Repository logo
 

Eigenvalues and completeness for regular and simply irregular two-point differential operators

Date

2006

Authors

Locker, John, author

Journal Title

Journal ISSN

Volume Title

Abstract

In this monograph the author develops the spectral theory for an nth order two-point differential operator L in the Hilbert space L2[0,1], where L is determined by an nth order formal differential operator ℓ having variable coefficients and by n linearly independent boundary values B1,…,Bn. Using the Birkhoff approximate solutions of the differential equation (ρnI−ℓ)u=0, the differential operator L is classified as belonging to one of three possible classes: regular, simply irregular, or degenerate irregular. For the regular and simply irregular classes, the author develops asymptotic expansions of solutions of the differential equation (ρnI−ℓ)u=0, constructs the characteristic determinant and Green's function, characterizes the eigenvalues and the corresponding algebraic multiplicities and ascents, and shows that the generalized eigenfunctions of L are complete in L2[0,1]. He also gives examples of degenerate irregular differential operators illustrating some of the unusual features of this class.

Description

August 29, 2006.

Rights Access

Subject

Eigenvalues
Differential operators

Citation

Associated Publications

Collections