THESIS

HYPOTHESIS-BASED MACHINE LEARNING FOR DEEP-WATER CHANNEL SYSTEMS

Submitted by
Noah Francis Ryoichi Vento

Department of Geosciences

In partial fulfillment of requirements
For the Degree of Master of Science
Colorado State University
Fort Collins, Colorado

Spring 2020

Master’s Committee:
Advisor: Lisa Stright

Michael Ronayne
Charles Anderson

Copyright by Noah Francis Ryoichi Vento 2020

All Rights Reserved

ABSTRACT

HYPOTHESIS-BASED MACHINE LEARNING FOR DEEP-WATER CHANNEL SYSTEMS

Machine learning algorithms are readily being incorporated into petroleum industry
workflows for use in well-log correlation, prediction of rock properties, and seismic data
interpretation. However, there is a clear disconnect between sedimentology and data analytics in
these workflows because sedimentologic data is largely qualitative and descriptive. Sedimentology
defines stratigraphic architecture and heterogeneity, which can greatly impact reservoir quality and
connectivity and thus hydrocarbon recovery. Deep-water channel systems are an example where
predicting reservoir architecture is critical to mitigating risk in hydrocarbon exploration. Deep-
water reservoirs are characterized by spatial and temporal variations in channel body stacking
patterns, which are difficult to predict with the paucity of borehole data and low quality seismic
available in these remote locations. These stacking patterns have been shown to be a key variable
that controls reservoir connectivity.

In this study, the gap between sedimentology and data analytics is bridged using machine
learning algorithms to predict stratigraphic architecture and heterogeneity in a deep-water slope
channel system. The algorithms classify variables that capture channel stacking patterns (i.e.,
channel positions: axis, off-axis, and margin) from a database of outcrop statistics sourced from
68 stratigraphic measured sections from outcrops of the Upper Cretaceous Tres Pasos Formation
at Laguna Figueroa in the Magallanes Basin, Chile. An initial hypothesis that channel position
could be predicted from 1D descriptive sedimentologic data was tested with a series of machine

learning algorithms and classification schemes. The results confirmed this hypothesis as complex

il

algorithms (i.e., random forest, XGBoost, and neural networks) achieved accuracies above 80%
while less complex algorithms (i.e., decision trees) achieved lower accuracies between 60%-70%.
However, certain classes were difficult for the machine learning algorithms to classify, such as the
transitional off-axis class. Additionally, an interpretive classification scheme performed better (by
around 10%-20% in some cases) than a geometric scheme that was devised to remove
interpretation bias. However, outcrop observations reveal that the interpretive classification
scheme may be an over-simplified approach and that more heterogeneity likely exists in each class
as revealed by the geometric scheme. A refined hypothesis was developed that a hierarchical
machine learning approach could lend deeper insight into the heterogeneity within sedimentologic
classes that are difficult for an interpreter to discern by observation alone. This hierarchical
analysis revealed distinct sub-classes in the margin channel position that highlight variations in
margin depositional style. The conceptual impact of these varying margin styles on fluid flow and

connectivity is shown.

il

ACKNOWLEDGEMENTS

This work is a culmination of geologic research conducted by the Chile Slope Systems
(CSS) Joint Industry Project, which is a collaboration between the University of Calgary, Colorado
State University, Virginia Tech, and industry partners: Chevron, Repsol, Hess, Nexen/CNOOC,
ConocoPhillips, BHP Billiton, Anadarko, Equinor, Petrobras, and Shell. Fieldwork, data
collection, and interpretation were performed by Brian Romans, Steve Hubbard, Ryan Macauley,
Sean Fletcher, and Sarah Southern. The starter neural network code in Python was written by
Chuck Anderson, and the MATLAB digitizer code was written by Zane Jobe. Special thanks to
both of them for their discussions, expertise, and guidance on bridging the gap between data
science and geology. Lastly, thanks to Lisa Stright for her continuous support and assistance

throughout this project. Without her insight, this project would not have been possible.

v

TABLE OF CONTENTS

ABSTRACT ...ttt ettt ettt et e e bt e b et st e e bt e et e nbeesaneenneeeas i
ACKNOWLEDGEMENTS ...ttt sttt st sbt e st e st e e iv
CHAPTER 1: RESEARCH MOTIVATION.....cootiiiiiiiieeeeeeee et 1
L1 INEPOAUCTION ..ttt ettt et et e st e et e e eabe e e enteesaeeesaeee 1
1.2 STUAY OVEIVIEW ..ttt sttt sttt e st e e e sn e st esaeeemneeaee 4
1.3 Machine Learning in Petroleum GEOSCIENCEc.eeeriiiiriiiiriiieeiiieeeiieeeieeeiee e 6
1.4 Thesis FOIMAL.coouiiiiiiiiiiiieeee ettt ettt e 8
CHAPTER 2: GEOLOGIC BACKGROUND AND DATABASE INTRODUCTION 10
2.1 GEOIOZIC SEUNMEZ....uveieiiieeiiieeiieeeite e ettt e ette e et e e eteeeetbeeesaaeeessseeesaeeensseeansaeesnsaeeanseeensseeennses 10
2.2 Laguna Figueroa Database.........cccueoviiiiiiiiiiiiiiiiei et 15
2.2.1 Channel OULCIOP STALISTICSeevuvieurerirerieenieeteeett et e st eree et et s e e e sneeseeeseneesnee e 15
2.2.1.1 Facies Association PrOPOTITIONSccovieiierieriienieeieenieeieente et 16

22012 N ettt ettt et ettt ettt e s e e bt st enbe e st e e nneeeas 17

2.2.1.3 GIOSS ettt ettt ettt ettt ettt e b e ettt a e et sat e e bt et enbeesteenaeeean 17

2.2. 1.4 NEE-TO-GIOSS «..eeiiiiiieiiieeeite ettt ettt ettt et e st eseaaeeseaaee s 17

2.2.1.5 Drape THICKNESS.ceeecuiieeiiieeiiieeiiiee ettt e eieeeeiteesaaeesbeeesaeeessseeessseeessseeensseesnssees 17

2.2.1.6 Bed Statistics (Count, Minimum, Median, and Maximum)............cccccceevvvvevevennen. 17

2.2.1.7 Amalgamation Ratioccccocuiiiiiiiiiiiiiniieeeeceeecieee e 18

2.2.1.8 Grain Size Distributions and P10, P50, and P90 StatiStiCScovvvvuuveerereeerennnnn. 18

2.2.2 Classification SCREIMEScoouiiiiiiriiiiiiiieeiteeeese et 18
2.2.2.1 FaCI@S-DIIVEN c...coniiiiiiiiiiiiteect ettt 19
2.2.2.2 GEOMCLIIC . c...eeeutteiteeite ettt ettt et ettt et e b e et esab e et e eae e e bt e sabeebeesabeebeesabeenaeeeas 19

2.2.3 Generation Of HYPOThESEScoouiiiiiiiiiiiiiiiiieete et 20
CHAPTER 3: MACHINE LEARNING OVERVIEWooiiiiiiiiiiiieie et 26
3.1 Machine Learning AIZOTTtRIMScooouiiiiiiiiiiiiiiieee e 26
3.1.1 Unsupervised Learningc..ceecuiieeiiiieniieeniieeniieesieeesieeesteeesteeesiseeesereeesineeenaseesnns 26
3.1.1.1 Feature Importance with Principal Component Analysisccceceeerveeerveeennnenn. 26

3.1.1.2 Clustering Analysis with K-Means...........cccceeevieriiiieniiieeieesiie e 27

3.1.2 Supervised LEearningccccueeiuieiiiiiiiiieeieeet ettt ettt st 27
3.1.2.1 DECISION TTEES ...eeeuiiiiiiiiiiiiieeite ettt ettt ettt e e e s 27

3.1.2.2 Discriminant ANalYSIS.....ccouueeriieeriiieeniieeniieeeiee ettt et et eesiree s e e s 28

3.1.2.3 NATVE BAYES ittt ettt et s 28

3.1.2.4 Support VEctor MAChINEScoeviuiiiiiiiiniieeniieerite ettt s 29
3.1.2.5 K-Nearest NeIZNDOTSccccviiiiiiiiiiiieiiieecieeeeee ettt sveeesivee e eeavee s 29
3.1.2.6 Ensemble ClasSifierscoouuiiiiiriiiiiiiiieeiteseeeeste ettt s 30
3.1.2.7 K-Fold Cross-Valldation............coocuiiiiiiiiiiiieniiceieceeececeee et 32
3.1.3 DEEP LEAMING......eeiiuiiiiiiieieiieeeee ettt ettt ettt e et e et e e 34
3.1.3.1 Neural NEtWOTKScooviiiiiiiiiiieeeeete ettt e e 34
3.2 Evaluation MELIICS ..cc.eeeuiiiiiiirieiiieeie ettt sttt ettt e naee e 37
3.2.1 Validation ACCUTACY ...ccccuvieiiiieiiiieeiieesiieesiteesiteesteeesteeesabeeesnbeeesnbeeenabeesnaseeennseesnnes 37
3.2.2 CoNUSION IMAIIX .e.uviiiiiiiiiiiiieiie ettt ettt st s e e beesateesaaeeas 37
323 PrECISTONttt ettt ettt ettt st e bt e et et e e sat e e bt e et e e bee st e enbeeeas 37
BL2A RECAIL ettt et s 38
BL2S F1L U SCOTE .ttt ettt ettt ettt e et e s eab e e e bt e s bt e e eabeeeaee 38
CHAPTER 4: EVALUATING MACHINE LEARNING ALGORITHMS FOR PREDICTION
OF CHANNEL POSITION ...ttt ettt ettt ettt ettt e bt e s esaeesaeees 39
4.1 MEthOAOIOZY ...ttt ettt et sttt et e bt e et e nbeesaeeas 39
A2 RESUILS ...ttt ettt ettt et e sttt e et e et e et e e eaaeeea 39
4.2.1 Unsupervised Learning ReSultsc.cccooviiiiiiiiiiiiiiecceeceece e 39
4.2.1.1 Feature Importance with Principal Component Analysisccoceevveeniercieennnenns 39
4.2.1.2 Clustering Analysis with K-Means............ccceevuiiiiiiiiiiiiniiieeieeieeeeee e 43
4.2.2 Supervised Learning ReSUILS..........coocuiiiiiiiiiiiiiiiiiciieeee et 44
4.2.2.1 Unsupervised vs. Supervised Learning...........cccceevveeerieenriieeniieeeieeeeeesvee e 45
4.2.2.2 Facies-Driven vs. Geometric Classification Schemesc.cccooceeiiiniienieennen. 48
4.2.2.3 Two Positions vs. Three POSIONScooiiiiiiiiiiiiiiieceieceiceeceee e 52
4.2.2.4 Individual Channel POSIIONSeiiiiiiiiiieiiiieeieeeiieeeeeeeiee ettt 52
4.3 Refinement Of HYPOthESESccc.uviiiiiiiiiiiiiie ettt e 54
CHAPTER 5: HIERARCHICAL MACHINE LEARNING ANALYSIS....cccooiiiiiiiiiiiieeeee 57
5.1 MEthOAOIOZY ...ttt ettt e et e et e e st e e ssbaeesntaeesnbeeenbeeennnes 57
5.2 RESUILS ..ttt h e et e h e ettt e et e bt e bt e bt e e bt e bt e et e e naeeens 57
CHAPTER 6: DISCUSSIONottt ettt sttt ettt e it e eabeesaaeeaeeas 64
6.1 Efficacy of Machine Learning Algorithms in Channel Outcrop Analysisc.cccoceeneenee 64
6.2 Variations in Intra-Channel Fill and Impacts on Fluid Flow and Connectivity 67
CHAPTER 7: CONCLUSIONS AND FUTURE WORKcccciiiiiiiiiiiieiceececeeeeceeen 69
7.1 CONCIUSIONS ...ttt ettt ettt et sat e et e et et e st e ebeesateenbeenareas 69
T2 FUUTE WOTK ..coniiiiiiiii ettt ettt 70

vi

7.2.1 Modeling Channel Stacking SCENATIOScceveeueeriirniienieeiieeieeeesee e 70

7.2.2 Classifying Channel Position from Well-Log Data.........cccccceevviiiiniieiniiiniiecieeeee, 70
7.2.3 Automatic Detection of Channel Boundariesccocceevieiiiinieiniinieeniceieeecneen 70
7.2.4 Data AUZMENTALIONveeeevieeriieeeiieeeteeeeieeesteeestteeesteeessaeessseeasseesseeessseesssseeessseesnnses 71
7.2.5 Testing on a Different Deep-Water Channel Systemcccccevviiniiniinnieniceniennen. 71
REFERENCES ...ttt ettt ettt ettt e e st e s s e e aseesee s st entesneesseenseeneenseenes 74
APPENDIX A: LAGUNA FIGUEROA DATABASEoooiiiiiieeeeeee et 82
APPENDIX B: PYTHON CODES.......ccoootitiiiiiiietenteeee ettt ettt 106
APPENDIX C: MACHINE LEARNING RESULTScoiiiiiiiiieienteteeeeeeee e 138

vii

CHAPTER 1: RESEARCH MOTIVATION

1.1 Introduction

Deep-water channel systems transport sediment from the continental shelf to the abyssal
plain. Over time, this process of sediment transport results in channel geobodies that stack both
laterally and vertically, creating ideal reservoirs for hydrocarbon storage. A channel geobody—
also referred to as a channel element—is the fundamental architectural unit in deep-water channel
systems and consists of an incisional channel-form surface and its sediment fill (Figure 1B;
McHargue et al., 2011). Channel geobodies that are genetically related and stack in a consistent
pattern form a channel complex (Figure 1A; McHargue et al., 2011). Multiple genetically related
channel complexes create a channel complex set (Figure 1A; McHargue et al., 2011).

Channel geobodies are commonly divided into different segments based on the position
within the body—axis, off-axis, and margin—and sediment fill can vary across these different
positions due to differences in flow energy (Figure 1B; Southern et al., 2017). The channel axis,
which represents the deepest portion of a channel geobody, experiences higher-energy flows
resulting in deposition of coarser sediment and higher rates of sandstone bed amalgamation
(McHargue et al., 2011; Southern et al., 2017). As flow energy wanes laterally, sediment grain size
decreases and facies become less amalgamated and more heterolithic, resulting in off-axis and
margin channel positions with limited sandstone bed amalgamation (McHargue et al., 2011;
Southern et al., 2017).

The petroleum industry is interested and invested in better understanding these

architectural variations and their subsequent effects on channel stacking patterns in deep-water

®

[] channel Fill

. Mass Transport Deposits |:| Inner Levee Deposits - Outer Levee Deposits

Channel Complex Set Channel Complex

Margin Off-Axis

Axis | Off-Axis.

— p—— 5

Figure 1. (A) Slope channel hierarchy (modified from Daniels (2019)). (B) Conceptual model of
channel geobody with channel positions—axis, off-axis, and margin—Iabeled.

channel systems to improve reservoir characterization (Deptuck et al., 2007) and thus reduce risk
during exploration, development, and production. Characterizing intra- and inter-channel
architecture is critical because it can have significant impacts on reservoir connectivity (Barton et
al., 2010; Alpak et al., 2013; Meirovitz et al., accepted pending revision). However, this
stratigraphic architecture can be difficult to interpret in exploration-scale seismic data (Chopra et

al., 2006; Hart, 2013; Pemberton et al., 2018).

The use of outcrop studies as analogs can help to improve our understanding of facies
distribution and heterogeneity with bed- to geobody-scale field observations and measurements
not commonly available in subsurface data (Macauley and Hubbard, 2013). A wealth of
quantitative data and statistics can be extracted from outcrop analogs and used to test and guide
subsurface interpretation workflows (Southern et al., 2017; Daniels et al., 2019). These
quantitative data can be explored with automated analytical techniques, such as machine learning
and deep learning, which have had a renaissance recently due to improvements in technology and
their usefulness for processing large datasets efficiently (Mohammadpoor and Torabi, 2019).

Machine learning is a subset of artificial intelligence that allows computing systems to
learn and improve without being explicitly programmed (Samuel, 1959). It typically consists of
two steps: training and classification. First, a portion of the data is used to train the machine
learning algorithms to generate classifications. Then, the algorithms are tested on the remaining
data. The algorithms minimize misclassifications by adapting to the properties of the data over
numerous iterations or epochs. Common subdivisions of machine learning include supervised,
unsupervised, and deep learning. In supervised learning, training samples are classified or provided
with their known labels (Kotsiantis et al., 2006). Conversely, in unsupervised learning, algorithms
are provided with unlabeled data and must generate classifications solely based on patterns and
trends (Jain et al., 1999), often referred to as clustering. The final subdivision, deep learning, makes
use of supervised and unsupervised learning techniques but primarily focuses on the
implementation of neural networks, which are algorithms that are modeled after the human brain
(McCaulloch and Pitts, 1943). Neural networks consist of multiple interconnected processing layers
composed of individual units called neurons, which activate based on weights and biases to

generate classifications. Neural networks have been revolutionary in processing image, video,

speech, text, and audio data (Lecun et al., 2015) and are proving to be useful in interpreting
geologic data as well (Cheng et al., 2019; Mohammadpoor and Torabi, 2019; Na and Fox, 2019).
1.2 Study Overview

In this study, we utilize an outcrop database of a deep-water slope channel system to: 1)
test the efficacy of machine learning algorithms in adequately predicting deep-water stacking
patterns from 1D borehole data; and 2) implement a hierarchical machine learning workflow to
explore the differences in intra-channel architecture and how it is interpreted, and highlight its
potential impacts on reservoir connectivity and fluid flow. The database contains over 3,400 meters
in 68 measured sections from deep-water slope channel strata in the Tres Pasos Formation at
Laguna Figueroa in the Magallanes Basin, Chile (Appendix A; Fletcher, 2013; Macauley and
Hubbard, 2013; Southern et al., 2017). The measured section data includes grain size, bed
thickness, and sedimentary structure information, which were used to interpret facies associations
and stratal packages within the upper and lower channel complex sets at Laguna Figueroa. From
these measurements and interpretations, statistics including net-to-gross, channel thickness, facies
proportions, grain size distributions, and amalgamation ratio were calculated for individual
channel geobodies and labeled using different classification schemes for channel position. The
first classification scheme was an interpretive, facies-driven scheme that separates channels into
positions based on expert geologic interpretations made in the field. The second scheme was an
objective, geometric scheme that separates channels into positions based on height above the base
of a channel geobody. This scheme was implemented to account for any internal bias generated by
the interpretations made in the facies-driven scheme.

After the database was established, the gamut of machine learning algorithms—

unsupervised principal component analysis (PCA) and K-means, 26 supervised learners, and a

deep learning neural network—was used to analyze the statistics and generate classifications of
channel position for the different classification schemes while testing hypotheses. The first
hypothesis was that machine learning algorithms can be useful for predicting sedimentologic
classes (1.e., channel position axis, off-axis and margin). Observations show that statistics for axis
and margin are distinct groups and end members, while off-axis statistics appear to be more
intermediate and transitional. The ability of machine learning to differentiate distinct
heterogeneous groups in the margin position, facies that are critical to controlling fluid flow
between channel geobodies (Jackson et al., 2019; Meirovitz et al., accepted pending revision) is
hindered by potential overlapping characteristics with axis and off-axis facies. Furthermore, it is
suspected that facies-driven classification schemes are biased by sedimentologic similarities that
do not necessarily define position in a channel geobody.

Therefore, a refined hypothesis was devised that a hierarchical machine learning approach
could better categorize sub-classes of the data and lend deeper insight into sedimentologic classes
difficult for an interpreter to discern by observation alone and reveal higher degrees of
heterogeneity that are observed in outcrop. The field observations are that different styles of intra-
channel fill architecture exist due to variations in geological genesis, characteristics, and trends in
the outcrop data (Southern et al., 2017). This hierarchical analysis was designed to test for such
sub-classes observed in the field, but difficult to interpret from the data itself.

The results of this study are analyzed to discuss: 1) the use of machine learning algorithms
for outcrop- and core-based studies; 2) differences in intra-channel fill architecture and
heterogeneity; 3) the implications for the impact of channel position prediction on fluid flow and

reservoir connectivity. Additionally, the results motivate future work incorporating machine

learning workflows with diverse datasets and projects to improve predictions in geo-modeling and
well-log analysis.

The term “Big Data” refers to datasets with such high volume, variety, velocity, and
veracity that specialized analytics are required to process them efficiently (Mohammadpoor and
Torabi, 2019). Big Data has become commonplace in many different occupations and disciplines
over the past decade (Chen et al., 2012; Martin-Sanchez and Verspoor, 2014; Mohammadpoor and
Torabi, 2019). With innovations in data acquisition, new technologies, and complex problems, the
oil and gas (O&G) industry is relying on automated analytical techniques, such as artificial
intelligence and machine learning, to process, analyze, and extract useful information from Big
Data in both upstream and downstream projects (Hassani and Silva, 2018; Mohammadpoor and
Torabi, 2019). This study focuses on the application of machine learning to upstream projects,
more specifically, exploration and development of deep-water O&G reservoirs.

Upstream O&G studies of machine learning have commonly applied these analytical
techniques to seismic data for stratigraphic and structural interpretation and facies prediction, and
well-log data for correlation and facies prediction. These are common components of reservoir
characterization and modeling, which guide resource estimation, well placement planning, and
reservoir performance forecasting (Bubnova et al., 2019). Seismic data provide the general
subsurface geology and architecture of an area, allowing interpreters to identify geologic structures
and seismic facies (McHargue and Webb, 1986; Nader et al., 2016). Recent improvements in data
acquisition methods and technologies have resulted in a boost in seismic data availability, which
has resulted in the increased usage of machine learning algorithms (Mohammadpoor and Torabi,

2019). These algorithms have been used to identify subsurface faults from synthetic seismic

volumes (Huang et al., 2017) and also predict seismic facies from 3D broadband seismic
reflectivity data with accuracies of up to 98.3% (Wrona et al., 2018).

Although the benefits of seismic data to any petroleum industry project are profound,
exploration-scale seismic data often does not have the resolution to detect complex heterogeneity
and stratigraphy in the subsurface (Hart, 2013; Pemberton et al., 2018). To mitigate this issue,
well-logs are typically used to interpret facies and stratal packages (Van Wagoner et al., 1990;
Bubnova et al., 2019). Well-logs record the petrophysical responses of subsurface rocks to various
forms of measurements (Asquith et al., 2004). Interpretation of these responses is crucial for
identifying facies and thus correlating subsurface stratigraphy throughout a potential reservoir or
field. However, some fields, particularly older fields that have been developing for a long time,
have numerous wells and logs making it difficult and time-consuming to interpret each thoroughly.
Over the past few years, machine learning algorithms have been successful at aiding in well-log
correlation (Brazell et al., 2019) and facies prediction even in wells with diverse lithologies (Hall,
2016; Bestagini et al., 2017).

Despite these diverse applications of data analytics to the O&G industry, machine learning
algorithms have seldom been used on physical geologic data, such as core, which directly represent
stratigraphic architecture and thus the complex heterogeneity that impacts reservoir quality and
flow rates. The lack of machine learning studies in this realm of upstream O&G is due, in part, to
the inherently qualitative and subjective nature of interpreting core data, whereas interpretation of
seismic and well-log data often appears to be more quantitative because the data is a measured
response from the earth model. However, the addition of physical geologic data and interpretations
can benefit machine learning analyses and improve predictions. In some cases, accuracies of over

83% have been achieved when incorporating detailed petrographic analyses of thin sections and

textural information to well-log studies for facies prediction (Saporetti et al., 2018). Nevertheless,
in a machine learning workflow, it is imperative to have dependable classifications or labels for
the sample data to ensure that uncertainty and error are not being added into the model from the
beginning. Core data is one-dimensional, sparse and often biased due to drilling locations, which
makes it difficult to predict lateral and vertical trends, thus making it impossible to obtain full
certainty in classifications of stratigraphic architecture in a system. However, this study is novel
in that regard as it utilizes measured sections, which are analogous to 1D borehole and core data,
to predict stratigraphic architecture in a deep-water slope channel system. This is made possible
because the deep-water outcrops of the Tres Pasos Formation at Laguna Figueroa in the
Magallanes Basin are world-class. Specifically, outcrops of the Tres Pasos Formation at Laguna
Figueroa provide high-quality 2D to 3D exposure of channelized turbidite deposits (Macauley and
Hubbard, 2013; Southern et al., 2017; Pemberton et al., 2018; Jackson et al., 2019), which allows
for a high degree of confidence in their geologic interpretation and classification. These outcrops
have been studied extensively by a multitude of researchers over a decade of field seasons
(Hubbard et al., 2010; Romans et al., 2011; Macauley and Hubbard, 2013; Hubbard et al., 2018;
Pemberton et al., 2018; Daniels et al., 2019), culminating in a firm understanding of the entire
depositional system and a refined and robust interpretation of the stratigraphic correlation from
element- to system-scale at Laguna Figueroa. This interpretation is the foundation of the extensive
database used to train and test the machine learning algorithms in this study.
1.4 Thesis Format

The remainder of this thesis is partitioned into six main chapters (Chapters 2-7). Chapter 2
discusses the geologic background of the Magallanes Basin, how the database for this study was

constructed and labeled based on measured section data from Laguna Figueroa, and how the

database was analyzed to generate hypotheses for the preliminary machine learning analyses.
Chapter 3 features background information on the machine learning algorithms and methods that
were used in the analyses—as well as the evaluation metrics that were used to assess their
performance. Chapter 4 presents the methodology and results for the preliminary machine learning
analyses and motivates a refinement of hypotheses for the hierarchical machine learning workflow
performed in Chapter 5. Chapter 5 details the methodology for the hierarchical machine learning
workflow and its results. Chapter 6 discusses the results from Chapters 4 and 5 and their
implications for exploration projects. Chapter 7 concludes the work performed in this study and
presents future projects that can use machine learning algorithms and data analytics to extract value

from 1D borehole data.

CHAPTER 2: GEOLOGIC BACKGROUND AND DATABASE INTRODUCTION

2.1 Geologic Setting

The Magallanes Basin in southern Chile records the tectonic evolution of southernmost
South America throughout the Cretaceous (Fildani and Hessler, 2005; Romans et al., 2011; Daniels
etal., 2019). Extension in the Jurassic related to the breakup of Gondwana resulted in the formation
of the Rocas Verdes backarc basin, and subsequent compression related to the Andean Orogeny
resulted in the closure of the Rocas Verdes Basin and the formation of the Magallanes retroarc
foreland basin (Dalziel et al., 1974; Wilson, 1991; Fildani and Hessler, 2005; Fosdick et al., 2011;
Romans et al., 2011).

The Tres Pasos Formation is a progradational slope system (Romans et al., 2009; Hubbard
et al., 2010; Romans et al., 2011; Macauley and Hubbard, 2013) that represents an up to 1500 m
thick section of the overall 4-5 km of deep-water fill that makes up the Magallanes Basin (Covault
etal., 2009; Romans et al., 2009; Romans et al., 2011; Macauley and Hubbard, 2013). This section
is composed of sandstone-rich channels and mudstone-rich mass transport deposits (MTDs) that
overlie the muddy and conglomeratic deposits of the Punta Barrosa and Cerro Toro Formations
and are genetically linked to the shallow marine deltaics of the Dorotea Formation above (Figure
2; Romans et al., 2009; Romans et al., 2011; Macauley and Hubbard, 2013). Notable outcrops of
the Tres Pasos Formation are located in the Ultima Esperanza District of Chile (Figure 2; Hubbard
et al., 2010; Daniels et al., 2019).

Laguna Figueroa is a 2.5 km long, 300 m thick section of the progradational slope system
located north of the town of Puerto Natales (Figure 2). The outcrops at Laguna Figueroa show

high-quality 2D to 3D oblique-dip oriented exposure of channelized turbidite deposits (Macauley

10

and Hubbard, 2013; Southern et al., 2017; Pemberton et al., 2018; Jackson et al., 2019). These
deposits stack to form two channel complex sets—Lower Figueroa and Upper Figueroa. Each
channel complex set is composed of multiple channel complexes and associated channel bodies
(McHargue et al., 2011), which were interpreted extensively by Macauley and Hubbard, 2013. The
lowermost channel complex set is composed of three channel complexes and twelve distinct
channel bodies, and the uppermost is composed of four channel complexes and thirteen distinct
channel bodies (Figure 3).

Macauley and Hubbard (2013) interpreted facies associations for the Laguna Figueroa
outcrops [FA1-FA4] (Figure 4C), which include: thick-bedded, highly amalgamated sandstone
(FAT); thick- to thin-bedded, semi-amalgamated sandstone and siltstone (FA2); thick- to thin-
bedded, largely non-amalgamated sandstone and siltstone (sandstone dominated) (FA3); and
medium- to very-thin bedded largely non-amalgamated sandstone and siltstone (siltstone
dominated) (FA4). These facies associations as well as descriptions from the measured sections

with cm-scale resolution provide the foundation for the training database used in this study.

11

LEGEND ot duw O Cenozoic
[S 7] Pggr - granite (Miocene) w OB TS A FIR
- P:?t:-gRri;nB:ndurrias Formation (and younger) f - 5 E 5808 855 oqdgh oo co) Maga'"anes
[] KPgd - Dorotea Formation E O 51 basin fill
Ktp - Tres Pasos Formation .PA _
Ket - Cerro Toro Formation (Lago Sofia congl. 225
! Kpb - ;\:::a ;:ro::';:z:?v:‘a(lbn ' 0 Dorotea
Kz - Zapata Formation F
- Jt- Tobifera Formation m
b thrust fault \ :m':‘w 70 Ma
.\' anticline »-\' syncline
(%2}
Tres @
=
(5) Pasos Fm| &
©
(o)
@) : 81Ma | & &
W | &[S g
2% 9200 S0 0088 S 99200
O Q. 025 6%, g 800%¢ § 5%R%3S)
Q. [o8ss)dl, o3yl S g 5 ®
<L | sty o o
o250 90eai08 80 £ o0 Q
m gevetesasse Cerro o
S 0 s tho 360359229,
o’ = ToroFm |
&) O
Lago del 1o
90 Ma
_ Punta
1Barrosa Fm
92 MaZ
L Zapata Fm
[
____________ o)
O Q=
" —_— o
[~ Jitima Esperanza U) — e > s
v 0 |8 Tobifera Fm | 7~ -Z
N\ @ @©
\ < Q Q
d |2 ; S
= Sarmiento |
= Ophiolite
N Paleozoic
o metasedimentary
basement

Figure 2. (A) Geologic map of Ultima Esperanza District in southern Chile (modified from
Romans et al., (2011); originally adapted from Wilson (1991) and Fosdick et al., (2011)) depicting
the primary formations of the Magallanes Basin. The Late Cretaceous-age strata that composes the
basin gets older moving to the east with a paleoflow direction of south to southeast along the axis
of the elongate basin. The formation of interest for this study, Tres Pasos Fm. (Ktp), is located to
the east of the Cerro Toro Fm. (Kct) and west of the Dorotea Fm. (KPgd). The study area, Laguna
Figueroa, is located north of Puerto Natales as represented by the star marker. (B) Stratigraphic
column of the Magallanes Basin (modified from Daniels et al., (2018), GSA Bulletin) with the
Tres Pasos Fm. bolded.

12

[500m 1000m 1500m 2000 m

Fig 100
< - > Vacas Vaca3 5
< MM103% = . 4 100 m —
b = UF-4 - Vaca4 ¥ .
~ : = 504 SR, -

= GC3 § =—= 5

(highly oblique to outcrop orientation) £
Paleoflow roughly due south
[J channel i and [mass transport deposit === complex set boundary === complex boundary —— channel boundary
0 500m 1000 m 1500 m 2000 m 2500m
oA R 102 SubBB3 Sub 88
. —_— 101 ul 1
. =T - 3 et o Sub B84 yacal Vaca2 Pequena pequena2 Cachana

100m —

N -) 7 =+ VE =9X
o b & =5 = - =

[channel [interb and mud: [mass transport deposit === complex setboundary === complex boundary —— channel boundary

Figure 3. (A) Photo of the upper and lower channel complex sets at Laguna Figueroa with complex
sets outlined (adapted from Daniels et al. (2019)). (B) Oblique dip-oriented cross section of Upper
Figueroa with channel complex sets, complexes, and geobodies (4 CC; 13 CG) labeled and 41
measured sections superimposed (adapted from Southern et al., (2017)). (C) Oblique dip-oriented
cross section of Lower Figueroa with channel complex sets, complexes, and geobodies labeled (3
CC; 12 CG) and 27 measured sections superimposed (adapted from Southern et al., (2017)). Red
box highlights clipped image of channel geobody LF-2C shown in Figures 4A and 23A.

13

MM101: LF-2C Grain Size Gross

Distribution m

504 = .
" 1 - I n = 37 beds
| S \ | Bed Thickness (m)
45 1 . .‘.
| INet

(m)

—] A =Q FA4 ppqFAZ
Drape
(m)

Figure 4. (A) Clipped image of channel geobody LF-2C from Figure 3C. (B) Generating the 16
features—net, gross, NTG, drape thickness, bed statistics, amalgamation ratio, and grain size
distributions—for the Laguna Figueroa database from channel outcrop measured section data
(MM101: LE-2C). (C) Facies associations [FA1-FA4] interpreted from Laguna Figueroa outcrops:
thick-bedded, highly amalgamated sandstone (FA1); thick- to thin-bedded, semi-amalgamated
sandstone and siltstone (FA2); thick- to thin-bedded, largely non-amalgamated sandstone and
siltstone (sandstone-dominated) (FA3); and medium- to very-thin bedded largely non-
amalgamated sandstone and siltstone (siltstone- dominated) (FA4).

14

2.2 Laguna Figueroa Database

The Laguna Figueroa database is sourced from stratigraphic measured section data (68
measured sections; total thickness: 3,435 m; Appendix A; Fletcher, 2013; Macauley and Hubbard,
2013; Southern et al., 2017) of exposed deep-water channel outcrops at Laguna Figueroa. The raw
measured section data was originally documented in an Excel spreadsheet, which contained the
names of each measured section, the channel geobodies they intersected, and various stratigraphic
observations, such as number of sedimentation units, sedimentation unit thickness, amalgamation
indicators, and facies associations interpretations. Additionally, for each channel geobody within
each measured section, a distinct channel position—axis, off-axis, or margin—interpretation was
made. This spreadsheet was imported into MATLAB to extract various channel outcrop statistics
and construct the Laguna Figueroa database. The statistics extracted from the measured sections
and observations of slope channel stratigraphy (Appendix A; Macauley and Hubbard, 2013;
Hubbard et al., 2014) were leveraged to perform the machine learning analyses in this study.
2.2.1 Channel Outcrop Statistics

The quantitative channel outcrop statistics, referred to as features, extracted from the raw
measured section data are the foundation of the Laguna Figueroa database. These features were
separated into individual samples based on their respective channel geobodies which were
interpreted in the field. For example, measured section MM 101 intersects Lower Laguna Figueroa
channel geobodies 1C, 2A, 2B, 2C, 2E, 2F, 3A, and 3B (Figure 3C). Focusing on where MM 101
intersects LF-2C (Figure 4A), various features representative of the specific channel geobody can
be generated (Figure 4B). In total, all of the features for LF-2C constitute one data sample.

The columns of the Laguna Figueroa database represent the individual features and the

rows represent the samples or channel geobodies intersected by each measured section (Table 1).

15

Table 1. Example of the format for the Laguna Figueroa database (Appendix A).

Complex Section Drape Thickness
Set Name Geobody Net (m) Gross(m) NTG (m)
Upper FIG100 11 7.82 13.97 0.56 6.15
Upper FIG100 10 11.84 11.84 1.00 0.00
Upper FIG100 8 21.27 21.85 0.97 0.43
Upper FIG100 3 7.10 10.02 0.71 0.83
Upper FIG100 2 7.59 8.05 0.94 0.00

The entire database is 157 rows x 16 columns, meaning there are 157 samples and 16 features for
each sample (Appendix A). Additionally, as previously mentioned, each sample has a channel
position classification depending on its position within the channel body and the classification
scheme used. Table 2 shows the number of samples per class in the classification schemes. The 16

features that comprise the database are explained below.

Table 2. Samples per class in the Facies-Driven and Geometric classification schemes.

Classification Scheme Axis Off-Axis Margin

FD-2P 112 - 45
FD-3P 51 62 44
GM-2P-1 131 - 26
GM-2P-2 110 - 47
GM-3P-1 110 36 11
GM-3P-2 81 46 30

2.2.1.1 Facies Association Proportions

Facies proportions (Appendix A.l) are the proportions of each facies [FA1-FA4] within
each channel body sample. Facies proportions were calculated for the database by individually
summing the thicknesses of each facies within each channel body and dividing that by the overall

thickness of the respective channel body.

16

2.2.1.2 Net

Net (Appendix A.1) is the total thickness of pay or sandstone within a reservoir interval.
Net was calculated by summing the thicknesses of FA1-FA3 within each channel body.
2.2.1.3 Gross

Gross (Appendix A.1) represents the thickness of the preserved channel bodies at Laguna
Figueroa. This statistic can be useful in separating axis, off-axis, and margin because channels tend
to thin laterally from the thalweg to channel edge based on their channel-form shape. However,
this statistic can be misleading because it does not represent true channel thickness since
subsequent channels can incise and erode away the tops of previous channels.
2.2.1.4 Net-To-Gross

Net-to-gross (NTG; Appendix A.1) is the ratio of pay or sandstone thickness to the total
thickness of the reservoir interval. NTG was calculated by taking the ratio of the net value to the
gross value for each channel sample.
2.2.1.5 Drape Thickness

Drapes are thin mudstone deposits located along the base and/or margins of a channel body
(Barton et al., 2010). These stratigraphic features represent heterogeneity between stacked channel
bodies that can have significant impacts on fluid flow and reservoir connectivity. The thicknesses
of drape deposits can also be important metrics for characterizing the fill character of channel
elements. This statistic (Appendix A.1) was calculated from the measured section data by summing
the thicknesses of beds labeled as FA4 at the base of all channel bodies.
2.2.1.6 Bed Statistics (Count, Minimum, Median, and Maximum)

The number of beds (Appendix A.2) is the total number of individual sedimentation units

within a channel body. These beds represent the accumulation of sediment through individual

17

depositional events over time. Minimum, median, and maximum bed thickness (Appendix A.2)
were extracted from the distribution of bed thicknesses within a channel body.
2.2.1.7 Amalgamation Ratio

Amalgamation ratio (Appendix A.2) is the ratio of the number of amalgamated surfaces—
surfaces with sandstone on sandstone contact between beds—to the total number of beds minus
one (Fletcher et al., 2011).
2.2.1.8 Grain Size Distributions and P10, P50, and P90 Statistics

Grain size distributions were digitized by bed at a normal sampling rate for each measured
section using a MATLAB digitizer. The grain size distributions of particle diameter size in
millimeters (d) were converted over to phi (¢) scale (Blair and McPherson, 1999) using the
equation:

¢ = —log,d

The P10, P50, and P90 statistics (Appendix A.3) were extracted from the converted phi
scale distributions and added to the outcrop database to be used as input features for the machine
learning and deep learning analyses.
2.2.2 Classification Schemes

In this study, several different classification schemes representing alternate methods for
classifying channel position (axis, off-axis and margin) were used to test and compare the efficacy
of using one scheme over another. Sedimentological groupings are not straightforward nor
immediately apparent, and in practice, sedimentologists group based on similar properties. These
designations are highly subjective, which motivates the need to explore the impact of different
schemes. The different schemes implemented in this study can be separated into two major

categories, facies-driven (FD) and geometric (GM), with subcategories based on the number of

18

desired classifications—two positions or three positions. The goal behind using different schemes
is to assess the difference 1) between subjective/biased (FD) and non-subjective/unbiased
classification (GM) schemes, and 2) less versus more classes (i.e., lumping vs. splitting). These
schemes are described in greater detail below.
2.2.2.1 Facies-Driven

The FD classification scheme (Appendix A.4) was generated from the field data (Macauley
and Hubbard, 2013) based on observations of sedimentary structures, facies proportions, and other
distinguishing characteristics of the Laguna Figueroa outcrops. The subcategories of the FD
scheme include a two-position scheme (FD-2P) and a three-position scheme (FD-3P). The FD-2P
scheme (Figure 5) classifies the sets of channel outcrop features into either axis or margin. This
scheme does not account for an off-axis classification, which can often be difficult to distinguish
in the field due to the transitional nature of the position within a channel body. Conversely, the
FD-3P scheme (Figure 5) includes this transitional zone and classifies the data into axis, off-axis,
or margin. The facies-driven scheme is based solely upon groupings from visual differentiation
and observation based on geologic intuition. It is suspected that this method oversimplifies and
biases grouping because it is based on visual similarities in facies.
2.2.2.2 Geometric

Since the FD classification schemes are interpretive and based on human decision making,
which can be prone to error, the need for an objective classification scheme was recognized and
thus the GM classification scheme was born. The GM classification scheme (Appendix A.4)
separates channel bodies into different positions based on height above the bottom of a channel
body. The subcategories for the GM classification scheme include two different two-position

schemes (axis or margin) and two different three-position schemes (axis, off-axis, or margin).

19

The first two-position scheme (GM-2P-1) classifies channel bodies into axis or margin
based on a height of 12 meters above the bottom of a channel body (Figure 5). This cutoff was
selected to split the average channel body thickness for Laguna Figueroa, 24 meters, into halves.
The second two-position scheme (GM-2P-2) uses a cutoff of 8 m above the bottom of a channel
body (Figure 5). This cutoff was reduced from the initial 12 m cutoff to try to capture the general
difference between amalgamated and sand-prone channel fills versus more heterolithic channel
fills.

The first three-position classification scheme (GM-3P-1) classifies channel bodies into
axis, off-axis, or margin using cutoffs of 8 m and 16 m above the bottom of a channel body (Figure
5). These cutoffs were selected by splitting the average channel body thickness for Laguna
Figueroa into thirds. Although it is objective, this particular classification scheme does not capture
the margin position well for the available data. Therefore, the second three-position classification
scheme (GM-3P-2) was created by reducing the cutoffs from 8 meters and 16 meters to 5 meters
and 11 meters to try to capture the general variation in channel position throughout the outcrops
(Figure 5).

2.2.3 Generation of Hypotheses

Once the features for the database were generated and labeled accordingly for the facies-
driven and geometric schemes, the data was analyzed using density plots—kernel-smoothed
histograms—to form hypotheses for the machine learning analyses. The density plots for the FD-
2P (Figure 6A) and FD-3P (Figure 6B) schemes show that channel geobody axis positions are
generally well-defined and characterized by higher proportions of FA1 and lower proportions of
FAA4, larger gross thicknesses, higher NTG, thinner drapes, fewer and thicker beds, and higher

amalgamation ratios. Contrarily, margins constitute the siltstone-dominated and thinner end-

20

members of the channel position spectrum with higher proportions of FA4, smaller gross
thicknesses, lower NTG, thicker drapes, numerous thin beds, and low amalgamation ratios (Figure
6B). The off-axis position is transitional between these two end members with greater spreads in
the distributions of its features. These general trends and defining characteristics for each channel
position are also exemplified by the geometric schemes for both two positions (Figure 7) and three
positions (Figure 8). However, there is much more overlap between the features in the geometric
schemes since it is not influenced by geologic interpretation. Additionally, this overlap appears to
be intensified in the schemes with the smaller cutoffs from the base of a channel geobody for
channel position (i.e., GM-2P-2 and GM-3P-2; Figures 7B and 8B).

Several hypotheses were formed based on these observations in anticipation of the results
of the machine learning analysis executed in this study. Firstly, since the different channel
positions are relatively defined by the different classification schemes, it was hypothesized that
the machine learning algorithms would be useful for predicting channel position from the Laguna
Figueroa database. Secondly, because off-axis is less defined and more transitional as a channel
position, it was hypothesized that the machine learning algorithms would struggle to predict this
position versus the others. Lastly, the facies-driven classification schemes separate the different
channel positions the best. Consequently, it was hypothesized that the algorithms would be more
successful at classifying data for the facies-driven schemes than the geometric scheme
counterparts. These hypotheses were tested using a range of machine learning algorithms and

analyzing their performance for each classification scheme and channel position.

21

FACIES-DRIVEN GEOMETRIC

Two Positions (FD-2P) Two Positions (GM-2P-1) Two Positions (GM-2P-2)

A M A M

o 24m - S

Om

Three Positions (FD-3P) Three Positions (GM-3P-2)
M OA A OA M | |

A OA M

Figure 5. Channel position classification schemes for outcrop data from Laguna Figueroa separated into two categories—facies-driven
(FD) and geometric (GM)—with varying numbers of channel positions—axis (A), off-axis (OA), or margin (M)—for each scheme. The
FD classification scheme is based on observations and interpretations of intra-channel facies made in the field and can be separated into
either two positions (FD-2P), or three positions (FD-3P). The GM classification scheme is an attempt at an objective classification
scheme that doesn’t rely on interpretation. This scheme is based on height above the base of a channel and can be separated into two
different two-position schemes (GM-2P-1 or GM-2P-2) or two different three-position schemes (GM-3P-1 or GM-3P-2). The GM-2P-
1 scheme uses a cutoff of 12 m and the GM-2P-2 scheme uses a cutoff of 8 m. The GM-3P-1 scheme uses cutoffs of 8 m and 16 m and
the GM-3P-2 scheme uses cutoffs of 5 m and 11 m.

22

05

0.0

0.125
0.100-
g 0,075
0.050-
0.025-
0.000-

0.015

0.010

0.005

0.000-

0.0

200
Number of Beds

0.0 05 10
Amalgamation Ratio

N

FD-2P FEATURES

.00 005 010 0.15
Minimum Bed Thickness (m)

0 2
P10 Phi

125
1.00

0.50
025

| ‘ i

06

-

0.2

0.0

0.0

o
@0

10
FA4

5

[5 10
Drape Thickness (m)

g 0.010

PS50 Phi

06
E 04
02
0 0.0
0.0 05 10 15
Median Bed Th (m)
0.54
0.4
§ 0.34
0.2
0.14
0.0+
0 5 10

i

0.0
Amalgamation Ratio

05 1.0

Legend
Il Axis [llof-Axis [l Margin

FD-3P FEATURES

5 100
4 75
g ¥ §
50
2
i 25
0 0.0
05 10 00 05 10 00 05 10
FA2 FA3 FA4
08
8
\ 06
z°
5 i
\ : -
0- 0.0
20 00 05 10 0 5 10
Gross (m) NTG Drape Thickness (m)
20 06
g 20 g 04
10 0.2
- 0 0.0
0.0 0.1 0 1 0 5 10
Minimum Bed Thickness (m) Median Bed Thi (m) Bed Th (m)
1.254
1.004
0.754
0.501
025
0.00
0 5 10
P90 Phi

Figure 6. Facies-driven 2P (A) and 3P (B) feature distributions for axis, off-axis, and margin data from Laguna Figueroa database.

23

0.0

0.0100
0.0075
E 0.0050
0.0025

0.0000 -

0.10

GM-2P-1 FEATURES

000 005 010 015
Minimum Bed Thickness (m)

P10 Phi

GM-2P-2 FEATURES

000 005 010 0.15
Minimum Bed Thickness (m)

254

20
Z1s
810

00 05 10
NTG

04
0.0 0.5 10

Median Bed Thi

0 5 10
Drape Thickness (m)

A

0 5
P50 Phi

0.204
0.15
5010-
0.05

Figure 7. Geometric 2P-1 (A) and 2P-2 (B) feature distributions for axis and margin data from Laguna Figueroa database.

24

1.0
08

§ 0s

04
02
0.0

0.08+

0.08

-

0.024

0.00

0.015

g 0.010

0.005

0.000

Figure 8. Geometric 3P-1 (A) and 3P-2 (B) distributions for axis, off-axis, and margin data from Laguna Figueroa database.

FA2

000 005 010 015
Minimum Bed Thickness (m)

GM-3P-1 FEATURES

25
20
E 154
1.04
05
0.0
1 0.0 0.5
FA3

NTG

00 05
Median Bed

1.0

1.0

-

s

200
Number of Beds

g
3o

10

0 5
P90 Phi

10 00 05 10

Amalgamation Ratio

Legend
Il Axis [llof-axs [llMargin

25

i

10
08

086

0.4

02

0.0

GM-3P-2 FEATURES
25
20

§1As
10
05
0.0

o

l a
Density

o o o o

o - ~n w

FA4

5 10
Drape Thickness (m)

000 005 010 0.15 00 05 10 15 0 5 10
Minimum Bed Thickness (m) Median Bed Th (m) Bed Th (m)
10 0.20
1 08 0.154
1 06
§ § 0.10
04
1 02 %08
o 0.0+ 0.00
-2 0 2 4 0 5 10 0 5 10
P10 Phi P50 Phi P90 Phi

CHAPTER 3: MACHINE LEARNING OVERVIEW

3.1 Machine Learnine Aleoritl

In this study, a range of different machine learning algorithms—unsupervised, supervised,
and deep learning—are used to analyze and interpret the channel outcrop statistics from the Laguna
Figueroa database. These algorithms are described in further detail below.

3.1.1 Unsupervised Learning
3.1.1.1 Feature Importance with Principal Component Analysis

Principal component analysis (PCA) is a multivariate statistical technique used to analyze
datasets containing inter-correlated quantitative dependent variables (Abdi and Williams, 2010).
It is useful for determining feature importance and/or reducing the dimensionality of these datasets
by identifying the directions of maximal variance within the data, otherwise known as principal
components (PCs; Figure 9A).

The goal of PCA is to find the best representation of the data using a finite number of PCs
(Lever et al., 2017). The directions of the PCs in feature space are represented as eigenvectors
while their magnitudes are represented as eigenvalues. PCA assumes that the largest eigenvalues
retain the most important information (i.e. largest variances) in the data (Wold et al., 1987). In
addition to eigenvalues, features can be analyzed further based on their contributions.
Contributions represent how important a feature is for a principal component. Features that have
higher contributions for the last dimensions are less important than those that contribute more to
the primary PCs (Kassambara, 2017).

In this study, a method for PCA in R (Kassambara, 2017) was used to determine feature

importance for all 157 samples and 16 features from the Laguna Figueroa dataset.

26

3.1.1.2 Clustering Analysis with K-Means

K-means is an unsupervised learning algorithm initially proposed by (MacQueen, 1967)
that partitions n-dimensional data into & clusters based on each data point’s distance from the mean
of the nearest cluster. The algorithm works similarly to a gradient descent algorithm in which
cluster centroids are generated randomly and then updated after each iteration until convergence
is reached (Oyelade et al., 2010; Figure 9B). In this study, K-means was used to cluster the Laguna
Figueroa data without any human bias into statistically important zones, ideally representative of
the different channel position classification schemes. Since K-means is an unsupervised algorithm
and doesn’t know what the correct classifications are for each data sample, the clusters generated
by the clustering analysis were manually interpreted as different channel positions to extract value
from the analysis and evaluate the performance of the K-means algorithm.
3.1.2 Supervised Learning

In this study, 26 supervised learning algorithms were used to classify channel position from
the Laguna Figueroa database. These algorithms range from variations of decision trees,
discriminant analysis, Naive Bayes, support vector machines, K-nearest neighbors, ensemble
classifiers, and neural networks (Figure 9).
3.1.2.1 Decision Trees

Decision trees are algorithms that work similarly to flowcharts, in which various root
nodes, internal nodes, leaf nodes, and branches denoting various decision points and decisions
separate input data into different classes (Figure 9C). Root nodes represent an initial decision point
in which all samples will be divided into two or more subsets (Song and Lu, 2015). All input
samples enter the decision tree through the root node. Once initial subsets are created, they

encounter internal nodes which filter the data further. If there are no more internal nodes in the

27

tree, and the data cannot be filtered further, they reach leaf nodes, which correspond to the final
classifications. All of the nodes are connected by branches, which represent decisions made at the
root and internal nodes. For example, if the root node signifies a decision of whether the input data
is greater than or equal to 0.5, then the branches extending from the root node would signify the
two possible outcomes: yes, the data is greater than or equal to 0.5; or no, the data is less than 0.5.
Decisions trees can either be fine, medium, or coarse, depending on the number of nodes that they
are composed of (Han et al., 2019). In this analysis, all three deviations are tested.
3.1.2.2 Discriminant Analysis

Discriminant analysis is a classification algorithm that assumes samples from each class
form multidimensional Gaussian distributions (Dixon and Brereton, 2009; Figure 9D). The
algorithm is first trained to fit a function to estimate the distribution parameters of each class, and
then it is tested by predicting new samples (Welling, 2005; Han et al., 2019). Two common forms
of discriminant analysis exist: linear discriminant analysis (LDA) and quadratic discriminant
analysis (QDA). In LDA, classes are assumed to have the same variance-covariance matrices or
distributions, which results in linear boundaries or hyperplanes separating the feature space into
classes (Tang et al., 2017; Dixon and Brereton, 2009). Whereas in QDA, different classes are
assumed to have unique variance-covariance matrices, which results in quadratic curves that divide
the feature space into classes. Both LDA and QDA are tested in this study.
3.1.2.3 Naive Bayes

Naive Bayes is a type of probabilistic classifier that utilizes Bayes Theorem and assumes

all features, x, are independent given the class variable, ¢ (Zhang, 2005; Figure 9E):

P(x]|c)P(c)

P(clx) = P(x)

28

where P(c|x) is the probability of the class given the feature; P(x|c) is the probability of the feature
given the class; P(c) is the prior probability of the class; and P(x) is the prior probability of the
feature. Other forms of the Naive Bayes classifier include Gaussian and Kernel Naive Bayes,
which assume specific distributions for the input data.
3.1.2.4 Support Vector Machines

Support vector machines (SVMs) separate the data into different classes using hyperplanes
that maximize the distance between classes (Tien Bui et al., 2012; Figure 9F). Different kernel
functions can be applied to SVMs to determine the boundaries between classes. These kernel
functions include linear, quadratic, cubic, and Gaussian. Additionally, the flexibility of the
Gaussian SVM can be adjusted to fine-, medium-, or coarse-scale depending on the desired
distinctions between classes. All six of these SVMs were tested in this study.
3.1.2.5 K-Nearest Neighbors

K-nearest neighbors (KNN) is one of the simplest supervised learning algorithms available
for classification. KNN works by classifying new testing data based on the dominant class of its k
nearest neighbors in feature space (Figure 9G). The nearest neighbors are typically determined

using Euclidean Distance:

d(x,y) =

where d(x,y) is the distance between samples x and y, i is the current feature, and n is the total
number of features (Ozcoban et al., 2018). Depending on the value specified for k, the KNN
algorithm can either be fine, medium, or coarse. Additionally, other variations of KNN exist which
use different distance metrics, such as cosine KNN, cubic KNN, and weighted KNN. In this study,

all six KNN algorithms were used.

29

3.1.2.6 Ensemble Classifiers

Ensemble classifiers are models that combine the prediction abilities of multiple machine
learning algorithms in order to improve the performance of a model or reduce the potential of
selecting a bad model (Polikar, 2012). In ensemble learning, weaker learning algorithms, such as
decision trees and KNN, are improved using techniques, such as bagging, random subspace
method (RSM), and boosting (Abuassba et al., 2017; Han et al., 2019). Weak learners are
algorithms that are slightly better than random guessing (Freund and Schapire, 1997).

Bagging, also known as bootstrap aggregating, takes the original training data, draws
samples with replacement, and generates new training data subsets which are then used to train
different classifiers (Polikar, 2012; Brieman, 1994). The ensemble classifier then makes a
classification by taking a majority vote of the predictions made by all of the classifiers (Figure
OH). For example, random forest (RF) is a popular ensemble classifier that utilizes multiple
decision trees and bagging to generate classifications by committee rather than from a single
decision tree. The idea behind this is strength in numbers—some trees will be wrong, but ideally,
most will be right, and therefore a correct classification will be made. RSM is similar to bagging,
but instead of bootstrapping the training data, RSM bootstraps in the feature space (Skurichina and
Duin, 2002; Tao et al., 2006; Figure 91). In other words, RSM constructs classifiers based on
pseudo-random components of the input features (Kotsiantis 2011).

In boosting, weak classifiers are generated sequentially. Each new classifier is trained on a
weighted dataset from the previous classifier thus resulting in improved classifications (Friedman
et al., 2000; Figure 9J). Each iteration produces three different classifiers: Ci, which is trained with
arandom subset from the training data; Cz, which is trained on a subset of data that is an even mix

of data correctly classified by C: and data incorrectly classified by Ci; and C3, which is trained on

30

data the classifiers C7 and C2 disagree on (Polikar, 2012). Like bagging, the output of the boosting
model is a majority vote decision of all of the classifiers (Freund and Schapire, 1996).

Similar to RF being a combination of decision trees and bagging, other ensemble
classifiers, such as AdaBoost, RUSBoosted trees, and XGBoost (XGB), combine decision trees
with boosting methods to improve overall performance. Adaptive boosting, or AdaBoost, works
by training a specified number of weak classifiers on weighted versions of the training data
samples with the misclassified samples being weighted the highest (Friedman et al., 2000; Wyner
et al., 2017). This process is repeated for a sequence of weighted samples, and the final output is
a linear combination of all of the classifiers (Friedman et al., 2000; Wyner et al., 2017).

Random undersampling boosted trees, or RUSBoosted trees, are a type of ensemble-of-
trees classifiers that are applied to skewed datasets—datasets in which samples of one class
severely outnumber samples of the other class(es) (Seiffert et al., 2010). RUS is a resampling
method in which samples of the majority class are stochastically removed until the dataset is
balanced (Seiffert et al., 2010). The RUSBoosted algorithm combines this data-balancing approach
with the powers of AdaBoost to improve classification results.

Extreme gradient boosting, or XGBoost, is a scalable tree boosting system that was first
introduced by Chen and Guestrin (2016). The system is based on gradient boosting, which is
another ensemble method similar to AdaBoost. However, instead of applying higher weights to
misclassified samples, gradient boosting applies a gradient descent algorithm (Qian 1999) to
minimize the error between the weak classifier’s predictions and the observed values (i.e.,
residuals) from the training dataset (Friedman 2002). Subsequent classifiers are then constructed
based on the minimized residuals of the previous classifiers, and the process is repeated. The

boosted trees in XGBoost benefit from innovations such as scalability, a regularization parameter

31

for the loss function that avoids over-fitting, ability to handle sparse data, and novel weight-
adjustment methods (Chen and Guestrin, 2016). These improvements to the gradient boosting
framework have allowed XGBoost to be the winning algorithm of many machine learning
challenges on the site Kaggle (Chen and Guestrin, 2016).

In this study, Ensemble Classifiers: Random Forest, Subspace Discriminant, Subspace
KNN, AdaBoost Trees, RUSBoosted Trees, and XGBoost were tested.
3.1.2.7 K-Fold Cross-Validation

K-fold cross-validation is a resampling technique used in machine learning analysis in
which the input dataset is split into k folds with k-1 folds being used for training and the remaining
fold being used for testing (Figure 10). This process is repeated for each possible combination of
the k-1 training folds and & testing folds, so that each of the k folds is used as a testing fold. The
evaluation metrics are then averaged for all of the k testing folds in order to obtain a more
representative evaluation of the machine learning algorithm. Five folds were used in the machine

learning analyses in this study.

32

K-Means*

©

Naive Bayes'
P(x|c)P(c)
P(elx) = =Py

®

Sample 1 Sample 2 Sample 3 All Features Sample 1 Sample 2 Sample 3

Bagging's Random Subspace Method1$ Boosting?®

HRERE F =]%]
DOD wpepan &
HEED B e e e

Figure 9. Unsupervised*, superviseds, and ensembles learning algorithms.

33

ALL DATA SAMPLES
K Fold: 1 Test Train Train Train Train
K Fold: 2 Train Test Train Train Train
K Fold: 3 Train Train Test Train Train
K Fold: 4 Train Train Train Test Train
K Fold: 5 Train Train Train Train Test

Figure 10. K-fold (k = 5) cross-validation. All data samples are split into five different folds. In
each fold, the machine learning algorithm is trained on four of the folds and is tested on the
remaining fold. The overall performance of the algorithm is calculated by averaging the results of
the test folds.
3.1.3 Deep Learning
3.1.3.1 Neural Networks

Artificial neural networks (ANNS5) are algorithms loosely modeled after biological nervous
systems (McCulloch and Pitts, 1943). They consist of multiple layers—an input layer, hidden
layer(s), and an output layer—each made up of interconnected units called neurons (Rosenblatt,
1958; Rosenblatt, 1962). The input data enter the ANN through the neurons in the input layer and
are subsequently fed forward to neurons in subsequent layers by individual weights and biases that
connect the layers. The values of these weights and biases cause specific neurons in the subsequent
layers to activate, which ultimately results in a classification in the output layer. Through numerous
iterations or epochs, the weights and biases are updated to improve the classification accuracy of
the ANN. This process is called backpropagation (Rumelhart et al., 1986; Lecun et al., 1989) and

it is made possible by optimization algorithms, such as gradient descent (Qian, 1999), stochastic

gradient descent (Gardner, 1984), and conjugate gradient methods (Shewchuk, 1994), which seek

34

to minimize a specified loss function. Loss functions represent the error between the ANNs
predictions and the observed values. Common loss functions include mean square error, mean
absolute error, and cross-entropy loss.

ANNSs have been useful for many data science problems due to their ability to learn non-
linear functions and thus detect complex relationships within datasets (Kawabata and Bandibas,

2009; Goodfellow et al., 2016). The ANN architecture applied in this study consisted of an input

layer with sixteen neurons, L[116], a hidden layer with five neurons, L[ZS], and an output layer with k

neurons corresponding to the number of desired classifications, L[3k] (Figure 11). Cross-entropy

loss was used as the loss function for the ANN:

n

CE = —Z tilog(f(s):)

i=1

A scaled conjugate gradient (SCG) algorithm (Appendix B; Mgller, 1993; Anderson et al.,
2011) was used for optimization and backpropagation. The SCG algorithm combines the
advantage of other conjugate gradient methods by searching in the conjugate directions of the
derivative of the objective function while also approximating a localized quadratic function
(Mgller, 1993). A softmax function was implemented to compute the probabilities from the ANN
classifications by taking the logits—the raw values of the output layer—and transforming them
into a multinomial distribution:
exp(X; = Ximax)

le exp(x;)

The probabilities from the softmax function can be used to build stochastic models of the

softmax(x;) =

most probable channel stacking scenarios at a wellbore. The different models can be used to

visualize the impact of channel stacking patterns on fluid flow and connectivity.

35

NTG

Drape
Thickness (m)

Number of Beds

Minimum Bed
Thickness (m)

Median Bed
Thickness (m)

Maximum Bed
Thickness (m)

Amalgamation
Ratio

P10 Phi

P50 Phi

P90 Phi

Figure 11. ANN architecture for classifying a three-position scheme. Measured section data
(Hubbard et al., 2018) is converted into outcrop statistics (Figure 3) that are used as inputs for the
ANN. The ANN architecture consists of an input layer with 16 neurons representative of the 16
input features for the analysis, a hidden layer with 5 neurons, and an output layer with 3 neurons
corresponding to axis, off-axis, and margin.

36

3.2 Evaluation Metrics

Evaluation metrics are statistics used to assess the performance of each machine learning
algorithm. The evaluation metrics applied in this study include classification accuracy, confusion
matrices, precision, recall, and F1 score.
3.2.1 Validation Accuracy

Validation accuracy is the ratio between the number of correct classifications and the total
number of input samples for the testing dataset. An effective machine learning algorithm will have
a high validation accuracy.

Number of Correct Classifications

Validation A =
atiaation Accuracy Total Number of Input Samples

3.2.2 Confusion Matrix

A confusion matrix is an n x n matrix that illustrates the performance of an algorithm,
where 7 is the number of classes. The rows in the matrix represent the true samples for each class
and the columns represent the predicted samples for each class. A perfect classification model will
produce a confusion matrix with the number of predicted observations equaling the number of true
observations for each class.
3.2.3 Precision

Precision is the ratio of true positives to total positives. A true positive is a predicted
classification that matches the true classification. The total positives statistic is the sum of the true
positives and false positives. A false positive is a predicted classification that incorrectly predicts
the positive class. In other words, precision can be viewed as the likelihood that a classified sample
belongs to the class that it is predicted as (Hall, 2016).

True Positives

Precision = — —
True Positives + False Positives

37

3.2.4 Recall

Recall is the ratio of true positives to the total number of samples that should have been
classified as the positive class. The latter is the sum of the true positives and the false negatives. A
false negative is a predicted classification that incorrectly predicts the negative class. Recall is
often referred to as sensitivity and can be interpreted as the likelihood that a sample will be

correctly classified for a particular class (Hall, 2016).

True Positives

Recall =
True Positives + False Negatives

3.2.5 F1 Score
The F1 score is the harmonic mean of both the precision and recall. It assists in evaluating

the accuracy of the algorithm, thus the higher the F1 score is, the better the algorithm is performing.

2

1 + 1
Precision Recall

Fl =

38

CHAPTER 4: EVALUATING MACHINE LEARNING ALGORITHMS FOR PREDICTION

OF CHANNEL POSITION

4.1 Methodology

In this part of the study, each of the machine learning algorithms were used to analyze the
Laguna Figueroa database. First, the features of the database were ranked using PCA to provide
insight into feature importance. Second, K-means was used to gain insight into how the data
clustered within each of the classification schemes. Third, the supervised learning algorithms were
trained and tested for predicting channel position from the different classification schemes. Lastly,
once all the algorithms had analyzed the data, the evaluation metrics for each algorithm were
compared to test the hypotheses previously mentioned and draw conclusions.

4.2 Results
4.2.1 Unsupervised Learning Results
4.2.1.1 Feature Importance with Principal Component Analysis

Eigenvalues were calculated for all of the features in the dataset (Table 3) to determine
which features were the most important. Table 3 shows that the first five PCs account for 81.6%
of the variance in the data. Therefore, only these PCs were considered for analyzing feature

importance.

39

Table 3. Eigenvalues, variance percent, and cumulative variance percent for the 16 principal
components.

Dimension Eigenvalue Variance Percent Cum. Variance Percent

Dim. 1 6.33 39.55 39.55
Dim. 2 241 15.06 54.61
Dim. 3 2.32 14.48 69.09
Dim. 4 1.19 7.43 76.52
Dim. 5 0.81 5.05 81.57
Dim. 6 0.75 4.67 86.24
Dim. 7 0.61 3.81 90.05
Dim. 8 0.43 2.69 92.74
Dim. 9 0.37 2.30 95.04
Dim. 10 0.28 1.76 96.80
Dim. 11 0.21 1.31 98.10
Dim. 12 0.17 1.03 99.14
Dim. 13 0.11 0.69 99.82
Dim. 14 0.02 0.15 99.97
Dim. 15 0.00 0.02 99.99
Dim. 16 0.00 0.01 100.00

The bubble plot of contributions (Figure 12) shows that minimum and maximum bed
thickness, P10 phi, gross, FA2, and FA3 are the least important features for the first PC. Firstly,
bed thickness within a channel geobody varies based on position. Axes are characterized by
thicker, sandstone beds from higher energy deposits while margins are characterized by thinner,
finer-grained siltstone beds from lower energy deposits (Southern et al., 2017). However, due to
heterogeneity and differences in intra-channel fill and architecture, maximum bed thickness is not
necessarily indicative of channel position. For example, if thick sandstone beds in a channel axis
extend laterally into a sandier channel margin, then maximum bed thickness would be similar for
both channel positions and thus confounding for prediction. Conversely, if a channel geobody were
to have a thick, laterally extensive drape at its base with numerous thin beds, then minimum bed

thickness would be similar across channel positions. Due to these scenarios, median bed thickness

40

and the number of beds are better metrics to use as they account for both thinner and thicker beds
within each channel position.

Secondly, channels are commonly characterized by having a U-form shape with the
thickest portions centered around the axis of the channel and the thinnest portions occurring near
the margins of the channel. Gross channel thickness of a channel body at the outcrop is
representative of preserved thickness and is not representative of the true geobody thickness as a
feature. Deep-water channel outcrops represent the spatial and temporal variations in channel
stacking patterns and evolution over time. Avulsion and other processes cause channels to cut and
incise previous channel deposits (Zhang et al., 2017; Lowe et al., 2019), leaving behind remnants
of the original channel shape and size. This results in gross thickness values that are highly variable
and less representative of the true geobody thickness that might describe a channel position (i.e.,
thinner at the margin and thicker at the axis).

Lastly, FA2 and FA3 proportions represent the intermediate facies associations between
the highly amalgamated sandstone facies association, FA1, and the siltstone-dominated facies
association, FA4. FA1 and FA4 are highly distinguishing of axis and margin channel positions
since axes are typically characterized by thicker, amalgamated sandstones, and margins are
characterized by higher proportions of siltstone and mudstone. FA2 and FA3 are more
transitionary facies associations that lack the ability to clearly differentiate channel position.

These results provide insight into what features to consider when attempting to interpret
axis, off-axis and margin from core data. Specifically, the four most important features (FA4,
NTG, AR and FA1) all clearly differentiate axis from margin, where margin has a high proportion
of FA4, low NTG, AR and proportion of FA1 and axis has a high proportion of FA1, high NTG

and AR, and a low proportion of FA4. The impact of using a reduced set of features was tested in

41

the machine learning analysis to ascertain if using all 16 features added noise or if all 16 features
played an important role in prediction. The results revealed higher prediction accuracies when all
16 features were used, and therefore, the additional features carry information, albeit weaker
information, about channel position. Therefore, the following analyses use all 16 features from the

Laguna Figueroa database.

= N o < wn
E E E E E
(m) (m] (m] (m) (m)]
0.68
FA1
FA2 . 0.62
= O
0.55
FA4
Net (m
(m) 0.48
Gross
NTG 0.41
Drape Thickness (m)
1+0.34
Number of Beds
Minimum Bed Thickness (m) L0.27
Median Bed Thickness (m)
-0.21
Maximum Bed Thickness (m)
Amalgamation Ratio
0.14
P10 Phi &
P50 Phi © |[jo.07
P90 Phi
10.0

Figure 12. PCA results showing feature importance based on contribution to the first five PCs for
the 16 features from the Laguna Figueroa database.

42

4.2.1.2 Clustering Analysis with K-Means

K-means was used to cluster the 16-feature dataset described above into two and three
clusters, representative of the number of channel positions in the different classification schemes.
The classification accuracies were calculated by comparing the K-means predictions for k clusters
to the classification schemes with the same number of channel positions (Table 4). The results
show that for the FD and GM schemes, FD-2P and GM-2P-1 achieved the highest classification
accuracies, and the overall classification accuracies (Appendix C) show a trend of reduced
accuracy with the addition of more classes (Figure 15). Additionally, the K-means algorithm was
more successful at clustering the GM-2P-1 and GM-3P-1 schemes than their counterparts, GM-
2P-2 and GM-3P-2 (Table 4). Confusion matrices for each classification scheme (Figure 13)
bolster these results and show that the axis classification was the easiest to cluster for each scheme

and that off-axis and margin data were commonly misclustered as axis.

Table 4. K-means classification accuracies for each classification scheme.

Classification Scheme Classification Accuracy

FD-2P 78.98%

FD-3P 48.41%
GM-2P-1 71.34%
GM-2P-2 63.06%
GM-3P-1 55.41%
GM-3P-2 43.31%

43

FACIES-DRIVEN GEOMETRIC

FD-2P GM-2P-1 GM-2P-2

>
x
=

Y 13% s 23% Aot 24%

True Label
True Label
True Label

Margin

Margin 41 % 59 % Margin 32 %

Axis Margin Axis Margin Axis

Neirca

Predicted Label Predicted Label Predicted Lz:vabelargln

Accuracy: 78.98% Accuracy: 71.34% Accuracy: 63.06%
FD-3P GM-3P-1 GM-3P-2

Axis

I6¥) 24% 1.0% ~is NSIoPZ 32 % 3.0% e 59% 37% NP0

48% 44%

Margin 55%

8.0% Sl 56% 42% PR I 59% 41 % ((KPZ

True Label
True Label
True Label

25% margin RSN 18% 0.0%| Moo BSUEZLREINZE 3.0 %

Axis Off-Axis Margin Axis Off-Axis Margin Axis Off-Axis Margin
Predicted Label Predicted Label Predicted Label
Accuracy: 48.41% Accuracy: 55.41% Accuracy: 43.31%

Figure 13. Normalized confusion matrices for K-means clustering analysis.

44

4.2.2 Supervised Learning Results
4.2.2.1 Unsupervised vs. Supervised Learning

The full suite of supervised learning algorithms was used to classify the 16-feature dataset.
In comparison to the unsupervised learning results, the best-performing supervised learning
algorithms outperformed K-means for each classification scheme (Figures 14 and 15; Appendix
C). These algorithms and their respective validation accuracies can be viewed in Table 5. The
random forest, XGBoost, and ANN algorithms consistently ranked amongst the best-performing
algorithms used in these analyses. Random forest and XGBoost are both decision tree-based
ensemble learners, which improve their weak learning algorithm by using techniques, such as
bagging and boosting. Therefore, they expectedly outperformed their base weak learner and other
algorithms, such as KNN, discriminant analysis, and SVMs. Additionally, although it is not an
ensemble learner, the ANN is useful for detecting non-linear relationships between data, so it was

effective for classifying data in several of the more complicated GM schemes (Table 5; Figure 14).

Table 5. Validation accuracies for best-performing supervised learning algorithms.

Classification Scheme Best-Performing Algorithm(s) Validation Accuracy
FD-2P ANN 93.63%
FD-3P Linear SVM & RF 82.80%
GM-2P-1 RF, XGB, & ANN 85.99%
GM-2P-2 RF & ANN 75.16%
GM-3P-1 XGB & ANN 73.89%
GM-3P-2 RF & XGB 62.42%

The improved accuracies for the supervised learning algorithms as compared to K-means (Table
5; Figure 15) highlight the importance of geologic interpretation and guidance. Geologic data is

variable and difficult to cluster. Trends are not always clearly defined, and the expertise and

45

knowledge of a trained geologist can help to decipher complicated channel architecture. This is
reflected in the poorer classification accuracies and confusion matrices for the K-means clustering
analysis (Table 4; Figure 13). The K-means algorithms performed worse than the supervised
learning algorithms for each classification scheme and the addition of more classes reduced the

classification accuracy by over 30% (Figure 15).

46

FACIES-DRIVEN

FD-2P
(ANN)

SV 4.0%

11%

89%

Axis Margin
Predicted Label

Validation Accuracy: 93.63%

FD-3P
(Linear SVM & RF)

wis JEIORZY 20% 0.0%

Off-Axis

10%

True Label

ws(0.0% 9.0%

Axis Off-Axis
Predicted Label

Validation Accuracy: 82.80%

Margin

True Label

GEOMETRIC

GM-2P-1 GM-2P-2
(RF, XGB, & ANN) (RF & ANN)
s 2.0%
Margin

27%

Axis Margin Axis
Predicted Label

Validation Accuracy: 85.99%

GM-3P-1
(XGB & ANN)

Margin
Predicted Label

Validation Accuracy: 75.16%

GM-3P-2
(RF & XGB)

6.0% 1.0% 11% 5.0%

28% 3.0%)| 3o~ RSlORIIFZY 4.0%

True Label

9.0% 36%

Axis Off-Axis
Predicted Label

Validation Accuracy: 73.89%

17% 30%

Off-Axis
Predicted Label

Validation Accuracy: 62.42%

Margin Axis Margin

Figure 14. Normalized confusion matrices for best-performing supervised algorithms.

47

100 A [Unsupervised

93.63 [Supervised
85.99
78.98 =
80 -
75.16
—_— 73.89
63.06 62.42

60
> 55.41
< 48.41
8 43.31
< 404

20

0
FD-2P FD-3P GM-2P-1 GM-2P-2 GM-3P-1 GM-3P-2

Classification Scheme

Figure 15. Bar plot of accuracies for the K-means algorithm and the best-performing algorithms
from the supervised learning analysis. The supervised learning algorithms outperformed the K-
means algorithm for each classification scheme. Accuracy reduces with the addition of more
channel positions for both the FD and GM classification schemes.
4.2.2.2 Facies-Driven vs. Geometric Classification Schemes

In regard to classification schemes, the facies-driven schemes outperformed their
counterpart geometric schemes in all categories (Figures 15, 16, and 17). This was expected as
geologic interpretation and expertise are needed to make sense of outcrop and core data. However,
outcrop observations point toward the potential for internal bias within the FD schemes because
they account for classes in the data solely from the character of 1D vertical measured section data.
It is possible that the FD schemes create an idealized version of each channel position with

common characteristics and grouped statistics when in reality diverse styles of architecture

potentially exist within channel geobodies.

48

Legend

= 25th-75th
1.0 o : percentile (IQR)
. _l_ I Range within
09 1.51QR
i u] Median
4 _I_ _I_ m} Mean
3‘ 0.8 a $ Outliers
g __
1 o
Q 4 |
& 07- '
§ ¢ o o ;
o -
g . PR) [
o —
05 n & $ o
| ¢
0.4 o
I I I I 1 I
FD-2P FD-3P GM-2P-1 GM-2P-2 GM-3P-1 GM-3P-2

Classification Scheme

Figure 16. Box and whiskers plot showing distribution of validation accuracies for all supervised
learning algorithms.

49

1.5IQR
Range
o Mean

L

I:l Offt-Axis ¢ Outliers

Legend

I:IMargin — Median

T T T
@ © <
o o o

T
o
=
@ uoisisaid

0.2 1
0.0+

-3P-2

FD-3P GM-2P-1 GM-2P-2 GM-3P-1 GM

FD-2P

1.5IQR
Range

L

D Off-Axis 4 Outliers

Legend

o Mean

Classification Scheme

H [e}—
—{Je —
o > ->
- .
T T T T T
@© © < N o
o o o o o

L
9 llesey

FD-3P GM-2P-1 GM-2P-2 GM-3P-1 GM-3P-2

FD-2P

Classification Scheme

1.5IQR
Range

I

D Off-Axis ¢ Outliers

Legend

o Mean

T T
© ba
o o

21098 L4

0.2 4

0.0

GM-2P-1 GM-2P-2 GM-3P-1 GM-3P-2

FD-3P

FD-2P

Classification Scheme

Figure 17. Box and whiskers plots showing distributions of: (A) Precision, (B) Recall, and (C) F1

Score for the supervised learning algorithms.

50

Southern et al., (2017) proposed the concept of three different architectures that were
derived from observations that are counter to the FD classification scheme. These architectures
include: (A) Margins with higher proportions of sandstone, higher degrees of amalgamation, lower
proportions of siltstone-dominated facies, and higher proportions of turbidites resulting in
structureless sandstone (Figure 18A); (B) Margins characterized by thick-bedded sandstones
interleaved with less amalgamated sandstone- or siltstone-dominated facies (Figure 18B). Style B
siltstone-dominated intervals are generally thicker than those in style A; (C) Margins with thick

intervals of siltstone-dominated facies at their base, which are truncated and capped by thick-

bedded amalgamated sandstones (Figure 18C).

Figure 18. Three different styles of channel margin architecture (Southern et al., 2017). (A)
Margins with higher proportions of sandstone, higher degrees of amalgamation, lower proportions
of siltstone-dominated facies, and higher proportions of turbidites resulting in structureless
sandstone. (B) Margins characterized by thick-bedded sandstones interleaved with less
amalgamated sandstone- or siltstone-dominated facies. Style B siltstone-dominated intervals are
generally thicker than those in style A. (C) Margins with thick intervals of siltstone-dominated
facies at their base, which are truncated and capped by thick-bedded amalgamated sandstones.

As an example, if different margin styles do exist, ranging from more amalgamated, sandier
margins to less amalgamated margins with thicker drapes (Southern et al., 2017), a geologist might
mistake the former for an axis channel position when looking only at 1D core or measured section

data. The geometric schemes on the other hand create an unbiased interpretation that supports the

51

observations at the outcrop that margin facies are not always the thin-bedded, high proportion of
FA4 variety that the facies-driven schemes define. Therefore, the GM schemes would likely
capture this diverse heterogeneity across channel positions, which could validate their poorer
evaluation metrics and results. This is expanded upon in the hierarchical machine learning
workflow in chapter five.
4.2.2.3 Two Positions vs. Three Positions

Overall, the two-position classification schemes (FD-2P and GM-2P-1) achieved the
highest validation accuracies, 93.63% and 85.99%, for the FD and GM schemes (Table 5; Figures
14, 15, and 16; Appendix C). These results suggest that it is better to use two-position schemes
than three-position schemes in these workflows, as the classifications for the former are more
consistent and reproducible. This debate is often referred to as lumping versus splitting, in which
adecision has to be made regarding how much detail to consider or take into account. In the context
of this problem, a transitional zone (i.e. off-axis) likely exists between axis and margin channel
positions, and it is possible to try to capture all of the heterogeneity within a channel geobody by
accounting for this zone. However, interpreting off-axis can be difficult and, ultimately,
incorporating it as a channel position for models of channel stacking patterns might not have a
significant impact on fluid flow and connectivity.
4.2.2.4 Individual Channel Positions

Expanding upon the observations above, in both the unsupervised and supervised learning
results, the evaluation metrics were overall consistently higher for the axis classification than either
off-axis or margin for each scheme. Axis achieved the highest accuracies for classification (Figures
13 and 14) and the highest precisions, recalls, and F1 scores (Figure 17; Appendix C). These results

suggest that axis data contain the most distinct statistics out of all the channel positions.

52

Considering the input features for the machine learning analysis, axis is well-defined by many of
them regardless of which scheme is used: high proportions of FA1, low proportions of FA4, high
NTG, little-to-no drape thickness, lower number of beds, and high amalgamation ratio (Figures 6,
7, and 8). This makes it easy to be consistent when identifying and predicting axis from both
outcrops and data.

The statistical distinctness of the axis classification is further validated by the results of the
GM classification schemes. In both the two-position and three-position schemes, the schemes with
the larger cutoffs for axis, off-axis, and margin—GM-2P-1 and GM-3P-1—achieved higher
accuracies than the schemes with reduced cutoffs—GM-2P-1 and GM-3P-1 (Table 5; Figure 16).
An explanation of these results is that the larger cutoffs create a wider axis classification and thus
generate more axis input data. Axis data are easier to predict than either off-axis or margin data
due to their statistical distinctness previously suggested, and therefore, the evaluation metrics are
better for those classification schemes.

Conversely to axis, off-axis is a channel position that is difficult to distinguish both in the
field and from data. It is the transitional zone in between axis and margin in which facies are
shifting laterally from more sandstone-dominated to more siltstone-dominated. This is reflected in
the features for off-axis (Figures 6B, 8A, and 8B), and ultimately, these less defined features make
it harder for the machine learning algorithms to generate correct classifications. The precision,
recall, and F1 score results from the supervised learning analyses (Figure 17; Appendix C) reflect
this assertion as the overall distributions of evaluation metrics were lowest for the off-axis
classification. Moreover, in both the unsupervised and supervised analyses, off-axis data were
consistently misclassified as axis data. In the K-means confusion matrices (Figure 13), 48% of the

FD-3P off-axis data, 56% of the GM-3P-1 off-axis data, and 59% of the GM-3P-2 off-axis data

33

were misclassified as axis. In the best-performing supervised analyses (Figure 14), 10% of the FD-
3P off-axis data, 69% of the GM-3P-1 off-axis data, and 50% of the GM-3P-2 off-axis data were
misclassified as axis. These results question the statistical significance of off-axis as a channel
position. If most of the off-axis data is consistently classified as axis, can the two channel positions
be grouped into one classification without loss of resolution?

Even though it is more clearly defined as a channel position than off-axis is, the precision,
recall, and F1 score metrics were significantly lower than the axis channel position, particularly
for the Geometric schemes (Figure 17; Appendix C). Margins are typically characterized by higher
proportions of FA4, lower NTG, lower amalgamation ratio, thicker drapes, and higher number of
beds (Figures 6B, 8A, and 8B). However, the machine learning algorithms still struggled to
classify this channel position as 20% of the margin data was misclustered as axis and 55% was
misclustered as off-axis by the K-means algorithm for the FD-3P scheme (Figure 13).
Additionally, 82% and 57% of the margin data were misclustered as axis in the GM-3P-1 and GM-
3P-2 schemes, respectively (Figure 13). The confusion matrices are even less favorable in the
supervised analyses of the GM schemes (Figure 14) as 55% of the margin data in the GM-3P-1
scheme and 53% of the margin data in the GM-3P-2 scheme were misclassified as axis data. These
results reemphasize the idea that margin channel positions are not as homogeneously fine-grained
as commonly assumed to be. Instead, as previously mentioned, margins exhibit a high degree of
variability in their sedimentological characteristics resulting in different styles of margin
architecture (Southern et al., 2017; Figures 6B, 8A, and 8B).

4.3 Refinement of Hypotheses
The observations and results above present new challenges of more heterogeneity in the

margin than initially interpreted with cross-over into axis character and question whether the

54

facies-driven schemes are internally biased by geologic interpretation. This motivates a refined
hierarchical machine learning analysis in which Laguna Figueroa axis and off-axis data are
clustered separately to test their similarities, and the remaining margin data are clustered into three
classes (Figure 19) to test the distinct groupings of margin classes as proposed by Southern et al.,
(2017). As such, refined hypotheses were created in anticipation of the results of this hierarchical
machine learning analysis. The first hypothesis for this workflow conjectures that since the margin
data and classification results were variable in the preliminary machine learning analyses, different
styles of margin architecture exist and are manifested in the outcrop statistics. The second
hypothesis states that because the facies-driven classification schemes create statistical groupings
of channel positions through expert geologic interpretation, the geometric classification schemes
are better at capturing the true heterogeneity and variant architectural styles within channel
margins. These hypotheses are tested using the hierarchical machine learning workflow in chapter

five.

55

U

ALL DATA
SAMPLES

\

N—

(

AXIS &
OFF-AXIS
DATA

(
(

AXIS
CLUSTER

(
(
(

OFF-AXIS
CLUSTER

N

(

MARGIN
DATA

MARGIN A
CLUSTER

i

MARGIN B
CLUSTER

N

MARGIN C
CLUSTER

Mo __o#

Figure 19. Hierarchical machine learning workflow for partitioning Laguna Figueroa data. All data
samples are split into axis/off-axis and margin data in the first split. The axis/off-axis data is
subsequently clustered into two classes, and the margin data is subsequently clustered into three
clusters—margin A, margin B, and margin C (Southern et al., 2017).

56

CHAPTER 5: HIERARCHICAL MACHINE LEARNING ANALYSIS

5.1 Methodology

A hierarchical machine learning workflow for partitioning channel outcrop data and
analyzing different channel positions and classification schemes is presented in this chapter of this
study (Figure 19). Using the three-position classification schemes—FD-3P, GM-3P-1, and GM-
3P-2—the 157 data samples from the Laguna Figueroa database were initially split into two
partitions. The first partition contains all of the axis and off-axis data combined, and the second
partition contains the margin data. K-means was then used to cluster the first partition into two
clusters—axis and off-axis—and the second partition into three clusters—margins A, B, and C
(Southern et al., 2017). The K-means algorithm was applied for this workflow because there were
no available classifications for the three different margin styles for the margin data, thus,
supervised learning algorithms could not be used to test for accuracy. Instead, the individual
clusters created by the K-means algorithm were analyzed based on their features to draw
conclusions about heterogeneity across intra-channel fill, advantages and disadvantages of
different classification schemes, and the resulting impacts on fluid flow and reservoir connectivity
in stacked deep-water channels.

5.2 Results

The results for the hierarchical machine learning analysis reiterate two main points:
1) axis is the most statistically distinct channel position; and 2) intra-channel fill and architecture
are variable, especially in channel margins. Furthermore, the results highlight that the geometric
classification schemes capture heterogeneity within channel margins better than the facies-driven

classification schemes.

57

The pairplots—combinations of scatterplots and density plots—of some of the more
important features from the Laguna Figueroa database (Figure 12) show that K-means clusters all
three schemes similarly for the axis and off-axis channel positions (Figures 20A, 21A, and 22A).
The interpreted axis cluster is generally higher in NTG, FA1, and amalgamation ratio, and lower
in FA4, drape thickness, and number of beds (Figures 20A, 21A, and 22A). Additionally, axis has
the least variability within its features as compared to the other channel positions (Figures 20A,
21A, and 22A). This reaffirms the observations made in chapter four of this study regarding the
statistical distinctness of axis as a channel position. This distinctness makes axis the easiest channel
position to predict both in the field and from the data. In contrast, off-axis is more variable with
greater spreads in its features making prediction more difficult. The main features that best separate
the two channel positions are amalgamation ratio and number of beds, as axes are generally more
amalgamated with less beds and vice versa (Figures 20A, 21A, and 22A).

Although off-axis is difficult to predict because it is transitional between axis and margin,
the greatest variability and thus heterogeneity within a single channel position is seen in the
channel margins. The feature distributions for the margin data show that margins A, B, and C are
clustered similarly for the FD-3P and GM-3P-2 schemes (Figures 20B and 22B). Firstly, the
interpreted margin B clusters for both schemes only contain one data sample. This data sample is
characterized as entirely FA4 and drape with a large number of beds. Secondly, the interpreted
margin A and margin C clusters for both schemes show that the two margin styles are similar in
their characteristics with margin A being slightly sandier and more amalgamated than margin C
(Figures 20B and 22B). The primary feature that separates the two styles is the number of beds in

each, which is suitable as margin C is characterized by thicker drapes with higher numbers of thin

58

beds (Southern et al., 2017). Furthermore, this trend of thicker drapes in margin C is better
represented by the GM-3P-2 scheme than the FD-3P scheme.

The margin clusters for the GM-3P-1 scheme show the best separation between the three
interpreted margin styles (Figure 21B). The interpreted margin A cluster is characterized by higher
NTG, amalgamation ratio, and FA1, indicating that it is overall sandier than the other styles.
Conversely, the interpreted margin B cluster has higher FA4, thicker drapes, and the highest
number of beds, indicating a generally silt-dominated margin. Lastly, the interpreted margin C
cluster falls in between the two previous interpreted margin styles as it has a variable range in FA4,
NTG, amalgamation ratio, drape, and number of beds.

Based on the results, the GM-3P-1 scheme presents the strongest argument for the
existence of three different styles of margin architecture and therefore diverse heterogeneity within
the margin channel position. Since this scheme classified data as marginal based on a 16 m cutoff
from the base of a channel geobody (Figure 5), it likely accurately captures the true marginal
extents of channel geobodies. Contrarily, the GM-3P-2 scheme, which had a had a cutoff of 11 m
for marginal data (Figure 5), likely incorporates too much off-axis and potentially axis data into
the margin classification, which results in the statistics for this class resembling more axial
positions (Figure 22B).

Overall, these results imply that the facies-driven classification scheme, FD-3P, is biased
by what is commonly abstracted as marginal within a channel geobody. The margin data from the
FD-3P scheme can be interpreted into three different clusters using the hierarchical machine
learning workflow, but the margin A and margin C clusters are very similar (Figure 20B).
Therefore, although the facies-driven scheme separates axis, off-axis, and margin data samples

well based on features alone (Figure 6B), the hierarchical machine learning results indicate that

59

the scheme oversimplifies the characteristics of the margin channel position and therefore fails to
represent its true heterogeneity. This makes the scheme suitable for use in machine learning
analysis, as the geologic interpretation is still valid. However, more emphasis should be placed on

the conceptual model for channel margins.

60

@ CLUSTERING ANALYSIS: AXIS AND OFF-AXIS (FD-3P) CLUSTERING ANALYSIS: MARGIN (FD-3P)

. . . . 1.0 { - B e] e

04
% " ‘e’ g
< % : %, .
Lo2 ::" ta e ere o5 \ 1+ ¥ ey s ot
@ 3 o \:‘::' ey We. o t ¥ ook] " el L.
\."u: B . h‘o” . > . v * .
0.0 wiasan . - 0.0 . 4 Ziom s 1 eus { & { e

1.0 e K - 1.0
5 ; By ', . v P .
.k:\ ::? : E ’.'} F3< 5 ?' k A § o : ‘e ot .
Oog] *°% W, : $» | 7, o, Y s oo s oy
Z o "% ;:f- 3 - PR . ‘e g 5 . *e : e b3
o N et o aae RN
061 0.04 . - . . .

2 2

=104 = . . . e 0.6

) o<

14 H] :] o 14

c 3 g H 3

S ' 2.2 | - L 504

5054 - -n's :0:'- g- - i

€ » . F . E % 23 AN $s ¢

) el au¥ LS o “ 8941 #2, B 3 1 Lee’, 1%
S N . - . o ot $ *%ee SN 5]

Eo.w f o - S i i] e “Hal . Eo'o‘) : 3 [l : v i il

1.0 K .
.| e TN L o N e L
g 'S EaR r‘,'~~ '§"0 0.4 . . R 4 . .
Z 054 "% $ s g l‘ . E o Y .. . ‘e ..
< - L 24 4 . e
H 3 it DA 0.2 ‘e L o J | e %
0.0 :m we e + e -: «:.-- e — 0.0 e e . o wen 4 4 PR ..o
8 e
E = - P £ . . " . o
E 4 ‘.E _: -i ? X y t 2 50 . @ g G oot . e _‘s.
g 2 R :‘.'-] -.p; J -}'y . { s ;f J LR g 251 3.0 o.3 1 .5_0 ; -* ':o
& . oia o " ee . s o o i - * LU P 2
ol HES | 2% AL B R N . oy o ORI fule | fes, .
@ . . . * « 300
3 3
Q
@ i e L ‘i . g
3 1001/ %8s oS3t 3t S, i, 3 & . 2 $ e
5 . B - . e .. %5
£ ?-:--‘- “ i’“ " = E "-‘{,ﬁ ’_ e E 100 R RE 1 .5, 1 st 1 %0t RS AXY
SR - LR B 4 " 200 . .
> b z A
ol ¢ | !]] L]
0.0 05 05 1.0 0 1 0 1 0 5 0 200 0 1 0 1 0.0 0.5 0 1 0 10 0 200
FA4 NTG Amalgamation Ratio FA1 Drape (m) Number of Beds FA4 NTG Amalgamation Ratio FA1 Drape (m) Number of Beds
Legend

® Axis # Off-Axis « MarginA = X MarginB & Margin C

Figure 20. FD-3P feature distributions and scatterplots for axis, off-axis, and margin clusters from hierarchical machine learning
workflow. (A) Axis and off-axis clusters. (B) Margin A, margin B, and margin C clusters. Black X symbols represent clusters with zero
variance therefore no density plot could be plotted.

61

CLUSTERING ANALYSIS: AXIS AND OFF-AXIS (GM-3P-1)

CLUSTERING ANALYSIS: MARGIN (GM-3P-1)

1.04 . . . 1.04 . .
. .
Zos Pe, i 1,8 Zos 5 P 3 & s
bl af - . 3 ¢ ¥ y
2] ¢
0.0 A\ =2 !'dm !f- 4 B " o,o._@g‘_5 e * gou e $ -
101 & l.'.g: e 1 B 1.0 4 o N S L .
* %
= P N %
ool N 3 Yo | 9 - . . .
g0 0 H 0 . 20
. . . .
0.0 . . P 1 . . 0.0 { A& . . - .
240 2
Z10] = . .] X A
@ o H > Eoa{ - : A :
s e . ? 5 b : / | g . 5
gos{ H. l.'_,':s X 1 2021 °o o] B e 5 S
?n pEEY -, & . . | . . .
k] .. H &') NN ”. ® L .
g 0.04 RS ' . * o D . g 0.0 . 1 . - .
1.0 1 1.04
Tos{ fat. s 1 § <05
€ ¥ 5 i £ :
e Ko e
0.0 B Samie e o o wenbis 00 o 0.0 . ene .o . -
. . . 6 B : B .
g 51 & = i {8 IRe N 't 2
] 2. . e e ® " ooy, g 5 *
a bé’ g %f:") e -] ® . s * .
v 4 . .
o St o -.‘.ﬁa& '._:r..ﬂ lh\ s oo 0o 1 >, - . -
« 300 . 2 804
3 &
5 200 v 601
< ., o 3 ® . * . 2 R * . . .
Bioo] o3 . o N : §a5%, 1ahn" - 4 s % 4 L8 e
A
5 . . " i : 5.1
z o i . o : Z20{ = ’ x
0 1 0 1 0 1 0 1 0 10 0 200 0 0 1 0.0 05 0 0 10 25 50 75
FA4 NTG Amalgamation Ratio FA1 Drape (m) Number of Beds FA4 NTG Amalgamation Ratio FA1 Drape (m) Number of Beds
Legend
= Axis # Off-Axis » MarginA = X MarginB & Margin C

Figure 21. GM-3P-1 feature distributions and scatterplots for axis, off-axis, and margin clusters from hierarchical machine learning
workflow. (A) Axis and off-axis clusters. (B) Margin A, margin B, and margin C clusters. Black X symbols represent clusters with zero
variance therefore no density plot could be plotted.

62

CLUSTERING ANALYSIS: MARGIN (GM-3P-2)

1.0 1.0 . .
. . . B
. . <
Zos \ % $ oy =" g = e g o8 i 1 3 :
» - } . 2o e - o o b o : .
o k3 . ﬁ‘. o. KY 4 Yl Y ot %
0.04 ,A\ e «&— I't:l& . 4 % 0.04 . “wite » 4 o vt 4 . 4 Bee
1.04 b3 e o " . 1.04 . . 4 . > 4 . .
‘ ' & B '
. . » . . S
o %\ %}" 3 el e % Y o,{' 4 oS e
E05 . §o* N, & - s E 054 b b o * 1 d
s " . : . B =
.
0.0 /A.\ . . . 0.0
-] 10 2 0.75
2104 =e = 4 .
&] H]] o &
c . & .y . - <
g€ | L > 2 e, 2 § 0501
8051 t [oy "] N ;
§ g !;_a"' Y S §o.25< ‘s 2 BE X iy ¢
s "o . .’ae&? i’a“ﬁvz. i+ © v ol *es ‘e o e
g 0.04 A e : i 4 * E 0.004 : .
4 q 1.04 .
10 b " i 3 4 . 2 .
s - 1. . $ g
B * C B | Tg®e % 05
X051 Yoo 2 fi * ot w e 3’ s .o ‘oo
e* ‘e Yo * Y © o
- » ot =] .. . b .
001 wwdecen o = emelonn Sueme ne —— an o 0.0 . .o e won s s .o
. . . .
o) P P - s e _ 751]]
E 4] . . oo . .o . . E 504 * 8" % » LI] b2
2 3 .a wre S 2 e i s » o : A
g 5l -:g . A l.‘ 4 ”;.'. 2 25 o5 S ‘o¢ e E 4. ?
e - ~ §: ue o 5 Sk (=) ol - . F &
0+ E.' '..5. ..i'—-;. el 1)L\ 1 -l... .. 004 < oo e wn wle 1 4t
T T T T T T - - v v b
@ 2 300 q
. . : . .
;E; § -..§ ’ e g0 ézom
1009 &3¢ toas ’? e e 5
E a . s X . 2 100 P ‘e . .+ ¥ g
E &,. .ﬁ q . I ..ﬁ F E KX .o do, A, R AR s B e
. LY : %) X
T T T T T T T 0 T v T T
0 0 1 0 1 0 1 0 5 0 200 0 0 1 0 1 0 1 0 10 0 200
FA4 NTG Amalgamation Ratio FA1 Drape (m) Number of Beds FA4 NTG Amalgamation Ratio FA1 Drape (m) Number of Beds
Legend
[® Axis # Off-Axis » MarginA = X MarginB & Margin C

Figure 22. GM-3P-2 feature distributions and scatterplots for axis, off-axis, and margin clusters from hierarchical machine learning
workflow. (A) Axis and off-axis clusters. (B) Margin A, margin B, and margin C clusters. Black X symbols represent clusters with zero
variance therefore no density plot could be plotted.

63

CHAPTER 6: DISCUSSION

< 1 Effi £ Machine Learning Aleorithms in CI 10 \nalvsi

The results of this study validate the use of machine learning algorithms for analyzing and
predicting deep-water channel stacking patterns from outcrop data. The best-performing
supervised learning algorithms achieved accuracies of over 90% for the FD-2P scheme and over
82% for the FD-3P scheme (Table 5; Appendix C), with the latter producing zero
misclassifications of axis data as margin data and vice versa (Figure 14). These results are
important when considering the applications of these machine learning algorithms in exploration
projects. For example, if a data sample from a high-profile deep-water core is truly a margin
classification, but the machine learning algorithms predict it as an axis classification, there will be
severe consequences in terms of expected fluid flow and connectivity at that sample location in
the wellbore. Furthermore, although there are still errors and uncertainties associated with the
supervised learning predictions and classifications can vary between schemes (Figure 23), these
slight deficiencies are arguably no worse than the uncertainties that trained geologists encounter
when interpreting outcrop or core data of this nature. It is rare, and potentially impossible, to
consistently achieve 100% accuracy in interpreting deep-water channel data because a multitude
of variables factor into the creation of deep-water strata—tectonics, eustasy, fluid dynamics,
sediment supply, time, etc. (Zhang et al., 2017). Additionally, developing these interpretations is
often a time consuming and tedious task that can take hours, days, or even weeks. The best-
performing machine learning algorithms utilized in this study, on the other hand, achieved
accuracies on par with trained geologists in mere seconds, proving their efficacy as a tool in deep-

water channel outcrop data analysis.

64

Classification Scheme / Clas:m Classm Classification Scheme

MM2 FD-3P_ GM-3P-1 GM-3P-2. MM102 FD-3P_ GM-3P-1, GM-3P-2. MM1__ FD-3P_GM-3P-1.GM-3P-2. MM101__FD-3P GM-3P-1 GM-3P-2,

|||| = JdJHH

8

m

J

o

m

J

»
o
3

I

i

o

m

"

—15—5
n—
—1:—:
O)
—ci—i
n—
- ? - m : I

Label
Legend I, =

-------- Element Boundary aéiéé) re I:ra b':I TP
I Axis Classification
I Off-Axis Classification
I Margin Classification _4)

T TreLabel ey i TP

P Predicted Label S Label Fpegs Label

Figure 23. Example of predicted three-position channel position classifications for measured sections from LF-2C (Figure 3A). (A)
Clipped image of channel geobody LF-2C from Figure 3A. (B) Measured sections—MM2, MM 102, MM1, and MM 101—with true and
predicted labels for the three-position classification schemes from the best-performing supervised learning algorithms.

65

However, although these automated analytical techniques have proven to be effective, the
importance of the geologic interpretation is still undeniable. Firstly, geologic data is variable and
difficult to cluster. Trends are not always clearly defined, and the expertise and knowledge of a
trained geologist can help to decipher complicated channel architecture. This is reflected in the
classification accuracies and confusion matrices for the K-means clustering analysis (Table 4;
Figure 13). The K-means algorithms performed worse than the supervised learning algorithms for
each classification scheme and the addition of more classes reduced the classification accuracy by
over 30% (Figure 15), thus geologic expertise is still necessary to guide these statistical modeling
workflows, especially if data are divided into multiple classes.

Secondly, the FD schemes achieved better evaluation metrics than their GM scheme
counterparts for each classification scheme (Figures 15, 16, and 17). The GM schemes were
created as objective methods for classifying channel position since the FD schemes were based on
geologic expertise and interpretation. However, the GM schemes consistently performed worse
than their FD scheme counterparts. Although the GM validation accuracies were greater than 70%
for most of the schemes, the equivalent FD schemes still performed better (Table 5).

These results effectively highlight the significance of geologic expertise and knowledge,
but there is still uncertainty as to whether the FD schemes are biased by geologic interpretation
and what geologists conceptualize as axis, off-axis, and margin. The features for the different
channel positions based on the FD schemes show that there is a difference between axis, off-axis,
and margin (Figure 6B). However, the hierarchical machine learning workflow applied in this
study suggests that this separation between classes is artificially incorporated into the FD scheme
by the geologic interpretation. Contrarily, the GM schemes are completely objective and therefore

theoretically represent true heterogeneity in each position, but these schemes are esoteric and

66

potentially only suitable in a study of this nature in which 2D and 3D exposures of channel
geobodies are available. It would be impossible to confidently apply the geometric schemes to core
data because the vertical and lateral extent of the channel geobodies would be unknown. Therefore,
even though the geometric schemes are better at capturing the heterogeneity within intra-channel
fill, the best and most feasible method for channel geobody classification is still based on geologic
interpretation.

Despite the esotericism of the geometric schemes, they were still useful in this study for
demonstrating the variability within the margin channel position. Ultimately, the style of margin
architecture and channel stacking patterns within a deep-water system can have significant
implications for fluid flow and reservoir connectivity (Meirovitz et al., accepted pending revision;
Jackson et al., 2019). Consider a system characterized by margin A channels with varying degrees
of offset ranging from vertically stacked to horizontally stacked (Figure 24). In each stacking
scenario, there is still connectivity between the stacked channels due to their sandier axes, more
amalgamated beds, and less extensive drapes. However, if the channels in the system are
characterized by margin B or margin C architectures, then there are significantly more baffles and
barriers to flow than in the previous example (Figure 24). The drape thickness and architecture in
margin B channels would cause hydrocarbon recovery and production to be problematic. Even in
the vertically stacked scenario, there is minimal contact between the sandy axes of the channels.
Margin C channels are more promising for reservoir connectivity than margin B channels,
especially in the vertically stacked scenario, but thin drapes could still pose significant issues for
flow. Based on these scenarios, special consideration should be given to different styles of margin

architecture and intra-channel fill.

67

Margin A Margin B Margin C
Vertically V
Stacked %&wg
Diagonally V
Stacked @ =
Horizontally
Stacked W

Figure 24. Channel stacking scenarios—vertically stacked, diagonally stacked, and horizontally
stacked—for different styles of channel margin architecture.

68

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

A database of deep-water channel outcrop statistics from the Tres Pasos Formation at
Laguna Figueroa in the Magallanes Basin, Chile, was used to test the efficacy of applying machine
learning algorithms to predict subsurface architecture from measured section data (i.e., 1D
borehole data). Facies-driven and geometric classification schemes of channel position—axis, off-
axis, and margin—were implemented as the desired outputs and prediction labels for the machine
learning algorithms. Feature importance, clustering analysis, and supervised learning analyses
were performed on the data. The analyses reveal that: 1) features such as minimum and maximum
bed thickness, gross, FA2, and FA3 are not as important for defining channel position; (2) axis is
the most statistically distinct channel position; (3) the transitional nature of off-axis makes it
difficult to classify; and (4) the importance of the geologic interpretation cannot be understated,
but the possibility of internal bias should still be considered.

In addition, a hierarchical machine learning workflow was used to expand upon the
preliminary analyses and test a hypothesis of different styles of channel margin architecture. These
secondary analyses highlight the variability across intra-channel fill and architecture, specifically
in channel margins, thus supporting the existence of diverse channel margin architectures. These
results have important implications on fluid flow and reservoir connectivity in deep-water channel
systems and present more opportunities for the application of data analytics and machine learning

in petroleum geoscience and sedimentology.

69

7.2 Future Work
7.2.1 Modeling Channel Stacking Scenarios

The random forest, XGBoost, and neural network algorithms applied in this study have the
ability to produce classification probabilities based on the input features they are provided. These
probabilities can be used in a 1D-2D modeling approach to generate different scenarios of channel
stacking patterns ranging from least-likely to most-likely and therefore predict connectivity at a
wellbore (Figure 25A). Based on the probabilities, if there is a strong anchor at the wellbores
delineating the most probable channel stacking patterns, then it’s possible to transition more
confidently to a 3D inter-wellbore modeling approach (Figure 25B). Ideally, this approach can be
used on wells with gamma ray, but the addition of core will help bolster the prediction by providing
more statistical data to guide the model.
7.2.2 Classifying Channel Position from Well-Log Data

Measured section data, which is analogous to 1D borehole or core data, provided the
foundation for the Laguna Figueroa database used in this study. However, this type of data is not
always available in exploration projects due to the cost and time associated with acquiring it.
Instead, well-logs, such as gamma ray, density, porosity, and resistivity logs, are typically the
standard suites of data available in most exploration projects. On account of this, an enhancement
to the applicability of this study could be to train algorithms to detect channel position from solely
log responses.
7.2.3 Automatic Detection of Channel Boundaries

The Laguna Figueroa outcrops have been studied extensively over the past couple of
decades, which has enhanced the understanding of the deep-water slope channel system and its

evolution. This expertise and knowledge allowed researchers to interpret the bases and tops of the

70

individual channel bodies at Laguna Figueroa, and in turn, the interpretation of these channel
boundaries allowed for the partitioning and classification of the different input features used in
this study. However, how could a machine learning workflow be applied in an unknown deep-
water channel system like those in exploration projects? Can machine learning algorithms be
trained to automatically detect channel boundaries from well-log and/or core data? These questions
set the stage for future projects with more direct implications on the ability to detect and identify
subsurface architecture and heterogeneity.
7.2.4 Data Augmentation

The utility of machine learning algorithms comes from their ability to process large datasets
efficiently. Most datasets used in machine learning workflows are deemed Big Data because they
have such high volume, variety, velocity, and veracity that they need to be analyzed
computationally. However, the Laguna Figueroa database does not meet the requirements to be
considered Big Data and some of the classification schemes are imbalanced due to this. This lack
of data can impact the machine learning results, making it hard to extract value and conclusions
from the analysis. Data augmentation is a technique that is commonly used for data science projects
that suffer from issues such as data paucity. It allows users to increase the size and diversity of a
dataset without having to retrieve more data (Van Dyk and Meng, 2001). A future project could
apply data augmentation methods to the Laguna Figueroa database to increase the size of classes
lacking in samples. The machine learning analysis could then be re-run to see whether there are
improvements in the evaluation metrics for the machine learning algorithms.
7.2.5 Testing on a Different Deep-Water Channel System

As previously stated in the data augmentation section, the machine learning results in this

study could be improved by the addition of more data to strengthen the trends and patterns already

71

identified or provide more insight into the nature of deep-water channels. Future work could focus
on training machine learning algorithms to classify channel position using the Laguna Figueroa
database and testing those trained algorithms using data from deep-water channel outcrops from
another system. This future work could help improve the evaluation metrics of the algorithms used
in this study and validate the use of analogous systems for projects with low data density and/or

quality.

72

®

Channel Stacking Scenario #1 Channel Stacking Scenario #2
Probabilities:

O B>

Legend

[Iaxds [Joftaxis [Margin

Probability of Channelr
0-" _1

Figure 25. (A) 1D-2D modeling channel stacking scenarios based on most-likely channel positions
at a wellbore extracted from machine learning algorithm probabilities. (B) Using strongly anchored
or most probable wellbores to predict channel locations between well locations conditioned to
seismic attributes (Source: CSS Consortium Material).

73

REFERENCES

Abdi, H. and Williams, L.J., 2010, Principal component analysis: WIREs Computational
Statistics, v. 2, p. 433-459. doi:10.1002/wics.101

Abuassba, A.O.M., Zhang, D., Luo, X., Shaheryar, A., and Ali, H., 2017, Improving
classification performance through an advanced ensemble based heterogeneous extreme

learning machines: Computational Intelligence and Neuroscience, v. 2017,
doi:10.1155/2017/3405463

Alpak, F.O., Barton, M.D., and Naruk, S.J., 2013, The impact of fine-scale turbidite channel
architecture on deep-water reservoir performance: AAPG Bulletin, v. 97, p. 251-284,
doi:10.1306/04021211067.

Anderson, C., Forney, E., Hains, D., and Natarajan, A., 2011, Reliable identification of mental
tasks using time-embedded EEG and sequential evidence accumulation: Journal of Neural
Engineering, v. 8, doi:10.1088/1741-2560/8/2/02502.

Asquith, G.B., Gibson, C.R., Henderson, S.K., Hurley, N.F., and Krygowski, D., 2004, Basic
Well Log Analysis: American Association of Petroleum Geologists, doi: 10.1306/Mth1682.

Barton, M., O’Byrne, C., Pirmez, C., Prather, B., van Der Vlugt, F., Alpak, F.O., and Sylvester,
Z.,2010, Turbidite channel architecture: recognizing and quantifying the distribution of
channel-base drapes using core and dipmeter data: Dipmeter and Borehole Image Log
Technology, v. 92, p. 195-210, doi:10.1306/13181284M923289.

Bestagini, P., Lipari, V., and Tubaro, S., 2017, A machine learning approach to facies
classification using well-logs: SEG Technical Program Expanded Abstracts 2017, p. 2137—
2142, doi:10.1190/segam2017-17729805.1.

Blair, T.C., and McPherson, J.G., 1999, Grain-size and textural classification of coarse
sedimentary particles: Journal of Sedimentary Research, v. 69, p. 6-19,
doi:10.2110/jsr.69.6.

Brazell, S., Bayeh, A., Ashby, M., and Burton, D., 2019, A machine-learning-based
approach to assistive well-log correlation: Society of Petrophysicists and Well-Log
Analysts, v. 60, p. 469-479.

Breiman, L., 1994, Bagging predictors: Technical Report No. 421: Department of Statistics
University of California, Berkeley, California, p. 1-19.

Bubnova, A., Ors, F., Rivoirard, J., Cojan, 1., and Romary, T., 2019, Automatic determination of

sedimentary units from well data: Mathematical Geosciences, v. 52, p. 213-231,
doi:10.1007/s11004-019-09793-w.

74

Chen, H., Chiang, R.H.L., and Storey, V.C., 2012, Business intelligence and analytics: From big
data to big impact: MIS Quarterly: Management Information Systems, v. 36, p. 1165—-1188,
doi:10.2307/41703503.

Chen, T., and Guestrin, C, 2016, XGBoost: A scalable tree boosting system: In Proceedings of
the 22:d ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, p. 785-794.

Cheng, B., Xiao, R., Wang, J., Huang, T., and Zhang, L., 2019, High frequency residual learning
for multi-scale image classification: British Machine Vision Association, p. 1-14.

Chopra, S., Castagna, J., and Portniaguine, O., 2006, Seismic resolution and thin-bed reflectivity
inversion: CSEG Recorder, v. 31, p. 19-25, doi:10.1190/1.236994.

Covault, J.A., Romans, B.W., and Graham, S.A., 2009, Outcrop expression of a continental-
margin-scale shelf-edge delta from the Cretaceous Magallanes Basin, Chile: Journal of
Sedimentary Research, v. 79, p. 523-539, doi:10.2110/jsr.2009.053.

Dalziel, LW.D., de Wit, M.J., and Palmer, K.F., 1974, Fossil marginal basin in the southern
Andes: Nature, v. 250, p. 291-294.

Daniels, B.G., Hubbard, S.M., Stright, L., and Romans B.W., 2019, Downslope variability in
deep-water slope channel fill and stacking patterns: Insights from outcrop and shallow
seismic analogs: In ACE 2019 Annual Convention & Exhibition.

Daniels, B.G., Auchter, N.C., Hubbard, S.M., Romans, B.W., Matthews, W.A., and Stright, L.,
2018, Timing of deepwater slope evolution constrained by large-n detrital and volcanic ash

zircon geochronology, Cretaceous Magallanes Basin, Chile: Geological Society of America
Bulletin, v. 130, no. 3—4, p. 438-454, doi:10.1130/B31757.1.

Daniels, B.G., 2019, Multi-scale and geochronologic investigations of Late Cretaceous sediment-
routing systems, Magallanes Basin, Chile [Ph.D. thesis]: Calgary, University of Calgary,
319 p.

Deptuck, M.E., Sylvester, Z., Pirmez, C., and O’Byrne, C., 2007, Migration-aggradation history
and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major
Canyon, western Niger Delta slope: Marine and Petroleum Geology, v. 24, p. 406433,
doi:10.1016/j.marpetgeo.2007.01.005.

Dixon, S.J., and Brereton, R.G., 2009, Comparison of performance of five common classifiers
represented as boundary methods: Euclidean Distance to Centroids, Linear Discriminant
Analysis, Quadratic Discriminant Analysis, Learning Vector Quantization and Support
Vector Machines, as dependent on data structure: Chemometrics and Intelligent Laboratory
Systems, v. 95, p. 1-17, doi:10.1016/j.chemolab.2008.07.010.

75

Fildani, A., and Hessler, A.M., 2005, Stratigraphic record across a retroarc basin inversion:
Rocas Verdes-Magallanes Basin, Patagonian Andes, Chile: Bulletin of the Geological
Society of America, v. 117, p. 15961614, doi:10.1130/B25708.

Fletcher, S.D.T., Macauley, R.V., and Hubbard, S.M, 2011, Characterizing depositional elements
of a deep water channel complex using quantitative metrics, Tres Pasos Formation,
Southern Chile: 2011 CSPG CWLS Convention, p. 1-4.

Fletcher, S., 2013, Stratigraphic characterization of a Cretaceous slope channel complex in the
Tres Pasos Formation, Arroyo Picana-Laguna Figueroa outcrop belt [M.S. thesis]: Calgary,
University of Calgary, 127 p.

Friedman, J., Hastie, T., and Tibshirani, R., 2000, Additive logistic regression: The Annals of
Statistics, doi:10.1214/a0s/1016218223.

Friedman, J.H., 2002, Stochastic gradient boosting: Computational Statistics and Data Analysis,
v. 38, p. 367-378, do0i:10.1016/S0167-9473(01)00065-2.

Freund, Y., and Schapire, R. E., 1996, Experiments with a new boosting algorithm: Proceedings
of the 13th International Conference on Machine Learning, p. 148—156,
doi:10.1.1.133.1040.

Freund, Y., and Schapire, R.E., 1997, A decision-theoretic generalization of on-line learning
and an application to boosting: Journal of Computer and System Sciences, v. 55, p. 119-
139, doi:10.1006/jcss.1997.1504.

Fosdick, J.C., Romans, B.W., Fildani, A., Bernhardt, A., Calder6n, M., and Graham, S.A, 2011,
Kinematic evolution of the Patagonian retroarc fold-and-thrust belt and Magallanes foreland
basin, Chile and Argentina, 51°30’s: Bulletin of the Geological Society of America, v. 123,
p. 1679-1698, doi:10.1130/B30242.1.

Gardner, W.A., 1984, Learning characteristics of stochastic-gradient-descent algorithms: A
general study, analysis, and critique: Signal Processing, v. 6, p. 113-133, doi:10.1016/0165-
1684(84)90013-6.

Goodfellow, 1., Bengio, Y., and Courville, A., 2016, Deep Learning: Cambridge, Massachusetts,
MIT Press.

Hall, B., 2016, Facies classification using machine learning: The Leading Edge, v. 35, p. 906—
909, doi:10.1190/t1e35100906.1.

Han, S., Li, M., and Ren, Q., 2019, Discriminating among tectonic settings of spinel based on
multiple machine learning algorithms, Big Earth Data, v. 3, p. 67-82,
doi:10.1080/20964471.2019.1586074

76

Hart, B., 2013. Whither seismic stratigraphy?: Interpretation, v. 1, p. SA3—-SA20,
doi:10.1190/INT-2013-0049.1.

Hassani, H., and Silva, E.S, 2018, Big Data: A big opportunity for the petroleum and
petrochemical industry: OPEC Energy Review, v. 42, p. 74-89, doi:10.1111/opec.12118.

Huang, L., Dong, X., and Clee, T.E., 2017, A scalable deep learning platform for identifying
geologic features from seismic attributes: Leading Edge, v. 36, p. 249-256,
doi:10.1190/tle36030249.1.

Hubbard, S.M., Fildani, A., Romans, B.W., Covault, J.A., and McHargue, T.R, 2010, High-relief
slope clinoform development: Insights from outcrop, Magallanes Basin, Chile: Journal of
Sedimentary Research, v. 80, p. 357-375, doi:10.2110/jsr.2010.042.

Hubbard, S.M., Covault, J.A., Fildani, A., and Romans, B.W., 2014, Sediment transfer and
deposition in slope channels: Deciphering the record of enigmatic deep-sea processes from
outcrop: Geological Society of America Bulletin, v. 126, no. 5-6, p. 857-871,
doi:10.1130/B30996.1.

Hubbard, S.M., Romans, B.W., Southern, S.J., Stright, L., Daniels, B.G., Fletcher, S., Jackson,
A., Kaempfe, S.A., Macauley, R., Nielson, A., Niquet, D., Meirovitz, C., Pemberton, E.,
and Reimchen, A.P., 2018, Core- and log-based recognition criteria for deep-water channel
bodies: Using outcrops to inform stratigraphic architecture predictions beyond the wellbore:
AAPG Annual Convention, Salt Lake City, UT, July 23-25, 2018.

Jain, A.K., Murty, M.N., and Flynn, P.J, 1999, Data clustering: A review: ACM Computing
Surveys, v. 31, p. 264-323, doi:10.1145/331499.331504.

Jackson, A., Stright, L., Hubbard, S.M., and Romans, B.W, 2019, Static connectivity of stacked
deep-water channel elements constrained by high-resolution digital outcrop models: AAPG
Bulletin, v. 103, p. 2943-2973, doi:10.1306/03061917346.

Kassambara, A., 2017. Practical Guide to Principal Component Methods in R: Poland, Statistical
Tools for High-Throughput Data Analysis, 29 p.

Kawabata, D., and Bandibas, J., 2009, Landslide susceptibility mapping using geological data, a
DEM from ASTER images and an Artificial Neural Network (ANN): Geomorphology, v.
113, p. 97-109, doi:10.1016/j.geomorph.2009.06.006.

Kotsiantis, S.B., Zaharakis, I.D., and Pintelas, P.E., 2006, Machine learning: A review of
classification and combining techniques: Artificial Intelligence Review, v. 26, p. 159-190,
doi:10.1007/s10462-007-9052-3.

Kotsiantis, S., 2011, Combining bagging, boosting, rotation forest and random subspace
methods: Artificial Intelligence Review, v. 35, p. 223-240, doi:10.1007/s10462-010-9192-
8.

77

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., and Jackel,
L.D., 1989, Backpropagation applied to digit recognition: Neural Computation.

Lecun, Y., Bengio, Y., and Hinton, G., 2015, Deep learning: Nature, v. 521, p. 436444,
doi:10.1038/nature14539.

Lever, J., Krzywinski, M., and Altman, N., 2017, Principal component analysis: Nature Publishing
Group, v. 14, p. 641-642, doi:10.1038/nmeth.4346.

Lowe, D.R., Graham, S.A., Malkowski, M.A., and Das, B,, 2019, The role of avulsion and splay
development in deep-water channel systems: Sedimentology, architecture, and evolution of

the deep-water Pliocene Godavari “A” channel complex, India: Marine and Petroleum
Geology, v. 105, p. 81-99, doi:10.1016/j.marpetgeo.2019.04.010.

Macauley, R.V., and Hubbard, S.M, 2013, Slope channel sedimentary processes and
stratigraphic stacking, Cretaceous Tres Pasos Formation slope system, Chilean Patagonia:
Marine and Petroleum Geology, v. 41, p. 146—162, doi:10.1016/j.marpetgeo.2012.02.004.

MacQueen, J., 1967, Some methods for classification and analysis of multivariate observations:
University of California Press, Berkeley, California, Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, v. 1, p. 281-297.

Martin-Sanchez, F., Verspoor, K., 2014, Big data in medicine is driving big changes: Yearbook
of Medical Informatics, v. 9, p. 14-20, doi:10.15265/1Y-2014-0020.

McCulloch, W.S., and Pitts, W.A., 1943, Logical calculus of the ideas immanent in nervous
Activity: Bulletin of Mathematical Biophysics, v. 5, p. 115-133,
doi:10.1007/BF02478259.

McHargue, T.R., and Webb, J.E, 1986, Internal geometry, seismic facies, and petroleum
potential of canyons and inner fan channels of the Indus submarine fan: American
Association of Petroleum Geologists Bulletin, v. 70, p. 161-180, doi:10.1306/94885651-
1704-11d7-8645000102c1865d.

McHargue, T., Pyrcz, M. J., Sullivan, M. D., Clark, J. D., Fildani, A., Romans, B.W., and
Drinkwater, N.J., 2011, Architecture of turbidite channel systems on the continental slope:

Patterns and predictions: Marine and Petroleum Geology, v. 28, p. 728—743,
doi:10.1016/j.marpetgeo.2010.07.008.

Meirovitz, C., Stright, L., Romans, B.W., and Hubbard, S., 2016, The influence of intra- and
inter-channel architecture in selecting optimal gridding for field-scale reservoir simulation:

AAPG Search and Discovery, #90259, Calgary.

Martin-Sanchez, F., & Verspoor, K., 2014, Big data in medicine is driving big changes:
Yearbook of Medical Informatics, v. 9, p. 14-20, doi:10.15265/1Y-2014-0020.

78

Mohammadpoor, M., and Torabi, F., 2019, Big Data analytics in oil and gas industry: An
emerging trend: Petroleum, doi:10.1016/j.petlm.2018.11.001.

Mgller, M.F., 1993, A scaled conjugate gradient method for fast supervised learning: Neural
Networks, v. 6, p. 525-533, doi:10.1016/S0893-6080(05)80056-5.

Na, B., and Fox, G.C., 2019, Object detection by a super-resolution method and a convolutional
neural networks: Proceedings - 2018 IEEE International Conference on Big Data, Big Data
2018, p. 22632269, doi:10.1109/BigData.2018.8622135.

Nader, F.H., Browning-Stamp, P., and Lecomte, J.C, 2016, Geological interpretation of 2D
seismic reflection profiles onshore Lebanon: Implications for petroleum exploration:
Journal of Petroleum Geology, v. 39, p. 333-356, do1:10.1111/jpg.12656.

Oyelade, O.J., Oladipupo, O.0., and Obagbuwa, I. C., 2010, Application of k-Means Clustering
algorithm for prediction of students’ academic performance: International Journal of
Computer Science and Information Security, v. 7, p. 292-295.

Ozcoban, M.S., Isenkul, M.E., Giines-Durak, S., Ormanci-Acar, T., Ovez, S., and Tiifekci, N.,
2018, Predicting permeability of compacted clay filtrated with landfill leachate by k-Nearest
Neighbors modelling method: Water Science and Technology, v. 77, p. 2155-2164,
doi:10.2166/wst.2018.139.

Pemberton, E.A.L., Stright, L., Fletcher, S., and Hubbard, S.M, 2018. The influence of
stratigraphic architecture on seismic response: Reflectivity modeling of outcropping
deepwater channel units: Interpretation, v. 6, p. T783-T808, doi:10.1190/int-2017-0170.1.

Polikar, R., 2012, Ensemble learning, in Zhang, C., and Ma, Y., eds., Ensemble Machine
Learning: Boston, Massachusetts, Springer, p. 1-34, doi:10.1007/978-1-4419-9326-7.

Qian, N., 1999, On the momentum term in gradient descent learning algorithms: Neural
Networks, v. 12, p. 145-151, doi:10.1016/S0893-6080(98)00116-6.

Romans, B.W., Hubbard, S.M., and Graham, S.A., 2009, Stratigraphic evolution of an
outcropping continental slope system, Tres Pasos Formation at Cerro Divisadero, Chile:
Sedimentology, v. 56, p. 737-764, doi:10.1111/5.1365-3091.2008.00995 ..

Romans, B.W., Fildani, A., Hubbard, S.M., Covault, J.A., Fosdick, J.C., and Graham, S.A, 2011,
Evolution of deep-water stratigraphic architecture, Magallanes Basin, Chile: Marine and

Petroleum Geology, v. 28, p. 612-628, doi:10.1016/j.marpetgeo.2010.05.002.

Rosenblatt, F., 1958, The perceptron: A probabilistic model for information storage and
organization in the brain: Psychological Review, v. 65, p. 386408, doi:10.1037/h0042519.

Rosenblatt, F., 1962, Principles of Neurodynamics: New York, Spartan Books, 616 p.

79

Rumelhart, D.E., Hinton, G.E., and Williams, R.J., 1986, Learning internal representations by
error propagation, in Rumelhart, D.E., and McLelland, J.L., eds., Parallel Distributed
Processing: Explorations in the Microstructure of Cognition: Cambridge, Massachusetts,
InMIT Press, v.1, p. 318-362.

Samuel, A. L., 1959, Some studies in machine learning using the game of checkers: IEEE
Transactions on Circuits and Systems for Video Technology, v. 3, p. 291-301,
doi:10.1109/76.257218.

Saporetti, C.M., da Fonseca, L.G., Pereira, E., and de Oliveira, L.C, 2018, Machine learning
approaches for petrographic classification of carbonate-siliciclastic rocks using well-logs
and textural information: Journal of Applied Geophysics, v. 155, p. 217-225,
doi:10.1016/j.jappgeo.2018.06.012.

Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., and Napolitano, A., 2010, RUSBoost: A hybrid
approach to alleviating class imbalance: IEEE Transactions on Systems, Man, and
Cybernetics Part A: Systems and Humans, v. 40, p. 185-197,
doi:10.1109/TSMCA.2009.2029559.

Shewchuk, J. R., 1994, An introduction to the conjugate gradient method without the agonizing
pain: Technical Report CMU-CS-TR-94-125, Carnegie Mellon University.

Skurichina, M., Duin, R., 2002, Bagging, boosting and the random subspace method for linear
classifiers: Pattern Analysis & Applications, v. 5, p. 121-135, doi:10.1007/s100440200011.

Song, Y., Lu, Y., 2015, Decision tree methods: applications for classification and prediction:
Shanghai Archives of Psychiatry, v. 27, p. 130-135.

Southern, S.J., Stright, L., Jobe, Z.R., Romans, B., and Hubbard, S., 2017, The stratigraphic
expression of slope channel evolution: insights from qualitative and quantitative
assessment of channel fills from the Cretaceous Tres Pasos Formation, southern Chile:
AAPG Annual Convention, Houston, TX, April 3-5, 2017.

Tang, M., Xia, L., Wei, D., Yan, S., Du, C., and Cui, H. L., 2017, Distinguishing different
cancerous human cells by Raman spectroscopy based on discriminant analysis methods:
Applied Sciences (Switzerland), v. 7, doi:10.3390/app7090900.

Tao, D., Tang, X., and Wu, X., 2006, Asymmetric bagging and random subspace for support
vector machines-based relevance feedback in image retrieval: IEEE Transactions on Pattern
Analysis and Machine Intelligence, v. 28, p. 1088—1099, doi:10.1109/TPAMI.2006.134.

Tien Bui, D., Pradhan, B., Lofman, O., and Revhaug, 1., 2012, Landslide susceptibility

assessment in Vietnam using support vector machines, decision tree, and naive bayes
models: Mathematical Problems in Engineering, v. 2012, doi:10.1155/2012/974638.

80

Van Dyk, D., and Meng, X., 2001, The art of data augmentation: Journal of Computational
and Graphical Statistics, v. 10, p. 1-50, doi:10.1198/10618600152418584.

Van Wagoner, J.C., Mitchum, R.M., Campion, K.M., and Rahmanian, V.D., 1990, Siliciclastic
Sequence Stratigraphy in Well Logs, Cores, and Outcrops: Concepts for High-Resolution

Correlation of Time and Facies: American Association of Petroleum Geologists, Tulsa,
doi:10.1306/Mth7510

Welling, M., 2005, Fisher linear discriminant analysis: Department of Computer Science,
University of Toronto.

Wilson, T. J., 1991, Transition from back-arc to foreland basin development in the southernmost
Andes: Stratigraphic record from the Ultima Esperanza District, Chile: Geological Society
of America Bulletin, v. 103, p. 98—111, doi:10.1130/0016-
7606(1991)103<0098: TFBATF>2.3.CO;2

Wold, S., Esbensen, K.I.M., and Geladi, P., 1987, Principal component analysis: Chemometrics
and Intelligent Laboratory Systems, v. 2, p. 37-52, doi:10.1016/0169-7439(87)80084-9.2.

Wrona, T., Pan, 1., Gawthorpe, R.L., and Fossen, H., 2018, Seismic facies analysis using
machine learning: Geophysics, v. 83, p. 083—095, doi:10.1190/ge02017-0595.1.

Wyner, A.J., Olson, M., Bleich, J., and Mease, D., 2017, Explaining the success of adaboost and
random forests as interpolating classifiers: Journal of Machine Learning Research, v. 18, p.
1-33.

Zhang, H., 2005, The optimality of naive bayes: International Journal of Pattern Recognition and
Artificial Intelligence, v. 19, p. 183-198, do1:10.1142/S0218001405003983.

Zhang, W.B., Duan, T.Z., Liu, Z.Q., Liu, Y.F., Zhao, L., and Xu, R., 2017, Architecture mode,
sedimentary evolution and controlling factors of deepwater turbidity channels: A case study
of the M OQilfield in West Africa: Petroleum Science, v. 14, p. 493-506,
doi:10.1007/s12182-017-0181-2.

81

APPENDIX A: LAGUNA FIGUEROA DATABASE

82

Table A.1 Drape thickness, net, gross, NTG, and facies proportion statistics for Laguna Figueroa database.

Complex Drape

Set Section Name Geobody Thickness (m) Net (m) Gross ((m) NTG FA1l FA2 FA3 FA4
Upper FIG100 11 6.15 7.82 13.97 056 056 0.00 0.00 0.32
Upper FIG100 10 0.00 11.84 11.84 1.00 0.88 0.00 0.12 0.00
Upper FIG100 8 0.43 21.27 21.85 0.97 097 0.00 0.00 0.01
Upper FIG100 3 0.83 7.10 10.02 0.71 040 0.00 031 0.29
Upper FIG100 2 0.00 7.59 8.05 094 091 0.00 0.03 0.06
Upper GCl1 12 3.54 6.84 10.38 0.66 036 0.16 0.15 0.34
Upper GCI10 11 1.18 9.06 10.24 0.88 0.88 0.00 0.00 0.12
Upper GC2 12 3.36 6.93 10.28 0.67 030 020 0.18 0.33
Upper GC3 12 0.20 18.86 19.20 0.98 090 0.00 0.08 0.02
Upper GC4 12 0.00 16.71 16.71 1.00 030 043 0.12 0.00
Upper GCo 11 0.11 10.69 10.79 0.99 0.71 028 0.00 0.01
Upper GC7 12 0.54 21.64 24.00 090 0.74 0.00 0.16 0.02
Upper GC8 12 0.00 24.40 24.88 098 097 0.01 0.00 0.00
Upper GCNOR 12 2.54 421 6.75 0.62 000 048 0.14 0.38
Upper GD1 10 0.00 12.50 12.50 1.00 055 045 0.00 0.00
Upper GD1 8 0.00 11.59 11.59 1.00 1.00 0.00 0.00 0.00
Upper GD3 5 0.59 7.03 7.62 092 0.00 0.72 020 0.08
Upper GD3 2 0.00 5.22 5.22 1.00 0.00 021 0.79 0.00
Upper GD5GC5 12 1.03 22.54 24.23 0.93 093 0.00 0.00 0.00
Upper GD5GC5 11 0.00 6.31 6.31 1.00 1.00 0.00 0.00 0.00
Upper GD5GC5 10 0.00 6.32 6.42 099 0.71 020 0.07 0.01
Upper GD6KS7 11 0.00 7.32 7.32 1.00 1.00 0.00 0.00 0.00
Upper GD6KS7 6 0.00 7.24 7.24 1.00 044 024 032 0.00
Upper GD7 11 0.00 11.79 11.79 1.00 1.00 0.00 0.00 0.00
Upper GDS8 5 0.00 7.62 11.74 0.65 0.00 0.37 028 0.25
Upper KS3 12 8.52 0.00 8.52 0.00 0.00 0.00 0.00 1.00
Upper MM103 12 0.00 22.76 22.76 1.00 090 0.00 0.10 0.00
Upper MM103 5 0.00 8.68 9.66 0.90 0.00 090 0.00 0.10
Upper P10 8 0.00 15.46 15.46 1.00 090 0.00 0.10 0.00

83

Complex Drape

Set Section Name Geobody Thickness (m) Net (m) Gross (m) NTG FA1l FA2 FA3 FA4
Upper P10 3 0.00 10.92 11.53 0.95 0.58 0.37 0.00 0.05
Upper P10 2 0.00 8.90 8.90 1.00 049 0.51 0.00 0.00
Upper P11 5 0.00 6.52 8.72 0.75 0.00 0.00 0.75 0.25
Upper P11 2 0.00 6.33 6.33 1.00 0.00 0.00 1.00 0.00
Upper P12 7 1.01 11.06 12.11 091 046 0.14 032 0.08
Upper P12 6 0.84 5.11 5.95 0.86 0.00 0.86 0.00 0.14
Upper P13 5 0.00 9.44 9.44 1.00 041 0.17 042 0.00
Upper P13 2 0.00 4.34 4.34 1.00 0.00 0.00 1.00 0.00
Upper P2 3 0.00 11.01 11.01 1.00 0.63 0.37 0.00 0.00
Upper P3 11 1.08 8.95 10.61 0.84 0.84 0.00 0.00 0.10
Upper P4 11 0.00 12.26 12.26 1.00 1.00 0.00 0.00 0.00
Upper P5 11 0.00 10.88 11.48 0.95 090 0.00 0.04 0.05
Upper P5 7 1.67 8.18 11.26 0.73 022 020 031 0.27
Upper P5 6 0.00 6.25 6.45 097 025 0.67 0.04 0.03
Upper P5 5 5.18 5.44 10.62 0.51 028 0.00 023 0.49
Upper P6DS5GC9 12 0.00 8.50 8.50 1.00 041 0.09 0.51 0.00
Upper P6DS5GC9 11 0.00 13.05 13.05 1.00 0.74 026 0.00 0.00
Upper P6DS5GC9 7 0.00 11.12 11.12 1.00 023 0.18 0.59 0.00
Upper P6DS5GC9 6 0.51 3.21 5.31 0.60 041 0.19 0.00 0.40
Upper P6DS5GC9 5 0.00 10.17 10.72 095 0.12 027 056 0.05
Upper P7GD4 11 0.00 12.85 14.48 0.89 0.00 0.03 086 0.11
Upper P7GD4 10 0.00 6.73 6.73 1.00 032 0.68 0.00 0.00
Upper P7GD4 8 0.00 11.00 11.00 1.00 1.00 0.00 0.00 0.00
Upper P7GD4 5 0.00 8.15 8.15 1.00 0.00 0.56 0.44 0.00
Upper P8 5 0.00 10.55 10.55 1.00 022 0.10 0.68 0.00
Upper P9 2 0.00 3.64 4.93 0.74 0.04 0.00 0.70 0.26
Upper VACA3VV3 11 0.42 18.76 20.27 0.93 0.69 024 0.00 0.02
Upper VACA3VV3 10 0.00 9.58 12.05 0.80 0.80 0.00 0.00 0.00
Upper VACA4VV4 11 4.32 8.54 12.85 0.66 042 025 0.00 0.18
Upper VACA4VV4 10 1.83 9.79 11.77 0.83 037 0.06 041 0.17
Upper VACA4VV4 8 0.00 17.86 17.86 1.00 1.00 0.00 0.00 0.00

84

Complex Drape

Set Section Name Geobody Thickness (m) Net (m) Gross (m) NTG FA1l FA2 FA3 FA4
Upper VACA4VV4 3 0.00 16.29 16.58 0.98 093 0.05 0.00 0.02
Upper VACA4VV4 2 0.00 6.83 6.83 1.00 1.00 0.00 0.00 0.00
Upper VACA8VVS 11 0.00 8.97 8.97 1.00 0.75 0.25 0.00 0.00
Upper VACAS8VVSE 10 0.00 12.69 12.94 098 045 0.53 0.00 0.02
Upper VACABVVSE 8 0.00 13.17 13.78 096 0.85 0.00 0.11 0.04
Upper VCMI1VV5 11 0.00 16.99 16.99 1.00 025 0.58 0.18 0.00
Upper VCM1VV5 10 0.50 6.42 6.91 0.93 0.85 0.08 0.00 0.07
Upper VCMI1VV5 8 0.00 13.19 13.19 1.00 094 0.06 0.00 0.00
Upper VCMI1VV5 3 2.99 8.37 12.82 0.65 0.00 0.00 0.65 0.35
Upper VCM1VV5 2 0.00 5.99 7.02 0.85 050 036 0.00 0.15
Upper VCM2 9 1.92 8.45 12.22 0.69 024 0.00 045 0.31
Upper VCM2 8 0.00 11.50 11.50 1.00 0.86 0.06 0.08 0.00
Upper VCM3 9 0.00 941 12.76 0.74 056 0.00 0.18 0.26
Upper VV2 8 0.00 11.14 11.14 1.00 1.00 0.00 0.00 0.00
Upper VV2 3 0.00 10.69 11.82 0.90 0.83 0.00 0.07 0.10
Upper VV2 2 0.00 8.18 8.18 1.00 0.75 0.14 0.11 0.00
Upper VV7 11 0.00 26.42 26.42 1.00 053 022 0.25 0.00
Upper VVEDGE 11 5.90 0.00 5.90 0.00 0.00 0.00 0.00 1.00
Upper VVWB 11 0.00 11.31 14.20 0.80 0.17 0.00 0.63 0.20
Lower CACHI1 8 1.36 17.03 18.39 0.93 0.70 0.07 0.16 0.07
Lower CACHI1 7 5.07 6.38 11.45 0.56 048 0.01 0.07 044
Lower CACHI1 6 0.00 6.14 6.14 1.00 0.00 0.71 0.29 0.00
Lower CACHI1 3 0.00 17.73 17.73 1.00 056 0.15 0.28 0.00
Lower CACHI1 2 0.00 8.13 8.13 1.00 0.85 0.15 0.00 0.00
Lower CACH2 3 0.00 19.90 20.10 099 060 0.14 0.25 0.01
Lower CACH2 2 1.75 4.86 6.61 0.74 0.00 0.74 0.00 0.26
Lower DS1 9 6.14 0.00 6.14 0.00 0.00 0.00 0.00 1.00
Lower DS1 8 3.82 1.80 6.58 0.27 0.00 0.00 0.27 0.73
Lower DS1 7 6.41 8.71 15.70 0.55 0.00 024 031 045
Lower DS1 6 0.00 13.99 16.88 0.83 0.83 0.00 0.15 0.02
Lower DS1 2 0.00 7.52 8.22 091 000 0.77 0.14 0.09

85

Complex Drape

Set Section Name Geobody Thickness (m) Net (m) Gross (m) NTG FA1l FA2 FA3 FA4
Lower DYMDI1 3 0.00 7.84 7.84 1.00 033 020 047 0.00
Lower GOLDA 3 1.99 6.33 8.32 0.76 0.00 0.00 0.76 0.24
Lower GOLDB 3 1.58 9.20 10.78 0.85 0.58 0.28 0.00 0.15
Lower GOLDC 3 2.11 9.20 11.30 0.81 0.81 0.00 0.00 0.19
Lower GOLDD 3 1.05 14.43 15.48 093 065 0.07 021 0.07
Lower KJ1 10 2.57 3.57 6.15 0.58 0.00 0.00 0.58 0.42
Lower KJ1 9 0.00 9.01 12.33 0.73 0.00 0.53 0.20 0.27
Lower KJ1 8 1.64 6.08 7.72 0.79 0.00 0.52 0.26 0.21
Lower KJ1 7 0.00 7.94 7.94 1.00 1.00 0.00 0.00 0.00
Lower KJ1 5 3.32 7.95 11.27 0.71 0.71 0.00 0.00 0.29
Lower KJ1 3 3.30 10.38 13.87 0.75 0.69 0.00 0.06 0.19
Lower KJ1 2 0.00 9.18 9.18 1.00 1.00 0.00 0.00 0.00
Lower MMI1 7 0.00 12.86 12.86 1.00 096 0.00 0.04 0.00
Lower MM101 10 1.62 3.24 4.86 0.67 0.67 0.00 0.00 0.33
Lower MMI101 9 4.30 14.93 22.26 0.67 0.62 0.00 0.05 0.33
Lower MMI101 7 0.62 12.45 13.07 095 095 0.00 0.00 0.05
Lower MM101 5 2.97 6.89 9.86 0.70 0.70 0.00 0.00 0.30
Lower MMI101 3 2.23 3.11 6.34 0.49 0.00 0.00 049 0.51
Lower MM102 9 0.00 21.51 21.51 1.00 0.82 0.00 0.18 0.00
Lower MM102 7 0.00 11.32 11.32 1.00 036 0.52 0.12 0.00
Lower MM102 6 0.72 6.98 9.20 0.76 0.76 0.00 0.00 0.24
Lower MM102 5 2.60 7.80 10.40 0.75 0.75 0.00 0.00 0.25
Lower MM102 3 4.21 1.74 6.30 0.28 0.00 0.00 0.28 0.72
Lower MM102 2 0.00 13.58 15.90 0.85 0.66 020 0.00 0.15
Lower MM?2 7 3.12 3.92 9.08 043 0.00 0.00 043 0.57
Lower OP1 9 0.00 7.80 7.80 1.00 0.13 0.56 0.31 0.00
Lower OP2 9 0.00 7.09 7.09 1.00 0.00 0.62 0.38 0.00
Lower OP2 8 1.75 21.94 25.78 0.85 063 0.18 0.04 0.15
Lower OP2 6 3.37 9.00 13.09 0.69 0.69 0.00 0.00 0.31
Lower PEQ1 10 0.00 11.41 11.82 0.97 097 0.00 0.00 0.03
Lower PEQI 8 1.39 22.35 23.74 094 094 0.00 0.00 0.06

86

Complex Drape

Set Section Name Geobody Thickness (m) Net (m) Gross (m) NTG FA1l FA2 FA3 FA4
Lower PEQ1 6 0.00 6.04 7.01 0.86 0.00 0.86 0.00 0.14
Lower PEQI1 3 0.00 21.99 22.44 0.98 0.88 0.10 0.00 0.02
Lower PEQ1 2 0.00 14.22 14.22 1.00 036 043 0.21 0.00
Lower PEQ2 LOWER 7 4.93 0.00 4.93 0.00 0.00 0.00 0.00 1.00
Lower PEQ2 LOWER 3 2.19 11.51 13.70 0.84 0.00 0.77 0.07 0.00
Lower PEQ2 UPPER 10 0.00 9.00 9.00 1.00 0.00 0.88 0.12 0.00
Lower PEQ2 UPPER 8 0.00 25.02 25.02 1.00 098 0.00 0.02 0.00
Lower PEQ2 UPPER 6 2.51 5.84 8.35 0.70 0.00 0.62 0.08 0.30
Lower SUBBBI1 10 2.48 14.39 16.86 0.85 0.85 0.00 0.00 0.15
Lower SUBBBI1 8 0.00 12.84 14.89 0.86 0.00 0.00 0.86 0.14
Lower SUBBBI1 7 0.00 12.91 12.91 1.00 0.00 0.65 0.35 0.00
Lower SUBBBI 6 0.92 9.28 10.20 091 036 046 0.09 0.09
Lower SUBBBI1 3 0.00 9.52 9.52 1.00 0.75 0.00 0.25 0.00
Lower SUBBBI1 2 2.08 19.82 23.28 0.85 0.64 020 0.00 0.15
Lower SUBBB2 7 0.99 16.13 24.73 0.65 046 0.09 0.10 0.05
Lower SUBBB2 6 0.00 11.94 11.94 1.00 096 0.00 0.04 0.00
Lower SUBBB3 10 4.55 15.24 20.25 0.75 0.00 0.52 0.23 0.25
Lower SUBBB3 8 2.19 4.30 6.49 0.66 0.00 0.66 0.00 0.34
Lower SUBBB3 7 2.26 10.65 13.04 0.82 0.82 0.00 0.00 0.18
Lower SUBBB3 6 0.00 10.49 10.49 1.00 0.80 0.20 0.00 0.00
Lower SUBBB3 2 0.49 21.70 22.19 098 0.71 023 0.04 0.00
Lower SUBBB4 10 4.29 16.80 21.25 079 042 021 0.16 0.20
Lower SUBBB4 8 0.70 12.97 13.67 0.95 0.00 045 050 0.00
Lower SUBBB4 6 0.00 13.51 13.51 1.00 0.00 0.75 0.25 0.00
Lower SUBBB4 3 0.85 8.03 8.88 090 0.67 0.23 0.00 0.10
Lower SUBBB4 2 0.00 14.40 18.60 0.77 044 0.20 0.14 0.23
Lower VACAI1 10 0.00 19.58 19.69 0.99 0.69 0.00 031 0.01
Lower VACAI1 8 2.73 13.57 16.30 0.83 0.83 0.00 0.00 0.17
Lower VACAI1 6 1.78 9.69 13.23 0.73 0.00 0.53 0.21 0.05
Lower VACAI1 3 0.00 9.62 9.62 1.00 0.00 0.82 0.18 0.00
Lower VACAI1 2 2.56 14.51 17.07 0.85 0.78 0.07 0.00 0.15

87

Complex Drape

Set Section Name Geobody Thickness (m) Net (m) Gross (m) NTG FA1l FA2 FA3 FA4
Lower VACA2 10 0.00 10.96 10.96 1.00 044 0.56 0.00 0.00
Lower VACA2 8 0.00 25.10 25.12 1.00 098 0.00 0.02 0.00
Lower VACA2 6 1.05 7.94 8.99 0.88 0.32 043 0.13 0.12
Lower VACA2 3 0.00 11.99 11.99 1.00 092 0.00 0.08 0.00

88

Table A.2 Bed statistics and amalgamation ratio for Laguna Figueroa database.

Complex Min. Bed Med. Bed Max. Bed Number Amalgamation
Set Section Name Geobody Thickness (m) Thickness (m) Thickness (m) of Beds Ratio
Upper FIG100 11 0.01 0.02 2.34 127.00 0.07
Upper FIG100 10 0.03 0.15 2.06 35.00 0.74
Upper FIG100 8 0.04 0.57 1.90 35.00 0.88
Upper FIG100 3 0.01 0.05 1.43 98.00 0.14
Upper FIG100 2 0.00 0.16 0.86 32.00 0.48
Upper GCl1 12 0.01 0.05 1.50 96.00 0.07
Upper GC10 11 0.04 0.19 2.27 22.00 0.43
Upper GC2 12 0.02 0.05 0.98 87.00 0.08
Upper GC3 12 0.00 0.13 2.93 48.00 0.40
Upper GC4 12 0.01 0.05 2.52 64.00 0.22
Upper GC6 11 0.03 0.32 1.59 21.00 0.75
Upper GC7 12 0.01 0.11 2.55 67.00 0.29
Upper GC8 12 0.03 0.67 3.61 29.00 0.86
Upper GCNOR 12 0.01 0.04 1.47 84.00 0.17
Upper GD1 10 0.01 0.06 2.37 37.00 0.33
Upper GDl1 8 0.11 0.72 2.79 14.00 1.00
Upper GD3 5 0.01 0.08 0.55 55.00 0.39
Upper GD3 2 0.01 0.04 0.43 62.00 0.16
Upper GD5GC5 12 0.01 0.70 3.17 27.00 0.69
Upper GD5GC5 11 0.05 0.30 1.57 14.00 0.85
Upper GD5GC5 10 0.03 0.08 1.25 25.00 0.38
Upper GD6KS7 11 0.02 1.20 3.40 5.00 0.50
Upper GD6KS7 6 0.02 0.04 1.16 54.00 0.15
Upper GD7 11 0.02 0.34 3.15 22.00 0.90
Upper GD8 5 0.01 0.03 1.20 163.00 0.14
Upper KS3 12 0.00 0.02 0.27 292.00 0.02
Upper MM103 12 0.01 0.06 3.01 67.00 0.30
Upper MM103 5 0.01 0.05 1.10 46.00 0.29
Upper P10 8 0.03 0.29 2.75 25.00 0.58

89

Complex Min. Bed Med. Bed Max. Bed Number Amalgamation

Set Section Name Geobody Thickness (m) Thickness (m) Thickness (m) of Beds Ratio
Upper P10 3 0.02 0.05 1.25 42.00 0.27
Upper P10 2 0.02 0.05 1.15 43.00 0.43
Upper P11 5 0.01 0.04 0.73 110.00 0.11
Upper P11 2 0.01 0.04 0.59 72.00 0.21
Upper P12 7 0.01 0.04 1.18 84.00 0.39
Upper P12 6 0.02 0.04 1.34 35.00 0.44
Upper P13 5 0.01 0.04 1.21 70.00 0.32
Upper P13 2 0.02 0.04 0.53 54.00 0.58
Upper P2 3 0.02 0.32 3.40 20.00 0.53
Upper P3 11 0.01 0.08 2.18 27.00 0.35
Upper P4 11 0.10 0.54 1.63 15.00 0.93
Upper P5 11 0.03 0.32 2.10 24.00 0.52
Upper P5 7 0.01 0.03 2.13 105.00 0.10
Upper P5 6 0.01 0.04 1.30 38.00 0.22
Upper P5 5 0.01 0.03 1.62 150.00 0.13
Upper P6DS5GC9 12 0.02 0.08 1.11 49.00 0.29
Upper P6DS5GC9 11 0.03 0.27 5.28 15.00 0.64
Upper P6DS5GC9 7 0.02 0.05 1.43 80.00 0.33
Upper P6DS5GC9 6 0.03 0.06 1.42 36.00 0.11
Upper P6DS5GC9 5 0.01 0.06 0.79 65.00 0.17
Upper P7GD4 11 0.01 0.04 0.67 183.00 0.10
Upper P7GD4 10 0.02 0.12 1.52 19.00 0.50
Upper P7GD4 8 0.05 0.75 2.04 15.00 1.00
Upper P7GD4 5 0.02 0.05 1.39 71.00 0.40
Upper P8 5 0.02 0.04 2.32 92.00 0.25
Upper P9 2 0.01 0.05 0.27 80.00 0.25
Upper VACA3VV3 11 0.01 0.47 1.62 45.00 0.43
Upper VACA3VV3 10 0.03 0.34 1.97 25.00 0.67
Upper VACA4VV4 11 0.01 0.04 1.99 76.00 0.23
Upper VACA4VV4 10 0.01 0.03 1.24 126.00 0.25
Upper VACA4VV4 8 0.07 0.44 2.75 33.00 1.00

90

Complex Min. Bed Med. Bed Max. Bed Number Amalgamation

Set Section Name Geobody Thickness (m) Thickness (m) Thickness (m) of Beds Ratio
Upper VACA4VV4 3 0.01 0.25 2.09 43.00 0.48
Upper VACA4VV4 2 0.12 0.75 1.29 9.00 1.00
Upper VACA8VVS8 11 0.01 0.08 1.17 36.00 0.31
Upper VACA8VVS 10 0.01 0.05 1.51 62.00 0.20
Upper VACAS8VVS 8 0.00 0.11 1.30 53.00 0.44
Upper VCM1VV5 11 0.02 0.12 1.97 66.00 0.58
Upper VCM1VV5 10 0.01 0.05 2.55 18.00 0.18
Upper VCM1VV5 8 0.00 0.24 2.04 26.00 0.76
Upper VCM1VV5 3 0.01 0.04 2.35 109.00 0.18
Upper VCM1VV5 2 0.01 0.04 0.79 45.00 0.16
Upper VCM2 9 0.01 0.05 1.25 90.00 0.15
Upper VCM2 8 0.01 0.20 4.11 28.00 0.56
Upper VCM3 9 0.00 0.05 0.73 117.00 0.22
Upper VV2 8 0.09 0.76 2.89 11.00 1.00
Upper VV2 3 0.02 0.07 1.26 61.00 0.40
Upper VVv2 2 0.01 0.15 0.90 33.00 0.78
Upper VV7 11 0.00 0.08 1.87 100.00 0.21
Upper VVEDGE 11 0.01 0.04 1.60 44.00 0.02
Upper VVWB 11 0.01 0.08 2.42 76.00 0.20
Lower CACHI1 8 0.00 0.04 4.17 95.00 0.11
Lower CACHI1 7 0.00 0.04 1.79 94.00 0.08
Lower CACH1 6 0.00 0.06 1.32 30.00 0.52
Lower CACHI1 3 0.02 0.26 2.25 41.00 0.60
Lower CACHI1 2 0.00 0.02 2.48 25.00 0.25
Lower CACH2 3 0.01 0.08 3.63 57.00 0.34
Lower CACH2 2 0.01 0.07 0.77 43.00 0.33
Lower DS1 9 0.01 0.05 0.37 82.00 0.02
Lower DS1 8 0.01 0.04 0.61 82.00 0.10
Lower DS1 7 0.01 0.05 1.37 119.00 0.09
Lower DS1 6 0.01 0.47 1.70 27.00 0.42
Lower DS1 2 0.01 0.04 0.75 61.00 0.33

91

Complex Min. Bed Med. Bed Max. Bed Number Amalgamation

Set Section Name Geobody Thickness (m) Thickness (m) Thickness (m) of Beds Ratio
Lower DYMD1 3 0.01 0.02 1.06 82.00 0.10
Lower GOLDA 3 0.00 0.04 0.56 125.00 0.08
Lower GOLDB 3 0.01 0.04 1.61 61.00 0.13
Lower GOLDC 3 0.01 0.05 2.30 54.00 0.17
Lower GOLDD 3 0.01 0.03 2.87 89.00 0.11
Lower KJ1 10 0.01 0.08 0.57 47.00 0.11
Lower KJ1 9 0.01 0.04 2.25 58.00 0.04
Lower KJ1 8 0.01 0.05 1.39 62.00 0.13
Lower KJ1 7 0.11 0.54 3.89 10.00 1.00
Lower KJ1 5 0.01 0.08 1.77 55.00 0.13
Lower KJ1 3 0.01 0.03 4.52 72.00 0.08
Lower KJ1 2 0.01 0.35 4.71 11.00 0.50
Lower MMI1 7 0.02 0.50 2.35 19.00 0.78
Lower MM101 10 0.02 0.04 1.46 44.00 0.21
Lower MM101 9 0.01 0.03 5.89 121.00 0.08
Lower MMI101 7 0.01 0.03 2.38 37.00 0.33
Lower MM101 5 0.02 0.29 3.39 17.00 0.44
Lower MM101 3 0.01 0.04 0.42 106.00 0.02
Lower MM102 9 0.01 0.07 3.58 65.00 0.38
Lower MM102 7 0.02 0.05 1.48 53.00 0.38
Lower MM102 6 0.01 0.03 341 50.00 0.10
Lower MM102 5 0.01 0.41 4.72 16.00 0.27
Lower MM102 3 0.01 0.05 0.58 60.00 0.10
Lower MM102 2 0.00 0.03 4.62 86.00 0.09
Lower MM2 7 0.01 0.04 0.87 125.00 0.10
Lower OP1 9 0.01 0.05 1.05 47.00 0.26
Lower OoP2 9 0.02 0.06 1.22 30.00 0.38
Lower OP2 8 0.01 0.04 7.71 56.00 0.20
Lower OP2 6 0.02 0.21 2.68 31.00 0.30
Lower PEQ1 10 0.01 0.11 341 27.00 0.46
Lower PEQI1 8 0.01 0.09 4.50 49.00 0.48

92

Complex Min. Bed Med. Bed Max. Bed Number Amalgamation

Set Section Name Geobody Thickness (m) Thickness (m) Thickness (m) of Beds Ratio
Lower PEQ1 6 0.00 0.04 1.33 55.00 0.31
Lower PEQ1 3 0.02 0.35 2.52 36.00 0.60
Lower PEQI1 2 0.00 0.03 2.70 96.00 0.27
Lower PEQ2 LOWER 7 0.01 0.02 0.24 101.00 0.00
Lower PEQ2 LOWER 3 0.02 0.06 2.56 34.00 0.58
Lower PEQ2 UPPER 10 0.02 0.30 2.04 21.00 0.40
Lower PEQ2 UPPER 8 0.02 0.62 3.63 23.00 0.55
Lower PEQ2 UPPER 6 0.00 0.06 1.49 41.00 0.48
Lower SUBBBI 10 0.01 0.03 2.23 84.00 0.25
Lower SUBBBI1 8 0.01 0.06 2.91 73.00 0.07
Lower SUBBB1 7 0.01 0.04 1.96 52.00 0.16
Lower SUBBBI1 6 0.01 0.18 1.49 37.00 0.58
Lower SUBBB1 3 0.02 0.04 2.03 30.00 0.21
Lower SUBBB1 2 0.00 0.03 2.23 64.00 0.37
Lower SUBBB2 7 0.01 0.04 7.89 84.00 0.24
Lower SUBBB2 6 0.00 0.08 2.31 30.00 0.38
Lower SUBBB3 10 0.01 0.05 1.93 115.00 0.19
Lower SUBBB3 8 0.01 0.13 1.89 21.00 0.05
Lower SUBBB3 7 0.04 0.27 2.75 22.00 0.33
Lower SUBBB3 6 0.01 0.17 1.59 25.00 0.67
Lower SUBBB3 2 0.01 0.09 4.21 52.00 0.53
Lower SUBBB4 10 0.01 0.04 5.52 117.00 0.09
Lower SUBBB4 8 0.00 0.04 2.20 47.00 0.15
Lower SUBBB4 6 0.01 0.05 1.79 65.00 0.38
Lower SUBBB4 3 0.00 0.03 2.75 49.00 0.35
Lower SUBBB4 2 0.00 0.04 3.45 99.00 0.22
Lower VACAI1 10 0.01 0.03 3.72 59.00 0.28
Lower VACAI1 8 0.01 0.03 2.22 57.00 0.29
Lower VACAL 6 0.01 0.04 1.78 70.00 0.14
Lower VACAI1 3 0.00 0.04 1.52 61.00 0.20
Lower VACAI1 2 0.01 0.02 4.82 63.00 0.15

93

Complex Min. Bed Med. Bed Max. Bed Number Amalgamation
Set Section Name Geobody Thickness (m) Thickness (m) Thickness (m) of Beds Ratio
Lower VACA2 10 0.01 0.05 1.96 49.00 0.31
Lower VACA2 8 0.01 0.27 2.80 48.00 0.60
Lower VACA2 6 0.01 0.03 1.03 74.00 0.15
Lower VACA2 3 0.01 0.27 2.70 20.00 0.58

94

Table A.3 Grain size and Phi-scale statistics for Laguna Figueroa database.

P10GS P50GS P90GS P10 P50 P90
Complex Set Section Name Geobody (cm) (cm) (cm) Phi Phi Phi

Upper FIG100 11 0.01 0.35 0.38 1.41 1.53 6.64
Upper FIG100 10 0.31 0.34 0.42 1.25 1.54 1.68
Upper FIG100 8 0.33 0.35 0.75 0.42 1.51 1.61
Upper FIG100 3 0.00 0.33 0.41 1.28 1.60 9.61
Upper FIG100 2 0.28 0.41 0.62 0.68 1.28 1.81
Upper GCl1 12 0.00 0.46 0.51 0.96 1.13 9.51
Upper GC10 11 0.26 0.63 1.02 -0.03 0.66 1.94
Upper GC2 12 0.01 0.24 0.32 1.64 2.04 7.05
Upper GC3 12 0.29 0.31 0.33 1.58 1.69 1.80
Upper GC4 12 0.17 0.40 0.54 0.88 1.33 2.57
Upper GCo6 11 0.37 0.46 4.00 -2.00 1.11 1.43
Upper GC7 12 0.15 0.32 0.34 1.56 1.65 2.76
Upper GC8 12 0.28 0.32 0.36 1.47 1.66 1.81
Upper GCNOR 12 0.01 0.25 0.34 1.54 2.01 7.06
Upper GD1 10 0.20 0.26 0.59 0.76 1.96 2.30
Upper GDl1 8 0.27 0.34 0.66 0.61 1.54 1.88
Upper GD3 5 0.13 0.21 0.27 1.87 2.23 2.93
Upper GD3 2 0.01 0.20 0.24 2.08 2.32 7.00
Upper GD5GC5 12 0.21 0.25 0.31 1.67 1.99 2.27
Upper GD5GC5 11 0.23 0.28 0.37 1.42 1.84 2.12
Upper GD5GC5 10 0.18 0.26 0.76 0.39 1.94 247
Upper GDO6KS7 11 0.32 0.49 0.86 0.22 1.03 1.65
Upper GDO6KS7 6 0.01 0.24 0.29 1.80 2.05 6.99
Upper GD7 11 0.25 0.59 1.16 -0.22 0.75 2.00
Upper GD8 5 0.01 0.21 0.24 2.08 2.23 7.06
Upper KS3 12 0.01 0.01 0.18 2.51 7.03 7.06
Upper MM103 12 0.23 0.28 0.29 1.78 1.86 2.12
Upper MM103 5 0.01 0.25 0.29 1.79 1.99 6.69
Upper P10 8 0.36 0.46 0.78 0.35 1.11 1.49

95

P10 GS P50GS P90 GS P10 P50 P90
Complex Set Section Name Geobody (cm) (cm) (cm) Phi Phi Phi

Upper P10 3 0.17 0.27 0.38 1.40 1.88 2.52
Upper P10 2 0.17 0.27 0.38 1.39 1.89 2.56
Upper P11 5 0.01 0.31 0.35 1.53 1.69 6.92
Upper P11 2 0.01 0.29 0.37 1.45 1.79 6.95
Upper P12 7 0.11 0.29 0.45 1.17 1.78 3.14
Upper P12 6 0.01 0.29 0.39 1.35 1.81 6.73
Upper P13 5 0.01 0.27 0.37 1.42 1.88 6.69
Upper P13 2 0.01 0.19 0.31 1.69 242 6.77
Upper P2 3 0.24 0.30 0.35 1.51 1.74 2.05
Upper P3 11 0.01 0.27 0.50 1.00 1.87 6.75
Upper P4 11 0.20 0.29 0.62 0.69 1.79 2.31
Upper P5 11 0.28 0.40 0.94 0.09 1.33 1.82
Upper P5 7 0.13 0.24 0.32 1.67 2.04 292
Upper P5 6 0.01 0.25 0.36 1.49 2.01 6.64
Upper P5 5 0.01 0.23 0.35 1.50 2.15 7.06
Upper P6DS5GC9 12 0.01 0.35 0.39 1.34 1.54 6.58
Upper P6DS5GC9 11 0.37 0.50 1.12 -0.16 1.00 1.44
Upper P6DS5GC9 7 0.01 0.30 0.46 1.11 1.76 6.42
Upper P6DS5GC9 6 0.00 0.33 0.47 1.10 1.61 9.62
Upper P6DS5GC9 5 0.01 0.34 0.41 1.28 1.57 6.50
Upper P7GD4 11 0.01 0.23 0.27 1.89 2.13 7.05
Upper P7GDA4 10 0.21 0.32 0.43 1.21 1.64 2.23
Upper P7GD4 8 0.31 0.38 0.80 0.32 1.39 1.70
Upper P7GD4 5 0.01 0.27 0.30 1.72 1.91 6.70
Upper P8 5 0.01 0.25 0.31 1.70 1.98 7.06
Upper P9 2 0.01 0.15 0.25 2.00 2.75 7.06
Upper VACA3VV3 11 0.21 0.27 0.33 1.62 1.87 2.27
Upper VACA3VV3 10 0.01 0.35 0.47 1.08 1.52 7.06
Upper VACA4VV4 11 0.15 0.35 0.45 1.16 1.50 2.78
Upper VACA4VV4 10 0.01 0.28 0.35 1.52 1.86 6.96
Upper VACA4VV4 8 0.34 0.41 0.51 0.98 1.28 1.54

96

P10 GS P50GS P90 GS P10 P50 P90
Complex Set Section Name Geobody (cm) (cm) (cm) Phi Phi Phi

Upper VACA4VV4 3 0.27 0.34 0.36 1.47 1.54 1.88
Upper VACA4VV4 2 0.26 0.28 0.35 1.50 1.82 1.93
Upper VACABVVS 11 0.25 0.36 0.58 0.79 1.49 1.99
Upper VACAS8VVS 10 0.18 0.24 0.30 1.74 2.06 2.46
Upper VACAS8VVS 8 0.17 0.28 0.53 0.90 1.85 2.52
Upper VCMI1VV5 11 0.20 0.23 0.27 1.89 2.10 2.34
Upper VCM1VV5 10 0.18 0.23 0.28 1.86 2.10 2.51
Upper VCMI1VV5 8 0.30 0.41 0.55 0.86 1.30 1.74
Upper VCMI1VV5 3 0.01 0.17 0.27 1.91 2.55 7.06
Upper VCM1VV5 2 0.01 0.28 0.44 1.19 1.85 7.04
Upper VCM2 9 0.01 0.25 0.35 1.51 1.98 6.98
Upper VCM2 8 0.27 0.38 0.50 1.01 1.38 1.90
Upper VCM3 9 0.01 0.35 0.47 1.10 1.50 7.06
Upper Vv2 8 0.26 0.28 0.36 1.49 1.84 1.92
Upper Vv2 3 0.11 0.27 0.34 1.56 1.90 3.21
Upper \AY 2 0.20 0.27 0.35 1.50 1.88 2.34
Upper Vv7 11 0.19 0.24 0.38 1.39 2.03 2.37
Upper VVEDGE 11 0.01 0.01 0.52 0.94 7.05 7.06
Upper VVWB 11 0.01 0.80 1.23 -0.29 0.32 7.05
Lower CACHI 8 0.18 0.25 0.30 1.71 2.02 2.44
Lower CACHI1 7 0.01 0.24 0.32 1.63 2.04 7.00
Lower CACHI 6 0.20 0.30 0.32 1.62 1.75 2.34
Lower CACHI 3 0.22 0.24 0.34 1.55 2.03 2.16
Lower CACHI1 2 0.24 0.30 0.31 1.70 1.73 2.08
Lower CACH2 3 0.16 0.25 0.28 1.86 2.03 2.64
Lower CACH2 2 0.01 0.21 0.27 1.92 2.24 7.06
Lower DS1 9 0.01 0.01 0.26 1.94 7.05 7.06
Lower DS1 8 0.01 0.01 0.34 1.57 7.05 7.05
Lower DS1 7 0.01 0.18 0.35 1.53 2.51 7.04
Lower DS1 6 0.01 0.30 0.35 1.50 1.75 7.04
Lower DS1 2 0.16 0.28 0.30 1.75 1.85 2.62

97

P10 GS P50GS P90 GS P10 P50 P90
Complex Set Section Name Geobody (cm) (cm) (cm) Phi Phi Phi

Lower DYMDI1 3 0.01 0.28 0.29 1.80 1.85 7.02
Lower GOLDA 3 0.01 0.21 0.29 L.77 2.27 7.06
Lower GOLDB 3 0.16 0.27 0.37 1.44 1.90 2.60
Lower GOLDC 3 0.16 0.27 0.28 1.82 1.88 2.64
Lower GOLDD 3 0.17 0.26 0.29 1.80 1.92 2.59
Lower KJ1 10 0.01 0.10 0.28 1.82 3.26 7.02
Lower KJ1 9 0.01 0.22 0.28 1.83 221 7.03
Lower KJ1 8 0.01 0.26 0.28 1.82 1.93 7.01
Lower KJ1 7 0.27 0.28 3.00 -1.58 1.83 1.89
Lower KJ1 5 0.01 0.28 0.29 1.80 1.85 7.01
Lower KJ1 3 0.01 0.22 0.28 1.83 2.17 7.01
Lower KJ1 2 0.23 0.29 0.29 1.78 1.79 2.12
Lower MMI1 7 0.21 0.25 0.29 1.77 2.00 2.23
Lower MMI101 10 0.01 0.22 0.23 2.15 2.18 7.01
Lower MMI101 9 0.01 0.28 0.29 1.81 1.84 7.03
Lower MMI101 7 0.20 0.28 0.29 1.80 1.83 2.32
Lower MMI101 5 0.01 0.28 0.36 1.47 1.82 7.04
Lower MMI101 3 0.01 0.12 0.22 2.19 3.05 7.03
Lower MMI102 9 0.17 0.28 0.29 1.79 1.86 2.57
Lower MMI102 7 0.13 0.27 0.29 1.80 1.87 2.98
Lower MM102 6 0.01 0.28 0.29 1.79 1.86 7.03
Lower MMI102 5 0.01 0.36 0.36 1.46 1.49 7.01
Lower MMI102 3 0.01 0.01 0.22 2.18 7.02 7.03
Lower MMI102 2 0.01 0.22 0.22 2.17 2.18 6.63
Lower MM2 7 0.01 0.17 0.25 2.01 2.53 7.06
Lower OP1 9 0.12 0.21 0.27 1.90 2.26 3.09
Lower OP2 9 0.15 0.21 0.21 222 2.27 2.70
Lower OopP2 8 0.01 0.25 0.28 1.84 2.00 7.06
Lower OopP2 6 0.01 0.21 0.22 2.19 2.26 7.06
Lower PEQI1 10 0.21 0.22 0.35 1.52 2.20 2.26
Lower PEQI1 8 0.18 0.21 0.23 2.15 2.22 2.49

98

P10 GS P50GS P90 GS P10 P50 P90
Complex Set Section Name Geobody (cm) (cm) (cm) Phi Phi Phi

Lower PEQ1 6 0.01 0.21 0.27 1.88 2.24 6.64
Lower PEQ1 3 0.21 0.35 0.37 1.43 1.53 2.24
Lower PEQI1 2 0.18 0.28 0.36 1.49 1.85 2.45
Lower PEQ2 LOWER 7 0.01 0.01 0.17 2.56 7.05 7.06
Lower PEQ2 LOWER 3 0.19 0.21 0.27 1.87 222 2.39
Lower PEQ2 UPPER 10 0.16 0.26 0.29 1.77 1.94 2.65
Lower PEQ2 UPPER 8 0.29 0.36 0.39 1.38 1.48 1.78
Lower PEQ2 UPPER 6 0.01 0.26 0.37 1.42 1.94 6.99
Lower SUBBBI1 10 0.01 0.21 0.35 1.52 2.23 6.99
Lower SUBBBI1 8 0.01 0.26 0.39 1.35 1.95 7.03
Lower SUBBBI1 7 0.01 0.26 0.36 1.47 1.95 7.06
Lower SUBBBI 6 0.04 0.37 0.42 1.26 1.44 4.66
Lower SUBBBI1 3 0.17 0.21 0.21 2.22 2.23 2.55
Lower SUBBBI1 2 0.21 0.27 0.34 1.55 1.91 2.25
Lower SUBBB2 7 0.13 0.18 0.22 2.18 2.46 291
Lower SUBBB2 6 0.16 0.18 0.23 2.12 2.48 2.62
Lower SUBBB3 10 0.01 0.24 0.30 1.73 2.06 7.04
Lower SUBBB3 8 0.01 0.25 0.28 1.84 2.01 7.06
Lower SUBBB3 7 0.01 0.27 0.28 1.83 1.89 7.02
Lower SUBBB3 6 0.23 0.24 0.25 1.98 2.04 2.13
Lower SUBBB3 2 0.18 0.27 0.35 1.52 1.88 2.49
Lower SUBBB4 10 0.01 0.23 0.28 1.84 2.15 7.04
Lower SUBBB4 8 0.23 0.38 0.43 1.20 1.41 2.13
Lower SUBBB4 6 0.13 0.35 0.36 1.47 1.53 2.90
Lower SUBBB4 3 0.12 0.28 0.28 1.83 1.84 3.11
Lower SUBBB4 2 0.01 0.28 0.29 1.79 1.85 7.05
Lower VACA1 10 0.21 0.22 0.28 1.83 2.16 2.23
Lower VACALI 8 0.01 0.25 0.29 1.80 1.97 7.00
Lower VACALI 6 0.01 0.22 0.28 1.83 2.20 6.65
Lower VACA1 3 0.01 0.22 0.36 1.46 2.19 7.04
Lower VACALI 2 0.01 0.22 0.35 1.51 2.20 6.64

99

P10 GS P50GS P90 GS P10 P50 P90
Complex Set Section Name Geobody (cm) (cm) (cm) Phi Phi Phi

Lower VACA2 10 0.24 0.29 0.32 1.66 1.79 2.05
Lower VACA2 8 0.25 0.28 0.32 1.65 1.83 1.98
Lower VACA2 6 0.01 0.25 0.28 1.84 1.97 7.03
Lower VACA2 3 0.25 0.29 0.35 1.50 1.78 1.97

100

Table A.4 Classification schemes and channel position labels for Laguna Figueroa database.

Complex Set Section Name Geobody FD-2P FD-3P GM-2P-1 GM-2P-2 GM-3P-1 GM-3P-2

Upper FIG100 11 3 3 3 3 2 3
Upper FIG100 10 1 2 3 3 2 3
Upper FIG100 8 1 1 1 1 1 1
Upper FIG100 3 3 3 1 1 1 1
Upper FIG100 2 1 2 1 1 1 1
Upper GCl1 12 3 3 3 3 2 3
Upper GCI10 11 1 1 1 1 1 1
Upper GC2 12 3 3 3 3 2 3
Upper GC3 12 1 1 1 1 1 1
Upper GC4 12 1 2 1 3 2 2
Upper GC6 11 1 1 1 3 2 3
Upper GC7 12 1 1 1 1 1 1
Upper GC8 12 1 1 1 1 1 1
Upper GCNOR 12 3 3 3 3 2 3
Upper GD1 10 1 2 1 3 2 2
Upper GD1 8 1 1 1 3 2 2
Upper GD3 5 3 3 1 1 1 1
Upper GD3 2 3 3 1 1 1 1
Upper GD5GC5 12 1 1 1 1 1 1
Upper GD5GC5 11 1 1 1 1 1 1
Upper GD5GC5 10 1 1 1 1 1 2
Upper GD6KS7 11 1 1 1 1 1 1
Upper GD6KS7 6 3 3 1 1 1 1
Upper GD7 11 1 1 1 3 2 2
Upper GD8 5 3 3 1 1 1 1
Upper KS3 12 3 3 3 3 2 3
Upper MM103 12 1 1 1 1 1 1
Upper MM103 5 1 2 1 1 1 1
Upper P10 8 1 1 1 1 1 2
Upper P10 3 1 2 1 1 1 1

101

Complex Set Section Name Geobody FD-2P FD-3P GM-2P-1 GM-2P-2 GM-3P-1 GM-3P-2

Upper P10 2 1 2 1 1 1 1
Upper P11 5 1 2 1 1 1 1
Upper P11 2 3 3 1 1 1 1
Upper P12 7 1 2 1 1 1 1
Upper P12 6 3 3 1 1 1 1
Upper P13 5 1 2 1 1 1 1
Upper P13 2 3 3 1 1 1 1
Upper P2 3 1 1 1 1 1 1
Upper P3 11 1 2 1 1 1 2
Upper P4 11 1 1 1 1 1 1
Upper P5 11 1 1 1 1 1 2
Upper P5 7 3 3 1 1 1 1
Upper P5 6 3 3 1 1 1 1
Upper P5 5 3 3 1 1 1 1
Upper P6DS5GC9 12 3 3 3 3 2 3
Upper P6DS5GC9 11 1 1 1 1 1 2
Upper P6DS5GC9 7 3 3 1 1 1 1
Upper P6DS5GC9 6 3 3 1 1 1 1
Upper P6DS5GC9 5 3 3 1 1 1 1
Upper P7GD4 11 1 2 1 1 1 1
Upper P7GD4 10 1 2 1 1 1 2
Upper P7GD4 8 1 1 1 1 1 2
Upper P7GD4 5 3 3 1 1 1 1
Upper P8 5 3 3 1 1 1 1
Upper P9 2 3 3 1 1 1 1
Upper VACA3VV3 11 1 1 1 1 1 1
Upper VACA3VV3 10 1 1 1 1 1 1
Upper VACA4VV4 11 3 3 3 3 2 3
Upper VACA4VV4 10 3 3 1 3 2 3
Upper VACA4VV4 8 1 1 1 1 1 1
Upper VACA4VV4 3 1 2 1 1 1 1
Upper VACA4VV4 2 1 1 1 1 1 1

102

Complex Set Section Name Geobody FD-2P FD-3P GM-2P-1 GM-2P-2 GM-3P-1 GM-3P-2

Upper VACA8VVSE 11 1 2 1 3 2 3
Upper VACAS8VVS 10 1 2 1 1 1 2
Upper VACA8VVSE 8 1 1 1 1 1 1
Upper VCMI1VV5 11 1 2 1 3 2 3
Upper VCMI1VV5 10 1 2 3 3 3 3
Upper VCM1VV5 8 1 1 1 3 2 2
Upper VCMI1VV5 3 3 3 1 1 1 1
Upper VCMI1VV5 2 1 2 1 1 1 1
Upper VCM2 9 3 3 1 1 1 1
Upper VCM2 8 1 1 3 3 2 3
Upper VCM3 9 3 3 1 1 1 1
Upper VV2 8 1 1 1 3 2 2
Upper V2 3 1 2 1 1 1 1
Upper VVv2 2 1 2 1 1 1 1
Upper VV7 11 1 1 1 1 1 1
Upper VVEDGE 11 3 3 3 3 3 3
Upper VVWB 11 3 3 3 3 2 3
Lower CACHI1 8 1 2 1 3 2 2
Lower CACHI 7 3 3 1 1 1 1
Lower CACHI1 6 1 2 1 1 1 2
Lower CACHI1 3 1 1 1 1 1 1
Lower CACHI1 2 1 2 3 3 2 3
Lower CACH2 3 1 1 1 1 1 1
Lower CACH2 2 3 3 3 3 2 3
Lower DS1 9 3 3 3 3 3 3
Lower DS1 8 3 3 3 3 3 3
Lower DS1 7 1 2 1 1 1 2
Lower DS1 6 1 1 1 1 1 1
Lower DS1 2 1 2 1 3 2 2
Lower DYMDI1 3 3 3 1 1 1 2
Lower GOLDA 3 3 3 1 3 2 2
Lower GOLDB 3 1 2 1 1 1 1

103

Complex Set Section Name Geobody FD-2P FD-3P GM-2P-1 GM-2P-2 GM-3P-1 GM-3P-2

Lower GOLDC 3

p—
[\
—
—
—_
—

Lower GOLDD 3 1 2 1 1 1 1
Lower KJ1 10 3 3 3 3 3 3
Lower KJ1 9 1 2 1 3 2 2
Lower KIJ1 8 3 3 1 3 2 2
Lower KJ1 7 1 1 1 1 1 1
Lower KJ1 5 1 2 1 1 1 2
Lower KIJ1 3 1 2 1 1 1 1
Lower KJ1 2 1 1 1 1 1 2
Lower MM1 7 1 1 1 1 1 1
Lower MM101 10 3 3 3 3 3 3
Lower MM101 9 1 1 1 1 1 1
Lower MM101 7 1 1 1 1 1 1
Lower MM101 5 1 2 1 1 1 1
Lower MM101 3 3 3 1 1 1 2
Lower MM102 9 1 1 1 1 1 1
Lower MM102 7 1 2 1 1 1 2
Lower MM102 6 1 2 1 3 2 2
Lower MM102 5 1 2 1 1 1 1
Lower MM102 3 3 3 1 1 1 2
Lower MM102 2 1 2 1 1 1 2
Lower MM?2 7 3 3 1 3 2 2
Lower OP1 9 1 2 3 3 3 3
Lower OP2 9 1 2 3 3 3 3
Lower OoP2 8 1 1 1 1 1 1
Lower OoP2 6 1 2 1 1 1 2
Lower PEQI1 10 1 2 3 3 3 3
Lower PEQI1 8 1 1 1 1 1 1
Lower PEQI1 6 1 2 1 1 1 2
Lower PEQI1 3 1 1 1 1 1 1
Lower PEQI1 2 1 2 1 1 1 2
Lower PEQ2 LOWER 7 3 3 1 1 1 1

104

Complex Set Section Name Geobody FD-2P FD-3P GM-2P-1 GM-2P-2 GM-3P-1 GM-3P-2

Lower PEQ2 LOWER 3 1 2 1 1 1 2
Lower PEQ2 UPPER 10 1 2 3 3 3 3
Lower PEQ2 UPPER 8 1 1 1 1 1 1
Lower PEQ2 UPPER 6 3 3 1 1 1 2
Lower SUBBBI1 10 1 2 3 3 2 3
Lower SUBBBI1 8 1 2 1 3 2 2
Lower SUBBBI1 7 1 2 1 1 1 1
Lower SUBBBI1 6 1 1 1 1 1 1
Lower SUBBBI1 3 1 2 1 1 1 2
Lower SUBBBI1 2 1 1 1 1 1 1
Lower SUBBB2 7 1 2 1 1 1 1
Lower SUBBB2 6 1 1 1 1 1 1
Lower SUBBB3 10 1 2 3 3 2 3
Lower SUBBB3 8 1 2 3 3 2 3
Lower SUBBB3 7 1 2 1 1 1 1
Lower SUBBB3 6 1 1 1 1 1 2
Lower SUBBB3 2 1 1 1 1 1 1
Lower SUBBB4 10 1 2 1 1 1 2
Lower SUBBB4 8 1 1 1 1 1 1
Lower SUBBB4 6 1 1 1 1 1 1
Lower SUBBB4 3 1 2 1 3 2 2
Lower SUBBB4 2 1 2 1 1 1 2
Lower VACAI 10 1 1 1 3 2 2
Lower VACAL 8 1 1 1 1 1 1
Lower VACALI 6 1 2 1 1 1 1
Lower VACAI 3 1 2 1 3 2 2
Lower VACAL 2 1 2 1 1 1 2
Lower VACA2 10 1 2 3 3 3 3
Lower VACA2 8 1 1 1 1 1 1
Lower VACA2 6 1 2 1 1 1 2
Lower VACA2 3 1 2 1 1 1 2

Classification Schemes: 1 = Axis; 2 = Off-Axis; 3 = Margin

105

APPENDIX B: PYTHON CODES

106

Kmeans.ipynb

#Filename: Kmeans.ipynb
#Author: Noah Vento
#Description: Cluster data using K-means clustering algorithm

#Import libraries

$matplotlib inline

import pandas as pd

import numpy as np

import numpy as np

import matplotlib.pyplot as plt
$matplotlib inline

import IPython.display as ipd # for display and clear output
import time # for sleep

#Import Excel spreadsheet of data
Laguna_Fig = pd.read_excel('/Users/noahvento/Desktop/CSS_Noah/Database/M
L_Fig_Stats_Table.xlsx')

#Partition data into desired features

data = Laguna_Fig[['NTG', 'F4_Prop', 'F3_Prop','F2_Prop','Fl_Prop',
'Gross', 'Drape', 'AR', 'Net', 'Num_Beds', 'P10_Phi_lcm',
'P50_Phi_lcm', 'P90_Phi_lcm','BT min',
'BT_med', 'BT_max']]

#Make X have 16 columns and as many rows as needed to hold the values of
data

#Samples are in rows, and the features of each sample are in the columns
#The ith row of X is Sample i whose correct target output is in row i of
/4

X = np.array(data).reshape((-1,16))

#Specify desired classification scheme and outputs

#(e.g., three-position classification scheme, where Axis = 1; Off-Axis =
2; Margin = 3)

Pos_3 = Laguna_Fig[['Pos_3']]

#Make T have one column and as many rows as needed to hold the values of
Pos_3
T = np.array(Pos_3).reshape((-1,1))

#Convert T outputs to 0, 1, and 2 instead of 1, 2, and 3 (Python)
def pos_conversion(self):

T[T == 1] = 0 # convert Axis from 1 to 0
T[T == 2] = 1 # convert Off-Axis from 2 to 1
T[T == 3] = 2 # convert Margin from 3 to 2

pos_conversion(T)

#Import KMeans function from Scikit-learn
from sklearn.cluster import KMeans

#Perform KMeans with 3 clusters (clusters match the number of unique cla
sses in T)

kmeans = KMeans(n_clusters=3) # performing kmeans with 3 clusters
kmeans.fit(X)

107

y_kmeans = kmeans.predict(X) #Use Kmeans to predict on X data

#Reshape y_ kmeans to be able to compare with T
k_results = np.array(y_kmeans).reshape((-1,1))

#Calculate accuracy by comparing predicted cluster labels with true labe
ls from T

#This will require some interpretation of the generated clusters based o
n features

#since kmeans is an unsupervised algorithm and does not know about the d
ata's true labels

kmeans_acc = (np.sum(T == k results)/np.size(T))*100

Random_Forest.ipynb

#Filename: RandomForest.ipynb
#Author: Noah Vento
#Description: Classify data using Random Forest algorithm

#Import libraries

$matplotlib inline

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
$matplotlib inline

import IPython.display as ipd # for display and clear output
import time # for sleep

#Import Excel spreadsheet of data
Laguna_Fig = pd.read_excel('/Users/noahvento/Desktop/CSS_Noah/Database/M
L_Fig_Stats_Table.xlsx')

#Partition data into desired features

data = Laguna_Fig[['NTG','F4_Prop', 'F3_Prop', 'F2_Prop','Fl_Prop',
'Gross', 'Drape', 'AR', 'Net', 'Num_Beds', 'P10_Phi_lcm',
'P50_Phi_lem', 'P90_Phi_lcm','BT min',
'BT_med', 'BT_max']]

#Make X have 16 columns and as many rows as needed to hold the values of
data

#Samples are in rows, and the features of each sample are in the columns
#The ith row of X is Sample i whose correct target output is in row i of
T

X = np.array(data).reshape((-1,16))

#Specify desired classification scheme and outputs

#(e.g., three-position classification scheme, where Axis = 1; Off-Axis =
2; Margin = 3)

Pos_3 = Laguna_Fig[['Pos_3']]

#Make T have one column and as many rows as needed to hold the values of
Pos_3
T = np.array(Pos_3).reshape((-1,1))

#Convert T outputs to 0, 1, and 2 instead of 1, 2, and 3 (Python)
def pos_conversion(self):

T[T == 1] = 0 # convert Axis from 1 to 0
T[T == 2] = 1 # convert Off-Axis from 2 to 1
T[T == 3] = 2 # convert Margin from 3 to 2

pos_conversion(T)

108

#Separate T into Axis, Off-Axis, and Margin data

axisI, _ = np.where(T == 0) # identifying axis
offaxisI, _ = np.where(T == 1) # identifying off-axis
marginI, _ = np.where(T == 2) # identifying margin

#Randomly permute Axis, Off-Axis, and Margin data
axisI = np.random.permutation(axisI)

offaxisI = np.random.permutation(offaxisI)
marginI = np.random.permutation(marginI)

#Generate fold (K = 5) for cross-validation
length_axisI = int(len(axisI)/5) #length of each fold
axis_folds = []
for i in range(4):

axis_folds += [axisI[i*length_axisI:(i+1)*length_axisI]]
axis_folds += [axisI[4*length_axisI:len(axisI)]]

length_offaxisI = int(len(offaxisI)/5) #length of each fold
offaxis_folds = []
for i in range(4):

offaxis folds += [offaxisI[i*length offaxisI:(i+l)*length_offaxisI]]
offaxis_folds += [offaxisI[4*length_offaxisI:len(offaxisI)]]

length_margin = int(len(marginI)/5) #length of each fold
margin_folds = []
for i in range(4):

margin_folds += [marginI[i*length_margin:(i+l)*length_margin]]
margin_folds += [marginI[4*length_margin:len(marginI)]]

#Convert lists to arrays

axis_folds = np.array(axis_folds)
offaxis_folds = np.array(offaxis_folds)
margin_folds = np.array(margin_folds)

#Partition Axis Folds

axisfold_1 = axis_folds[0]
axisfold 2 = axis_folds[1]
axisfold_3 = axis_folds[2]
axisfold 4 = axis_folds[3]
axisfold 5 = axis_folds[4]

#Partition Off-Axis Folds

offaxisfold_1 = offaxis_folds[0]
offaxisfold 2 = offaxis_folds[1]
offaxisfold_3 = offaxis_folds[2]
offaxisfold 4 = offaxis_folds[3]
offaxisfold 5 = offaxis_folds[4]

#Partition Margin Folds

marginfold 1 = margin_folds[0]
marginfold 2 = margin_folds[1]
marginfold 3 = margin_folds[2]
marginfold 4 = margin_folds[3]
marginfold_5 = margin_folds[4]

109

#Set up training and testing folds

rowsTrain_1 = np.hstack((axisfold 1, axisfold 2, axisfold_ 3, axisfold 4,
offaxisfold_ 1, offaxisfold_2, offaxisfold_3,
offaxisfold 4, marginfold 1, marginfold_2,
marginfold 3, marginfold_4))

rowsTest_1 = np.hstack((axisfold 5, offaxisfold_ 5, marginfold_5))

rowsTrain_2 = np.hstack((axisfold 1, axisfold_2, axisfold_3, axisfold 5,
offaxisfold_1, offaxisfold 2, offaxisfold 3,
offaxisfold 5, marginfold_1, marginfold_2,
marginfold 3, marginfold 5))

rowsTest_2 = np.hstack((axisfold 4, offaxisfold_4, marginfold_4))

rowsTrain_3 = np.hstack((axisfold 1, axisfold_ 2, axisfold_4, axisfold 5,
offaxisfold_1, offaxisfold 2, offaxisfold 4,
offaxisfold 5, marginfold_1, marginfold_2,
marginfold_4, marginfold 5))

rowsTest_3 = np.hstack((axisfold 3, offaxisfold_3, marginfold_3))

rowsTrain_4 = np.hstack((axisfold 1, axisfold_3, axisfold_4, axisfold_5,
offaxisfold 1, offaxisfold_3, offaxisfold_4,
offaxisfold 5, marginfold_1, marginfold_3,
marginfold 4, marginfold 5))

rowsTest_4 = np.hstack((axisfold 2, offaxisfold_2, marginfold_2))

rowsTrain_5 = np.hstack((axisfold 2, axisfold_3, axisfold_4, axisfold 5,
offaxisfold_ 2, offaxisfold_3, offaxisfold_4,
offaxisfold_5, marginfold 2, marginfold_3,
marginfold 4, marginfold_5))

rowsTest 5 = np.hstack((axisfold 1, offaxisfold_ 1, marginfold 1))

#Xtrain = Array of training features from each channel element randomly
permuted in rowsTrain

#Ttrain = Corresponding outputs (classifications) for Xtrain values
Xtrain_1 = X[rowsTrain 1,:]

Ttrain_1 = T[rowsTrain_1,:]

Xtest_1 = X[rowsTest_1,:]

Ttest_1 T[rowsTest_1,:]

Xtrain_2 = X[rowsTrain_2,:]
Ttrain_2 T[rowsTrain_2,:]
Xtest_2 = X[rowsTest_2,:]
Ttest_2 T[rowsTest_2,:]

Xtrain_3 = X[rowsTrain_3,:]
Ttrain_3 = T[rowsTrain_3,:]
Xtest_3 X[rowsTest_3,:]
Ttest_3 = T[rowsTest_3,:]

Xtrain_4 = X[rowsTrain 4,:]
Ttrain_4 = T[rowsTrain_4,:]
Xtest_4 = X[rowsTest_4,:]
Ttest_4 T[rowsTest_4,:]

Xtrain_5 = X[rowsTrain_5,:]
Ttrain_5 = T[rowsTrain_5,:]
Xtest 5 = X[rowsTest_5,:]
Ttest_5 = T[rowsTest_5,:]

110

#Define standardize function and standardize input data before classific
ation
def standardize(X,mean,stds):

return (X - mean)/stds

meanstrain_1, stdstrain_1 = np.mean(Xtrain_1, 0), np.std(Xtrain_1 ,0)
meanstest_1, stdtest_l1 = np.mean(Xtest_1, 0), np.std(Xtest_1 ,0)
Xtrains_1 = standardize(Xtrain_ 1, meanstrain_1l, stdstrain_1)

Xtests_1 = standardize(Xtest_1, meanstest_1, stdtest_1)

meanstrain_2, stdstrain 2 = np.mean(Xtrain_2, 0), np.std(Xtrain_2 ,0)
meanstest_2, stdtest_2 = np.mean(Xtest_2, 0), np.std(Xtest_2 ,0)
Xtrains_2 = standardize(Xtrain_2, meanstrain_2, stdstrain_2)

Xtests_2 = standardize(Xtest_2, meanstest_2, stdtest_2)

meanstrain_3, stdstrain 3 = np.mean(Xtrain_3, 0), np.std(Xtrain 3 ,0)
meanstest_3, stdtest_3 = np.mean(Xtest_3, 0), np.std(Xtest_3 ,0)
Xtrains_3 = standardize(Xtrain_3, meanstrain_3, stdstrain_3)

Xtests_3 = standardize(Xtest_ 3, meanstest_ 3, stdtest_3)

meanstrain_4, stdstrain 4 = np.mean(Xtrain_4, 0), np.std(Xtrain 4 ,0)
meanstest_4, stdtest_4 = np.mean(Xtest_4, 0), np.std(Xtest_4 ,0)
Xtrains_4 = standardize(Xtrain 4, meanstrain_ 4, stdstrain 4)

Xtests_4 = standardize(Xtest_4, meanstest_4, stdtest_4)

meanstrain_5, stdstrain_5 = np.mean(Xtrain_5, 0), np.std(Xtrain 5 ,0)
meanstest_5, stdtest_5 = np.mean(Xtest_5, 0), np.std(Xtest_5 ,0)
Xtrains_5 = standardize(Xtrain 5, meanstrain_ 5, stdstrain_5)

Xtests_5 = standardize(Xtest_5, meanstest_5, stdtest_5)

111

#Import Random Forest Classifier function from Sci-kit learn
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make classification

#Convert Ttrain into a flattened array
Ttrain_1 = np.ravel(Ttrain_1)
Ttrain_2 = np.ravel(Ttrain_2)
Ttrain_3 = np.ravel(Ttrain_3)
Ttrain 4 = np.ravel(Ttrain_4)
Ttrain 5 = np.ravel(Ttrain_5)

#Use Random Forest Classifier to classify all folds
clf = RandomForestClassifier()

clf 1 = clf.fit(Xtrains_1, Ttrain_ 1)

Ytest_1 = clf l.predict(Xtests_1)

Ptest_1 = clf_ l.predict_proba(Xtests_1)

clf 2 = clf.fit(Xtrains_2, Ttrain_2)
Ytest_2 = clf_ 2.predict(Xtests_2)
Ptest_2 = clf 2.predict_proba(Xtests_2)

clf 3 = clf.fit(Xtrains_3, Ttrain_ 3)
Ytest_3 = clf_ 3.predict(Xtests_3)
Ptest_3 clf 3.predict_proba(Xtests_3)

clf 4 = clf.fit(Xtrains_4, Ttrain 4)
Ytest_4 = clf 4.predict(Xtests_4)
Ptest_4 = clf 4.predict_proba(Xtests_4)

clf 5 = clf.fit(Xtrains_5, Ttrain_ 5)
Ytest_5 = clf 5.predict(Xtests_5)
Ptest_5 = clf 5.predict_proba(Xtests_5)

#Reshape outputs of test folds to vectors
Ytest_1 = np.array(Ytest_l).reshape(-1,1)
Ytest_2 = np.array(Ytest_2).reshape(-1,1)
Ytest_3 = np.array(Ytest_3).reshape(-1,1)
Ytest_4 = np.array(Ytest_4).reshape(-1,1)
Ytest_5 = np.array(Ytest_5).reshape(-1,1)

#Calculate accuracies of each test fold by comparing to true labels

testacc_l = (np.sum(Ytest_1 == Ttest_1l)/len(Ttest_1))*100
testacc_2 = (np.sum(Ytest_2 == Ttest_2)/len(Ttest_2))*100
testacc_3 = (np.sum(Ytest_3 == Ttest_3)/len(Ttest_3))*100
testacc_4 = (np.sum(Ytest_4 == Ttest_4)/len(Ttest_4))*100
testacc_5 = (np.sum(Ytest_5 == Ttest_5)/len(Ttest_5))*100

#Find highest accuracy from test folds
highest_acc = max((testacc_1, testacc_2, testacc_3, testacc_4, testacc_5
))

#Concatenate all folds to calculate accuracy

Ytest_tot = np.concatenate((Ytest_1l, Ytest_2, Ytest_ 3, Ytest_ 4, Ttest_5
))

Ttest_tot = np.concatenate((Ttest_1, Ttest_2, Ttest_3, Ttest_4, Ttest_ 5
)

#Calculate accuracy
crossval_acc = (np.sum(Ytest_tot == Ttest_tot)/len(Ttest_tot))*100

#Print cross-validation accuracy and highest accuracy
crossval_acc, highest_acc

112

XGBoost.ipynb

#Filename: XGBoost.ipynb

#Author: Noah Vento

#Description: Classify data using Extreme Gradient Boosting (XGBoost) al
gorithm

#Import libraries

tmatplotlib inline

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
tmatplotlib inline

import IPython.display as ipd # for display and clear_ output
import time # for sleep

#Import Excel spreadsheet of data
Laguna_Fig = pd.read_excel('/Users/noahvento/Desktop/CSS_Noah/Database/M
L_Fig_Stats_Table.xlsx')

#Partition data into desired features

data = Laguna_Fig[['NTG','F4_Prop', 'F3_Prop','F2_Prop','Fl_Prop',
'Gross', 'Drape', 'AR', 'Net', 'Num_Beds', 'P10_Phi_lcm',
'P50_Phi_lcm', 'P90_Phi_1lcm', 'BT_min',
'BT_med', 'BT _max']]

#Make X have 16 columns and as many rows as needed to hold the values of
data

#Samples are in rows, and the features of each sample are in the columns
#The ith row of X is Sample i whose correct target output is in row i of
T

X = np.array(data).reshape((-1,16))

#Specify desired classification scheme and outputs

#(e.g., three-position classification scheme, where Axis = 1; Off-Axis =
2; Margin = 3)

Pos_3 = Laguna_Fig[['Pos_3']]

#Make T have one column and as many rows as needed to hold the values of
Pos 3
T = np.array(Pos_3).reshape((-1,1))

#Convert T outputs to 0, 1, and 2 instead of 1, 2, and 3 (Python)
def pos_conversion(self):

T[T == 1] = 0 # convert Axis from 1 to 0

T[T == 2] = 1 # convert Off-Axis from 2 to 1

T[T == 3] 2 # convert Margin from 3 to 2

pos_conversion(T)

113

#Separate T into Axis, Off-Axis, and Margin data

axisI, _ = np.where(T == 0) # identifying axis
offaxisI, _ = np.where(T == 1) # identifying off-axis
marginI, _ = np.where(T == 2) # identifying margin

#Randomly permute Axis, Off-Axis, and Margin data
axisI = np.random.permutation(axisI)

offaxisI = np.random.permutation(offaxisI)
marginI = np.random.permutation(marginI)

#Generate fold (K = 5) for cross-validation
length_axisI = int(len(axisI)/5) #length of each fold
axis_folds = []
for i in range(4):

axis_folds += [axisI[i*length_axisI:(i+1)*length_axisI]]
axis_folds += [axisI[4*length_axisI:len(axisI)]]

length_offaxisI = int(len(offaxisI)/5) #length of each fold
offaxis_folds = []
for i in range(4):

offaxis folds += [offaxisI[i*length offaxisI:(i+l)*length_offaxisI]]
offaxis_folds += [offaxisI[4*length_offaxisI:len(offaxisI)]]

length_margin = int(len(marginI)/5) #length of each fold
margin_folds = []
for i in range(4):

margin_folds += [marginI[i*length_margin:(i+l)*length_margin]]
margin_folds += [marginI[4*length_margin:len(marginI)]]

#Convert lists to arrays

axis_folds = np.array(axis_folds)
offaxis_folds = np.array(offaxis_folds)
margin_folds = np.array(margin_folds)

#Partition Axis Folds

axisfold_1 = axis_folds[0]
axisfold 2 = axis_folds[1]
axisfold_3 = axis_folds[2]
axisfold 4 = axis_folds[3]
axisfold 5 = axis_folds[4]

#Partition Off-Axis Folds

offaxisfold_1 = offaxis_folds[0]
offaxisfold 2 = offaxis_folds[1]
offaxisfold_3 = offaxis_folds[2]
offaxisfold 4 = offaxis_folds[3]
offaxisfold 5 = offaxis_folds[4]

#Partition Margin Folds

marginfold 1 = margin_folds[0]
marginfold 2 = margin_folds[1]
marginfold 3 = margin_folds[2]
marginfold 4 = margin_folds[3]
marginfold_5 = margin_folds[4]

114

#Set up training and testing folds

rowsTrain_1 = np.hstack((axisfold 1, axisfold 2, axisfold_ 3, axisfold 4,
offaxisfold_ 1, offaxisfold_2, offaxisfold_3,
offaxisfold 4, marginfold 1, marginfold_2,
marginfold 3, marginfold_4))

rowsTest_1 = np.hstack((axisfold 5, offaxisfold_ 5, marginfold_5))

rowsTrain_2 = np.hstack((axisfold 1, axisfold_2, axisfold_3, axisfold 5,
offaxisfold_1, offaxisfold 2, offaxisfold 3,
offaxisfold 5, marginfold_1, marginfold_2,
marginfold 3, marginfold 5))

rowsTest_2 = np.hstack((axisfold 4, offaxisfold_4, marginfold_4))

rowsTrain_3 = np.hstack((axisfold 1, axisfold_ 2, axisfold_4, axisfold 5,
offaxisfold_1, offaxisfold 2, offaxisfold 4,
offaxisfold 5, marginfold_1, marginfold_2,
marginfold_4, marginfold 5))

rowsTest_3 = np.hstack((axisfold 3, offaxisfold_3, marginfold_3))

rowsTrain_4 = np.hstack((axisfold 1, axisfold_3, axisfold_4, axisfold_5,
offaxisfold 1, offaxisfold_3, offaxisfold_4,
offaxisfold 5, marginfold_1, marginfold_3,
marginfold 4, marginfold 5))

rowsTest_4 = np.hstack((axisfold 2, offaxisfold_2, marginfold_2))

rowsTrain_5 = np.hstack((axisfold 2, axisfold_3, axisfold_4, axisfold 5,
offaxisfold_ 2, offaxisfold_3, offaxisfold_4,
offaxisfold_5, marginfold 2, marginfold_3,
marginfold 4, marginfold_5))

rowsTest 5 = np.hstack((axisfold 1, offaxisfold_ 1, marginfold 1))

#Xtrain = Array of training features from each channel element randomly
permuted in rowsTrain

#Ttrain = Corresponding outputs (classifications) for Xtrain values
Xtrain_1 = X[rowsTrain 1,:]

Ttrain_1 = T[rowsTrain_1,:]

Xtest_1 = X[rowsTest_1,:]

Ttest_1 T[rowsTest_1,:]

Xtrain_2 = X[rowsTrain_2,:]
Ttrain_2 T[rowsTrain_2,:]
Xtest_2 = X[rowsTest_2,:]
Ttest_2 T[rowsTest_2,:]

Xtrain_3 = X[rowsTrain_3,:]
Ttrain_3 = T[rowsTrain_3,:]
Xtest_3 X[rowsTest_3,:]
Ttest_3 = T[rowsTest_3,:]

Xtrain_4 = X[rowsTrain 4,:]
Ttrain_4 = T[rowsTrain_4,:]
Xtest_4 = X[rowsTest_4,:]
Ttest_4 T[rowsTest_4,:]

Xtrain_5 = X[rowsTrain_5,:]
Ttrain_5 = T[rowsTrain_5,:]
Xtest 5 = X[rowsTest_5,:]
Ttest_5 = T[rowsTest_5,:]

115

#Define standardize function and standardize input data before classific
ation
def standardize(X,mean,stds):

return (X - mean)/stds

meanstrain_1, stdstrain_1 = np.mean(Xtrain_1, 0), np.std(Xtrain_1 ,0)
meanstest_1, stdtest_l1 = np.mean(Xtest_1, 0), np.std(Xtest_1 ,0)
Xtrains_1 = standardize(Xtrain_ 1, meanstrain_1l, stdstrain_1)

Xtests_1 = standardize(Xtest_1, meanstest_1, stdtest_1)

meanstrain_2, stdstrain 2 = np.mean(Xtrain_2, 0), np.std(Xtrain_2 ,0)
meanstest_2, stdtest_2 = np.mean(Xtest_2, 0), np.std(Xtest_2 ,0)
Xtrains_2 = standardize(Xtrain_2, meanstrain_2, stdstrain_2)

Xtests_2 = standardize(Xtest_2, meanstest_2, stdtest_2)

meanstrain_3, stdstrain 3 = np.mean(Xtrain_3, 0), np.std(Xtrain 3 ,0)
meanstest_3, stdtest_3 = np.mean(Xtest_3, 0), np.std(Xtest_3 ,0)
Xtrains_3 = standardize(Xtrain_3, meanstrain_3, stdstrain_3)

Xtests_3 = standardize(Xtest_ 3, meanstest_ 3, stdtest_3)

meanstrain_4, stdstrain 4 = np.mean(Xtrain_4, 0), np.std(Xtrain 4 ,0)
meanstest_4, stdtest_4 = np.mean(Xtest_4, 0), np.std(Xtest_4 ,0)
Xtrains_4 = standardize(Xtrain 4, meanstrain_ 4, stdstrain 4)

Xtests_4 = standardize(Xtest_4, meanstest_4, stdtest_4)

meanstrain_5, stdstrain_5 = np.mean(Xtrain_5, 0), np.std(Xtrain 5 ,0)
meanstest_5, stdtest_5 = np.mean(Xtest_5, 0), np.std(Xtest_5 ,0)
Xtrains_5 = standardize(Xtrain 5, meanstrain_ 5, stdstrain_5)

Xtests_5 = standardize(Xtest_5, meanstest_5, stdtest_5)

116

#Import XGBoost function
import xgboost as xgb

#Convert Ttrain into a flattened array
Ttrain_1 = np.ravel(Ttrain_1)
Ttrain_2 = np.ravel(Ttrain_2)
Ttrain_3 = np.ravel(Ttrain_3)
Ttrain_4 = np.ravel(Ttrain_4)
9 Ttrain 5 = np.ravel(Ttrain_ 5)

OO E WN -

11 #Use XGBoost to classify all folds

12 #Ptest = Probabilities for classifications
13 clf = xgb.XGBClassifier()

14 clf_ 1 = clf.fit(Xtrains_1, Ttrain_1)

15 Ytest_1 = clf l.predict(Xtests_1)

16 Ptest_1 clf l.predict_proba(Xtests_1)

18 clf 2 = clf.fit(Xtrains_2, Ttrain_2)
19 Ytest_2 = clf_2.predict(Xtests_2)
20 Ptest_2 = clf_2.predict_proba(Xtests_2)

22 clf_3 = clf.fit(Xtrains_3, Ttrain_3)
23 Ytest_3 = clf_3.predict(Xtests_3)
24 Ptest_3 clf 3.predict_proba(Xtests_3)

26 clf 4 = clf.fit(Xtrains_4, Ttrain 4)
27 Ytest_4 = clf_4.predict(Xtests_4)
28 Ptest_4 = clf_4.predict_proba(Xtests_4)

30 clf 5 = clf.fit(Xtrains_5, Ttrain_ 5)
31 Ytest_ 5 = clf_5.predict(Xtests_5)
32 Ptest_5 = clf_ 5.predict_proba(Xtests_5)

#Reshape outputs of test folds to vectors
Ytest_1 = np.array(Ytest_1).reshape(-1,1)
Ytest_2 = np.array(Ytest_2).reshape(-1,1)
Ytest_3 = np.array(Ytest_3).reshape(-1,1)
Ytest_4 = np.array(Ytest_4).reshape(-1,1)
Ytest_5 = np.array(Ytest_5).reshape(-1,1)

AU Ee WN =

#Calculate accuracies of each test fold by comparing to true labels

testacc_1 = (np.sum(Ytest_1 == Ttest_1l)/len(Ttest_1))*100
testacc_2 = (np.sum(Ytest 2 == Ttest_2)/len(Ttest_2))*100
testacc_3 = (np.sum(Ytest_3 == Ttest_3)/len(Ttest_3))*100

testacc_4
testacc_5

(np.sum(Ytest_4 == Ttest_4)/len(Ttest_4))*100
(np.sum(Ytest_5 == Ttest_5)/len(Ttest_5))*100

#Find highest accuracy from test folds
highest_acc = max((testacc_l, testacc_2, testacc_3, testacc_4, testacc_ 5

))

#Concatenate all folds to calculate accuracy

Ytest_tot = np.concatenate((Ytest_1, Ytest 2, Ytest 3, Ytest_ 4, Ttest_5
))

Ttest_tot = np.concatenate((Ttest_1, Ttest_2, Ttest_3, Ttest_4, Ttest_5
))

Ptest_tot = np.concatenate((Ptest_l, Ptest_2, Ptest_ 3, Ptest_4, Ptest_ 5
))

#Calculate accuracy
crossval_acc = (np.sum(Ytest_tot == Ttest_tot)/len(Ttest_tot))*100

#Print cross-validation accuracy and highest accuracy
crossval_acc, highest_acc

117

-

#Filename: optimizers.py
#Author: Charles Anderson
#Description: The optimizers script defines different optimization algor

ithms

#(e.g., Stochastic Gradient Descent, Adam, and Scaled Conjugate Gradient
Descent).

#These optimizers are used during the backpropagation phase of the Neura
1 Network

#to update the weights and biases and minimize the loss function.

import numpy as np

import sys

import copy

import time

import math # for math.ceil
import torch

HHHAAAAAHAHAFAHAAFH AR BAARA BB RAAAAAAAAFAAA A A A RAA AR AR AR AAH
sgd

def sgd(w, error_f, fargs=[], n_iterations=100, error_gradient_f=None,
eval_ f=lambda x: x, save_wtrace=False, verbose=False,
use_torch=False,
learning_rate=0.001, momentum rate=0.0):

start_time = time.time()
start_time_last_verbose = start_time

if use_torch:
if isinstance(w, np.ndarray):
w = torch.tensor(w, dtype=torch.float, requires_grad=True)
else:
w = w.clone().detach().requires_grad_(True)
wtrace = [w.clone().detach()] if save_wtrace else None

else:

w = w.copy()

wtrace = [w.copy()] if save_wtrace else None
ftrace = [eval_f(error_f(w, *fargs))]

w_change = 0
for iteration in range(n_iterations):
error = error_f(w, *fargs)

if use_torch:
error.backward(retain_graph=True)
with torch.no_grad():
w_change = -learning_rate * w.grad + momentum_rate * w_c
hange
w += w_change
w.grad.zero_()
if save_wtrace:
wtrace.append(w.clone().detach())
ftrace.append(eval_f(error).detach())

118

else:
grad = error_gradient_f(w, *fargs)
w_change = -learning rate * grad + momentum rate * w_change
w += w_change
if save_wtrace:
wtrace.append(w.copy())
ftrace.append(eval_f(error))

iterations_per print = math.ceil(n_iterations/10)
if verbose and (iteration + 1) % max(1l, iterations_per print) ==

seconds = time.time() - start_time_last_verbose
eval = eval_f(error) # .item() if use torch else eval f(erro
r)
print(f'sgd: Iteration {iteration+l:d} ObjectiveF={eval:.5f}
Seconds={seconds:.3f}"')
start_time last_verbose = time.time()
return { w,
error_f(w, *fargs),
iterations': iteration,
'wtrace': np.array(wtrace)[:iteration + 2,:] if save_wtrace

‘W'
I
O

else None,
‘ftrace': np.array(ftrace)[:iteration + 2],
'reason': 'iterations',
'time': time.time() - start_time}

HAAHHARFHAFHH A AR AAFAFHAHF A AR A AR A B A FAAF A A A AR A A A AR ARA A
adam

def adam(w, error_f, fargs=[], n_iterations=100, error_gradient_f=None,
eval_f=lambda x: x, save_wtrace=False, verbose=False,
use_torch=False,
learning_rate=0.001, momentum_rate=None):

start_time = time.time()
start_time_last_verbose = start_time

if use_torch:
if isinstance(w, np.ndarray):
w = torch.tensor(w, dtype=torch.float, requires_grad=True)
else:
w = w.clone().detach().requires_grad_(True)
wtrace = [w.clone()] if save wtrace else None
else:
w = w.copy()
wtrace = [w.copy()] if save_wtrace else None

betal = 0.9
beta2 = 0.999
alpha = learning_rate

epsilon = 10e-8
nW = len(w)
g = torch.zeros((nW)) if use_torch else np.zeros((nW))

119

g2 = torch.zeros((nW)) if use_torch else np.zeros((nW))
betalt = betal
beta2t = beta2

ftrace = [eval_f(error_f(w, *fargs))]

for iteration in range(n_iterations):
error = error_f(w, *fargs)

if use_torch:

error.backward(retain_graph=True)

with torch.no_grad():
g = betal * g + (1 - betal) * w.grad
g2 = beta2 * g2 + (1 - beta2) * w.grad * w.grad
g_corrected = g / (1 - betalt)
g2_corrected = g2 / (1 - beta2t)
alphat = alpha * torch.sqrt(l - beta2t) / (1 - betalt)
w -= alpha * g_corrected / (torch.sqgrt(g2_corrected) + e

psilon)

w.grad.zero_()

if save_wtrace:
wtrace.append(w.clone().detach())
ftrace.append(eval_f(error).detach())

else:
grad = error_gradient_f(w, *fargs)
g = betal * g + (1 - betal) * grad
g2 = beta2 * g2 + (1 - beta2) * grad * grad
g_corrected = g / (1 - betalt)
g2_corrected = g2 / (1 - beta2t)
w -= alpha * g_corrected / (np.sqrt(g2_corrected) + epsilon)
if save_wtrace:
wtrace.append(w.copy())
ftrace.append(eval_f(error))

betalt *= betal
beta2t *= beta2

iterations_per print = math.ceil(n_iterations/10)
if verbose and (iteration + 1) % max(1l, iterations_per_ print) ==

seconds = time.time() - start_time_last_verbose

eval = eval_f(error) # .item() if use_torch else eval_f(erro
r)

print(f'adam: Iteration {iteration+l:d} ObjectiveF={eval:.5
f} Seconds={seconds:.3f}"')

start_time_last_verbose = time.time()

return {'w': w,
'f': error_f(w, *fargs),
'n_iterations': iteration,
'wtrace': np.array(wtrace)[:iteration + 2,:] if save_wtrace

else None,
'ftrace': np.array(ftrace)[:iteration + 2],

120

'reason': 'iterations',
'time': time.time() - start_time}

AAAHHHAAAARAHARARRAR AR A AA A AAAA A A A FAAA S AR AAR AR AAARAAAAAAAAAAA A
Scaled Conjugate Gradient algorithm from

oW oW OW W WMW

"A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning"”
by Martin F. Moller
Neural Networks, vol. 6, pp. 525-533, 1993

Adapted by Chuck Anderson from the Matlab implementation by Nabney
as part of the netlab library.

def scg(w, error_f, fargs=[], n_iterations=100, error_gradient_f=None,

eval_ f=lambda x: x, save_wtrace=False, verbose=False,
use_torch=False,
learning_rate=None, momentum rate=None): # not used here

float_precision = sys.float_info.epsilon

start_time = time.time()
start_time_last_verbose = start_time

if use_torch:
if isinstance(w, np.ndarray):
w = torch.tensor(w, dtype=torch.float, requires_grad=True)
else:
w = w.clone().detach().requires_grad_(True)
wtrace = [w.clone()] if save_wtrace else None
isnan = torch.isnan
sqrt = torch.sgrt

else:
w = w.copy()
wtrace = [w.copy()] if save_wtrace else None

isnan = np.isnan
sqrt = math.sqrt

sigma0 = 1.0e-6

error_old = error_f(w, *fargs)

error_now = error_old

if use_torch:
error_now.backward(retain_graph=True)
gradnew = w.grad.clone()
w.grad.zero_()
ftrace = [eval_f(error_old).detach()]

else:
gradnew = error_gradient_f(w, *fargs)
ftrace = [eval_f(error_old)]

gradold = copy.deepcopy(gradnew)

d = -gradnew # Initial search direction.

success = True # Force calculation of directional derivs.
nsuccess = 0 # nsuccess counts number of successes.

beta = 1.0e-6 # Initial scale parameter. Lambda in Moeller.

betamin = 1.0e-15 # Lower bound on scale.
betamax = 1.0e20 # Upper bound on scale.
nvars = len(w)

121

iteration = 1 # count of number of iterations

thisIteration = 1
while thisIteration <= n_iterations:

if success:
mu = d.T € gradnew
if mu >= 0:
d = -gradnew
mu = d.T @ gradnew
kappa = d.T €@ d

if isnan(kappa):
print('kappa', kappa)

if kappa < float_precision:
return {'w': w,
'f': error_now,
'n_iterations': iteration,
'wtrace': np.array(wtrace)[:iteration + 1, :] if
save_wtrace else None,

'ftrace': np.array(ftrace)[:iteration + 1],
‘reason': 'limit on machine precision'’,
‘time': time.time() - start_time}

sigma = sigma0 / sqrt(kappa)

if use_torch:
w_smallstep = (w.detach() + sigma * d).requires_grad_ (Tr
ue)
err = error_f(w_smallstep, *fargs)
err.backward(retain_graph=True)
g_smallstep = w_smallstep.grad.clone()
w_smallstep.grad.zero_()
else:
w_smallstep = w + sigma * d
error_f(w_smallstep, *fargs)
g_smallstep = error_gradient_ f(w_smallstep, *fargs)

theta = d.T € (g_smallstep - gradnew) / sigma
if isnan(theta):
print(f'theta {theta} sigma {sigma} d[0] {d[0]} g_smalls
tep[0] {g_smallstep[0]} gradnew[0] {gradnew[0]}')

Increase effective curvature and evaluate step size alpha.
delta = theta + beta * kappa
if isnan(delta):

print(f'delta is NaN theta {theta} beta {beta} kappa {kappa}

elif delta <= 0:
delta = beta * kappa
beta = beta - theta / kappa

if delta == 0:
success = False
error_now = error_old

122

else:
alpha = -mu / delta
Calculate the comparison ratio Delta
if use_torch:
wnew = (w.detach() + alpha * d).requires_grad_(True)
else:
wnew = w + alpha * d
error_new = error_f(wnew, *fargs)
Delta = 2 * (error_new - error_old) / (alpha * mu)
if not isnan(Delta) and Delta >= 0:
success = True
nsuccess += 1
if use_torch:
w = wnew.detach().requires_grad_(True)
else:
w[:] = wnew
error_now = error_new
else:
success = False
error_now = error_old

iterations_per print = math.ceil(n_iterations/10)
if verbose and thisIteration % max(1l, iterations_per print) == 0

seconds = time.time() - start_time_last_verbose
print(f'SCG: Iteration {iteration:d} ObjectiveF={eval_f(erro
r now):.5f} Scale={beta:.3e} Seconds={seconds:.3f}")
start_time_last_verbose = time.time()
if use_torch:
if save_wtrace:
wtrace.append(w.clone().detach())
ftrace.append(eval_f(error_now).detach())
else:
if save_wtrace:
wtrace.append(w.copy())
ftrace.append(eval_f(error_now))

if success:

error_old = error_new

gradold[:] = gradnew

if use_torch:
error_new.backward(retain_graph=True)
gradnew = wnew.grad.clone()
wnew.grad.zero_()

else:
gradnew[:] = error_gradient_ f(w, *fargs)

If the gradient is zero then we are done.

gg = gradnew.T @ gradnew

if gg == 0:

return {'w': w,
'f': error_now,
'n_iterations': iteration,
'wtrace': np.array(wtrace)[:iteration + 1, :] if
save_wtrace else None,

123

‘ftrace': np.array(ftrace)[:iteration + 1],
'reason': 'zero gradient',
'time': time.time() - start_time}

if isnan(Delta) or Delta < 0.25:
beta = min(4.0 * beta, betamax)
elif Delta > 0.75:
beta = max(0.5 * beta, betamin)

Update search direction using Polak-Ribiere formula, or re-sta

rt
in direction of negative gradient after nparams steps.
if nsuccess == nvars:
d[:] = -gradnew
nsuccess = 0
elif success:
gamma = (gradold - gradnew).T @ (gradnew / mu)
d[:] = gamma * d - gradnew

thisIteration += 1
iteration += 1

If we get here, then we haven't terminated in the given number

of iterations.

return {'w': w,
'f': error_now,
'n_iterations': iteration,

'wtrace': np.array(wtrace)[:iteration + 1,:] if save_wtrace

else None,
'ftrace': np.array(ftrace)[:iteration + 1],
'reason': 'did not converge',
'time': time.time() - start_time}

if _ name == '_ main__':

def error(w):
return (w - 1.5)**2

def error_grad(w):
return 2 * (w - 1.5)

w = np.array([-5.5])

result = sgd(w, error, [], 1000, error_grad, use_torch=False,
learning_rate=0.1, momentum_ rate=0.5)

print(f"sgd w is {result['w'][0]:.3£f}")

result = adam(w, error, [], 1000, error_grad, use_torch=False,
learning_rate=0.1)

print(f"adam w is {result['w'][0]:.3£f}")

result = scg(w, error, [], 1000, error_grad, use_torch=False)

print(f'"scg w is {result['w'][0]:.3f}")

result = sgd(w, error, [], 1000, error_grad, use_torch=True,

124

learning_rate=0.1, momentum_rate=0.5)
print(f"sgd with torch, w is {result['w'][0]:.3£}")

result = adam(w, error, [], 1000, error_grad, use_torch=True,
learning_rate=0.1)
print(f"adam with torch, w is {result['w'][0]:.3£f}")

result = scg(w, error, [], 1000, error_grad, use_torch=True)
print(f"scg with torch, w is {result['w'][0]:.3£f}")

neuralnetworks.py

#Filename: neuralnetworks.py

#Author: Charles Anderson

#Description: The neuralnetworks script defines the architecture
#and components of the neural network.

import numpy as np

import torch

import mlutilities as ml

import optimizers as opt

import matplotlib.pyplot as plt
import copy

class NeuralNetwork:

#Defining the operator
def _ init__ (self, n_inputs, n_hiddens_list, n_outputs, use_torch=Fa
1lse):

if not isinstance(n_hiddens_list, list):
raise Exception('NeuralNetwork: n_hiddens_list must be a lis

if len(n_hiddens_list) == 0:
self.n_hidden_layers = 0

elif n_hiddens_list([0] == 0:
self.n_hidden_layers = 0

else:
self.n_hidden_layers = len(n_hiddens_list)

self.n_inputs = n_inputs
self.n_hiddens_list = n_hiddens_list
self.n_outputs = n_outputs

Do we have any hidden layers?
self.vs = []
ni = n_inputs
for layeri in range(self.n_hidden_layers):
n_in_layer = self.n_hiddens_list[layeri]
self.Vs.append(l / np.sqrt(l + ni) * np.random.uniform(-1, 1
, size=(1 + ni, n_in_layer)))
ni = n_in_layer
self.W = 1/np.sqrt(l + ni) * np.random.uniform(-1, 1, size=(1 +
ni, n_outputs))
if use_torch:
self.Vs = [torch.tensor(V, dtype=torch.float) for V in self.
Vs]
self.W = torch.tensor(self.W, dtype=torch.float)
self.tanh = torch.tanh
self.mean = torch.mean
self.sqrt = torch.sqrt
else:
self.tanh = np.tanh
self.mean = np.mean
self.sqrt = np.sqrt

125

self.use_torch = use_torch

Member variables for standardization
self.Xmeans = None
self.Xstds = None
self.Tmeans = None
self.Tstds = None

self.trained = False
self.reason = None
self.error_trace = None
self.n_epochs = None
self.training_time = None

#Representation for the neural network
def _ repr_ (self):
str = f'{type(self)._ name_ }({self.n_inputs}, {self.n_hiddens_1
ist}, {self.n_outputs}, use torch={self.use_torch})'
if self.trained:
str += f£'\n Network was trained for {self.n_epochs} epoch

str += f' that took {self.training_time:.4f} seconds. Final
objective value is {self.error_trace[-1]:.3f}'
else:
str +=
return str

Network is not trained.'

#Standardizing inputs -- standard approach in Machine Learning
def _standardizeX(self, X):

result = (X - self.Xmeans) / self.XstdsFixed

result[:, self.Xconstant] = 0.0

return result

def _unstandardizeX(self, Xs):
return self.Xstds * Xs + self.Xmeans

def _standardizeT(self, T):
result = (T - self.Tmeans) / self.TstdsFixed
result[:, self.Tconstant] = 0.0
return result

def _unstandardizeT(self, Ts):
return self.Tstds * Ts + self.Tmeans

#Packing weights into vector
def pack(self, Vs, W):
if self.use_torch:
return torch.cat([V.reshape(-1) for V in Vs] + [W.reshape(-1
)1)
else:
return np.hstack([(V.flat for V in Vs] + [W.flat])

def _unpack(self, w):
first = 0
n_this_layer = self.n_inputs
for i in range(self.n_hidden_layers):
self.Vs[i][:] = w[first:first + (1 + n_this_layer) *

126

self.n_hiddens_list[i]].reshape((1l + n_thi
s_layer, self.n_hiddens_list[i]))
first += (1 + n_this_layer) * self.n_hiddens_list[i]
n_this_layer = self.n_hiddens_list[i]
self.W[:] = w[first:].reshape((1 + n_this_layer, self.n_outputs

))

def _forward pass(self, X):
Assume weights already unpacked
Z_prev = X # output of previous layer
%z = [Z_prev]
for i in range(self.n_hidden_layers):
V = self.Vs[i]
Z_prev = self.tanh(Z_prev @ V[1l:, :] + V[0:1, :]) #Hyperboli
c tangent function
Z.append(Z_prev)
Y = Z2_prev @ self.wW[l:, :] + self.W[0:1, :] #Y = outputs
return Y, 2

def _objectiveF(self, w, X, T):
self. unpack(w)
Y, _ = self. forward pass(X)
return 0.5 * self.mean((T - Y)**2) #Loss Function = Mean Square
Error

Only used if use_torch=False
def _gradientF(self, w, X, T):
self. unpack(w)
Y, z2 = self. forward pass(X)
Do backward pass, starting with delta in output layer
delta = -(T - Y) / (X.shape[0] * T.shape[l])
Another way to define dEdW without calling np.insert
dW = np.vstack((np.sum(delta, axis=0), Z[-1].T € delta))
dvs = []
delta = (1 - Z[-1]**2) * (delta @ self.W[l:, :].T)
for Zi in range(self.n_hidden_layers, 0, -1):
Vi =2i - 1 # because X is first element of 2
dV = np.vstack((np.sum(delta, axis=0), Z[Z2i-1].T € delta))
dVs.insert(0, dV) # like append, but at front of list of dV

delta = (delta @ self.Vs[Vi][l:, :].T) * (1 - Z[Zi-1]**2)
return self. pack(dvs, dw)

def _setup_standardize(self, X, T):
if self.Xmeans is None:
self.Xmeans = X.mean(axis=0)
self.Xstds = X.std(axis=0)
self.Xconstant = self.Xstds ==
self.XstdsFixed = copy.copy(self.Xstds)
self.XstdsFixed[self.Xconstant] = 1

if self.Tmeans is None:
self.Tmeans = T.mean(axis=0)
self.Tstds = T.std(axis=0)
self.Tconstant = self.Tstds ==
self.TstdsFixed = copy.copy(self.Tstds)
self.TstdsFixed[self.Tconstant] = 1

127

def _objective_to_actual(self, objective):
return self.sqrt(objective)

def train(self, X, T, n_epochs, method='scg',
verbose=False, save_weights_history=False,
learning_rate=0.001, momentum rate=0.0): # only for sgd an
d adam

if X.shape[l] != self.n_inputs:
raise Exception(f'train: number of columns in X ({X.shape
[1]}) not equal to number of network inputs ({self.n_inputs})’)

if self.use_torch:
X torch.tensor (X, dtype=torch.float) # 32 bit
T torch.tensor (T, dtype=torch.float)

self. setup standardize(X, T)
X = self._ standardizeX(X)
T = self._standardizeT(T)

try:
algo = [opt.sgd, opt.adam, opt.scg][['sgd', 'adam', 'scg'].i
ndex (method)]
except:
raise Exception("train: method={method} not one of 'scg', 's
gd' or 'adam'")

result = algo(self._pack(self.Vs, self.w),
self. objectiveF,
[X, T], n_epochs,
self._ gradientF, # not used if scg
eval f=self. objective_ to_actual,
learning_rate=learning_rate, momentum_ rate=momentu
m_rate,
verbose=verbose, use_torch=self.use_torch,
save_wtrace=save_weights_history)

self. unpack(result['w'])

self.reason = result['reason']

self.error_trace = result['ftrace'] # * self.Tstds # to _unstand
ardize the MSEs

self.n_epochs = len(self.error_trace) - 1

self.trained = True

self.weight_history = result['wtrace'] if save_weights_history e
lse None

self.training_time = result['time']

return self

def use(self, X, all_outputs=False):
if self.use_torch:
if not isinstance(X, torch.Tensor):
X = torch.tensor (X, dtype=torch.float)

X = self._ standardizeX(X)

Y, Z = self._ forward pass(X)

Y = self._ unstandardizeT(Y)

if self.use_torch:

128

Y = Y.detach().cpu().numpy()
Z = [Zi.detach().cpu().numpy() for Zi in Z)
return (Y, 2Z[1:]) if all_outputs else Y

def get_n_epochs(self):
return self.n_epochs

def get_error_trace(self):
return self.error_trace

def get_training_time(self):
return self.training time

def get_weight_history(self):
return self.weight_history

def draw(self, input_names=None, output_ names=None, gray=False):
if self.use_torch:
Vs = [V.detach().cpu().numpy() for V in self.Vs]
W = self.W.detach().cpu().numpy()

else:
Vs = self.Vs
W = self.W

ml.draw(Vs, W, input_names, output_names, gray)

import numpy as np

import torch

import mlutilities as ml

import optimizers as opt

import matplotlib.pyplot as plt
import copy

import sys

class NeuralNetworkClassifier(NeuralNetwork):

def _ init_ (self, n_inputs, n_hiddens_list, classes, use_torch=Fals
e):

if not isinstance(n_hiddens_list, list):
raise Exception('NeuralNetworkClassifier: n_hiddens_list mus
t be a list or tuple')

super().__init__ (n_inputs, n_hiddens_list, len(classes), use_tor
ch)

self.classes = np.array(classes) # to allow argmax in use()
if use_torch:

self.log = torch.log
self.exp = torch.exp
else:

self.log = np.log
self.exp = np.exp

def _ repr_ (self):
str = f'{type(self)._ name_}({self.n_inputs}, {self.n_hiddens_1
ist}, {self.n_outputs}, use_torch={self.use_torch})’

129

if self.trained:
str += £'\n Network was trained for {self.n_epochs} epoch

str += f' that took {self.training_time:.4f} seconds. Final
objective value is {self.error_trace[-1]:.3f}’'
else:
str +=
return str

Network is not trained.'

str = f'{type(self)._ name_}({self.n_inputs}, {self.n_hiddens_1
ist}, {self.classes}, use_torch={self.use_torch})'
if self.trained:
str += £'\n Network was trained for {self.n_epochs} epoch

str += f' that took {self.training_time:.4f} seconds. Final
objective value is {self.error_trace[-1]:.3f}'
else:
str += ' Network is not trained.'
return str

def _standardizeT(self, T):
return T

def _unstandardizeT(self, Ts):
return Ts

def _softmax(self, Y):
mx = Y.max()
expY = self.exp(Y - mx)
denom = expY.sum(axis=1).reshape((-1, 1)) + sys.float_info.epsil
on
return expY / denom

def _softmax_old(self, Y):
expY = self.exp(Y)
denom = expY.sum(axis=1).reshape((-1, 1))
return expY / denom

def _forward pass(self, X):
Y, Z = super()._forward_pass(X)
Convert outputs to multinomial distribution
return self. softmax(Y), Z

def _objectiveF(self, w, X, T):
self. unpack(w)
Y, Z = self._forward_pass(X)
Y[Y == 0] = sys.float_info.epsilon # to avoid log(0) below
return -(T * self.log(Y)).mean()

_gradientF of parent works for classifier!
def _make_indicator_ variables(self, T):
'''" Assumes argument is N x 1, N samples each being integer clas
s label '''

return (T == np.unique(T)).astype(int)

def _objective_to_actual(self, objective):

130

return self.exp(-objective)

def train(self, X, T, n_epochs, method='scg',
verbose=False, save_weights_history=False,
learning_rate=0.001, momentum rate=0.0): # only for sgd an
d adam

Ti = self._make_indicator_variables(T)
return super().train(X, Ti, n_epochs, method, verbose, save_weig
hts_history,
learning_rate, momentum_rate)

def use(self, X, all_outputs=False):
Y, Z = super().use(X, all_outputs=True)
Convert max Y to class label
Y classes = self.classes[Y.argmax(axis=1)].reshape((-1, 1))
Y classes = Y.argmax(axis=1l).reshape((-1, 1))
return (Y _classes, Y, Z[1:]) if all_outputs else (Y_classes, Y)
if _name__ == '_ main__':
n_samples = 20
X = np.random.choice(3, (n_samples, 2))
T = (X[:, 0:1] == X[:, 1:2]).astype(int) # where the two inputs are
equal
classes = [0, 1]
print(f'{np.sum(T==0)} not equal, {np.sum(T==1)} equal')

n_epochs = 100
for use_torch in [False, True]:

nnet = NeuralNetworkClassifier(2, [], classes, use_torch=use_tor
ch)

nnet.train(X, T, n_epochs)

Y _classes, Y = nnet.use(X)

print(f'scg {nnet.n_hiddens_list} use_torch={use_torch} {np.sum
(Y_classes == T)} / {n_samples} correct took {nnet.training_time:.3f} se
conds ')

nnet = NeuralNetworkClassifier(2, [20, 5], classes, use_torch=us
e_torch)

nnet.train(X, T, n_epochs)

Y classes, Y = nnet.use(X)

print(f'scg {nnet.n_hiddens_list} use_torch={use_torch} {np.sum
(Y_classes == T)} / {n_samples} correct took {nnet.training_time:.3f} se
conds ')

nnet = NeuralNetworkClassifier(2, [20, 5], classes, use_torch=us
e_torch)

nnet.train(X, T, n_epochs, method='sgd', learning rate=0.5, mome
ntum_rate=0.5)

Y classes, Y = nnet.use(X)

print(f'sgd {nnet.n_hiddens_list} use_torch={use_torch} {np.sum
(Y_classes == T)} / {n_samples} correct took {nnet.training_time:.3f} se
conds ')

131

nnet = NeuralNetworkClassifier(2, [20, 5], classes, use_torch=us

e_torch)

nnet.train(X, T, n_epochs, method='adam', learning rate=0.1)
Y classes, Y = nnet.use(X)
print(f'adam {nnet.n_hiddens_list} use_torch={use_torch} {np.sum

(Y_classes == T)} / {n_samples} correct took {nnet.training_time:.3f} se
conds ')

if

__name__ == '_main__':

plt.figure(l)
plt.clf()
nnet.draw()

np.random.seed(42)
print('Called np.random.seed(42)"')

X = np.arange(10).reshape((-1, 1))
T =X ** 2
n_epochs = 200

def rmse(Y, T):
return np.sqgrt(np.mean((T - Y)**2))

for use_torch in [False, True]:

nnet = NeuralNetwork(l, [], 1, use_torch=use_torch)

Equivalent to

nnet = NeuralNetwork(1l, [0], 1, use_torch=use_torch)
nnet.train(X, T, n_epochs)

Y = nnet.use(X)

print(f'scg {nnet.n_hiddens_list} use_torch={use_torch} RMSE {r

mse(Y, T):.3f} took {nnet.training_time:.3f} seconds')

nnet = NeuralNetwork(l, [5, 5], 1, use_torch=use_torch)
nnet.train(X, T, n_epochs)

Y = nnet.use(X)

print(f'scg {nnet.n_hiddens_list} use_torch={use_torch} RMSE {r

mse(Y, T):.3f} took {nnet.training_time:.3f} seconds')

nnet = NeuralNetwork(l, [5, 5], 1, use_torch=use_torch)
nnet.train(X, T, n_epochs, method='sgd', learning rate=0.5, mome

ntum_rate=0.5)

Y = nnet.use(X)
print(f'sgd {nnet.n_hiddens_list} use_torch={use_torch} RMSE {r

mse(Y, T):.3f} took {nnet.training_time:.3f} seconds')

nnet = NeuralNetwork(1l, [5, 5], 1, use_torch=use_torch)
nnet.train(X, T, n_epochs, method='adam', learning rate=0.1)

Y = nnet.use(X)

print(f'adam {nnet.n_hiddens_list} use_torch={use_torch} RMSE {r

mse(Y, T):.3f} took {nnet.training_time:.3f} seconds')

plt.figure(1l)
plt.clf()

nnet.draw()

132

Neural_Network.ipynb
The Neural_Network.ipynb Jupyter Notebook script uses the previously mentioned
optimizers.py and neuralnetworks.py scripts. These supplementary scripts must be imported into

the Neural_Network.ipynb script to have it operate correctly.

#Filename: Neural Network.ipynb
#Authors: Noah Vento & Charles Anderson
#Description: Classify data using Neural Network algorithm and scripts

#Import Libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
$matplotlib inline

import IPython.display as ipd # for display and clear output
import time # for sleep

#Import Excel spreadsheet of data
Laguna_Fig = pd.read_excel('/Users/noahvento/Desktop/CSS_Noah/Database/M
L_Fig_Stats_Table.xlsx')

#Partition data into desired features

data = Laguna_Fig[['NTG', 'F4_Prop', 'F3_Prop','F2_Prop','Fl_Prop',
'Gross', 'Drape', 'AR', 'Net', 'Num_Beds', 'P10_Phi_1lcm',
'P50_Phi_lcm', 'P90_Phi_lcm', 'BT min',
'BT_med', 'BT_max']]

#Make X have 16 columns and as many rows as needed to hold the values of
data

#Samples are in rows, and the features of each sample are in the columns
#The ith row of X is Sample i whose correct target output is in row i of
T

X = np.array(data).reshape((-1,16))

#Specify desired classification scheme and outputs

#(e.g., three-position classification scheme, where Axis = 1; Off-Axis =
2; Margin = 3)

Pos_3 = Laguna_Fig[['Pos_3']]

#Make T have one column and as many rows as needed to hold the values of
Pos_3
T = np.array(Pos_3).reshape((-1,1))

#To allow flexibility, decouple the modeling of the boundaries.
#Problem is due to using one value to represent all classes.
#Instead, use three values, one for each class.

#Binary-valued variables are adequate.

#Cclass 1 = (1,0,0), Class 2 = (0,1,0) and Class 3 = (0,0,1).
#These are called indicator variables.

def makeIndicatorVars(T):
Make sure T is two-dimensional. Should be nSamples x 1.

if T.ndim == 1:
T = T.reshape((-1,1))
return (T == np.unique(T)).astype(int)

133

#Separate T into Axis, Off-Axis, and Margin data

axisI, _ = np.where(T == 1) # identifying axis
offaxisI, _ = np.where(T == 2) # identifying off-axis
marginI, _ = np.where(T == 3) # identifying margin

#Randomly permute Axis, Off-Axis, and Margin data
axisI = np.random.permutation(axisI)

offaxisI = np.random.permutation(offaxisI)
marginI = np.random.permutation(marginI)

#Generate fold (K = 5) for cross-validation
length_axisI = int(len(axisI)/5) #length of each fold
axis_folds = []
for i in range(4):

axis_folds += [axisI[i*length_axisI:(i+1l)*length_axisI]]
axis_folds += [axisI[4*length_axisI:len(axisI)]]

length_offaxisI = int(len(offaxisI)/5) #length of each fold
offaxis_folds = []
for i in range(4):

offaxis_folds += [offaxisI[i*length_offaxisI:(i+1)*length_offaxisI]]
offaxis_folds += [offaxisI[4*length_offaxisI:len(offaxisI)]]

length_margin = int(len(marginI)/5) #length of each fold
margin_folds = []
for i in range(4):

margin_folds += [marginI[i*length_margin:(i+1l)*length margin]]
margin_folds += [marginI[4*length_margin:len(marginI)]]

#Convert lists to arrays

axis_folds = np.array(axis_folds)
offaxis_folds = np.array(offaxis_folds)
margin_folds = np.array(margin_folds)

#Partition Axis Folds

axisfold_1 = axis_folds[0]
axisfold_2 = axis_folds[1]
axisfold_3 = axis_folds[2]
axisfold_4 = axis_folds[3]
axisfold 5 = axis_folds[4]

#Partition Off-Axis Folds

offaxisfold_1 = offaxis_folds[0]
offaxisfold 2 = offaxis_folds[1]
offaxisfold_3 = offaxis_folds[2]
offaxisfold 4 = offaxis_folds[3]
offaxisfold 5 = offaxis_folds[4]

#Partition Margin Folds

marginfold_1 = margin_folds([0]
marginfold 2 margin_folds[1]
marginfold 3 margin_folds[2]
marginfold 4 margin_folds[3]
marginfold 5 margin_folds[4]

134

#Set up training and testing folds

rowsTrain_1 = np.hstack((axisfold_1, axisfold_2, axisfold_3, axisfold 4,
offaxisfold 1, offaxisfold 2, offaxisfold 3,
offaxisfold_4, marginfold_1, marginfold_2,
marginfold 3, marginfold_4))

rowsTest_1 = np.hstack((axisfold 5, offaxisfold 5, marginfold 5))

rowsTrain_2 = np.hstack((axisfold 1, axisfold_ 2, axisfold_3, axisfold_5,
offaxisfold 1, offaxisfold 2, offaxisfold 3,
offaxisfold 5, marginfold_ 1, marginfold_ 2,
marginfold_ 3, marginfold_5))

rowsTest_2 = np.hstack((axisfold 4, offaxisfold 4, marginfold 4))

rowsTrain_3 = np.hstack((axisfold 1, axisfold 2, axisfold_4, axisfold 5,
offaxisfold_1, offaxisfold_2, offaxisfold 4,
offaxisfold 5, marginfold_1, marginfold_2,
marginfold_4, marginfold_5))

rowsTest_3 = np.hstack((axisfold 3, offaxisfold 3, marginfold 3))

rowsTrain_4 = np.hstack((axisfold 1, axisfold 3, axisfold 4, axisfold 5,
offaxisfold 1, offaxisfold 3, offaxisfold 4,
offaxisfold 5, marginfold_1, marginfold_3,
marginfold_ 4, marginfold_5))

rowsTest_4 = np.hstack((axisfold_2, offaxisfold_2, marginfold_2))

rowsTrain_5 = np.hstack((axisfold 2, axisfold_3, axisfold_4, axisfold 5,
offaxisfold 2, offaxisfold_3, offaxisfold 4,
offaxisfold 5, marginfold_ 2, marginfold_3,
marginfold 4, marginfold 5))

rowsTest_5 = np.hstack((axisfold_1, offaxisfold 1, marginfold_ 1))

#Xtrain = Array of training features from each channel element randomly
permuted in rowsTrain

#Ttrain = Corresponding outputs (classifications) for Xtrain values
Xtrain 1 = X[rowsTrain_1,:]

Ttrain_l1 = T[rowsTrain_1,:]

Xtest_1 = X[rowsTest_1,:]

Ttest_1 T[rowsTest_1,:]

Xtrain 2 = X[rowsTrain_2,:
Ttrain_2 = T[rowsTrain_2,:
Xtest_2 = X[rowsTest_2,:]
Ttest_2 T[rowsTest_2,:]

]
]

Xtrain 3 = X[rowsTrain_ 3,
Ttrain_3 = T[rowsTrain_3,
Xtest_3 = X[rowsTest_3,:]
Ttest_3 = T[rowsTest_3,:]

:]
:]

Xtrain_4 = X[rowsTrain 4,:])
Ttrain_4 = T[rowsTrain_ 4,:]
Xtest_4 = X[rowsTest_4,:]
Ttest_4 = T[rowsTest_4,:]

Xtrain 5 = X[rowsTrain_5,:])
Ttrain_ 5 = T[rowsTrain 5,:]
Xtest_5 = X[rowsTest_5,:]
Ttest_5 = T[rowsTest_5,:]

135

#Define standardize function and standardize input data before classific
ation
def standardize(X,mean,stds):

return (X - mean)/stds

meanstrain_1, stdstrain_1 = np.mean(Xtrain_1, 0), np.std(Xtrain_1 ,0)
meanstest_1, stdtest_l1 = np.mean(Xtest_1l, 0), np.std(Xtest_1 ,0)
Xtrains_1 = standardize(Xtrain_1, meanstrain_1, stdstrain_1)

Xtests_1 = standardize(Xtest_1, meanstest_ 1, stdtest_1)

meanstrain_2, stdstrain_2 = np.mean(Xtrain_2, 0), np.std(Xtrain_2 ,0)
meanstest_2, stdtest_2 = np.mean(Xtest_2, 0), np.std(Xtest_2 ,0)
Xtrains_2 = standardize(Xtrain 2, meanstrain_2, stdstrain_2)

Xtests_2 = standardize(Xtest_2, meanstest_2, stdtest_2)

meanstrain_3, stdstrain_3 = np.mean(Xtrain_3, 0), np.std(Xtrain_3 ,0)
meanstest_3, stdtest_3 = np.mean(Xtest_3, 0), np.std(Xtest_3 ,0)
Xtrains_3 = standardize(Xtrain_3, meanstrain_3, stdstrain_3)

Xtests_3 = standardize(Xtest_3, meanstest_ 3, stdtest_3)

meanstrain_4, stdstrain_4 = np.mean(Xtrain 4, 0), np.std(Xtrain_ 4 ,0)
meanstest_4, stdtest_4 = np.mean(Xtest_4, 0), np.std(Xtest_4 ,0)
Xtrains_4 = standardize(Xtrain_4, meanstrain_4, stdstrain_4)

Xtests_4 = standardize(Xtest_4, meanstest_4, stdtest_4)

meanstrain_5, stdstrain_5 = np.mean(Xtrain_5, 0), np.std(Xtrain_5 ,0)
meanstest_5, stdtest_5 = np.mean(Xtest_5, 0), np.std(Xtest_5 ,0)
Xtrains_5 = standardize(Xtrain 5, meanstrain_5, stdstrain_5)

Xtests_5 = standardize(Xtest_5, meanstest_5, stdtest_5)

#Import Neural Network from neuralnetworks.py script

import neuralnetworks as nn

import imp

imp.reload(nn) # in case neuralnetworks.py has been changed

#0ne hidden layer with 5 neurons
n_hiddens_list = [5]

#16 features in the input layer, n_hiddens_list in the hidden layer,
#and three output classes in the output layer
nnet_1 = nn.NeuralNetworkClassifier (16, n_hiddens_list, classes=[1, 2, 3

1)

#train for 10 epochs using the first training fold
nnet_l.train(Xtrains_1, Ttrain 1 ,n_epochs=10, verbose=True)

#Train second Neural Network on training fold #2
nnet_2 = nn.NeuralNetworkClassifier (16, n_hiddens_list, classes=[1, 2, 3

1)
nnet_2.train(Xtrains_2, Ttrain_ 2 ,n_epochs=10, verbose=True)

136

#Train third Neural Network on training fold #3
nnet_3 = nn.NeuralNetworkClassifier (16, n_hiddens_list, classes=[1, 2, 3
1)

nnet_3.train(Xtrains_3, Ttrain_3 ,n_epochs=10, verbose=True)

#Train fourth Neural Network on training fold #4
nnet_4 = nn.NeuralNetworkClassifier (16, n_hiddens_list, classes=[1, 2, 3

1)

nnet_4.train(Xtrains_4, Ttrain 4 ,n_epochs=10, verbose=True)

#Train fifth Neural Network on training fold #5
nnet_5 = nn.NeuralNetworkClassifier (16, n_hiddens_list, classes=[1, 2, 3

1
nnet_5.train(Xtrains_5, Ttrain_5 ,n_epochs=10, verbose=True)

#Classify testing data for each fold
#Ytest = output classifications

#Ptest = output probabilities

Ytest_1, Ptest_1 = nnet_l.use(Xtests_1)
Ytest_2, Ptest_2 = nnet_2.use(Xtests_2)
Ytest_3, Ptest_3 = nnet_3.use(Xtests_3)
Ytest_4, Ptest_4 = nnet_4.use(Xtests_4)
Ytest_5, Ptest_5 = nnet_5.use(Xtests_5)

#Calculate accuracies of each test fold by comparing to true labels
testacc_1l = (np.sum(Ytest_1 == Ttest_1)/len(Ttest_1))*100
testacc_2 = (np.sum(Ytest 2 == Ttest_2)/len(Ttest_2))*100
testacc_3 = (np.sum(Ytest_3 == Ttest_3)/len(Ttest_3))*100
testacc_4 = (np.sum(Ytest_4 == Ttest_4)/len(Ttest_4))*100
testacc_5 = (np.sum(Ytest_5 == Ttest_5)/len(Ttest_5))*100

#Find highest accuracy from test folds
highest_acc = max((testacc_1, testacc_2, testacc_3, testacc_4, testacc_5

))

#Concatenate all folds to calculate accuracy

Ytest_tot = np.concatenate((Ytest_1, Ytest_ 2, Ytest 3, Ytest 4, Ttest 5
))

Ttest_tot = np.concatenate((Ttest_1, Ttest_2, Ttest 3, Ttest 4, Ttest 5
))

Ptest_tot = np.concatenate((Ptest_1, Ptest_2, Ptest 3, Ptest 4, Ptest 5

))

#Calculate accuracy
crossval_acc = (np.sum(Ytest_tot == Ttest_tot)/len(Ttest_tot))*100

#Print cross-validation accuracy and highest accuracy
crossval_acc, highest_acc

137

APPENDIX C: MACHINE LEARNING RESULTS

138

Description

Various machine learning algorithms—unsupervised k-means, 26 variations of common
supervised learners, and a deep learning neural network—were used to classify the deep-water
channel outcrop data from the Laguna Figueroa database in this study. All algorithms except for
k-means, XGBoost, random forest, and the neural network were operated in MATLAB’s
Classification Learner app, which is a part of the Statistics and Machine Learning Toolbox. The
Classification Learner app trains models to classify data using supervised machine learning
algorithms and makes it easy to import data tables, partition data into training and testing, and run
a suite of algorithms quickly.

The remaining algorithms were operated in Python using the Scikit-learn machine learning
library, which features a wide range of classification, regression, and clustering algorithms. The
Python codes for these algorithms can be viewed in Appendix B. The results and evaluation metrics

for all of the machine learning analyses can be viewed in this section.

139

Table C.1 FD-2P for unsupervised and supervised learning algorithms.

Algorithm Parameters Accuracy
K-Means Number of Clusters = 2 78.98%
Fine Tree Maximum Number of Splits: 100 85.40%
Medium Tree Maximum Number of Splits: 20 85.40%
Coarse Tree Maximum Number of Splits: 4 85.40%
Linear Discriminant Covariance Structure: Full 89.20%
Quadratic
Discriminant Covariance Structure: Diagonal 88.50%
Gaussian Naive Bayes - 88.50%
Kernel Naive Bayes - 88.50%
Linear SVM Box Constraint = 1 91.70%
Quadratic SVM Box Constraint = 1 90.40%
Cubic SVM Box Constraint = 1 89.20%
Fine Gaussian SVM Box Constraint = 1; Kernel Scale = 1.0 71.30%
Medium Gaussian
SVM Box Constraint = 1; Kernel Scale = 4.0 89.80%
Coarse Gaussian SVM Box Constraint = 3; Kernel Scale = 16 84.70%
Fine KNN Nearest Neighbors = 1 85.40%
Medium KNN Nearest Neighbors = 10 87.90%
Coarse KNN Nearest Neighbors = 50 82.20%
Cosine KNN Nearest Neighbors = 10 89.80%
Cubic KNN Nearest Neighbors = 10 87.90%
Weighted KNN Nearest Neighbors = 10 90.40%
AdaBoost Trees Max. Number of Splits: 20; Number of Learners: 30 72.00%
Bagged Trees Max. Number of Splits: 156; Number of Learners: 30 85.40%
Subspace Discriminant Number of Learners: 30; Subspace Dimensions: 8 87.90%
Subspace KNN Number of Learners: 30; Subspace Dimensions: 8 89.20%
RUSBoosted Trees Max. Number of Splits: 20; Number of Learners: 30 91.10%
Random Forest - 91.72%
XGBoost - 90.45%
Neural Network Number of Neurons in Hidden Layer: 5 93.63 %

140

Table C.2 FD-2P precision, recall, and F1 score metrics for unsupervised and supervised learning
algorithms.

Algorithm Class Precision Recall F1 Score
K-Means Axis ‘ 0.84 0.87 0.86
Margin 0.63 0.59 0.61
. Axis 0.91 0.88 0.90
Fine Tree+ .
Margin 0.72 0.77 0.75
Medium Tree: Axis . 0.91 0.88 0.90
Margin 0.72 0.77 0.75
Axis 0.90 0.89 0.90
Coarse Treet)
Margin 0.73 0.75 0.74
. D Axis 0.93 0.92 0.92
Linear Discriminants)
Margin 0.80 0.82 0.81
Quadratic Discriminanty Axis . 0.97 0.87 0.92
Margin 0.73 0.93 0.82
Gaussian Naive Bayes+ Axis . 0.97 0.87 0.92
Margin 0.73 0.93 0.82
Kernel Naive Bayest Axis . 0.94 0.90 0.92
Margin 0.77 0.84 0.80
Linear SVM+ Axis ‘ 0.93 0.96 0.94
Margin 0.88 0.82 0.85
Quadratic SVM+ Axis ‘ 0.93 0.94 0.93
Margin 0.84 0.82 0.83
Cubic SVM+ Axis ‘ 0.93 0.92 0.92
Margin 0.80 0.82 0.81
Fine Gaussian SVM; Axis ‘ 0.72 0.99 0.83
Margin 0.00 0.00 -
Medium Gaussian SVM Axis . 0.94 0.92 0.93
Margin 0.80 0.84 0.82
Coarse Gaussian SVM+ Axis . 0.84 0.97 0.90
Margin 0.88 0.52 0.66
Fine KNN+ Axis ‘ 0.89 0.90 0.90
Margin 0.74 0.73 0.74
Medium KNNi Axis . 0.89 0.95 0.92
Margin 0.84 0.70 0.77
Coarse KNN+ Axis ‘ 0.81 0.99 0.89
Margin 0.94 0.39 0.55
Cosine KNN# Axis ‘ 0.94 0.92 0.93
Margin 0.80 0.84 0.82

141

Algorithm Class Precision Recall F1 Score

Cubic KNN¢ Axis ‘ 0.89 0.95 0.92

Margin 0.84 0.70 0.77

Weighted KNNi Axis ‘ 0.94 0.93 0.93

Margin 0.82 0.84 0.83

AdaBoost Treesis Axis ‘ 0.72 1.00 0.84
Margin - 0.00 -

Bagged Treests Axis ‘ 0.89 0.91 0.90

Margin 0.76 0.70 0.73

Subspace Discriminantys Axis) 0.89 0.95 0.92

Margin 0.84 0.70 0.77

Subspace KNNis Axis ‘ 0.91 0.94 0.93

Margin 0.83 0.77 0.80

RUSBoosted Treess Axis . 0.96 0.91 0.94

Margin 0.80 0.91 0.85

Random Forests Axis . 0.94 0.95 0.94

Margin 0.86 0.84 0.85

XGBoostts Axis ‘ 0.94 0.93 0.93

Margin 0.82 0.84 0.83

Neural Networkis Axis ‘ 0.96 0.96 0.96

Margin 0.89 0.89 0.89

+Unsupervised Learning; +Supervised Learning; sEnsemble Classifier; {Deep Learning

142

Table C.3 FD-3P accuracies for unsupervised and supervised learning algorithms.

Algorithm Parameters Accuracy
K-Means* Number of Clusters = 3 48.41%
Fine Tree+ Maximum Number of Splits: 100 63.10%
Medium Treet Maximum Number of Splits: 20 63.10%
Coarse Treet Maximum Number of Splits: 4 65.00%
Linear Discriminants Covariance Structure: Full 78.30%
Quadratic Discriminant; Covariance Structure: Diagonal 81.50%
Gaussian Naive Bayes; - 81.50%
Kernel Naive Bayes+ - 59.90%
Linear SVM Box Constraint = 1 82.80%
Quadratic SVM+ Box Constraint = 1 78.30%
Cubic SVM+ Box Constraint = 1 74.50%
Fine Gaussian SVM+ Box Constraint = 1; Kernel Scale = 1.0 44.60%
Medium Gaussian
SVM+ Box Constraint = 1; Kernel Scale = 4.0 79.60%
Coarse Gaussian SVM+ Box Constraint = 3; Kernel Scale = 16 73.20%
Fine KNN+ Nearest Neighbors = 1 68.80%
Medium KNNi Nearest Neighbors = 10 77.70%
Coarse KNN+ Nearest Neighbors = 50 73.20%
Cosine KNN+ Nearest Neighbors = 10 75.80%
Cubic KNN+ Nearest Neighbors = 10 78.30%
Weighted KNN Nearest Neighbors = 10 77.70%
AdaBoost Trees+s Max. Number of Splits: 20; Number of Learners: 30 65.60%
Bagged Treess Max. Number of Splits: 156; Number of Learners: 30 75.20%
Subspace Discriminantts Number of Learners: 30; Subspace Dimensions: 8 79.60%
Subspace KNNi§ Number of Learners: 30; Subspace Dimensions: 8 76.40%
RUSBoosted Treesqs Max. Number of Splits: 20; Number of Learners: 30 73.90%
Random Forest:s - 82.80%
XGBoostits - 80.25%
Neural Networks+ Number of Neurons in Hidden Layer: 5 80.25%

+*Unsupervised Learning; +Supervised Learning; sEnsemble Classifier; {Deep Learning

143

Table C.4 FD-3P precision, recall, and F1 score metrics for unsupervised and supervised learning
algorithms.

Algorithm Class Precision Recall F1 Score
Axis 0.49 0.75 0.59
K-Means+ Off-Axis 0.43 0.44 0.43
Margin 0.65 0.25 0.36
Axis 0.70 0.73 0.71
Fine Treeyt Off-Axis 0.57 0.48 0.52
Margin 0.63 0.73 0.67
Axis 0.70 0.73 0.71
Medium Tree+ Off-Axis 0.57 0.48 0.52
Margin 0.63 0.73 0.67
Axis 0.72 0.65 0.68
Coarse Treet Off-Axis 0.56 0.55 0.55
Margin 0.70 0.80 0.74
Axis 0.87 0.76 0.81
Linear Discriminanty Off-Axis 0.71 0.79 0.75
Margin 0.81 0.80 0.80
Axis 0.83 0.84 0.83
Quadratic Discriminants Off-Axis 0.75 0.81 0.78
Margin 0.92 0.80 0.85
Axis 0.83 0.84 0.83
Gaussian Naive Bayes+ Off-Axis 0.75 0.81 0.78
Margin 0.92 0.80 0.85
Axis 0.55 0.53 0.54
Kernel Naive Bayes Off-Axis 0.52 0.58 0.55
Margin 0.79 0.70 0.75
Axis 0.85 0.80 0.83
Linear SVM+ Off-Axis 0.78 0.79 0.78
Margin 0.87 0.91 0.89
Axis 0.85 0.78 0.82
Quadratic SVM Off-Axis 0.71 0.76 0.73
Margin 0.82 0.82 0.82
Axis 0.80 0.73 0.76
Cubic SVM+ Off-Axis 0.67 0.69 0.68
Margin 0.79 0.84 0.81
Axis 0.79 0.22 0.34
Fine Gaussian SVM+ Off-Axis 0.41 0.92 0.57
Margin 0.50 0.05 0.08

144

Algorithm Class Precision Recall F1 Score
Axis 0.83 0.78 0.81
Medium Gaussian SVM+ Off-Axis 0.74 0.74 0.74
Margin 0.83 0.89 0.86
Axis 0.92 0.67 0.77
Coarse Gaussian SVMyt Off-Axis 0.61 0.89 0.72
Margin 0.87 0.59 0.70
Axis 0.77 0.67 0.72
Fine KNN+ Off-Axis 0.60 0.65 0.62
Margin 0.74 0.77 0.76
Axis 0.83 0.78 0.81
Medium KNNj Off-Axis 0.70 0.77 0.73
Margin 0.85 0.77 0.81
Axis 0.91 0.63 0.74
Coarse KNN Off-Axis 0.60 0.94 0.73
Margin 0.96 0.57 0.71
Axis 0.78 0.84 0.81
Cosine KNN Off-Axis 0.72 0.63 0.67
Margin 0.77 0.84 0.80
Axis 0.85 0.76 0.80
Cubic KNN+ Off-Axis 0.70 0.79 0.74
Margin 0.85 0.80 0.82
Axis 0.84 0.73 0.78
Weighted KNN+ Off-Axis 0.70 0.77 0.73
Margin 0.84 0.84 0.84
Axis 0.71 0.76 0.74
AdaBoost Treests Off-Axis 0.59 0.53 0.56
Margin 0.67 0.70 0.69
Axis 0.83 0.78 0.81
Bagged Trees+s Off-Axis 0.67 0.76 0.71
Margin 0.79 0.70 0.75
Axis 0.85 0.80 0.83
Subspace Discriminantts Off-Axis 0.71 0.81 0.76
Margin 0.87 0.77 0.82
Axis 0.82 0.71 0.76
Subspace KNN§ Off-Axis 0.69 0.74 0.71
Margin 0.83 0.86 0.84
Axis 0.80 0.84 0.82
RUSBoosted Treesis Off-Axis 0.69 0.61 0.65
Margin 0.73 0.80 0.76

145

Algorithm Class Precision Recall F1 Score

AXxis 0.87 0.80 0.84

Random Forestis Off-Axis 0.78 0.79 0.78
Margin 0.85 0.91 0.88

Axis 0.86 0.82 0.84

XGBoost 1§ Off-Axis 0.74 0.79 0.77
Margin 0.83 0.80 0.81

AXis 0.81 0.84 0.83

Neural Network; Off-Axis 0.79 0.71 0.75
Margin 0.81 0.89 0.85

+Unsupervised Learning; +Supervised Learning; sEnsemble Classifier; {Deep Learning

146

Table C.5 GM-2P-1 classification accuracies for unsupervised and supervised learning algorithms.

Algorithm Parameters Accuracy
K-Means* Number of Clusters = 2 71.34%
Fine Tree+ Maximum Number of Splits: 100 74.50%
Medium Treet Maximum Number of Splits: 20 74.50%
Coarse Treet Maximum Number of Splits: 4 80.30%
Linear Discriminants Covariance Structure: Full 81.50%
Quadratic Discriminant; Covariance Structure: Diagonal 75.20%
Gaussian Naive Bayes; - 75.20%
Kernel Naive Bayes+ - 75.80%
Linear SVM; Box Constraint = 1 84.10%
Quadratic SVM+ Box Constraint = 1 81.50%
Cubic SVM+ Box Constraint = 1 80.90%
Fine Gaussian SVM+ Box Constraint = 1; Kernel Scale = 1.0 83.40%
Medium Gaussian
SVM+ Box Constraint = 1; Kernel Scale = 4.0 84.10%
Coarse Gaussian SVM+ Box Constraint = 3; Kernel Scale = 16 83.40%
Fine KNN+ Nearest Neighbors = 1 84.70%
Medium KNN+ Nearest Neighbors = 10 83.40%
Coarse KNN+ Nearest Neighbors = 50 83.40%
Cosine KNN+ Nearest Neighbors = 10 83.40%
Cubic KNNy Nearest Neighbors = 10 83.40%
Weighted KNN Nearest Neighbors = 10 84.10%
AdaBoost Trees+s Max. Number of Splits: 20; Number of Learners: 30 83.40%
Bagged Treess Max. Number of Splits: 156; Number of Learners: 30 84.70%
Subspace Discriminantts Number of Learners: 30; Subspace Dimensions: 8 83.40%
Subspace KNNi§ Number of Learners: 30; Subspace Dimensions: 8 84.70%
RUSBoosted Treesqs Max. Number of Splits: 20; Number of Learners: 30 65.60%
Random Forest:s - 85.99%
XGBoostis - 85.99%
Neural Networky: Number of Neurons in Hidden Layer: S 85.99 %

+*Unsupervised Learning; +Supervised Learning; sEnsemble Classifier; {Deep Learning

147

Table C.6 GM-2P-1 precision, recall, and F1 score metrics for unsupervised and supervised
learning algorithms.

Algorithm Class Precision Recall F1 Score
K-Means- Ax1§ 0.87 0.77 0.82
Margin 0.27 0.42 0.33
. Axis 0.84 0.85 0.85
Fine Treest)
Margin 0.21 0.19 0.20
Medium Trees Ax1s: 0.84 0.85 0.85
Margin 0.21 0.19 0.20
Axis 0.85 0.93 0.89
Coarse Treet i
Margin 0.31 0.15 0.21
) . Axis 0.84 0.95 0.90
Linear Discriminanty)
Margin 0.33 0.12 0.17
Quadratic Discriminanty AXlS. 0.89 0.80 0.84
Margin 0.33 0.50 0.40
Gaussian Naive Bayes+t AXlS‘ 0.89 0.30 0.84
Margin 0.33 0.50 0.40
Kernel Naive Bayes AXIS_ 0.87 0.83 0.85
Margin 0.31 0.38 0.34
Linear SVM+ Ax1§ 0.85 0.98 0.91
Margin 0.60 0.12 0.19
Quadratic SVM# AXIS‘ 0.87 0.92 0.89
Margin 0.42 0.31 0.36
Cubic SVM+ Ax1§ 0.87 0.91 0.89
Margin 0.40 0.31 0.35
Fine Gaussian SVM Ax1s: 0.83 1.00 0.91
Margin - 0.00 -
Medium Gaussian SVM AXIS‘ 0.84 1.00 0.91
Margin 1.00 0.04 0.07
Coarse Gaussian SVM+ AXIS: 0.83 1.00 0.91
Margin - 0.00 -
Fine KNN Ax1§ 0.88 0.94 0.91
Margin 0.56 0.38 0.45
Medium KNN+ AXIS. 0.83 1.00 0.91
Margin - 0.00 -
Coarse KNN+ Ax1§ 0.83 1.00 0.91
Margin - 0.00 -
Cosine KNN¢ Ax1§ 0.83 1.00 0.91
Margin - 0.00 -

148

Algorithm Class Precision Recall F1 Score

Cubic KNNT AXIS‘ 083 100 091
Margin - 0.00 -

Weighted KNNi Axis 0.84 0.99 0.91

Margin 0.67 0.08 0.14

AdaBoost Trees+s AX1§ 0.83 1.00 0.91
Margin - 0.00 -

Bagged Trees+s AXlS‘ 0.86 0.98 0.91

Margin 0.63 0.19 0.29

Subspace Discriminantys AXIS‘ 0.85 0.97 0.91

Margin 0.50 0.15 0.24

Subspace KNN§ AXI§ 0.87 0.96 0.91

Margin 0.58 0.27 0.37

RUSBoosted Treesss AX1§ 0.85 0.71 0.78

Margin 0.21 0.38 0.27

Random Forestig AX1§ 0.87 0.98 0.92

Margin 0.70 0.27 0.39

XGBoostis AXlsj 0.88 0.96 0.92

Margin 0.64 0.35 0.45

Neural Networks; AXIS‘ 0.88 0.96 0.92

Margin 0.64 0.35 0.45

+Unsupervised Learning; +Supervised Learning; sEnsemble Classifier; {Deep Learning

149

Table C.7 GM-2P-2 classification accuracies for unsupervised and supervised learning algorithms.

Algorithm Parameters Accuracy
K-Means* Number of Clusters = 2 63.06%
Fine Tree+ Maximum Number of Splits: 100 63.70%
Medium Treet Maximum Number of Splits: 20 63.70%
Coarse Treet Maximum Number of Splits: 4 69.40%
Linear Discriminants Covariance Structure: Full 65.00%
Quadratic Discriminant; Covariance Structure: Diagonal 66.90%
Gaussian Naive Bayes; - 66.90%
Kernel Naive Bayes+ - 59.90%
Linear SVM; Box Constraint = 1 70.10%
Quadratic SVM+ Box Constraint = 1 59.20%
Cubic SVM+ Box Constraint = 1 59.90%
Fine Gaussian SVM+ Box Constraint = 1; Kernel Scale = 1.0 69.40%
Medium Gaussian
SVM+ Box Constraint = 1; Kernel Scale = 4.0 68.80%
Coarse Gaussian SVM+ Box Constraint = 3; Kernel Scale = 16 70.10%
Fine KNN+ Nearest Neighbors = 1 56.10%
Medium KNNi Nearest Neighbors = 10 67.50%
Coarse KNN+ Nearest Neighbors = 50 70.10%
Cosine KNN+ Nearest Neighbors = 10 67.50%
Cubic KNNy Nearest Neighbors = 10 68.20%
Weighted KNN+ Nearest Neighbors = 10 60.50%
AdaBoost Trees+s Max. Number of Splits: 20; Number of Learners: 30 64.30%
Bagged Treess Max. Number of Splits: 156; Number of Learners: 30 68.20%
Subspace Discriminantts Number of Learners: 30; Subspace Dimensions: 8 69.40%
Subspace KNNi§ Number of Learners: 30; Subspace Dimensions: 8 68.20%
RUSBoosted Treesqs Max. Number of Splits: 20; Number of Learners: 30 49.00%
Random Forest:s - 75.16%
XGBoostits - 73.25%
Neural Networky: Number of Neurons in Hidden Layer: 5 75.16 %

+*Unsupervised Learning; +Supervised Learning; sEnsemble Classifier; {Deep Learning

150

Table C.8 GM-2P-2 precision, recall, and F1 score metrics for unsupervised and supervised
learning algorithms.

Algorithm Class Precision Recall F1 Score
K-Means- Ax1s' 0.72 0.76 0.74
Margin 0.37 0.32 0.34
. AXxis 0.75 0.73 0.74
Fine Treer .
Margin 0.40 0.43 0.41
Medium Tree AXIS' 0.75 0.73 0.74
Margin 0.40 0.43 0.41
Axis 0.72 0.92 0.81
Coarse Treet .
Margin 0.47 0.17 0.25
) . Axis 0.70 0.88 0.78
Linear Discriminantt)
Margin 0.28 0.11 0.15
Quadratic Discriminanty AXlsf 0.73 0.84 0.78
Margin 0.42 0.28 0.33
Gaussian Naive Bayes+ AX]S' 0.73 0.84 0.78
Margin 0.42 0.28 0.33
Kernel Naive Bayest Ax1§ 0.69 0.76 0.73
Margin 0.28 0.21 0.24
Linear SVMs A)usj 0.71 0.98 0.82
Margin 0.50 0.04 0.08
Quadratic SVM# Ax1§ 0.69 0.75 0.72
Margin 0.28 0.23 0.26
Cubic SVM: Ax1s' 0.71 0.72 0.71
Margin 0.33 0.32 0.32
Fine Gaussian SVM+ AXIS, 0.70 0.99 0.82
Margin 0.00 0.00 -
Medium Gaussian SVM AXIS, 0.70 0.97 0.1
Margin 0.25 0.02 0.04
Coarse Gaussian SVM+ AXlsf 0.70 1.00 0.82
Margin - 0.00 -
Fine KNN¢ Ax1§ 0.68 0.71 0.69
Margin 0.24 0.21 0.22
Medium KNN+ Ax1§ 0.70 0.95 0.80
Margin 0.25 0.04 0.07
Coarse KNN+ A)usj 0.70 1.00 0.82
Margin - 0.00 -
Cosine KNN+ Ax1§ 0.70 0.94 0.80
Margin 0.30 0.06 0.11

151

Algorithm Class Precision Recall F1 Score

Cubic KNN+ Ax1s' 0.69 0.97 0.81
Margin 0.00 0.00 -

Weighted KNN; Ax1§ 0.68 0.84 0.75

Margin 0.14 0.06 0.09

AdaBoost Treesis Ax1s' 0.71 0.82 0.76

Margin 0.35 0.23 0.28

Bageed Treests Ax1§ 0.72 0.89 0.80

Margin 0.43 0.19 0.26

Subspace Discriminantis AXIS, 0.71 0.96 0.82

Margin 0.43 0.06 0.11

Subspace KNNis AXlS' 0.75 0.83 0.78

Margin 0.46 0.34 0.39

RUSBoosted Treess AXIS. 0.69 0.49 0.57

Margin 0.29 0.49 0.37

Axis 0.77 0.92 0.84

Random Forestis Margin 0.65 0.36 0.47

AXxis 0.77 0.89 0.82

XGBoostis Margin 0.59 0.36 0.45

Neural Networki: Ax1§ 0.77 0.93 0.84

Margin 0.67 0.34 0.45

+Unsupervised Learning; +Supervised Learning; sEnsemble Classifier; {Deep Learning

152

Table C.9 GM-3P-1 classification accuracies for unsupervised and supervised learning algorithms.

Algorithm Parameters Accuracy
K-Means* Number of Clusters = 3 55.41%
Fine Tree+ Maximum Number of Splits: 100 61.80%
Medium Treet Maximum Number of Splits: 20 61.80%
Coarse Treet Maximum Number of Splits: 4 66.90%
Linear Discriminants Covariance Structure: Full 66.90%
Quadratic Discriminant; Covariance Structure: Diagonal 61.80%
Gaussian Naive Bayes; - 61.80%
Kernel Naive Bayes+ - 56.10%
Linear SVM; Box Constraint = 1 69.40%
Quadratic SVM+ Box Constraint = 1 62.40%
Cubic SVM+ Box Constraint = 1 59.90%
Fine Gaussian SVM+ Box Constraint = 1; Kernel Scale = 1.0 70.10%
Medium Gaussian
SVM+ Box Constraint = 1; Kernel Scale = 4.0 69.40%
Coarse Gaussian SVM+ Box Constraint = 3; Kernel Scale = 16 70.10%
Fine KNN+ Nearest Neighbors = 1 58.00%
Medium KNN+ Nearest Neighbors = 10 68.80%
Coarse KNN+ Nearest Neighbors = 50 70.10%
Cosine KNN+ Nearest Neighbors = 10 65.60%
Cubic KNNy Nearest Neighbors = 10 67.50%
Weighted KNN+ Nearest Neighbors = 10 64.30%
AdaBoost Trees+s Max. Number of Splits: 20; Number of Learners: 30 61.80%
Bagged Treess Max. Number of Splits: 156; Number of Learners: 30 65.00%
Subspace Discriminantts Number of Learners: 30; Subspace Dimensions: 8 70.10%
Subspace KNNi§ Number of Learners: 30; Subspace Dimensions: 8 68.80%
RUSBoosted Treesqs Max. Number of Splits: 20; Number of Learners: 30 49.00%
Random Forests - 71.97%
XGBoostis - 73.89 %
Neural Networky: Number of Neurons in Hidden Layer: S 73.89 %

+*Unsupervised Learning; +Supervised Learning; sEnsemble Classifier; {Deep Learning

153

Table C.10 GM-3P-1 precision, recall, and F1 score metrics for unsupervised and supervised
learning algorithms.

Algorithm Class Precision Recall F1 Score
Axis 0.71 0.65 0.68
K-Means* Off-Axis 0.29 0.42 0.34
Margin 0.00 0.00 -
Axis 0.72 0.76 0.74
Fine Treet Off-Axis 0.30 0.28 0.29
Margin 0.43 0.27 0.33
Axis 0.72 0.76 0.74
Medium Treet Off-Axis 0.30 0.28 0.29
Margin 0.43 0.27 0.33
Axis 0.70 0.91 0.79
Coarse Treet Off-Axis 0.36 0.14 0.20
Margin 0.00 0.00 -
Axis 0.71 0.89 0.79
Linear Discriminanty Off-Axis 0.29 0.11 0.16
Margin 0.60 0.27 0.38
Axis 0.75 0.76 0.76
Quadratic Discriminants Off-Axis 0.29 0.19 0.23
Margin 0.29 0.55 0.38
Axis 0.75 0.76 0.76
Gaussian Naive Bayest Off-Axis 0.29 0.19 0.23
Margin 0.29 0.55 0.38
Axis 0.71 0.70 0.70
Kernel Naive Bayes+t Off-Axis 0.21 0.22 0.21
Margin 0.33 0.27 0.30
Axis 0.70 0.98 0.82
Linear SVM+ Off-Axis - 0.00 -
Margin 0.33 0.09 0.14
Axis 0.71 0.81 0.75
Quadratic SVMy Off-Axis 0.25 0.17 0.20
Margin 0.43 0.27 0.33
Axis 0.72 0.74 0.73
Cubic SVM+ Off-Axis 0.29 0.28 0.28
Margin 0.33 0.27 0.30
Axis 0.70 1.00 0.82
Fine Gaussian SVM+ Off-Axis - 0.00 -
Margin - 0.00 -

154

Algorithm Class Precision Recall F1 Score

Axis 0.70 0.99 0.82
Medium Gaussian SVM+ Off-Axis - 0.00 -
Margin 0.00 0.00 -

Axis 0.70 1.00 0.82
Coarse Gaussian SVM+ Off-Axis - 0.00 -
Margin - 0.00 -

Axis 0.70 0.75 0.72

Fine KNN Off-Axis 0.18 0.14 0.16

Margin 0.33 0.36 0.35

Axis 0.70 0.96 0.81

Medium KNN+ Off-Axis 0.33 0.06 0.10
Margin - 0.00 -

Axis 0.70 1.00 0.82
Coarse KNN Off-Axis - 0.00 -
Margin - 0.00 -

Axis 0.69 0.91 0.79

Cosine KNN Off-Axis 0.25 0.08 0.13
Margin 0.00 0.00 -

Axis 0.70 0.95 0.81

Cubic KNN+ Off-Axis 0.22 0.06 0.09
Margin - 0.00 -

Axis 0.71 0.85 0.77

Weighted KNN+ Off-Axis 0.26 0.14 0.18

Margin 0.40 0.18 0.25

Axis 0.70 0.81 0.75

AdaBoost Treests Off-Axis 0.24 0.17 0.20

Margin 0.40 0.18 0.25

Axis 0.70 0.88 0.78

Bagged Trees+s Off-Axis 0.20 0.08 0.12

Margin 0.50 0.18 0.27

Axis 0.71 0.96 0.82

Subspace Discriminantyg Off-Axis 0.33 0.03 0.05

Margin 0.60 0.27 0.38

Axis 0.75 0.87 0.81

Subspace KNNig Off-Axis 0.38 0.25 0.30

Margin 0.60 0.27 0.38

Axis 0.75 0.47 0.58

RUSBoosted Treests Off-Axis 0.30 0.47 0.37

Margin 0.25 0.73 0.37

155

Algorithm Class Precision Recall F1 Score

Axis 0.75 0.92 0.82

Random Forestis Off-Axis 0.53 0.25 0.34
Margin 0.60 0.27 0.38

Axis 0.77 0.93 0.84

XGBoost 1§ Off-Axis 0.56 0.28 0.37
Margin 0.67 0.36 0.47

Axis 0.76 0.93 0.84

Neural Network; Off-Axis 0.61 0.31 0.41
Margin 0.60 0.27 0.38

+Unsupervised Learning; +Supervised Learning; sEnsemble Classifier; {Deep Learning

156

Table C.11 GM-3P-2 classification accuracies for unsupervised and supervised learning

algorithms.

Algorithm Parameters Accuracy
K-Means: Number of Clusters = 3 43.31%
Fine Treet Maximum Number of Splits: 100 44.60%
Medium Treet Maximum Number of Splits: 20 44.60%
Coarse Tree Maximum Number of Splits: 4 49.00%
Linear Discriminantt Covariance Structure: Full 46.50%
Quadratic Discriminant; ~ Covariance Structure: Diagonal 47.80%
Gaussian Naive Bayesy - 47.80%
Kernel Naive Bayes - 42.70%
Linear SVM+ Box Constraint = 1 47.80%
Quadratic SVM; Box Constraint = 1 49.00%
Cubic SVM Box Constraint = 1 45.90%
Fine Gaussian SVM;+ Box Constraint = 1; Kernel Scale = 1.0 51.00%
Medium Gaussian SVM+ Box Constraint = 1; Kernel Scale = 4.0 48.40%
Coarse Gaussian SVM Box Constraint = 3; Kernel Scale = 16 51.60%
Fine KNN+ Nearest Neighbors = 1 45.90%
Medium KNNj Nearest Neighbors = 10 47.10%
Coarse KNN+ Nearest Neighbors = 50 51.60%
Cosine KNN+ Nearest Neighbors = 10 48.40%
Cubic KNN+ Nearest Neighbors = 10 47.80%
Weighted KNN Nearest Neighbors = 10 47.80%
AdaBoost Treests Max. Number of Splits: 20; Number of Learners: 30 51.60%
Bagged Treesis Max. Number of Splits: 156; Number of Learners: 30 49.70%
Subspace Discriminantis Number of Learners: 30; Subspace Dimensions: 8 52.20%
Subspace KNNi§ Number of Learners: 30; Subspace Dimensions: 8 51.60%
RUSBoosted Trees+s Max. Number of Splits: 20; Number of Learners: 30 41.40%
Random Forest:s - 62.42%
XGBoostis - 62.42%
Neural Networky Number of Neurons in Hidden Layer: 5 61.78%

+Unsupervised Learning; +Supervised Learning; sEnsemble Classifier; {Deep Learning

157

Table C.12 GM-3P-2 precision, recall, and F1 score metrics for unsupervised and supervised
learning algorithms.

Algorithm Class Precision Recall F1 Score
Axis 0.52 0.59 0.55
K-Means=* Off-Axis 0.31 0.41 0.36
Margin 0.25 0.03 0.06
Axis 0.62 0.54 0.58
Fine Treet Off-Axis 0.34 0.43 0.38
Margin 0.21 0.20 0.21
Axis 0.62 0.54 0.58
Medium Treet Off-Axis 0.34 0.43 0.38
Margin 0.21 0.20 0.21
Axis 0.54 0.79 0.64
Coarse Treet Off-Axis 0.40 0.22 0.28
Margin 0.23 0.10 0.14
Axis 0.58 0.72 0.64
Linear Discriminantt Off-Axis 0.24 0.20 0.21
Margin 0.32 0.20 0.24
Axis 0.59 0.58 0.58
Quadratic Discriminants Off-Axis 0.29 0.26 0.28
Margin 0.44 0.53 0.48
Axis 0.59 0.58 0.58
Gaussian Naive Bayes+ Off-Axis 0.29 0.26 0.28
Margin 0.44 0.53 0.48
Axis 0.55 0.64 0.59
Kernel Naive Bayes Off-Axis 0.21 0.15 0.18
Margin 0.27 0.27 0.27
Axis 0.51 0.83 0.63
Linear SVM Off-Axis 0.18 0.07 0.10
Margin 0.56 0.17 0.26
Axis 0.59 0.70 0.64
Quadratic SVM Off-Axis 0.34 0.35 0.34
Margin 0.29 0.13 0.18
Axis 0.60 0.65 0.62
Cubic SVM+ Off-Axis 0.29 0.30 0.30
Margin 0.25 0.17 0.20
Axis 0.52 0.99 0.68
Fine Gaussian SVM+ Off-Axis 0.00 0.00 -
Margin - 0.00 -

158

Algorithm Class Precision Recall F1 Score

Axis 0.52 0.85 0.65

Medium Gaussian SVM+ Off-Axis 0.26 0.11 0.15

Margin 0.33 0.07 0.11

Axis 0.48 1.00 0.65
Coarse Gaussian SVM Off-Axis - 0.00 -
Margin - 0.00 -

Axis 0.62 0.59 0.61

Fine KNNj Off-Axis 0.31 0.35 0.33

Margin 0.29 0.27 0.28

Axis 0.52 0.79 0.63

Medium KNNj Off-Axis 0.28 0.17 0.21

Margin 0.33 0.07 0.11

Axis 0.52 0.99 0.68

Coarse KNNi Off-Axis 0.50 0.02 0.04
Margin - 0.00 -

Axis 0.58 0.78 0.67

Cosine KNN Off-Axis 0.25 0.20 0.22

Margin 0.31 0.13 0.19

Axis 0.53 0.79 0.64

Cubic KNN+ Off-Axis 0.23 0.15 0.18

Margin 0.57 0.13 0.22

Axis 0.58 0.73 0.64

Weighted KNN Off-Axis 0.28 0.24 0.26

Margin 0.31 0.17 0.22

Axis 0.60 0.68 0.64

AdaBoost Treests Off-Axis 0.41 0.39 0.40

Margin 0.36 0.27 0.31

Axis 0.59 0.73 0.65

Bagged Trees+s Off-Axis 0.36 0.33 0.34

Margin 0.27 0.13 0.18

Axis 0.57 0.85 0.68

Subspace Discriminantys Off-Axis 0.29 0.13 0.18

Margin 0.47 0.23 0.31

Axis 0.66 0.69 0.67

Subspace KNN§ Off-Axis 0.35 0.33 0.34

Margin 0.34 0.33 0.34

Axis 0.65 0.49 0.56

RUSBoosted Treesis Off-Axis 0.35 0.37 0.36

Margin 0.17 0.27 0.21

159

Algorithm Class Precision Recall F1 Score

Axis 0.64 0.84 0.72

Random Forestis Off-Axis 0.60 0.46 0.52
Margin 0.60 0.30 0.40

Axis 0.69 0.78 0.73

XGBoost 1§ Off-Axis 0.51 0.46 0.48
Margin 0.56 0.47 0.51

Axis 0.70 0.79 0.74

Neural Network; Off-Axis 0.46 0.42 0.44
Margin 0.42 0.32 0.36

+Unsupervised Learning; +Supervised Learning; sEnsemble Classifier; {Deep Learning

160

	ABSTRACT
	ACKNOWLEDGEMENTS
	CHAPTER 1: RESEARCH MOTIVATION
	1.1 Introduction
	1.2 Study Overview
	1.3 Machine Learning in Petroleum Geoscience
	1.4 Thesis Format

	CHAPTER 2: GEOLOGIC BACKGROUND AND DATABASE INTRODUCTION
	2.1 Geologic Setting
	2.2 Laguna Figueroa Database
	2.2.1 Channel Outcrop Statistics
	2.2.1.1 Facies Association Proportions
	2.2.1.2 Net
	2.2.1.3 Gross
	2.2.1.4 Net-To-Gross
	2.2.1.5 Drape Thickness
	2.2.1.6 Bed Statistics (Count, Minimum, Median, and Maximum)
	2.2.1.7 Amalgamation Ratio
	2.2.1.8 Grain Size Distributions and P10, P50, and P90 Statistics

	2.2.2 Classification Schemes
	2.2.2.1 Facies-Driven
	2.2.2.2 Geometric

	2.2.3 Generation of Hypotheses

	CHAPTER 3: MACHINE LEARNING OVERVIEW
	3.1 Machine Learning Algorithms
	3.1.1 Unsupervised Learning
	3.1.1.1 Feature Importance with Principal Component Analysis
	3.1.1.2 Clustering Analysis with K-Means

	3.1.2 Supervised Learning
	3.1.2.1 Decision Trees
	3.1.2.2 Discriminant Analysis
	3.1.2.3 Naïve Bayes
	3.1.2.4 Support Vector Machines
	3.1.2.5 K-Nearest Neighbors
	3.1.2.6 Ensemble Classifiers
	3.1.2.7 K-Fold Cross-Validation

	3.1.3 Deep Learning
	3.1.3.1 Neural Networks

	3.2 Evaluation Metrics
	3.2.1 Validation Accuracy
	3.2.2 Confusion Matrix
	3.2.3 Precision
	3.2.4 Recall
	3.2.5 F1 Score

	CHAPTER 4: EVALUATING MACHINE LEARNING ALGORITHMS FOR PREDICTION OF CHANNEL POSITION
	4.1 Methodology
	4.2 Results
	4.2.1 Unsupervised Learning Results
	4.2.1.1 Feature Importance with Principal Component Analysis
	4.2.1.2 Clustering Analysis with K-Means

	4.2.2 Supervised Learning Results
	4.2.2.1 Unsupervised vs. Supervised Learning
	4.2.2.2 Facies-Driven vs. Geometric Classification Schemes
	4.2.2.3 Two Positions vs. Three Positions
	4.2.2.4 Individual Channel Positions

	4.3 Refinement of Hypotheses

	CHAPTER 5: HIERARCHICAL MACHINE LEARNING ANALYSIS
	5.1 Methodology
	5.2 Results

	CHAPTER 6: DISCUSSION
	6.1 Efficacy of Machine Learning Algorithms in Channel Outcrop Analysis
	6.2 Variations in Intra-Channel Fill and Impacts on Fluid Flow and Connectivity

	CHAPTER 7: CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.2 Future Work
	7.2.1 Modeling Channel Stacking Scenarios
	7.2.2 Classifying Channel Position from Well-Log Data
	7.2.3 Automatic Detection of Channel Boundaries
	7.2.4 Data Augmentation
	7.2.5 Testing on a Different Deep-Water Channel System

	REFERENCES
	APPENDIX A: LAGUNA FIGUEROA DATABASE
	APPENDIX B: PYTHON CODES
	APPENDIX C: MACHINE LEARNING RESULTS

