Repository logo
 

Hypothesis-based machine learning for deep-water channel systems

dc.contributor.authorVento, Noah Francis Ryoichi, author
dc.contributor.authorStright, Lisa, advisor
dc.contributor.authorRonayne, Michael, committee member
dc.contributor.authorAnderson, Charles, committee member
dc.date.accessioned2020-06-22T11:52:59Z
dc.date.available2020-06-22T11:52:59Z
dc.date.issued2020
dc.description.abstractMachine learning algorithms are readily being incorporated into petroleum industry workflows for use in well-log correlation, prediction of rock properties, and seismic data interpretation. However, there is a clear disconnect between sedimentology and data analytics in these workflows because sedimentologic data is largely qualitative and descriptive. Sedimentology defines stratigraphic architecture and heterogeneity, which can greatly impact reservoir quality and connectivity and thus hydrocarbon recovery. Deep-water channel systems are an example where predicting reservoir architecture is critical to mitigating risk in hydrocarbon exploration. Deep-water reservoirs are characterized by spatial and temporal variations in channel body stacking patterns, which are difficult to predict with the paucity of borehole data and low quality seismic available in these remote locations. These stacking patterns have been shown to be a key variable that controls reservoir connectivity. In this study, the gap between sedimentology and data analytics is bridged using machine learning algorithms to predict stratigraphic architecture and heterogeneity in a deep-water slope channel system. The algorithms classify variables that capture channel stacking patterns (i.e., channel positions: axis, off-axis, and margin) from a database of outcrop statistics sourced from 68 stratigraphic measured sections from outcrops of the Upper Cretaceous Tres Pasos Formation at Laguna Figueroa in the Magallanes Basin, Chile. An initial hypothesis that channel position could be predicted from 1D descriptive sedimentologic data was tested with a series of machine learning algorithms and classification schemes. The results confirmed this hypothesis as complex algorithms (i.e., random forest, XGBoost, and neural networks) achieved accuracies above 80% while less complex algorithms (i.e., decision trees) achieved lower accuracies between 60%-70%. However, certain classes were difficult for the machine learning algorithms to classify, such as the transitional off-axis class. Additionally, an interpretive classification scheme performed better (by around 10%-20% in some cases) than a geometric scheme that was devised to remove interpretation bias. However, outcrop observations reveal that the interpretive classification scheme may be an over-simplified approach and that more heterogeneity likely exists in each class as revealed by the geometric scheme. A refined hypothesis was developed that a hierarchical machine learning approach could lend deeper insight into the heterogeneity within sedimentologic classes that are difficult for an interpreter to discern by observation alone. This hierarchical analysis revealed distinct sub-classes in the margin channel position that highlight variations in margin depositional style. The conceptual impact of these varying margin styles on fluid flow and connectivity is shown.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierVento_colostate_0053N_16039.pdf
dc.identifier.urihttps://hdl.handle.net/10217/208498
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2020-
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.titleHypothesis-based machine learning for deep-water channel systems
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineGeosciences
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Vento_colostate_0053N_16039.pdf
Size:
7.89 MB
Format:
Adobe Portable Document Format