study Number 4. 
6 The data is provided by Rangeland Resources Research Unit, Agricultural Research Service, 
8408 Hildreth Road, Cheyenne, WY  82009, Jack Morgan – Research Leader 
7 National Water and Climate Center, Natural Resources Conservation Service, United States 
Department of Agriculture.  Available online at http://www.wcc.nrcs.usda.gov/.  Accessed 
[April/2015] 
8 NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, 
from their Web site at http://www.esrl.noaa.gov/psd/  
9 Jornada Basin LTER (2012-03-28): LTER Weather Station daily summary climate data. 
Jornada Basin LTER; Long Term Ecological Research Network. 
10 Moore, Douglas I. Meteorology Data at the Sevilleta National Wildlife Refuge, New Mexico, 
(1987- ). Long Term Ecological Research Network. 
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The main data sets we used to parameterize the plant growth submodel include the 

observed seasonal change in live leaf biomass (2001-2003), daily observed daytime and 

nighttime NEE data (2001-2003), and observed historical plant production data from the SGS 

site11. The live biomass data and NEE data were used to parameterize the plant phenological 

controls on plant growth and maximum photosynthesis rate (e.g. reduced growth and 

photosynthesis rates at the end of the growing season). The live biomass data was used to 

parameterize the impact of soil water stress on plant growth (increased reduction in plant growth 

with relative water content less than 0.6). The 30-year observed plant production data suggested 

that the optimal growth temperature needed to be reduced and that the nitrogen inputs to the 

system needed to be increased. The net effect of the model parameter changes was to increase 

the impact of drought stress on plant growth, reduce the impact of nitrogen stress on plant 

growth, and replicate the observed seasonal live biomass pattern showing highest live biomass in 

June and a sharp decrease in live biomass in July. We also made a change to the equations which 

simulate enhanced soil organic matter decay rates following rainfall events during the growing 

season based on the observed NEE data sets. 

The model uses daily temperature data to estimate the daily total solar radiation and 

applies a site specific monthly cloud and aerosol adjustment coefficient to get the total solar 

radiation estimate. The model used observed solar radiation data sets (NCEP Reanalysis data) to 

calibrate the twelve solar radiation monthly adjustment coefficients. The same calibration 

process was used for the CPER, Jornada and Sevilleta sites. 

                                                 
11 Lauenroth, William K. SGS-LTER Standard Production Data: 1983-2008 Annual 
Aboveground Net Primary Production on the Central Plains Experimental Range, Nunn, 
Colorado, USA 1983-2008, ARS Study Number 6. Retrieved from 
http://hdl.handle.net/10217/81141 
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The LIDET mass and nitrogen remaining data from the six different surface litter decay 

results from the CPER site were used to parameterize UVB litter decay parameters. We used a 

model optimization program to calculate the optimal values of the parameters. It is a global 

optimization method that combines the scatter search framework (Laguna and Martí 2003) and 

gradient based non-linear trust region optimizer (Conn et al. 2000; Ugray et al. 2007). We 

defined a nondimensionalized objective function for the optimization method to evaluate the 

performance of DayCent parameters on fitting multiple types of observational variables (i.e. 

surface remaining C and N fractions). The same numerical optimization procedure was used to 

determine the parameters for the plant production submodel. The detailed design of the 

optimization method is found in the next subsection. The optimal value for the model parameters 

were not always used in the final model because the optimal value of the parameter may not 

make biological sense. The optimization process was quite useful for identifying the critical 

parameters which impact the fit to the observed data sets, however, we manually adjusted some 

of the optimal parameters values based general biological knowledge. The values for the model 

input parameters changed during model optimization process are found in online material 

(APPENDIX 4.D and APPENDIX 4.E) and the Century website. The Century website contains 

all of the information needed to run the DayCent model for Colorado, Jornada and Sevilleta sties. 

 

Optimization Method 

Scatter search is a flexible and effective framework to solve optimization problems. It 

was introduced by Glover (1977) as a heuristic for integer programming (Laguna and Martí, 

2003). It can be characterized as an evolutionary method, however, unlike the Genetic 

Algorithm, scatter search emphasizes systematic development of reference set following certain 
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principles as opposed to the more extensive use of randomization (Ugray et al. 2007). It can deal 

with many types of problems, including continuous, binary variables and permutation vectors 

(Laguna and Martí, 2003). It has been successfully applied to hard optimization problems (Martí 

et al. 2006). 

The template of the scatter search algorithm introduced by Glover (1998) is the main 

guidance for most of the scatter search implementation up to date (Laguna and Martí 2003). The 

template consists of the “five methods”: diversification generation method, improvement 

method, reference set update method, subset generation method, and solution combination 

method (Glover 2000; Laguna and Martí 2003; Martí et al. 2006; Naderi and Ruiz 2014).  

For continuous problems, a simplified global optimization algorithm following the 

framework proposed by Ugray et al. (2007) was developed in this study. The algorithm takes 

advantage of scatter search method’s ability to locate approximated solutions while avoids the 

disadvantages of its weak ability to handle constraints and to achieve high accuracy by calling 

gradient-based trust-region algorithm provided by Intel Math Kernel Library (Conn et al. 2000; 

Ugray et al. 2007). A brief description of the trust-region algorithm is found in APPENDIX 4.F. 

The optimization uses a nondimensionalized objective function (OF) to describe the 

relative difference between the model and the observation on multiple observational variables: 
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j  ; ( , )jx i P  and ( )jy i  are the ith modeled and observed values for observational variable typej , 

respectively.  

The flowchart of the global optimization for DayCent parameters is presented in Figure 

4.2. 

 

Initialization 

In the initialization, the size of Reference Set (RefSet or RS) is set to b; RS is created as 

an empty set; the size of Pool is set to BS; the size of initial population is set to 10*b; the stage 2 

iterator k is set to 0; the Maximum stage 2 Iteration (MI) is set to 800. In this study, b=10, 

BS=20. 

 

The stage 1 

After initialization, the algorithm calls the “Generate Population” method, which uses the 

stratified-sampling procedure described in Laguna and Martí (2003) and online supplement to 

Ugray et al. (2007), to generate 10*b points (initial population) within the bounds. The two 

points at the lower and upper bounds, the middle point between them, and an additional user 

specified point may be added to the initial population.  

The algorithm then evaluates the objective function values (OF)s at initial population 

points and sorts them by their OFs. The best b/2 points are added to RS. The Euclidean distances 

between the rest initial population points and RS are calculated. The b/2 points with the largest 

distances to RS are added to RS (Ugray et al. 2007). This evaluation process is time consuming 

for two reasons: (1) each DayCent call takes 2-5 minutes depending on CPU ability and the basic 

structure of DayCent is hard to be parallelized; and (2) for multiple sites problems, the time 
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required to calculate a single OF sequentially is simply the multiplication of the number of sites 

and 2-5 minutes. Therefore, multi-threading technique is utilized to reduce the total time spent in 

this process. 

The gradient based non-linear optimizer, described in APPENDIX 4.F, is used as the 

“Improvement” method. The improved/optimized point is called the solution. The 

“Improvement” method is applied to the best point in RS. The best point in RS is replaced by its 

solution, and the corresponding OF is also updated (Ugray et al. 2007). The threshold (thr), 

below which the quality of a point is considered good enough to launch the “Improvement” 

method in the stage 2 iterations, is set to the solution’s OF (Ugray et al. 2007). 

 

The stage 2 (main loop) 

The stage 2 is an iterative process that aims at improving the quality of RS. In each 

iteration, the algorithm first finds new subsets of RS with the “Subset Generation” Method 

(Ugray et al. 2007). In this study, only new subsets consisting of the two-point pair that has not 

been examined since the beginning of the stage 2 are considered (Ugray et al. 2007). This 

requires the memory of all previously examined subsets.  

For a given subsets , define 1x  and 2x  the two points in the pair, the three trial points (3x , 

4x , and 5x ) for s  are combined from 1x  and 2x  (“Combination Method”, online supplement to 

Ugray et al. 2007): 

 

 2 1

3 1

4 1

5 2

/ 2d x x

x x d

x x d

x x d

 
 
 
 

  (4.2) 
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If any trial points are outside of bounds, the dimensions violate the upper bounds are 

projected to the upper bounds and the dimensions violate the lower bounds are projected to the 

lower bounds (Ugray et al. 2007). Applying the “Combination Method” to all subsets, we get the 

collection of trial points for the current iteration. The Pool is used to temporarily store the trial 

points and their OFs at the current iteration and is initialized as an empty set at the beginning of 

each stage 2 iteration. 

The trial points are grouped into batches. Each batch contain BS trial points except for 

the last batch, which may have 1 to BS trial points. The OFs for trail points in each batch are 

evaluated in parallel. The trial points and their OFs are inserted into the Pool. The stage 2 

counter k is incremented by the current batch size. 

At least one trial point in the current batch should pass the two merit functions (filters or 

tests) to trigger the “Improvement” method. The first one is called the distance filter, which 

insures the to-be-improved trial point is not too close to any previously found local solutions 

(Ugray et al. 2007). This filter assumes there is a spherical attraction basin around every previous 

local solution point. The radii of an attraction basin is defined by the Euclidean distance between 

the solution and the corresponding starting point. The trial point passes the distance filter if its 

Euclidean distance to any solution is larger than 0.75 * radii. This filter requires the memory of 

previous “Improvement” information, including the starting points and the corresponding 

solutions. The second one is called the merit filter, which insures that the to-be-improved trial 

point is of high quality (Ugray et al. 2007). The trial point passes the merit filter if its objective 

function value is lower than the current threshold (initialized in the stage 1). 

If the best trial point in the current batch passes the two tests, the “Improvement” method 

is applied to the point. The point in Pool is replaced by its solution and moved to RS (Ugray et 
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al. 2007). The threshold value is updated with the solution’s OF. Repeat the process until no trial 

point in the current batch passes the two tests. 

Then, the threshold value (thr) is updated with the following formula (Ugray et al. 2007): 

 0.2*(1 ( ))thr thr abs thr     (4.3) 

After all trial points in the current stage 2 iteration have been processed, a combined set 

( RS Pool ) is created. It is possible that most good points in the combined set are resided in a 

small region due to the noisy shape of objective function. To avoid this, it is optional to remove 

the points in the combined set with close OFs (e.g. within 1% range) and close distances (e.g. 

within 3% range) (Ugray et al. 2007). RS is updated with the best b points in the combined set 

( RS Pool ). 

If no new element(s) found for RS in the current stage 2 iteration and k MI  , the 

algorithm replace the worst b/2 points in RS with b/2 most diverse points from the “Generate 

Population” method described in the stage 1 (Ugray et al. 2007). Their OFs are evaluated in 

parallel and stored in RS. 

The stage 2 iteration finishes when k MI and the final RS ordered by OF are reported 

as the candidates for the global optimum.  

 

Results 

Model performance on ecosystem variables 

Before validating the UV decomposition module in DayCent model, the model was 

calibrated with four observed ecological variables (net ecosystem carbon exchange, volumetric 

soil water, actual evapotranspiration and aboveground live biomass) at CPER site in 2001-2003. 

The adjustment of model parameters has been described in a previous subsection. Generally, the 



 
134 

modeled and observed volumetric soil water content [Figure 4.3(a)] in the first 0-20cm (vswc) 

layer agreed well (R2 = 0.4849) in the 3-year period (i.e. 2001-2003). For model and observation, 

the maximum and minimum vswc were both around 0.17 and 0.03 in the summer period. Both 

model and observation showed the pattern of each vswc spike matching a corresponding rain 

event. Most modeled vswc spikes dropped faster than observation. The modeled vswc in winter 

periods was higher than observation when there were snow events. The average span of observed 

vswc spikes after snow events was greater than one month, while that of modeled vswc spikes 

was less than half a month. The observations of vswc during the winter when soil temperatures 

are below freezing are not very accurate and thus should not be used to test the model 

performance from December to March when soil temperatures are frequent below 0 °C. 

The observed aboveground live biomass is calculated as the average under three grazing 

intensities (Parton et al. 2012). Generally, the modeled and observed aboveground live biomass 

agreed well (R2 = 0.4984) in the 3-year period. The modeled peak live biomass was low (<= 20 

g/m2) in the dry year (i.e. 2002) and was much higher (> 120 g/m2) in the subsequent wet year 

(i.e. 2003) as shown in observation. Both model and observation showed a two-stage intra-

annual growth pattern: the fast spring – early summer growth stage and the significantly slower 

late summer – autumn growth stage. Model and observation showed different patterns of the 

transition between the two stages. The model used a single event on day 200 to simulate the 

transition and the transition was sudden. The observation showed a gradual decrease of live 

biomass in the transitional period (i.e. one month period in late Jun to July). Because of the 

grazing events, the model showed the additional low-frequency and low-magnitude fluctuation 

of live biomass during the entire growing season. 



 
135 

The general patterns of modeled and observed actual evapotranspiration (AET) agreed 

well (R2 = 0.4409) in the 3-year period. The AETs were both low (i.e. around zero) in winter 

periods. In summer periods, the peak AETs were both in the range of 0.3 to 0.6 cm H2O in wet 

years (i.e. 2001 and 2003) and in the range of 0.0 to 0.3 cm H2O in the dry year (i.e. 2002). 

Unlike in the wet years, both modeled and observed AET was not gradually increasing in the 

spring period in the dry year. Both of them showed elevated AET in response to big rain events, 

but the modeled AET dropped faster and stabilized at lower values than the observed after big 

rain events.  

The modeled and observed net ecosystem exchange (NEE) had a less agreement (R2 = 

0.2301) in the 3-year period compared to the other three ecological variables. In the plot (Figure 

4.3), a positive NEE value represents the net C intake from the atmosphere, meaning 

photosynthesis is stronger than the sum of all respirations and photodegradation; the negative 

NEE value represents the net C release from the ecosystem and has the opposite meaning. 

Generally, the observed NEE had a larger daily variation than the modeled NEE. The observed 

NEE also had more days with more negative values especially during the growing season. The 

modeled NEE was mostly zero with some negative peaks in the dry year (i.e. 2002). In contrast, 

the observed NEE was mostly slightly positive in that year. There were still some modeled NEE 

patterns matching the observation well. For example, both the model and observation showed 

that NEE is positive during the early growing season with the magnitude in the range of 2 to 5 

g/m2. Both the model and observation showed close-to-zero NEE values in winter periods and 

negative spikes occurred after big rain events. 
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UVB Model verification and validation 

The performance of the DayCent-UV model was examined by comparing model results 

to the observed carbon and nitrogen fraction remaining vs time for the six common litter species 

in the 10-year LIDET experiment (i.e. 1990-1999) at the Colorado calibration site (Figure 4.4). A 

scatter diagram of the simulated DayCent-UV model vs data as a function of plant species is 

shown in Figure 4.5. The observed time series of remaining carbon fraction shows that some of 

the species follow a more exponential pattern of carbon loss (ACSA and DRGL), while the other 

species display a more linear pattern for carbon release vs time. There are considerable species 

differences in the carbon loss rates with DRGL and TRAE losing the most carbon and a general 

pattern of less carbon loss with increasing lignin content of the litter (THPL had the highest 

lignin content and the lowers carbon loss). The comparison of the observed vs simulated carbon 

remaining vs time suggests the DayCent-UV model consistently overestimate the decomposition 

rate in the early stage (i.e. first 3 years). The scatter diagram of observed and DayCent-UV 

model simulated carbon remaining for all of the species (Figure 4.5) shows that the model tends 

to underestimate carbon remaining for observed carbon remaining greater than 0.5 and 

overestimate carbon remaining for observed carbon remaining less than 0.3. The model 

performance of the modified DayCent-UV varied by litter species. The model results show that 

the DayCent-UV model has the best performance on species THPL [0.1289 (RMSE for C), 

0.1656 (RMSE for N)] followed by ACSA (0.0953, 0.2741), QUPR (0.1191, 0.1863), TRAE 

(0.1649, 0.3157), PIRE (0.1643, 0.2571), and DRGL (0.1365, 0.3176). There is no obvious 

correlation between the model performance and litter’s initial C/N ratios and lignin content. 

Comparison of the observed carbon and nitrogen remaining vs time data (Figure 4.4) 

shows that the observed nitrogen data has larger differences in the litter species and large 



 
137 

unexplained changes in the observed N remaining vs time (e.g. N remaining for PIRE goes from 

0.65 in 1994 to 1.1 in 1995 and then decreases to 0.5 1996). Clearly, the observed nitrogen data 

is much more variable, uncertain and difficult to predict using the model. Observed N remaining 

data show a general pattern of decreased N remaining with increasing time for most species, 

however, N remaining data for TRAE is greater than one (up to 1.4) 5 years after the beginning 

of the experiment. The DayCent-UV model simulates the observed pattern of N losses increasing 

with time and the overall RMSE values for the model vs data comparison is higher for nitrogen 

remaining compared to carbon remaining (RMSE = 0.1567 for nitrogen vs 0.1159 for carbon). 

The DayCent-UV model tends to underestimate the fraction of N remaining for DRGL and 

ACSA and overestimate the fraction of N remaining for PIRE and TRAE (see Figure 4.4 and 

Figure 4.5). Clearly, the DayCent-UV model is unable to predict some of the observed species 

differences in the N remaining, however, there was no overall bias in modeled remaining N 

fraction. 

The DayCent-UV model (optimized using the Colorado site data) simulated model results 

were compared with the observed carbon and nitrogen remaining data from the Sevilleta and 

Jornada sites as an independent validation test. Site-specific parameters, such as site’s location, 

soil profile, solar radiation and weather data, were adjusted to reflect the environment at the 

testing sites. Comparison of the DayCent-UV model vs observed carbon and nitrogen remaining 

for the different plant species at the Sevilleta and Jornada sites (Figure 4.6) show that the model 

did a good job simulating the litter carbon remaining for the different species [RMSE(across-

species two-site average C) = 0.1206]. These results are similar to the modeled carbon remaining 

vs the observed data at the Colorado site [RMSE(CPER) = 0.1159] and still show the simulated 

bias at the Colorado site that overestimates carbon loss for observed carbon remaining values > 
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0.5 and underestimates carbon loss for observed carbon remaining < 0.3. The results for nitrogen 

remaining had much higher RMSE compared to the carbon remaining data (across-species two-

site average RMSE = 0.2110 for N vs 0.1206 for C) consistent with the observed pattern for the 

Colorado site (parameterization/calibration site). The RMSE of the DayCent-UV model for 

carbon and nitrogen at the parameterization and verification sites are similar [RMSE for C: 

0.1195 (Sevilleta) and 0.1191 (Jornada); RMSE for N: 0.0419 (Sevilleta) and 0.2073 (Jornada)]. 

The results also show that the model consistently overestimates nitrogen release for DRGL and 

underestimated N release for PIRE and TRAE species. This pattern is generally consistent with 

the observed data for the Colorado site. Both the calibration and validation data sets show that 

when all of the litter species are considered, the model is not biased, however the model does not 

simulate some of the observed species specific difference in N release. 

One of the important improvement to the Adair et al. (2015) UVB model was to add the 

impact of the plant lignin content on the maximum photo decay parameter (maxphoto). Analysis 

of the results showed that the impact of radiation on photodecay decreased with increasing lignin 

content of the litter. The equation we used to represent the impact of lignin is shown in the online 

material (APPENDIX 4.B) and including the impact of lignin content on photo decay increased 

the fit of the DayCent-UV model to the observed carbon release date (RMSE for remaining 

carbon decreased from 0.1509 without the lignin impact to 0.1159 using the lignin content 

equation). We also optimized the value of maxphoto to get the best fit for individual plant 

species and evaluated the performance change from using the original DayCent-UV model with 

individually optimized maxphoto coefficients to using the modified DayCent-UV model with 

two maxphoto coefficients (see Table 4.3). The results show that the litter specific optimized 

maxphoto values can be significantly different for some species (ACSA and QUPR) and that the 
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modified DayCent-UV model’s RMSEs for carbon and nitrogen at all species are not 

significantly increased even though the number of maxphoto coefficients is greatly reduced (i.e. 

from 6 to 2). 

 

Effects of UV module on spatial and temporal C and N patterns at 3 LIDET sites 

The model results compare the performance of the DayCent-UV model with the original 

DayCent-Photosyn model (photo_off), evaluate how well the DayCent-UV model simulate the 

observed differences in carbon and nitrogen remaining for the Sevilleta and Jornada, and 

Colorado sites, and look at the ecosystem impact of including UV radiation at the Colorado site. 

The performance of two DayCent versions, the modified DayCent-UV and the DayCent-

Photosyn (photo_off), was compared with the observed across species average remaining C and 

N data from the LIDET experiment at the Colorado site (Figure 4.7).The observation showed a 

linear decrease in carbon for the first 6 years of the experiment and greatly reduced 

decomposition rates in the last 4 years. The observation showed balanced N mineralization and 

immobilization in the first 2 years and net N release in the rest period. Both DayCent versions 

release C with exponential patterns. Compared with the photo_off DayCent, the modified 

DayCent-UV model showed slightly slower C decomposition rate in the early stage but showed 

over 10% more C loss in the later stage. The modified DayCent-UV model showed a persistent 

net N release in the entire 10-year period with the final N remaining fraction at around 0.55, 

while the photo_off DayCent showed slight net N immobilization in most time periods except for 

in 1991 and 1992, in which period net N release was simulated. The modified DayCent-UV 

model matched the LIDET observation better than the photo_off DayCent for both C and N in 

most time periods and had much higher N loss compared to the photo_off DayCent. 
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Figure 4.8 shows the comparison of the DayCent-UV simulated species averaged C and 

N remaining vs time with the corresponding LIDET observation for the Colorado, Sevilleta and 

Jornada sites. Observed C remaining points at three sites are more clustered than N and nitrogen 

remaining is higher than the carbon remaining. The DayCent-UV model also shows this pattern. 

The observation shows more linear pattern of C remaining vs time in the first 6 years while the 

DayCent-UV model shows more exponential C pattern in the entire period. Both observation and 

model show linear pattern of N remaining vs time. The model predicts faster C decomposition 

rates in the first 3 years than the observation, but fits the observation points for both C and N in 

the later years. The DayCent-UV model shows small but distinguishable difference at three sites 

on both C and N remaining over time with the highest C and N loss in the JRN site. The annual 

solar radiation at Colorado site (462.63 W/m2) is lower than both at Sevilleta site (520.59 W/m2) 

and at Jornada site (526.10 W/m2). As expected, Colorado site generally shows the lowest C 

decomposition rate followed by Sevilleta and Jornada sites, although the observed data points are 

noisy and somewhat intertwined. This pattern for N release is clearer. The DayCent-UV model 

manifests the same pattern for both C and N after 3-4 years. But at the early stage (i.e. the first 3-

4 years), the model shows more variable C and N decomposition rates between sites. The model 

clearly overestimates C loss during the first three years for all sites. 

 

Ecological impacts of photodegradation 

Photodecay directly changes the C and N dynamics in surface pools. These changes may 

indirectly influence other ecosystem processes. To present the ecological impacts of 

photodegradation, the 90-year (1900-1989) average of the modeled ecological variables were 

calculated for model runs with (i.e. “photo_on”) and without (“photo_off”) the photodecay 
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module (Table 4.4). The results show that including photo decay causes increases in above and 

belowground plant production, surface litter net N mineralization, and litter N, while soil C and 

N, soil net N mineralization and surface litter C all decrease. The model results also show 

minimal changes (less than 1%) in biotic decomposition rates, and trace gas flux results (data not 

shown in the table). The biggest impact of including photodecay are to increase surface litter N 

mineralization rates by 25%, and surface litter N pools (8%), while soil C and N levels and 

mineral soil net N mineralization rates are decreased. The decreases in mineral soil C and N are a 

result of the amount of surface litter moving into the mineral soil layer (greater losses of surface 

litter and standing dead to the atmosphere due to photooxidaton). The simulated large increases 

in surface litter N mineralization are consistent with the results in Figure 4.7 showing that 

including photooxidation greatly enhanced the N release for surface litter consistent with the 

observed LIDET litter N release data.     

 

Discussion 

Generally, the DayCent-UV model fits the major patterns in observed first 20cm soil 

water content, aboveground live biomass, and actual evapotranspiration well with their R2 

between 0.44 and 0.50 (Figure 4.3). However, the model performance is not as good on fitting 

the observed net ecosystem exchange (NEE, R2 = 0.23). If we align modeled and observed NEE 

with precipitation data in the growing season, it is seen that the model underestimates some CO2 

pulses (negative NEE) right after big rain events. The mechanisms (Ma et al. 2012; Moyano et 

al. 2013) behind these respiration pulses (or “Birch Effect”) include: (1) re-hydrating dormant 

microbes; (2) causing the death of microbial biomass and releases intra-cellular osmolytes 

accumulated during the dry period; (3) breaking down soil micro-aggregates and exposes the 
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protected organic matters; (4) causing the microbial cell lysis, releasing cytoplasmic solutes, and 

uncoupling enzymatic activity from cellular respiration; and (5) releasing the quickly 

decomposable molecules via photodegradation and/or extra-cellular enzymes decomposition 

accumulated during dry periods. The DayCent-UV model assumes that soil carbon decay rates 

are increased (3 time normal values) following rainfall events in order to represent the pulse 

rainfall effect on heterotrophic respiration. The underestimated CO2 pulses following rainfall 

events suggest that the model needs to include a fast labile pools that decomposes rapidly 

following the rainfall events since the size of the CO2 pulses is similar for each rainfall event 

during the growing season independent of the time since rainfall (Parton et al. 2012). 

Generally, the DayCent-UV model fits the observed remaining C vs time pattern well for 

both individual species and across species averages [Figure 4.4, Figure 4.7(a), and Figure 4.8(a)]. 

The DayCent-UV model overestimates the C release in the first three years but shows good 

matches in the last four years of simulating the LIDET experiment. In the middle stage (i.e. 4-6 

years), the DayCent-UV model has lower carbon decomposition rates, and shows a more 

exponential pattern of the remaining carbon fraction compared with the observed linear pattern. 

The current DayCent-UV model only considers instant photodegradation and the amount of C 

released is proportional to the solar radiation intensity and size of the litter structural pool. As a 

result, materials are photodegradated faster in the earlier stage and slower in the middle and later 

stages. The discrepancy between model and observation suggests that the cumulative effect of 

solar exposure should be considered in the early and middle stages. The cumulative effect has 

been suggested by other studies. For example, Foereid et al. (2010) concluded that the increasing 

litter degradability is a more important mechanism for photodegradation than direct light-



 
143 

induced mass loss. King et al. (2012) further concluded that the significance of this facilitation 

effect heavily depends on length of exposure. 

Compared to remaining carbon results, the DayCent-UV model showed larger 

discrepancy on remaining N, however it was able to predict the observed general pattern of N 

release with time (Figure 4.7 − averaged over species N release at CPER). The model 

performance on simulating individual species’ nitrogen pattern is worse [Figure 4.5(b) and 

Figure 4.6(b)]. Some species such as PIRE and TRAE release N slower than observation, while 

some species such DRGL release N faster than observation in the entire experiment. In the 

current DayCent-UV model the relative C/N ratios between source and target pools and mineral 

N pools determines N flows between litter pools. Since mdr and mti influence the microbial pool 

size, the current DayCent-UV model has already indirectly incorporated the UV inhibition 

effects on microbial N immobilization (Henry et al. 2008; Smith et al. 2009; Lin and King 2014) 

and the UV facilitation effects by providing more microbial decomposable N compounds 

(Foereid et al. 2010). The only direct change for N in litter pools is when photodegradation 

releases C as CO2 from surface structural, and the associated N flows into surface metabolic. The 

poorer performance on remaining N vs time for individual species indicates that the current 

model does have enough mechanisms to represent species specific litter N dynamic in arid 

environment. It is important to note that the observed litter N release data is much more variable 

(Figure 4.4 shows large temporal changes in N release). There have been studies exploring some 

other potential mechanisms for N in high solar (UV) radiation environment. Some studies 

suggested that C-use efficiency may be reduced to allow net N release (Hewins et al. 2008; 

Brandt et al. 2010). Some studies suggested that direct N photo-dissolution or photodegradation 

may occur (Brandt et al. 2007; Mayer et al. 2012).  
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The DayCent-UV model matches the observed C remaining slightly better than the 

DayCent-Photosyn model (photo-off) in the early stage (i.e. 1-3 years) but matches much better 

in the later stage (i.e. 5-10 years) [Figure 4.7(a)]. Even though the two models show similar 

performance in the early stage, the mechanisms and the C distribution among the four surface 

litter pools are quite different. The DayCent-UV version has photodegradation that reduces 

surface structural and part of it flows into surface metabolic. The UV inhibition effect reduces 

the surface active pool and indirectly reduces the consumption of surface metabolic. The UV 

facilitation effect increases the CO2 loss during the turnover between surface active and slow 

pools. As a result, we see that the DayCent-UV version showes significantly larger surface 

metabolic pool but significantly smaller surface active and slightly smaller surface structural and 

slow pools than the DayCent-Photosyn version (data not presented). The cumulated CO2 loss 

from surface slow and the continuous photodegradation of surface structural cause lower surface 

litter C remaining in the DayCent-UV version. 

The performance of DayCent-UV on N remaining is much better than that of DayCent-

Photosyn especially in the later stage [Figure 4.7(b)]. The final remaining N fractions from 

DayCent-UV, DayCent-Photosyn, and observation are approximately 0.55, 0.90, and 0.45, 

respectively. The DayCent-UV generally simulated the persistent net N release found in 

observation due to the newly introduced N flow from surface structural to surface metabolic that 

reduces the intensity of N immobilization from extraneous sources. 

There is a negative relationship between litter’s initial lignin fraction (Table 4.2, column 

6) and the individually optimized photodecay rate (Table 4.3, column 2, maxphoto). This 

suggested that lignin is not the chemical compound that is responsible for UV degradation. Some 

field studies did not observe increased lignin loss (Lin and King 2014) or did not find the change 
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of lignin (Brandt et al. 2007) under UV exposure. The photodegradation flows in DayCent-UV 

are imposed on standing dead and surface structural pools. Both pools have lignin and cellulose 

in common. Therefore, we speculate that cellulose is the major chemical compound for UV 

degradation. Some studies reported that cellulose and/or hemicellulose are responsible for litter 

mass loss under UV exposure (Rozema et al. 1997; Brandt et al. 2007; Brandt et al. 2010). 

Alternatively, we speculate that photodegradation breaks down encrusting lignin and exposes 

protected cellulose for biological decomposition (Henry et al. 2008; Austin and Ballaré, 2010; 

Brandt et al. 2010; Frouz et al. 2011). 

DayCent-UV equilibrium model runs for the Colorado (CPER) site were used to evaluate 

the ecosystem impact of the adding photodegradation into the DayCent model. The results 

showed that aboveground and belowground plant production, surface net N mineralization, and 

surface litter N pool were increased by adding photodegradation, while surface litter C, soil net 

N mineralization and mineral soil C and N decreased (see Table 4.4). Photodegradation of 

standing dead and surface structural promotes direct C loss from the two pools, enhances the 

cellulose accessibility to microbial decomposition, and increases the amount of labile material 

entering the surface metabolic pool. The decline in mineral soil C and N and surface litter C is 

because more surface C is lost as CO2 and less C and N is mixed from surface litter into the soil. 

Photodegradation greatly increases N mineralization from surface structural to surface metabolic 

and increases the total surface N pool because N stays in the litter during the photodecay flow. 

This also increases the net N mineralization in the surface pools because microbes need less 

extraneous mineral N to decompose high C/N ratio materials. Soil net N mineralization 

decreased because of the reduced input of C and N from surface litter layer into the mineral soil 

layer. The large increase in surface net N mineralization (+25%) more than compensates for the 
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slight reduction (-2.84 %) in soil N mineralization, and the total soil and surface net N 

mineralization slight increases. 

 

Conclusions 

The calibrated DayCent-UV model fitted the major patterns in observed first 20-cm soil 

water content, aboveground live biomass, and actual evapotranspiration (R2 between 0.44 and 

0.50) but missed some CO2 spikes after heavy rain events in the observed net ecosystem 

exchange (R2 = 0.23). Generally, the optimized DayCent-UV model fitted the observed 

remaining carbon vs time pattern well for both individual species and across species averages at 

three (semi-)arid LIDET sites and predicted the observed general pattern of nitrogen release with 

time. However, the model showed larger discrepancy on remaining nitrogen vs time for 

individual species, suggesting that some mechanisms of photodegradation on nitrogen dynamics 

may be missing. The slight overestimation of carbon release in the early stage (i.e. years 1-3) and 

the underestimation in the later stage suggested that the cumulative effect of solar exposure 

should be considered. The DayCent-UV model fitted the LIDET remaining carbon and nitrogen 

observation much better than the DayCent-Photosyn model (without the UV decomposition 

module) especially in the later stage. The negative relationship between litter’s initial lignin 

fraction and the individually optimized photodecay rate suggested that cellulose rather than 

lignin may be the chemical compound that is responsible for UV degradation. The DayCent-UV 

equilibrium model runs showed that UV decomposition increased aboveground and belowground 

plant production, surface net N mineralization, and surface litter N pool, while decreased surface 

litter C, soil net N mineralization and mineral soil C and N.
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Table 4.1 Climatic characteristic and ecosystem type for the three selected LIDET sites (Adair et 
al. 2008; Gholz et al. 2000). All climatic variables were averages of the 10-year LIDET study 
period (1990-1999). CDILT is the Lloyd & Taylor (1994) climate decomposition index. The 
terms “Lat.”, “Lon.”, and “Elev.” are the abbreviation of latitude, longitude, and elevation. The 
terms “MAT”, “MAP”, and “SR” stand for mean annual temperature, precipitation, and solar 
radiation. DEFAC is a complex climatic factor related to decomposition in the CENTURY 
model. 
 

Site 
Lat. 
(°) 

Lon. 
(°) 

Elev. 
(m) 

MAT 
(°C) 

MAP 
(mm) 

SR 
W/m2 

AET 
(mm) 

DEF
AC 

CDILT 
Ecosystem 

Type 
Central 
Plains 

Experimental 
Range 

(CPER) 

40.82 104.77 1650 8.60 440 462.6 430 0.19 0.243 
Dry 

Grassland 

Sevilleta 
National 
Wildlife 
Refuge 
(SEV) 

34.33 106.67 1572 13.17 255 520.6 252 0.10 0.136 
Shrubland 

/Desert 

Jornada 
Experimental 

Range 
(JRN) 

32.50 106.75 1410 17.15 298 526.1 292 0.13 0.216 
Shrubland 

/Desert 
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Table 4.2 Initial values of litter quality indices for the six common leaf litter species in the 
LIDET experiment (extracted from Adair et al. 2008) 
 

Species 
Litter  
type 

Abbreviation 

Water  
soluble  

extractives 
(%) 

Cellulose 
(%) 

Lignin 
(%) 

C/N 

Sugar Maple  
(Acer 

saccharum) 
Broadleaf ACSA 47.68 27.33 15.87 61.83 

Drypetes 
(Drypetes  
Glauca) 

Broadleaf DRGL 40.23 39.82 10.91 24.25 

Red Pine 
(Pinus 

resinosa) 
Conifer PIRE 20.60 44.58 19.18 92.72 

Chestnut 
Oak 

(Quercus 
prinus) 

Broadleaf QUPR 27.22 39.38 23.51 50.55 

Western  
Redcedar 
(Thuja 
plicata) 

Conifer THPL 22.31 35.92 26.67 83.12 

Wheat  
(Triticum 
aestivum) 

Gramminoid TRAE 6.72 73.15 16.21 133.32 
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Table 4.3 The maxphoto values for the six litter species at Colorado (CPER) site were obtained 
by optimizing individual species using the original DayCent-UV model (column 2) and by 
optimizing across species using the modified DayCent-UV model (column 3). The RMSEs of 
carbon and nitrogen for each case are reported in parentheses. 
 

Species 
optimized on individual species  

(with original DayCent-UV model) 
optimized across species  

(with modified DayCent-UV model) 

ACSA 0.34672 (0.0952, 0.2717) 0.94693 (0.0953, 0.2741) 
DRGL 0.97826 (0.1449, 0.3379) 1.31681 (0.1365, 0.3176) 
PIRE 0.89735 (0.1735, 0.2295) 0.70043 (0.1643, 0.2571) 
QUPR 0.64025 (0.1136, 0.1955) 0.37730 (0.1191, 0.1863) 
THPL 0.00000 (0.1156, 0.1667) 0.14161 (0.1289, 0.1656) 
TRAE 1.14962 (0.1703, 0.2794) 0.92173 (0.1649, 0.3157) 
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Table 4.4 List of 90-year average ecological variables (related to plant productivity, N 
mineralization, and surface and soil C and N pools) with and without photodecay. 

 variables photo_off photo_on 
%difference  

(on-off)/off x100% 
Plant productivity agcacc 48.733 49.28866 +1.140 

 bgcjacc + bgcmacc 51.041 51.7886 +1.465 

Surface net N 
mineralization 

strmnr(1,1) + 
metmnr(1,1) + 
s1mnr(1,1) + 
s2mnr(1,1) 

0.66921 0.83672 +25.031 

Soil net N 
mineralization 

strmnr(2,1) + 
metmnr(2,1) + 
s1mnr(2,1) + 
s2mnr(2,1) + 
s3mnr(1) 

3.65661 3.552774 -2.840 

Surface litter C 
pools 

strcis(1,*) + 
metcis(1,*) + 
som1ci(1,*) + 
som2ci(1,*) 

58.16837 +  
22.37561 +  
17.05395 +  
16.38691 =  
113.9848 

20.66096 + 
58.75235 +  
4.02944 +  
12.03130 =  
95.47404 

-16.240 

Surface litter N 
pools 

struce(1,1) + 
metabe(1,1) + 
som1e(1,1) + 
som2e(1,1) 
 

0.29084 +  
0.80096 +  
1.09700 +  
0.89816 =  
3.08697 

0.10331 +  
2.30206 +  
0.25246 +  
0.65774 =  
3.31556 

+7.405 

Surface 
biological decay 

rate 
aagdefac 0.220543 0.220977 +0.197 

Soil C pools 

strcis(2,*) + 
metcis(2,*) + 
som1ci(2,*) + 
som2ci(2,*) + 
som3ci(*) 

139.8343 +  
12.8246 +  
19.8004 +  
346.1737 +  
574.4206 =  
1093.054 

142.5519 +  
13.01168 +  
19.28496 +  
310.4573 +  
554.0435 =  
1039.349 

-4.913 

Soil N pools 

struce(2,1) + 
metabe(2,1) + 
som1e(2,1) + 
som2e(2,1) + 
som3e(1) 

0.69917 + 
1.03310 + 
1.27231 + 
15.84862 + 
45.47730 =  
64.3305 

0.71276+ 
1.05232 + 
1.241061 + 
13.96899 + 
44.33035 =  
61.30547 

-4.702 

Note: The term “photo_off” refers to the DayCent-Photosyn model. The term “photo_on” refers to the 
modified DayCent-UV model. If there are two asterisks in the parenthesis, the first one is related to the 
pool position: 1 denotes surface pools and 2 denotes soil pools. The right-most asterisk (*) in strcis(*,*) 
and other surface and soil pools may have two values: 1 represents unlabeled C and 2 represents labeled 
C. The variables “agcacc”, “bgcjacc”, and “bgcmacc” are annual accumulators. The variables 
"strcis(*,*)", "metcis(*,*)", "som1ci(*,*)", "som2ci(*,*)", "som3ci(*)" are pool sizes (state variables). 
The variables “strmnr(*,1)”, “metmnr(*,1)”, “s1mnr(*,1)”, “s2mnr(*,1)”, and “s3mnr(1)” are monthly 
rates. 
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Figure 4.1 Surface carbon pools and flows represented in Daycent-UV. The pools are shown in 
rectangular boxes; the flows between the pools are shown by arrowed lines; and the CO2 flux 
associated with the flows are shown by arrowed curves. The numbers near the end of curve 
arrows are the fraction of C flow that is lost to the atmosphere as CO2 flux.  The abiotic factors 
that control the decomposition process include SR (soil surface solar radiation), T (soil 
temperature), θ (soil moisture), and pH. The term mdr is the metabolic decomposition reducer, 
which is negatively related to the ground level solar radiation. The term mti is the microbial 
turnover rate increaser, which is positively related to the ground level solar radiation. 
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Figure 4.2 Flowchart of the modified scatter search algorithm for global optimization (derived 
from Ugray et al. 2007). The operations/procedures that use multi-threading technique to speed 
up the process are highlighted in blue color. The common feature of these operations is the time 
consuming evaluation of Objective Function (OF). 

Generate Population(10*b); 
Eval OFs at Init. Population

Create Initial RS
(best b/2 diverse b/2 )

Improve the best point in 
RS; 

thr = solutions’ OF

Initialize threshold (thr); 
RefSet (RS) size (b); Pool 

size (BS); initial 
population size; Max 
Iteration (MI); k = 0

Find new Subsets of RS 
with “Subset Generation” 

Method

Apply Combination 
Method to obtain 3 trial 

points (Tps) for each new 
subset; Initialize Pool

Eval OFs at Tps (BS per 
batch); Store in Pool; 

k = k + BS

Improve the best qualified 
point in current batch

Exist current 
batch Tps pass 

the tests 

thr =solution’s OF;
Move solution from 

Pool to RS

Update RS
(best b in RS Pool)

k <= MI

Report RS, End

If RS unchanged and 
k<=MI, Replace the worst 

b/2 points in RS with 
“Generate Population” 
method; Eval their OFs

Tps untreated

Increase 
thr

N

Y

Y

Y

N

N
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Figure 4.3 The time series of four modeled and observed ecological variables [volumetric soil 
water content in 0-20 cm soil (vswc), aboveground live biomass, actual evapotranspiration 
(AET), net ecosystem exchange (NEE)] at CPER (Colorado) site in 2001-2003. 
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Figure 4.4 The time series of remaining C & N (fraction) in litter bags for six litter species (i.e. 
ACSA, DRGL, PIRE, QUPR, THPL, and TRAE) from the modified DayCent-UV model (solid 
lines for C and dashed lines for N) and from the annual observation of LIDET experiment 
(squares for C and triangles for N) at Colorado (CPER) site. 
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Figure 4.5 1:1 scatter plots of annual remaining C (a) and N (b) fraction between the modified 
DayCent-UV model and LIDET observation at six leaf litter species at Colorado (CPER) site. 
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Figure 4.6 1:1 scatter plots of sites [Sevilleta (SEV) and Jornada (JRN)] averaged annual 
remaining C (a) and N (b) fraction between the modified DayCent-UV model and LIDET 
observation at six leaf litter species. 
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Figure 4.7 The across species average of remaining C (a) and N (b) at the Colorado (CPER) site 
from LIDET observations and DayCent models with (modified DayCent-UV) and without 
(DayCent-Photosyn or photo_off) UV decomposition modules. 
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Figure 4.8 The across species averages of remaining C fraction (a) and remaining N fraction (b) 
at three LIDET sites [Colorado (CPER), Sevilleta (SEV) and Jornada (JRN)] from modified 
DayCent-UV model (lines) and LIDET experiment observation (symbols). 
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APPENDIX 4.A MECHANISM OF C AND N FLUXES BETWEEN LITTER AND SOIL 

ORGANIC POOLS IN DAYCENT 

 
 
 

Bonan et al. (2013) summarized the C and N fluxes between discrete litter and soil 

organic matter pools.  

The total C flux out of a source pool (,
C

S oF ) is expressed as 

 ,
C

S o S S SF C Br Er     (4.4) 

where, SC is the amount of C in the source pool S; SBr  (set in the fix.100 by user) is the constant 

base loss rate for pool S; and SEr  is the adjustment coefficient for abiotic factors, which include 

temperature, moisture, and soil pH. The total C flow into a receiver pool from the source pool S 

( ,
C

R iF ) is expressed as 

  , , 1C C
R i S o S S RF F Mr f       (4.5) 

where, SMr is the C loss rate due to microbial respiration; and S Rf   is the proportion of source 

pool C that flows to the receiver pool R. For source pools containing both lignin and cellulose 

(i.e. standing dead and surface structural),S Rf   is a function of lignin content or lignin/N ratio.  

The N fluxes are associated with the corresponding C fluxes and diagnosed from the C/N 

ratios of the source and receiver pools.  

The total N flux out of a source pool (,
N

S oF ) is expressed as 

  , ,
N C

S o S o S
F F N C    (4.6) 

where,  S
N C is the N/C ratio of the source pool S. The total N flux into a receiver pool R from 

the source pool S ( ,
N

R iF ) is expressed as 
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  , ,
N C

R i R i R
F F N C    (4.7) 

where,  R
N C is the N/C ratio of the receiver pool R. When the input N is more than the 

receiver pool’s demand (i.e. the source C/N ratio lower than the receiver C/N ratio), the excess is 

mineralized by respiration. When the input N is less than the receiver pool’s demand (i.e. the 

source C/N ratio higher than the receiver C/N ratio), the deficiency is immobilized from 

exogenous N in the environment. DayCent treats the mineral N in the top soil layer as the source 

of exogenous N. The immobilization is always allowed unless there is no top soil mineral N left 

(Bonan et al. 2013). DayCent uses the mineral N in the top soil layer at the time and a set of 

piecewise linear functions to determine the C/N ratio in the receiver pools at that time. 
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APPENDIX 4.B DAYCENT-UV EQUATIONS 

 
 
 

In DayCent-UV, the C of photodegradable materials (i.e. lignin and cellulose) in litter is 

partly photodegraded ( ,C LT
PhotoF ) and removed from its original pool (Adair et al. 2015): 

  ,C LT LT
Photo soil AbsF SR c p     (4.8) 

where, the capital letterC refers to carbon. The stringLT refers to standing dead or surface 

structural litter. The string Photo  refers to photodegradation. p is the maximum daily 

photodecay rate [maxphoto,   (  )/ soilg SRC KJ ]. Adair et al. 2015 reported that both standing 

dead and structural have the same  1.6 [ ( ) ]  / soilg C K SRJp  . In this study, p  is a function 

of litter’s initial lignin fraction 0 1
Initial

Ligninp p f p   , where 0p  (maxphoto_intercept) is the 

maximum daily photodecay rate when the lignin fraction equal to zero, Initial
Ligninf  is the litter’s initial 

lignin fraction, and 1p (maxphoto_slp) is the change of maximum photodecay rate per unit initial 

lignin fraction. If the calculatedp is less than zero, p is set to zero. soilSR is the daily soil surface 

solar radiation (KJ). LT
Absc is the litter absorption coefficient. DayCent-UV assumes that the higher 

the litter biomass, the more light is intercepted by litter. If the litter refers to standing dead, then 

it is the absorption coefficient of standing dead: SD
Absc . If the litter refers to surface structural, then 

it is the absorption coefficient of surface structural: SFS
Absc . The calculation of SD

Absc and SFS
Absc follows 

a similar piece-wise linear function, 
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  (4.9) 

where, SDBiom and SFSBiom are the biomass of standing dead and surface structural, respectively. 

_full absBiom is the minimum biomass that fully absorbs solar radiation. If litter biomass is greater 

than _full absBiom , then all solar radiation is intercepted. The model assumes the excess litter is no 

longer exposed to light on soil surface and photodegradation plateaus (Adair et al. 2015). 

DayCent-UV currently sets _ 200full absBiom g . 

A fraction ( f or fphotoco2) of the photodegraded C (,C LT
PhotoF ) is lost as CO2 ( 2 ,CO LT

PhotoF ), 

 2 , ,CO LT C LT
Photo PhotoF F f    (4.10) 

where, Adair et al. 2015 reported that the value of fphotoco2 is 0.48. Unlike the CO2 loss due to 

respiration, there is no N loss associated with2 ,CO LT
PhotoF . 

The remaining photodegraded C from surface structural flows into surface metabolic 

(Adair et al. 2015). Since there is no metabolic standing dead pool, the remaining photodegraded 

C from standing dead flows back to standing dead (Adair et al. 2015). The associated N flows 

are still determined using the DayCent strategies summarized by Bonan et al. (2013).  

In DayCent-UV, the decomposition rate of the surface metabolic is still the product of its 

current pool size ( MetabolicC ), its base decomposition rate (MetabolicBr ), and traditional abiotic 

factors ( MetabolicEr ) such as T, θ, and pH, but is reduced by higher solar radiation via the metabolic 

decomposition reducer (mdr): 
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 ,
C

Metabolic o Metabolic Metabolic MetabolicF C Br Er mdr      (4.11) 

where, mdr is a piecewise linear function as a function of soil surface solar radiation (soilSR ), 

 


4

4
2

2 1

1.0 , 0

0.2 , 3 10

( ) , 0,3 10

soil

soil

soil soil

SR

mdr SR

b a
b x SR SR

x x

           

  (4.12) 

where, b=0.2, a=1.0, x2=3x104, and x1=0.0 are constant parameters. The parameters a and b are 

unitless fractions. The parameters x2 and x1 are in unit KJ (solar radiation, daily). This function 

decreases microbial decomposition from a maximum when 0soilSR  to a minimum ,
C

Metabolic oF

when soilSR is high (Adair et al. 2015). The respiration rate of the flow is between 0.4 and 0.55. 

The rest C in the flow still goes into the surface SOM1. The associated N flow is still determined 

using the DayCent strategies summarized by Bonan et al. (2013). 

In DayCent-UV, the turnover rates of surface active and the surface slow are increased by 

higher solar radiation (as a microbial inhibitor) (Adair et al. 2015). The mechanism is 

implemented via the microbial turnover rate increaser (mti). mti is a piecewise linear function as 

a function of the soil surface solar radiation (soilSR ): 

 


4

4
3

4 3

1.0 , 0

5.0 , 3 10

( ) , 0,3 10

soil

soil

soil soil

SR

mti SR

d c
c SR x SR

x x

          

  (4.13) 
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where, c=1.0, d=5.0, x4=3x104, and x3=0.0 are constant parameters. The parameters c and d are 

unitless fractions. The parameters x4 and x3 are in unit KJ (solar radiation, daily). This function 

increases microbial turnover and N release from a minimum at 0soilSR  to a maximum at high

soilSR (Adair et al. 2015). 
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APPENDIX 4.C ESTIMATION OF (CANOPY LEVEL) SOLAR RADIATION FROM DAILY 

MAXIMUM AND MINIMUM TEMPERATURES 

 
 
 

The solar radiation is an important weather parameter in DayCent. In the water-flow 

submodel, solar radiation is used in calculation of snow melt. In the photosynthesis submodel, 

total solar radiation is used to estimate the photosynthetically active radiation (PAR) and PAR is 

used as a light effect to calculate the potential photosynthesis. The potential photosynthesis is a 

function of AMAX, four AMAX scalars, and effects of temperature, vapor pressure deficit, and 

light. In the production submodel, solar radiation is used in calculation of potential total 

production of crops or trees. In the decomposition submodel (of the UV version of Daycent), 

solar radiation induces direct CO2 loss from surface litter and impacts the sizes and flows of 

surface pools.  

DayCent adopts the solar radiation estimation codes from the SIPNET model. The 

algorithm is a reformulation of the Bristow-Campbell model, which uses daily temperature, 

humidity, and precipitation in daily solar radiation estimation (Thornton and Running, 1999; 

Bristow and Campbell, 1984). 

The daily total solar radiation on canopy top (srad ) is the sum of the daily diffuse 

horizontal solar radiation ( 2srad ), the daily direct solar radiation ( 1srad ), and the snow pack 

influence factor (snowc ): 

 2 1srad srad srad snowc     (4.14) 

where, snowc is a linear function of snow water and its value is within [0, 100];2srad and 1srad

are calculated by 
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  ,max ,max

,max ,max

2

1 1

Horiz
pot t f dif sky

slp
pot t f dif

srad SR T T P f

srad SR T T P

    
       (4.15) 

where, ,maxtT is the daily maximum transmittance corrected for vapor pressure; ,maxfT is the 

correction factor of ,maxtT  as a function of daily temperature range (T ) and precipitation. difP is 

the fraction of the diffuse component in total solar radiation. skyf is the parameter that adjusts the 

diffuse component when the site surface is not horizontal. For a horizontal site, 1skyf  . Horiz
potSR is 

the daily potential solar radiation on the horizontal surface at the top of atmosphere. slp
potSR is the 

daily potential solar radiation on the tilted surface at the top of atmosphere.  

The three daily variables,maxtT , Horiz
potSR  and slp

potSR are calculated using accumulated 

variables at every time step (600 seconds) during daytime.  

At each time step ii, three important instantaneous variables are calculated: 

(a) the instantaneous total solar radiation on the horizontal surface at the top of atmosphere 

( ,Horiz TOA
iiSR ) is calculated from solar constant (1368 W/m2), day of year, and solar zenith angle;  

(b) the instantaneous total solar radiation on the tilted surface at the top of atmosphere (,Slp TOA
iiSR ) 

is calculated from solar constant, day of year, solar zenith angle, slope, and aspect; and 

(c) the instantaneous maximum transmittance at the site (iiT ) is 0.87 corrected by site elevation 

and solar zenith angle; the instantaneous maximum solar radiation reaching the horizontal 

surface at the top of canopy ( , ,Horiz GRD pot
iiSR ) are the product of ,Horiz TOA

iiSR  and iiT .   

The accumulated ,Horiz TOA
iiSR , ,Slp TOA

iiSR , and , ,Horiz GRD pot
iiSR in the day are ,Horiz TOASR , 

,Slp TOASR , and , ,Horiz GRD potSR , respectively.  

The daily maximum transmittance ,maxtT is calculated by 
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 , , ,
,max /Horiz GRD pot Horiz TOA

tT SR SR   (4.16) 

The daily potential solar radiation on the horizontal surface at the top of atmosphere 

( Horiz
potSR ) is calculated by 

 , /Horiz Horiz TOA
potSR SR dayl   (4.17) 

where, dayl is the daytime length of the given day in seconds. 

The daily potential solar radiation on the tilted surface at the top of atmosphere (slp
potSR ) is 

calculated by 

 , /slp Slp TOA
potSR SR dayl   (4.18) 
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APPENDIX 4.D LIST OF IMPORTANT CHANGES TO DAYCENT INPUT PARAMETERS 

(CPER) 

 
 
 

category Var. Name 
Default 
Value 

Adjusted 
Value 

Meaning 

Solar  
Radiation 

[sitepar.in]    
sradadj(1) 0.42 1.39 Solar radiation monthly adjustment coefficients (January) 
sradadj(2) 0.5 1.33 Solar radiation monthly adjustment coefficients (February) 
sradadj(3) 0.53 1.24 Solar radiation monthly adjustment coefficients (March) 
sradadj(4) 0.57 1.22 Solar radiation monthly adjustment coefficients (April) 
sradadj(5) 0.62 1.25 Solar radiation monthly adjustment coefficients (May) 
sradadj(6) 0.69 1.28 Solar radiation monthly adjustment coefficients (June) 
sradadj(7) 0.71 1.28 Solar radiation monthly adjustment coefficients (July) 
sradadj(8) 0.66 1.27 Solar radiation monthly adjustment coefficients (August) 
sradadj(9) 0.58 1.28 Solar radiation monthly adjustment coefficients (September) 
sradadj(10) 0.52 1.31 Solar radiation monthly adjustment coefficients (October) 
sradadj(11) 0.46 1.38 Solar radiation monthly adjustment coefficients (November) 
sradadj(12) 0.45 1.39 Solar radiation monthly adjustment coefficients (December) 

soil water 
content 

[soils.in]    
Col. 4 L1 0.25 0.16 Field Capacity for soil layer 1 (0-2 cm) 
Col. 4 L2 0.25 0.17 Field Capacity for soil layer 2 (2-5 cm) 
Col. 4 L3 0.21 0.18 Field Capacity for soil layer 3 (5-10 cm) 
Col. 4 L4 0.21 0.18 Field Capacity for soil layer 4 (10-20 cm) 
Col. 4 L5 0.21 0.16 Field Capacity for soil layer 5 (20-30 cm) 
Col. 4 L6 0.21 0.16 Field Capacity for soil layer 6 (30-45 cm) 
Col. 4 L7 0.21 0.16 Field Capacity for soil layer 7 (45-60 cm) 
Col. 4 L8 0.21 0.16 Field Capacity for soil layer 8 (60-75 cm) 
Col. 4 L9 0.21 0.16 Field Capacity for soil layer 9 (75-90 cm) 
Col. 4 L10 0.21 0.16 Field Capacity for soil layer 10 (90-105 cm) 
Col. 4 L11 0.21 0.16 Field Capacity for soil layer 11 (105-120 cm) 
Col. 5 L1 0.08 0.04 Wilting point for soil layer 1 (0-2 cm) 
Col. 5 L2 0.08 0.04 Wilting point for soil layer 2 (2-5 cm) 
Col. 5 L3 0.06 0.04 Wilting point for soil layer 3 (5-10 cm) 
Col. 5 L4 0.06 0.04 Wilting point for soil layer 4 (10-20 cm) 
Col. 5 L5 0.06 0.04 Wilting point for soil layer 5 (20-30 cm) 
Col. 5 L6 0.05 0.04 Wilting point for soil layer 6 (30-45 cm) 
Col. 5 L7 0.07 0.04 Wilting point for soil layer 7 (45-60 cm) 
Col. 5 L8 0.05 0.04 Wilting point for soil layer 8 (60-75 cm) 
Col. 5 L9 0.05 0.04 Wilting point for soil layer 9 (75-90 cm) 
Col. 5 L10 0.05 0.04 Wilting point for soil layer 10 (90-105 cm) 
Col. 5 L11 0.05 0.04 Wilting point for soil layer 11 (105-120 cm) 
Col. 7 L1 0.08 0.01 Fraction of roots in soil layer 1 (0-2 cm) 
Col. 7 L2 0.12 0.02 Fraction of roots in soil layer 2 (2-5 cm) 
Col. 7 L3 0.23 0.10 Fraction of roots in soil layer 3 (5-10 cm) 
Col. 7 L4 0.23 0.23 Fraction of roots in soil layer 4 (10-20 cm) 
Col. 7 L5 0.24 0.24 Fraction of roots in soil layer 5 (20-30 cm) 
Col. 7 L6 0.17 0.17 Fraction of roots in soil layer 6 (30-45 cm) 
Col. 7 L7 0.06 0.06 Fraction of roots in soil layer 7 (45-60 cm) 
Col. 7 L8 0.05 0.05 Fraction of roots in soil layer 8 (60-75 cm) 
Col. 7 L9 0.05 0.05 Fraction of roots in soil layer 9 (75-90 cm) 
Col. 7 L10 0.03 0.03 Fraction of roots in soil layer 10 (90-105 cm) 
Col. 7 L11 0.02 0.02 Fraction of roots in soil layer 11 (105-120 cm) 
Col. 11 L1 0.06 0.03 Minimum volumetric soil water content for soil layer 1 (0-2 cm) 
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Col. 11 L2 0.04 0.02 Minimum volumetric soil water content for soil layer 2 (2-5 cm) 

Col. 11 L3 0.03 0.02 Minimum volumetric soil water content for soil layer 3 (5-10 cm) 

Col. 11 L4 0.03 0.01 Minimum volumetric soil water content for soil layer 4 (10-20 cm) 
Col. 11 L5 0.00 0.00 Minimum volumetric soil water content for soil layer 5 (20-30 cm) 

Col. 11 L6 0.00 0.00 Minimum volumetric soil water content for soil layer 6 (30-45 cm) 
Col. 11 L7 0.00 0.00 Minimum volumetric soil water content for soil layer 7 (45-60 cm) 

Col. 11 L8 0.00 0.00 Minimum volumetric soil water content for soil layer 8 (60-75 cm) 

Col. 11 L9 0.00 0.00 Minimum volumetric soil water content for soil layer 9 (75-90 cm) 
Col. 11 L10 0.00 0.00 Minimum volumetric soil water content for soil layer 10 (90-105 cm) 

Col. 11 L11 0.00 0.00 Minimum volumetric soil water content for soil layer 11 (105-120 cm) 
[fix.100]    

tmelt(2) 0.0026 0.0300 
ratio between degrees above the minimum and cm of snow that 
will melt 

AET 

[sitepar.in]    
dmpflux 8e-6 1e-6 damping factor for soil water flux 

hours_rain 10 20 duration [hours] of each rain event 
[fix.100]    
fwloss(4) 0.7 0.8 scaling factor for potential evapotranspiration 

Live 
Biomass 

[graz.100]    
flgrem 0.10 0.05 fraction of live shoots removed by grazing 

[crop.100]    
curgdys 120.0 70.0 number of days unrestricted growth in a grass/crop system 
clsgres 0.5 0.8 late season growth restriction factor 

fsdeth(1) 0.20 0.04 maximum monthly shoot death rate at very dry soil conditions 
fsdeth(2) 0.70 0.99 fraction of shoots which die during senescence month 

prdx(1) 1.0 0.3 
coefficient for calculating potential production [NPP] as a 
function of solar radiation at canopy level 

wscoeff(1,1) 0.45 0.60 
the relative water content at which the water stress factor for 
growth equals 0.5 

wscoeff(1,2) 9.0 25.0 the slope term for water stress function for growth 

claypg 6 7 
number of soil layers used to determine water and mineral 
nutrients that are available for crop/grass growth 

[sgs.100]    

epnfa(1) 0.05 0.45 
the intercept term for determining the effect of annual 
precipitation on atmospheric N fixation 

epnfa(2) 0.0048 0.0060 
the slope term for determining the effect of annual precipitation 
on atmospheric N fixation 

[cult.sch]    
cultra(1) 0.99 0.64 fraction of aboveground live transferred to standing dead 

NEE 

[crop.100]    

amax(1) 50.0 20.0 
maximum photosynthesis rate without any stress (nmol CO2/ g 
leaf/ sec) 

amaxscalar2(1) 1.0 1.4 the 2nd amax multiplier 
amaxscalar3(1) 1.0 1.0 the 3rd amax multiplier 
amaxscalar4(1) 1.0 0.0 the 4th amax multiplier 
growthdays2(1) 25 60 number of days after germination to start using amaxscalar2(1) 
growthdays3(1) 65 150 number of days after germination to start using amaxscalar3(1) 
growthdays4(1) 105 175 number of days after germination to start using amaxscalar4(1) 
basefolrespfrac

(1) 
0.1 0.6 

basal foliage respiration rate, as percentage of maximum net 
photosynthesis rate 

ckmrspmx(1) 0.1524 0.0762 
maximum fraction of aboveground live C that goes to 
maintenance respiration for crops 

ckmrspmx(2) 0.2320 0.8000 
maximum fraction of juvenile live fine root C that goes to 
maintenance respiration for crops 

ckmrspmx(3) 0.0728 0.3000 
maximum fraction of mature live fine root C that goes to 
maintenance respiration for crops 

ps2mrsp(1) 0.50 0.25 fraction of photosynthesis that goes to maintenance respiration 

Others 
[fix.100]    

varat21(1,1) 15.0 20.0 maximum C/N ratio for material entering surface SOM2 
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pmco2(1) 0.55 0.40 
fraction of C flow from surface metabolic during 
decomposition that is lost as CO2 

pmco2(2) 0.55 0.40 
fraction of C flow from soil metabolic during decomposition 
that is lost as CO2 

ps1co2(1) 0.45 0.70 
the multiplier regulating the amount of CO2 loss when surface 
structural decomposes to surface som1 

ps1co2(2) 0.55 0.60 
the multiplier regulating the amount of CO2 loss when soil 
structural decomposes to soil som1 

[crop.100]    

cfrtcn(1) 0.7 0.6 
maximum fraction of C allocated to roots under maximum 
nutrient stress 

cfrtcn(2) 0.4 0.3 
minimum fraction of C allocated to roots under no nutrient 
stress 

cfrtcw(1) 0.7 0.6 
maximum fraction of C allocated to roots under maximum 
water stress 

cfrtcw(2) 0.4 0.3 minimum fraction of C allocated to roots under no water stress 

rdrj 0.7 0.3 
maximum juvenile fine root death rate at very dry soil 
conditions 

rdrm 0.056 0.090 
maximum mature fine root death rate at very dry soil 
conditions 

rdsrfc 0.14 0.00 
the fraction of dead fine roots transferred into the surface litter 
pools 

cmix 0.25 3.00 rate of mixing surface SOM2 and soil SOM2 
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APPENDIX 4.E PARAMETER LIST OF SHORTGRASS STEPPE (CPER) IN CROP.100 

 
 
 

Name Value Name Value Name Value Name Value 

PRDX(1) 0.3 PRBMN(2,2) 0 DEL13C 27 WSCOEFF(1,2) 25 

PPDF(1) 27 PRBMN(3,2) 0 CO2IPR 1.1 PS2MRSP(1) 0.25 

PPDF(2) 45 PRBMX(1,1) 50 CO2ITR 0.65 SFAVAIL(1) 0.15 

PPDF(3) 1 PRBMX(2,1) 420 CO2ICE(1,1,1) 1.3 AMAX(1) 20 

PPDF(4) 2.5 PRBMX(3,1) 420 CO2ICE(1,1,2) 1 AMAXFRAC(1) 0.75 

BIOFLG 1 PRBMX(1,2) 0 CO2ICE(1,1,3) 1 AMAXSCALAR1(1) 1 

BIOK5 60 PRBMX(2,2) 0 CO2ICE(1,2,1) 1.3 AMAXSCALAR2(1) 1.4 

PLTMRF 1 PRBMX(3,2) 0 CO2ICE(1,2,2) 1 AMAXSCALAR3(1) 1 

FULCAN 100 FLIGNI(1,1) 0.02 CO2ICE(1,2,3) 1 AMAXSCALAR4(1) 0 

FRTCINDX 1 FLIGNI(2,1) 0.0012 CO2IRS 1 ATTENUATION(1) 0.57999 

FRTC(1) 0.7 FLIGNI(1,2) 0.26 CKMRSPMX(1) 0.07621 BASEFOLRESPFRAC(1) 0.6 

FRTC(2) 0.3 FLIGNI(2,2) -0.0015 CKMRSPMX(2) 0.8 CFRACLEAF(1) 0.45 

FRTC(3) 90 FLIGNI(1,3) 0.26 CKMRSPMX(3) 0.3 DVPDEXP(1) -0.48 

FRTC(4) 0.2 FLIGNI(2,3) -0.0015 CMRSPNPP(1) 0 DVPDSLOPE(1) 2.457 

FRTC(5) 0.1 HIMAX 0 CMRSPNPP(2) 0 GROWTHDAYS1(1) 1 

CFRTCN(1) 0.6 HIWSF 0 CMRSPNPP(3) 2 GROWTHDAYS2(1) 60 

CFRTCN(2) 0.3 HIMON(1) 0 CMRSPNPP(4) 0.25 GROWTHDAYS3(1) 150 

CFRTCW(1) 0.6 HIMON(2) 0 CMRSPNPP(5) 6 GROWTHDAYS4(1) 175 

CFRTCW(2) 0.3 EFRGRN(1) 0.5 CMRSPNPP(6) 4 HALFSATPAR(1) 17.28 

BIOMAX 200 EFRGRN(2) 0.5 CGRESP(1) 0.23 LEAFCSPWT(1) 270 

PRAMN(1,1) 20 EFRGRN(3) 0.5 CGRESP(2) 0.23 PSNTMIN(1) 4 

PRAMN(2,1) 390 VLOSSP 0.04 CGRESP(3) 0.23 PSNTOPT(1) 24 

PRAMN(3,1) 340 FSDETH(1) 0.04 NO3PREF(1) 0.5   

PRAMN(1,2) 60 FSDETH(2) 0.99 CLAYPG 7   

PRAMN(2,2) 390 FSDETH(3) 0.2 CMIX 3   

PRAMN(3,2) 340 FSDETH(4) 150 TMPGERM 10   

PRAMX(1,1) 30 FALLRT 0.2 DDBASE 1500   

PRAMX(2,1) 440 RDRJ 0.3 TMPKILL 7   

PRAMX(3,1) 440 RDRM 0.09 BASETEMP(1) 10   

PRAMX(1,2) 80 RDSRFC 0 BASETEMP(2) 30   

PRAMX(2,2) 440 RTDTMP 2 MNDDHRV 100   

PRAMX(3,2) 440 CRPRTF(1) 0.3 MXDDHRV 200   

PRBMN(1,1) 40 CRPRTF(2) 0 CURGDYS 70   

PRBMN(2,1) 390 CRPRTF(3) 0 CLSGRES 0.8   

PRBMN(3,1) 340 MRTFRAC 0.05 CMXTURN 0.12   

PRBMN(1,2) 0 SNFXMX(1) 0 WSCOEFF(1,1) 0.6   
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APPENDIX 4.F A BRIEF DESCRIPTION OF THE LOCAL OPTIMIZER USED IN THE 

OPTIMIZATION 

 
 
 

The gradient based non-linear optimizer for this study is provided by Intel Math Kernel 

Library. It uses the trust-region algorithm and its implementation is based on Intel’s internal 

modification of the algorithm described in Conn et al. (2000).  

The trust region algorithm (Conn et al. 2000) uses an iterative optimization strategy. In 

each iterationk , the algorithm defines the trust region that covers all points within the radius of 

k from the current trail pointkx . Then, it constructs a quadratic model function km to simulate 

the objective function centered atkx : 

     1
( )

2
T T

k k k km p f x f x p p B p     (4.19) 

where, f  is the objective function, f is the gradient off , kB is some symmetric matrix and p

is a step from kx . Then, the algorithm solves the following sub-problem of km  to get the kp that 

reduces the objective function most within the current trust region radius k : 

     1
min ( ) . .

2n

T T
k k k k k

p R
m p f x f x p p B p s t p        (4.20) 

If k  is small enough, km always represents the objective function well. In such case, the 

solution of Eq. (4.20), kp  , is guaranteed to be of high quality and moving along it leads to a 

better trial point. But kp is small at each iteration, it will take many iterations to get to the 

optimum. If  k  is too large, km may represent the objective function poorly and there is no 

guarantee that the solution of Eq. (4.20), kp  , leads to a better trial point. Therefore, it is 
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necessary to evaluate the quality of the model km  at its solution kp at each iteration. The 

algorithm uses the ratio (k ) to determine the quality of km  at iterationk : 

 
      0

k k k
k

k k k

f x f x p

m m p
      (4.21) 

A value of k  close to 1 (e.g. 0.75k  )  means that the current model km  represents 

the objective function f around kx  well. It suggests 1k  should be expanded (e.g. 1 2k k   ) 

to allow a more efficient optimization and the trial point should be updated (1k k kx x p   ). On 

the other hand, a value of k far away from 1 (e.g. 0.25k  ) means that km  does not agree 

with f well. It suggests 1k  should be reduced to get a more reliable step (e.g. 1 1 2k k   ) 

and the trial point should not be updated (1k kx x  ). An intermediate value of k  (e.g. 

0.25 0.75k  ) means that the performance of km is merely acceptable. It suggests 1k  keeps 

the same as k and the trial point should be updated (1k k kx x p   ). 

Nocedal and Wright (2006) gives four methods/strategies for solving Eq. (4.20). Three of 

them, the dogleg method (Powell, 1970), the two-dimensional subspace minimization (Byrd et 

al., 1988), and the Steihaug strategy (Steihaug, 1983), provide approximate solutions. The last 

one, Moré and Sorensen (1983), finds a “nearly exact” solution. The approximate solutions are 

less costly to be found since they require fewer matrix factorizations than the exact solution. 

They all achieve reduction no less than the Cauchy point, which is a point between kx  and the 

edge of the current trust region along the opposite of the current gradient direction kf x . 

There is a section in Chapter 10 in Conn et al. (2000) that discusses the extension of the 

standard trust region to handle problems of the objective function with dynamic accuracy. It is 

not clear whether Intel’s implementation has considered this extension in its current version. 
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However, the trust region algorithm is relatively robust even if the objective function contains 

noise (Carter, 1993). 

If there are discrete variables to be optimized, it is not guaranteed that treating them like 

real variables and rounding the solutions to the nearest integers gives the optimal result. This 

kind of problem (e.g. an integer programming problem) should be solved with a certain discrete 

optimization algorithm (Nocedal and Wright, 2006). 

In general, the problem the Intel non-linear optimizer solves is stated as follows12: 

 
2 2

2 2
min ( ) min ( )

n nx R x R
Q x o q x     (4.22) 

Where, 
2

2
( )Q x is the objective function [f  in Eq. (4.19)]; : n mq R R  represents the 

model (e.g. the DayCent-UV model); m is the dimension of the model outputs and n is the 

number of model variables,m n ; mo R are the observed values at x ; nx R are the model 

variables andi i il x u  , 1,...,i n .  

The solver stops (and returns the current trial point) when one of the following criteria is 

met13: (1) The allowed maximum number of iterations has been reached; (2) the trust region   is 

smaller than a given threshold; (3) 
2

( )Q x  is smaller than a given threshold; (4) Jacobi matrix 

( ( )J x ) is singular; (5) the step kp  is smaller than a given threshold; or (6) 

2 2
( ) ( ) ( ) kQ x Q x J x p  is smaller than a given threshold. Note that Jacobi matrix,( )J x , is an 

m by n matrix and contains the gradients of each ( )Q x  at x . 

                                                 
12 https://software.intel.com/en-us/node/522089#4EA75446-AA99-423C-B497-
00D86E1CDEFE 
13 https://software.intel.com/en-us/node/522092#2C032A38-A85C-4468-86F4-BA2B486D02D6 
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The solver only gives local optimal solution; however, if the initial point is close to the 

global optimum, its local optimal solution is very likely to be near the global optimum. 

 

Literature Cited 

Byrd R H, Schnabel R B, Schultz G A (1988), Approximate solution of the trust regions problem 
by minimization over two-dimensional subspaces. Mathematical Programming, 40(3): 
247–263 

Carter R G (1993), Numerical experience with a class of algorithms for nonlinear optimization 
using inexact function and gradient information. SIAM Journal on Scientific and 
Statistical Computing, 14(2): 368–388 

Conn A R, Gould N I M, Toint Ph L (2000), Trust-Region Methods. SIAM/MPS Series on 
Optimization, SIAM, Philadelphia 

Moré J J, Sorensen D C (1983), Computing a trust region step. SIAM Journal on Scientific and 
Statistical Computing, 4(3): 553–572 

Nocedal J, Wright S J (2006), Numerical optimization. 2nd ed. New York: Springer 

Powell M J D (1970), A Hybrid Method for Nonlinear Equations (Chap 6) and A Fortran 
Subroutine for Solving systems of Nonlinear Algebraic Equations (Chap 7). In P 
Rabinowitz (Ed.), Numerical Methods for Nonlinear Algebraic Equations (pp. 87–161). 
London: Gordon and Breach Science Publishers 

Steihaug T (1983), The conjugate gradient method and trust regions in large scale optimization. 
SIAM Journal on Numerical Analysis, 20: 626–637



 
183 

CONCLUSIONS 
 
 
 

Incorporating a solar UV decomposition mechanism into biogeochemical models is 

important for exploring the model’s ecological impacts in semi-arid ecosystems. Accurate 

ground solar radiation is critical for retrieving atmospheric properties, validating satellite 

products and simulating ecosystem processes. The dissertation is separated into two parts, both 

focused on the improvement of the performance of the DayCent model. 

The primary objective of the first part is to improve the accuracy and reliability of the 

current main calibration method for (UV) Multi-Filter Rotating Shadowband Radiometer 

(MFRSR) observations.  

The USDA UVMRP has adopted the in-situ calibration method due to the high cost of 

providing continuous laboratory lamp calibrations. In reviewing the literature regarding in-situ 

calibration methods of MFRSR measurements as described in chapter 1, I found that (1) In-situ 

calibration methods requiring collocated measurements in addition to MFRSR voltages and solar 

geometries (such as aerosol optical depth or total-sky-imaging) are not applicable to most sites 

for the U.S. Department of Agriculture UV-B Monitoring and Research Program (the UV-B 

program); (2) the strategy of limiting the cloud screening algorithm to examination of the 

voltages measured in short local time intervals is the main reason for the poor performance of the 

original algorithm and no alternative algorithms are applicable for voltage data; and (3) 

Generally, in-situ calibration methods rely on stability assumptions of some atmospheric 

properties (such as total optical depth, aerosol extinction efficiency, and precipitable water 

vapor) over time, which are not always valid. Both points (2) and (3) result in dispersed 
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responsivity coefficients with large time gaps and lower quality of radiation and derived 

products. 

A new cloud screening algorithm for narrowband direct-beam UV MFRSR 

measurements is developed in chapter 2. The mathematical basis of this algorithm is Beer’s law. 

Voltage measurements are reorganized to a converted coordinate system that emphasizes the 

relative magnitude of the measurements’ total optical depth (TOD). Using a special weighting 

design, we are able to compare any time target measurement’ TOD with the weighted average 

TOD of any other pair points in any time or airmass range on the day when the calibration 

coefficient ( LOV ) for the day is unknown. Through iteration of this process, cloudy points are 

gradually excluded and the cloud-free points set is eventually determined. The performance of 

the new cloud screening method was verified with the model simulation. The Langley voltage 

offsets ( LOV s) obtained from cloud-free points identified by the new cloud screening were 

compared to those obtained using the original Langley program. The newly identified cloud-free 

points showed nearly same aerosol optical depth as those in the extended clear-sky periods in the 

testing case, suggesting the points in the transitional region and short intervals were also clear-

sky points. The results at the relatively clear site at Mauna Loa Observatory, HI showed that 

values of LOV s from partly cloudy days were not biased in comparison to those from sunny days. 

The results at the cloudy site at Homestead, FL showed that 56% more LOV s were identified with 

the new cloud screening method than with the original Langley program. This is an especially 

valuable result as calibration at some sites is challenging for extended cloudy periods especially 

in wintertime. All these results demonstrated that the new cloud screening algorithm is more 

capable of screening cloudy points while retaining clear-sky points than the original method 

which has been used over the entire history of the UVMRP.  
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In chapter 3, a new two-stage reference spectral channel calibration method is developed 

for pairs of collocated UV-MFRSR and MFRSR instruments. The new method is improved from 

the original Langley method. Its main advantage is that the assumption of participating points for 

Langley regression having stable TOD values is ensured without additional measurements. In 

stage 1, special channels where aerosol is the only contributor to TOD variation (e.g. 368-nm 

channel) were selected. Next, a lookup table of the direct normal and diffuse horizontal ratio 

with respect to aerosol optical depth and solar zenith angle at the special channel created using 

the radiative transfer model (MODTRAN). The quality of LOV s was established by giving lower 

weights to those generated from points with monotonic variation in aerosol optical depth (AOD). 

In stage 2, the most stable points in 1 or 2 reference channel(s) were selected and Langley 

regression was applied on the same time points to generate LOV s in the adjacent un-calibrated 

channel(s). The test of this method on the UV-B program site at Homestead, Florida (FL02) 

showed that (1) The long-term trend of the original Langley LOV s is impacted by the monotonic 

changing AOD at the 368nm channel; (2) more clustered and abundant LOV s at all channels are 

generated compared using the new Langley method; and (3) the new method showed over 10% 

mean difference of LOV s compared to the original Langley method at 300-nm and 305-nm 

channels. 

In the first part, I identified the two major problems of the current calibration method for 

(UV-) MFRSR and provided the corresponding solutions. The results showed that the new cloud 

screening algorithm and the new calibration method together improved the accuracy and reduced 

the uncertainty of calibration. These findings suggest that the new calibration method should be 

validated at more sites that feature collocated radiation, aerosol, and ozone measurements. 
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The primary objective of the second part (chapter 4) is to modify and validate the UV 

decomposition module in the DayCent biogeochemical model and to explore the potential long-

term impacts of UV decomposition on ecosystem processes in (semi-)arid ecosystems, such as 

plant production, carbon and nitrogen storage in litter and soil, and trace gas emissions.  

First, the DayCent-UV model parameters were adjusted to match ecosystem parameters 

at a calibration site. Second, the model was configured to simulate the LIDET decomposition 

experiment in 1990s for six common litter types at the three semi-arid sites. A subset of the 

photodegradation related parameters were optimized for each species individually and across 

species by the global optimization algorithm that combined scatter search and nonlinear trust 

region optimization algorithms. Third, the relationship between photodegradation and initial 

litter chemistry (especially lignin content) was explored and the pattern found between litter’s 

initial lignin content and its potential photodecomposition rate was implemented in the DayCent-

UV model. The results showed that the calibrated DayCent-UV model fitted the major patterns 

in observed first 20-cm soil water content, aboveground live biomass, and actual 

evapotranspiration (R2 between 0.44 and 0.50) but missed some CO2 spikes after heavy rain 

events in the observed net ecosystem exchange (R2 = 0.23). Generally, the optimized DayCent-

UV model fitted the observed remaining carbon vs time pattern well for both individual species 

and across species averages at three (semi-)arid LIDET sites and predicted the observed general 

pattern of nitrogen release with time. However, the model showed larger discrepancy on 

remaining nitrogen vs time for individual species, suggesting that some mechanisms of 

photodegradation on nitrogen dynamics may be missing. The slight overestimation of carbon 

release in the early stage (i.e. the first few years) and the underestimation in the later stage 

suggested that the cumulative effect of solar exposure should be considered. The DayCent-UV 
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model fitted the LIDET remaining carbon and nitrogen observation much better than the 

DayCent-Photosyn model (no UV decomposition module) especially in the later stage. The 

negative relationship between litter’s initial lignin fraction and the individually optimized 

photodecay rate suggested that cellulose rather than lignin may be the chemical compound that is 

responsible for UV degradation. The DayCent-UV equilibrium model runs showed that UV 

decomposition increased aboveground and belowground plant production, surface net nitrogen 

mineralization, and surface litter nitrogen pool, while decreased surface litter carbon, soil net 

nitrogen mineralization and mineral soil carbon and nitrogen. In addition, UV decomposition 

showed minimal impacts (i.e. less than 1% change) on trace gases emission and biotic 

decomposition rates. 

In the future, the parameterization of surface UV radiation from total solar radiation as 

well as other meteorological data should be incorporated into the DayCent-UV model. The effect 

of cumulative UV radiation exposure on photodegradation should be implemented in DayCent-

UV model.  

 


