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Preface

In this monograph we develop the spectral theory for an nth order two-point
differential operator L in the Hilbert space L?[0,1], where L is determined
by a formal differential operator ¢ having variable coefficients and by linearly
independent boundary values By, . .., B,,. This new work is a natural extension
of our earlier work in [34]. Using the Birkhoff approximate solutions z (¢, p, m),
k=0,1,...,n — 1, of the differential equation

(o1 = O)u(t) = 0,

together with the associated approximate characteristic determinant /A(p, m),
we proceed to classify L as belonging to one of three possible classes: regular,
simply irregular, or degenerate irregular. The regular class has been studied
extensively, and has a more or less complete spectral theory; the simply irreg-
ular class is a new and unexplored class, and its spectral theory, together with
the regular class, is the main subject of this book; the degenerate irregular
class has never been studied, and is a topic for future work. Throughout we
assume that L is regular or simply irregular.

Working on two sectors Ty and T} having angular opening 7 /n, we use high
order asymptotic expansions to construct two independent sets of solutions of
the differential equation (p"I — £)u(t) = 0:

Uoo(t7p)71}01(t7p)7'"7U0n—1(t7p) for pe TO

and
vio(t, p),v11(t, p), ..., vin-1(t,p) for p e 1.

The voi(t, p), vik(t, p) behave asymptotically like the Birkhoff approximate
solutions zg(t, p,m). They are used to construct characteristic determinants
Ap(p) and Aq(p) on the sectors Ty and T3, and to construct representations
of the resolvent Ry(L) and the corresponding Green’s function G(t,s;\) for
A = p" with p in either Ty or T7. The spectrum of L is then computed; it
consists of two sequences of eigenvalues,



v Preface
;cz(p;i:)nv k:k07k0+1a"'7

and
g:(pg)n7 k:k07k0+17"'7

plus a finite number of additional points, where the pj are zeros of Ag(p)
in Ty and the p} are zeros of A;(p) in T;. We establish asymptotic formulas
that detail the structure of the p), pj. After deriving growth rates for the
resolvent R (L) on various regions of the A plane, we show that the generalized
eigenfunctions of L are complete in L?[0,1].

Our method for obtaining the higher order expansion of solutions is much
simpler than previous expansion methods, and the results for the eigenvalues
and the completeness of the generalized eigenfunctions are the first that we are
aware of for a large class of nth order irregular differential operators having
variable coefficients.

Fort Collins, Colorado, John Locker
August 2003
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Introduction

In this monograph we develop the spectral theory of an nth order two-point
differential operator L in the Hilbert space L?[0, 1]. The differential operator
is determined by a formal differential operator ¢ having variable coefficients,
and by independent boundary values By, ..., B, that may be either regular or
irregular. This initial chapter summarizes the basic spectral properties of the
differential operator, presents some historical remarks concerning earlier stud-
ies of the spectral theory, and gives an overview of the results established here.
The spectral theory for these differential operators is by no means complete
— there remain many unsolved problems.

1.1 Two-Point Differential Operators
Throughout we work in the complex Hilbert space L?[0,1]. Let n be a positive

integer with n > 2, and let H"[0, 1] denote the subspace of L?[0, 1] consisting
of all functions u € C™~1[0, 1] with u("~1) absolutely continuous on [0, 1] and

with u(™) € L2[0,1]. Let
t= Z ap(t) (dt)
p=0

be an nth order formal differential operator on [0, 1], where the leading coef-
ficients are assumed to be a,(t) = 1/i" and a,,—1(t) = 0; let

n—1 n—1
Bi(u) = Z ipu® (0) + Z BipuP (1), i=1,...,n,
p=0 p=0

be a set of n linearly independent boundary values on H"[0, 1]; and let L be
the nth order two-point differential operator in L?[0, 1] defined by

D(L)={ue H*"0,1] | Bi(u) =0,i=1,...,n}, Lu = lu.
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We assume that the coefficients a,, are infinitely differentiable on [0, 1]. The
basic spectral theory of the differential operator L is developed in [28, 34].

Let us review some of the spectral properties of the differential operators.
First, L is a Fredholm operator in the Hilbert space L?[0,1]. Consequently,
as a foundation for our work, we know that (a) L is a densely defined closed
linear operator in L?[0, 1], (b) the range R(L) is a closed subspace of L?[0, 1],
and (c) the null spaces N (L) and N (L*) are finite-dimensional subspaces of
L?[0,1], with their respective dimensions less than or equal to n. Since the
adjoint operator L* is also a two-point differential operator, it shares these
same properties. For the dimensions of the null spaces A(L) and N'(L*), we
have the relation

dim N (L) = dim N'(L*), (1.1)

so L is a Fredholm operator of index 0.

Second, for each A € C the operator Al — L is again a two-point differential
operator, which implies that AI — L is a Fredholm operator in L?[0,1], as are
all its powers (A — L)*, k =0,1,2,.... It follows that the Fredholm set for L
is #(L) = C, and for the index

i(M — L) =dim N (M — L) — dim N (X — L*) =0 (1.2)

for all A € C. These results are useful for studying the eigenspaces and gener-
alized eigenspaces of L.
Third, for each A € C we can form the subspace

M,y = G N (M= L)F).

k=1

Relevant to this subspace is its dimension
v(\) = dim My = lim dim N ((AT - L)),

which is the algebraic multiplicity of A; and relevant to the differential operator
A — L is its ascent a(AI — L), which is the smallest integer k& > 0 such that
N (M= L)*) = N((AI = L)**1). In case M # {0}, then X is an eigenvalue of
L and M is the generalized eigenspace of L corresponding to . The algebraic
multiplicity »(A) is finite if and only if the ascent (Al — L) is finite.

Fourth, the spectrum o (L) is precisely the set of all eigenvalues of L; it is
either a countable set having no limit points in C or it is equal to all of C. The
complement of the spectrum is the resolvent set p(L). For each A\ belonging to
p(L), the resolvent Ry(L) = (M — L)~! is an L%integral operator on L2[0, 1],
and the Green’s function G(t,s;\) for A\I — L is the L?-kernel of Ry(L):

R(L)u(t) = /olG(us; Au(s) ds, 0<t<1, (1.3)
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for uw € L2[0,1]. Thus, for each A € p(L) the resolvent Ry(L) is a Hilbert-
Schmidt operator on L?[0,1], and the differential operator L is a Hilbert-
Schmidt discrete operator in case p(L) # 0.

Fifth, introducing the two formal differential operators

mesn(2) - () s o= S 2

p=0
we can then define differential operators T' and S in L2[0,1] by

D(T) =D(L) = {u € H"[0,1] | Bi(u) =0, i=1,...,n},

Tu=7u=1i"u",

and

n—2
D(S)=H"?0,1], Su=ou=>» ap(t)ul?.
p=0

Clearly { = 7+ 0 and L = T + S. The differential operator T is called the
principal part of the differential operator L, and we can consider the operator
L as a perturbation of the operator T' by the operator S. The assumption
that a,(t) = 1/i™ produces a relatively simple principal part T, with 7 being
formally self-adjoint. The net effect of this will be to locate the spectrum of
L near the real axis in the complex plane.

Sixth, there are several useful Banach space and Hilbert space structures
available for the subspace H"[0, 1]. The maximal operator T} (¢) corresponding
to the formal differential operator ¢ is an nth order differential operator in
L?[0,1], and hence, Tj(¢) is a Fredholm operator in L?[0,1], and its domain
H"[0,1] becomes a Hilbert space under the associated graph norm structure:

1/2
(1 0) 30y = (11, 0) + (0, 00), [l oy = (g )2, = [l + 1)),

A second norm for H™[0,1] is defined by
n—1
ulr = 3 [u® e + ]
p=0

and under this norm H"[0, 1] becomes a Banach space. A third inner product
and norm structure for H"[0, 1] is given by

n

n 1/2
(u,0)n = S0, Jully = (n )} = [ 3" u® 2]
p=0

p=0

and under this structure H"[0,1] becomes a Hilbert space. The norms
I 7y, | |an,and || ||, are equivalent norms for H"[0, 1]. We refer to this
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common topological structure as the H"-structure or the H"-Sobolev structure
for H™[0, 1]. By considering the norm | |gn, we see immediately that conver-
gence in the H™-structure is uniform convergence on [0, 1] of the derivatives of
orders 0,1,...,n — 1, together with L2-convergence of the nth derivatives. It
follows that each one of the boundary values B;: H"[0,1] — C,i=1,...,n,
is a continuous linear functional on H™[0, 1] under the H"-structure.

Let us introduce the n x 2n boundary coefficient matriz associated with
the boundary values By, ..., By,:

0n-1 Bin—1 d1n—2 Bin—2 ... 10 Bio

N a2n—1 Ban—1 a2pn—2 Ban—2 ... 20 B2o

Qo —1 ﬂnnfl Qpn—2 ﬁnn72 <. Qo /BnO

Without loss of generality we can assume that the matrix A is in
reduced row echelon form with rank n. This corresponds to a normal-
ization of the boundary values By,...,B,. For i =1,...,n let m; denote the
order of the boundary value B;, i.e., m; is the largest nonnegative integer
such that either o, # 0 or B, # 0. Clearly 0 < m; <n —1, and from the
normalization it follows that m1 > mo > -+ > m,_1 > m,. Set

n
Po ‘= E m;.
1=1

The integer py will play a central role in the classification of the differential
operator L as being either regular or irregular.

1.2 Historical Remarks

The study of regular boundary value problems for nth order two-point differ-
ential operators began in 1908 in the pioneering work of Birkhoff [3, 4]. He
derived approximate solutions of the differential equation

(M — O)u(t) = du(t) — zn:ap(t)u(p)(t) =0, 0<t<l,
p=0

utilised the approximate solutions to construct asymptotically n independent
solutions of this differential equation, formed the characteristic determinant
and the Green’s function, defined the class of regular boundary conditions,
characterized the simple eigenvalues, and developed an expansion theorem
(pointwise convergence) for a piecewise C'! function f in terms of the eigen-
functions of L. The expansion behaves like a Fourier series except in the
vicinity of the endpoints ¢t = 0 and ¢ = 1. All of his results are for regular
boundary conditions.
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In the paper [44] Stone generalizes Birkhoff’s work from the classical C™
setting to the modern H™ setting. The first expansion theorem for solutions of
the differential equation (Theorem III) is a first order expansion: it is stated
and proved using translated sectors T. The second expansion theorem is a
higher order version (Theorem III’), and it is quoted directly from Birkhoff
without proof. Stone assumes regular boundary conditions. He shows that
periodic boundary conditions are regular and lead to Fourier series when ap-
plied to the principal part; quotes Birkhoff on the structure of the eigenvalues
for regular boundary values problems; develops the various Green’s functions;
and on any interval [a,b] where 0 < a < b < 1, proves that the eigenfunction
expansion of any function f summable on [0,1] converges to f if and only
if the Fourier series of f converges to f, i.e., the eigenfunction expansion of
f is uniformly equiconvergent with the Fourier expansion of f on [a,b] (see
Theorem XIIT on p. 723 for the case n = 2v — 1 and p. 756 for the n = 2v
analogue).

Other classical works for regular boundary value problems are Tamarkin
[47], Hopkins [15], Ward [51, 52], and Coddington and Levinson [6]. For more
modern treatments of regular boundary value problems using functional analy-
sis and operator theory, see Dunford and Schwartz [8] and Locker [34]. In these
modern treatments the emphasis is on the L?- expansion problem. Naimark
[36] is a mix of both classical and modern; much of his work is derived from
Birkhoff [3, 4] and Stone [44].

In the paper [45] Stone examines the expansion problem for the case n = 2
with irregular boundary conditions. For n = 2 the irregular boundary con-
ditions can have only two possible forms (Theorem I), and this leads to a
simple form for the characteristic determinant. The differential operator is
classified as being of finite type M, 1 < M < oo, or of type {2. Only differen-
tial operators of type M are discussed. He then characterizes the eigenvalues
(Theorem IV), and obtains a convenient description of the Green’s function.
The equiconvergence result is no longer true, but equiconvergence can be re-
stored by applying the summability process of Riesz typical means to both
the eigenfunction expansion and the Fourier series of f (see Theorem V and
Theorem IX). This paper of Stone’s appears to be the first significant con-
tribution to the theory of irregular boundary value problems; the logarithmic
case for the zeros of the characteristic determinant appears for the first time.

Benzinger [2] and Schultze [41] give partial results for irregular boundary
value problems for the case of arbitrary n. They use only first order expan-
sions of solutions, quoting Birkhoff [4], and their results apply to very special
classes of irregular boundary conditions, which they refer to as Stone regular
and strongly irreqular, respectively. It is difficult to identify exactly what the
Stone regular class is, while the strongly irregular class is a generalization of
the class of all irregular decomposing boundary conditions (see Theorem 1
in [41]). They characterize the eigenvalues, and prove Riesz summability of
eigenfunction expansions. See Theorem 4.2 in [2] and Theorem 6 in [41].
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Y. Yakubov [55] has established the completeness of the generalized eigen-
functions for a large class of irregular boundary value problems in the special
case n = 2. His results allow the spectral parameter to appear in both the
differential operator and the boundary values, permits the boundary values
to involve interior points of the interval [0,1] as well as the endpoints, and
includes an abstract operator in the differential operator and abstract linear
functionals in the boundary values. S. Yakubov [53, p. 124] has extablished a
completeness theorem for the case of arbitrary order n and regular boundary
conditions.

In [25, 26] Lang and Locker consider the second order case for £ = —(d/dt)?
and for both regular and irregular boundary values By, By. They develop the
characteristic determinant and Green’s function, compute the eigenvalues and
the corresponding algebraic multiplicities and ascents, determine the family
of projections associated with L, and solve the L2- expansion problem. Specif-
ically, if Soo (L) is the subspace of L?[0, 1] containing all functions that can be
expressed as an infinite series of the generalized eigenfunctions of L, then for
the case of regular boundary values

Swo(L) = Soo(L) = L*[0, 1],
while for the case of irregular boundary values
Soo(L) # Soo(L) = L?[0,1].

Case VIII is a regular case which is an exception: see the paper [29].

In the four part series [30, 31, 32, 33] we develop the spectral theory for the
case n = 2 and for the general formal differential operator £ = —(d/dt)? +q(t)
and for regular and irregular boundary values By, Bs. For this general case
we also develop the characteristic determinant and Green’s function, compute
the eigenvalues and the corresponding algebraic multiplicities and ascents,
determine the family of projections associated with L, and show that for the
regular cases (Cases 1, 2, 3A)

Se(L) = Soo(L) = Lz[oa 1],
while for the irregular cases (Cases 3B, 4)
Soo(L) # Soo(L) = L?[0,1].

There is also a degenerate Case 5 that is not discussed, where the spectrum
is either ) or C when ¢(t) = 0.

In Chapter 6 of the recent monograph [34], we develop the spectral theory
for the general nth order two-point differential operator L determined by
regular boundary values. Included is a determination of the eigenvalues and
the corresponding algebraic multiplicities and ascents, a computation and
bounding of the family of projections associated with L, and the L?- expansion
result
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Seo(L) = S (L) = L2[0,1].

See Theorems 4.1, 5.1 (multiple eigenvalue case), and 6.1 of Chapter 6. Also
included in this monograph are some basic results for irregular boundary
values. Specifically, for the special case { = 7 = i7"(d/dt)” and L = T,
the eigenvalues, algebraic multiplicities, and ascents of T" are characterized in
Sections 7 and 8 of Chapter 4; and the generalized eigenfunctions of T are
shown to be complete in L2[0,1] in Theorems 9.1 and 9.2 of Chapter 4:

S.o(T) = L*0,1].

There are no results for the general differential operator L in the case of
irregular boundary values.

1.3 Summary of Results

Let us briefly outline the main features of the spectral theory presented here:

e  With the Birkhoff approximate solutions zx(t, p,m), k = 0,1,...,n—1, and
the approximate characteristic determinant 2( p,m) as motivation, we first
calculate two sequences of constants a,, kK = pg,po—1,...,1,0,—1,..., and
bx, K =pg,po—1,...,1,0,—1,..., and use them to classify the differential
operator L as being regular, simply irregular, or degenerate irregular.

e Assuming that L is regular or simply irregular, we determine the leading
constants ap, b, and then fix the sectors Sp, Si, the translated sectors Ty,
T1, and the integer m. This is a key step in the logical progession of our
work.

e We use asymptotic expansions to construct independent solutions of the
differential equation (p"I — £)u(t) = 0:

voo(t, p),vor(t, p), ..., von-1(t,p) for p €Ty,

v10(ty p),v11(L, p)y ..., v1n—1(t, p) for p € Ty.

These are high order expansions with the solutions behaving asymptoti-
cally like the Birkhoff approximate solutions zy(t, p, m).

e Using these solutions, we construct the characteristic determinant Aq(p)
for p € Ty and the characteristic determinant A;(p) for p € Ty.

e These solutions are also used to represent the resolvent Ry(L) and the
Green’s function G(t, s; A) for A = p™ with p € Ty and Ag(p) # 0 or with
p €Ty and Aq(p) # 0.

e We then calculate the zeros of the characteristic determinants Ag(p) and
Aq(p), producing the eigenvalues of L and their corrresponding algebraic
multiplicities.

e Growth rates for the resolvent Ry(L) are determined on various regions
of the A plane, and the generalized eigenfunctions of L are shown to be
complete in L?[0, 1].
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We now summarize the results of this monograph, most of them appearing
for the first time. The material in Chapters 2, 3, and 4 is discussed in some
detail since these chapters contain the newest and most interesting results. The
development of the characteristic determinant and the Green’s function, the
characterization of the eigenvalues, and the establishment of the completeness
of the generalized eigenfunctions given in Chapters 5-9 follow along somewhat
familiar lines, although many cases need to be worked through to establish
these results. Throughout we express the order n of the differential operator
L in the form n = 2v for n even and the form n = 2v — 1 for n odd, and let
wi = e278/7 I =0,41,42,. .., denote the nth roots of unity.

For any complex number p # 0 and for integers k and m with0 < k <n—1
and m > n, we introduce in Chapter 2 the mth order Birkhoff approximate
solutions

m—1
2 (t, p,m) = elPwrt Z 2k (t)p™7
j=0

of the differential equation (p™I —£)u(t) = 0. These approximate solutions are
formed in the same way as Birkhof! first formed them in his original paper [4],
viz., substitute zi (¢, p, m) into the expression — (i"/p™)(p"I —¢)u(t), and then
determine the coefficient functions zj;(t) by requiring that the coefficients of
the terms e'*“*tp=% s =0,1,...,m, all vanish identically on the interval [0, 1]
— the terms involving e?**tp=5 s =m+1,m+2,...,n+m— 1, still remain.
See Theorem 2.1.

We establish several important properties for these approximate solutions.
First, the z (¢, p, m) satisfy the conditions

Zk(tapam):'zo(t7pwk7m)7 kzla"'an_17

so to calculate the Birkhoff approximate solutions, one needs only calculate
zo(t, p,m). Second, the coefficient functions zo;(t) that appear in zo(t, p, m)
are independent of the integer m, and are determined by an infinite set of re-
cursion relations. Specifically, the initial coefficient is taken to be zpo(t) = 1,
and then the derivatives of the coefficient functions satisfy the recursion rela-
tions

s—2
1
205-1(t) = — T E ls_j z04(t)
Jj=0

for 2 < s <n and

1 s—2
205-1(t) = — o Z Cs—j z05(t)

j=s—n

for n +1 < s < oo, with the coefficient functions themselves calculated by
taking

cen(t) = /O 2o (€)de
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for 0 < t < 1. See equations (2.20) and (2.21). Here the 4, ¢ = 2,...,n,
are known g¢th order formal differential operators with ¢, = i™¢. Thus, the
derivative z{,_;(t) is determined by the n — 1 preceding functions zgs—n(t),
..y 20s—2(t) and their derivatives up to order n, and only these n — 1 prede-
cessors are used and not all s — 2 predecessors. This shows that the recursion
relations possess a banded structure. In forming the Birkhoff approximate so-
lutions z(t, p,m), k = 0,1,...,n — 1, the integer m is used solely to specify
the number of terms that appear in the summation.

In Chapter 3 we assume that the integer m satisfies the conditions m > n
and m > po, and proceed to introduce the modified Birkhoff approximate
solutions

yk(tvpvm)zzk(tvpvm)v kZO,].,...,V—].,
yk(t7p7m):eiiPszk(taf%m)a k:Vw"an*]-a

for p # 0in C. The approximate characteristic determinant in defined in terms
of these functions by

o~

A(p,m) = det(Bi(yx(-,p,m)))

for p # 0 in C, where for ¢ = 1,...,n the functions B;(yx(-, p,m)) have the
form

Bi(yx (-, p,
Bi(yx (-, p,

(p,m) + Qirlp,m)e?,  k=0,1,...,v—1,

) p
(p

)

m
m

Py,
}/Sik am)+©ik(p,m)eiipwk7 sz?"'anf]-'

We show that the functions Py, (p,m), @ik (p,m) can be expressed in the form

m; —(m—my)
Pi(p,m) = S pikst Y Piks(m)p®,
s=—(m—m;—1) s=—(m—1)
N m; —(m—m;)
Qir(p,m) = S s D Giks(m)p®
s=—(m—m;—1) s=—(m—1)

for p # 0 in C, where the constants p;rs, ks are independent of the integer
m and the constants p;rs(m), gixs(m) are dependent on the integer m. For
fixed i and k, we have explicit formulas for calculating the constants p;js,
Qiks, S=m;,m; —1,...,1,0,—1,.... These sequences form invariants for the
differential operator L.

Assume that n is even, n = 2v, and introduce the sectors

Sp: all p= |p|eia ceCwith0<<

313

Si: allp:|p|ei6€(CWith - —<6<0

S
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in the p plane. Using the constants p;rs, ks, We construct three sequences of
constants a,, by, ¢k, K = po,po — 1,...,1,0,—1,.... These sequences are also
independent of the integer m, and therefore form invariants for the differential
operator L. The third sequence is actually determined from the first sequence
by the conditions a, = — wxc, for K = pg,po — 1,...,1,0,—1,.... In terms of
these sequences the approximate characteristic determinant can be expressed
in the form

Alp,m) = ma(p, m)eB + 1 (p, m)e + mo(p, m)
_ —(m—po)
+ Z ax(m)p* + ®a(p, m)} e%ip
k=—n(m—1)
_ —(m—po)
+ Z by (m)p" + @1 (p, m)} e?
k=—n(m—1)
) ~
[ et + Bolo,m)]

k=—n(m—1)

for p # 0 in C, where

Po
71-2(107 m) = Z aﬁpnv
k=—(m—po—1)
Po
! (pa m) = Z bmpK7
k=—(m—po—1)
DPo
7T0(pa m) = Z cKpKa

k=—(m—po—1)

where the a,(m), b.(m), c¢.(m) are constants that depend on m, and where
the 4/5\1-(;), m), i = 0, 1,2, are analytic functions depending on m that involve
products of the exponentials €%, k = 1,...,v—1, or the exponentials e 1P«*
k=v+1....,n—1

Our classification scheme for the differential operator L with n even is
based on the constants a,.: L is regular if a,, # 0, L is simply irreqular if
ap, = 0 and a,, # 0 for some integer x with —oo < Kk < pg, and L is degenerate
irreqular if a,, = 0 for Kk = pg,pg — 1,...,1,0,—1,.... See Definition 3.2. The
constant ay, is given by

1<k<v-1 vr+1<k<n-1
ﬁlml a1m1w;€n1 alml(_l)ml ﬁlmlwzll
ap, = i det

Mn

ﬁnmn O‘nmnwlznn Apm, (_1)m" ﬂnmnwk
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Consequently, the classification of L as being regular or irregular is determined
exclusively by the leading coefficients in the boundary values By,..., B,, and
is not affected in any way by the coefficients in the formal differential op-
erator £. In classifying an irregular differential operator L as being simply
irregular or degenerate irregular, both the boundary values Bi,..., B, and
the coefficients of ¢ play a role. See Example 5.3.

At this point we make the assumption that L is either regular or simply
irregular. Let p be the largest integer with a, # 0, so —oo < p < pg; and let
q be the integer defined by ¢ = p in case b, = 0 for k = p+1,...,pg, and
otherwise, ¢ is the largest integer with b, # 0. For the case p = ¢ choose a
constant d > 0 such that

_ _ _ 1 1
\ap|e oy |bp|e 4+ |Cp|e 2 < - |ap‘ = 1 |Cp|7

and form the horizontal strip
I'={p=a+ibeC|a>—mand |b <d}.
Then select complex constants 7y and 7; and form the translated sectors
To={p—710|p€So} and Th={p—71|p€Si}

such that Sy and S lie in the interiors of Tj and T, respectively, and such that
the horizontal strip I lies in the interiors of both Ty and 77 in the case p = gq.
Fix the integer m with m > n, m > pg, and —(m—pg—1) < p < pg, and then
form the corresponding Birkhoff approximate solutions zy(t, p) = zx(t, p, m),
k=0,1,...,n—1.

The selection of the translated sectors Ty and 17 and the choice of the
integer m are perhaps the most subtle features of our spectral theory. The
constant a, must first be determined, and then Ty, 17, and m are selected.
This part of the theory is completed before we even have any actual solutions
of the differential equation (p™I — £)u(t) = 0.

Assume that n is odd, n = 2v — 1, and introduce the sectors

So: allp:|p|ei9€(Cwith—1§9§ ,
2n 2n
™

Syt allp:|p|ei9ECWithw—igegw—i——.
2n 2n

Using the constants p;ks, ¢iks Once more, we construct two new sequences of

constants a,, b., K = pg,po—1,...,1,0,—1,..., which are independent of the

integer m and form invariants for the differential operator L, and which lead

to the following representation of the approximate characteristic determinant:
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A(p,m) = m(p,m)e + mo(p, m)

—(m—po)

+ { Z a,(m)p® + &1 (p, m)}eip

k=—n(m-—1)
—(m—po)

X el 4 Boo.m)]

k=—n(m-—1)

for p # 0 in C, where

Do Po

1 (p7 m) = Z a/lipﬁ7 WO(P7 m) = Z bfipm7

r=—(m—po—1) rk=—(m—po—1)

where the a,(m), b.(m) are constants that depend on m, and where the
5,» (p,m), i = 0,1, are analytic functions depending on m that involve products
of the exponentials e+ k=1,..., v -1, ore " k=uv,...,n— L

An alternate form for the approximate characteristic determinant is ob-
tained by starting with the modified approximate solutions

xk(tap’m):eiipwkzk(tp?m)) k:Oala"'aV_la
xi(t, p,m) = zk(t, p,m), k=v,....,n—1,

and then defining the new approximate characteristic determinant by

A(p,m) = det(B;(zx(-,p,m)))

for p # 0 in C. This approximate characteristic determinant has the represen-
tation

A(p,m) =l (p,m)e™ + mh(p, m)
~(m=po) -
[ amet + d(pm)]e
k=—n(m—1)

—(m—po)

[ vyt + Bolo,m)]

k=—n(m—1)

for p # 0 in C, where

Po Po
Tpm)= Y ayt, mlem)= Y bt
k=—(m—po—1) k=—(m—po—1)

with the constants al., 0], independent of m, where the aj,(m), bl (m) are
constants that depend on m, and where the ®;(p, m), i = 0,1, are analytic
functions depending on m that involve products of the exponentials e™ P«



1.3 Summary of Results 13

k=1,...,u—1,0r e k=uv,...,n—1 The constants a,, b, and a’, b
are related by the equations

al. =by(w,)® and b, =ae(w,—1)"
for k =pgo,po—1,...,1,0,—1,....

The classification scheme for the differential operator L with n odd is given
in Definition 3.3: L is regular if a,, # 0 and b,, # 0; L is simply irreqular
if either ap, = 0 or by, = 0, and a, # 0 and by # 0 for some integers x, ¢
with —o00 < Kk, € < po; and L is degenerate irreqular if either a, = 0 for
k= po,po—1,...,1,0,—1,... or b, = 0 for kK = pg,po — 1,...,1,0,—1,....
Since

1<k<v—-1 v<k<n-1

ﬂlml alﬂnwz-nl ﬂlmlwlrﬁnl

ap, = i det :
Bnmn anmnw;gnn ﬁnmnw;@nn

and
1<k<v—-1 v<k<n-1

Q1my Q1my WZLI ﬂlml WZH

bp, = i det ; : ; 5
qnm, Oénmnw;;nn ﬂnmnu};nn

once more the classification of L as being regular or irregular is determined
exclusively by the leading coefficients in the boundary values By,...,B,. In
subdividing the irregular case, both the boundary values By, ..., B, and the
coeflicients of £ play a role.

Assume that L is either reqular or simply irregular. Let p and ¢ be the
largest integers with a, # 0 and b, # 0, so —oo < p,q < po. For the case
p = q choose a constant d > 0 such that

_ a1 .
laple™ + [bple™ < & min{lay|, [by[},

and in terms of d form the horizontal strips

In={p=a+ibeC|a>—7and |b| <d},
InN={p=a+ibeCla<mand b <d}.

Select complex constants 7o and 7 and form the translated sectors

To={p—7m|peSo} and Ty ={p—71]p€Si}
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with the properties: Sy and S; lie in the interiors of Ty and 77, respectively,
and for the case p = ¢ the horizontal strips Iy and I} lie in the interiors of
Ty and T7, respectively. Fix the integer m subject to the conditions m > n,
m > pg, and —(m —po — 1) < p,q < po, and then form the corresponding
Birkhoff approximate solutions zx(t, p) = zx(t,p,m), k =0,1,...,n — 1. This
gives us an algorithm for choosing the translated sectors Ty and 77 and the
integer m once the constants a, and b, have been determined.

In Chapter 4 we derive high order asymptotic expansions for actual solu-
tions of the differential equation

("I = O)ut) = 0 (+)

for p belonging to the sectors Ty and T3, where it is assumed that Ty and
T1 and the integer m have been selected as in Chapter 3. Let us look at the
expansions on the sector T for the case n = 2v even — the other expansions
are similar. Choose a permutation wg,w?, ..., w%_; of the nth roots of unity

wo, W1, - - ., Wp_1 such that
Re(ipw]) < Re(ipwf) < --- < Re(ipw?_;) for all p € Sp.

Fix an integer k with 0 < k < n — 1, and let k¥ be the integer satisfying
0 <k <n-—1and w? = w,. We proceed to construct a solution vgy(t, p)
of the differential equation () that behaves asymptotically like the Birkhoff
approximate solution zj(t, p) on the sector Ty. Let nk(t,p) = nk(t, p,m) be
the function defined by the equation

(0" — Oz(t, p) = #* et p),  0<t<1,

for p # 0 in C, the so-called mth order residual function. Let ko be the function
defined by

1 < ;
holt,s.p) = —— g D (W)™ 0<s <<,
P
1 n—1
.0
Fot:s.p) = —— ) (iw))e™s72), 0<t<s <,
P j=k+1

for p # 0 in C, and let Ko, be the integral operator on L?[0, 1] defined by

1
Kopu(t) = / ko(t,s, p)u(s) ds, 0<t<1, u € L?[0,1],
0

for each p # 0 in C.

Fix a point p # 0 in C. Then a function u(t) = zx(t, p) + ¢(t) is a solution
of the differential equation () if and only if the function ¢(¢) is a solution of
the integro-differential equation
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n—1
(1) = Kopod(t) — Ko, (€7 ni(t, p)) + ) _ cjel?* ()
§=0
for some complex constants co, c1, ..., c,—1. Setting all the constants c; equal

to zero in (x*) and defining the function v(t) by o¢(t) = e*“rta)(t), it follows
that ¢(t) is a solution of the integro-differential equation (xx) if and only if
¥ (t) is a solution of the integral equation

P(t) = e*ip“’“talCop (eip“”“td)(t)) — e*i”w’“tolCop (eip‘”’“tnk(t, p)) (%)

Equation (##x) is the equation that we actually solve for p € Ty with |p|
sufficiently large: we show that (x%+) has a unique solution %o (¢, p), and then
the function .

(bOk:(ta p) = ’COP (elpw}Ct[wO,’c(tv p) - nk(t7 p)])

is a solution of (#x), and the function

vok(t, p) = zk(t, p) + dok(t, p)
= z1(t, p) + Kop (€7 [Yor(t, p) — i (t, p)])

is a solution of the differential equation ().
The solution voi( -, p) exists for all p € Ty with |p| sufficiently large, and
its derivatives have the form

v (t,p) = 242 (t, p) + €7 Egpa(t, p)p ™t

for a =0,1,...,n— 1, where the function Eok(t, p) is bounded for 0 < ¢ <1

and for p € Ty with |p| sufficiently large. The smoothness of U(()z)(t, p) in the ¢
and p variables is established using the two lemmas that are included in the
Appendix (Chapter 12). Carrying out this construction for k = 0,1,...,n—1,
we obtain a basis

’UOO(';p)7v01('7p)7"'7v0n71('7p)

for the solution space of the differential equation (x), the basis existing for all
p € Ty with |p| greater than some constant Ry. See Theorem 4.3. A similar
construction yields the basis

Ulo(',P),Un('7P)7~-~,U1n71(',p)

for the solution space of the differential equation (x) for p € Ty with |p| > Ry.
See Theorem 4.4. For n odd the analogous theorems areTheorems 4.6 and 4.7.

The asymptotic expansion of solutions given here is much simpler than
other expansions appearing in the literature. Its main features are the crucial
role played by the Birkhoff approximate solutions, and the use of modern
operator theory in its development. Naimark [36, pp. 53-55] and Coddington
and Levinson [6, p. 184] have proposed similar high order expansions using
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iteration schemes. We have tried unsuccessfully to work out the details of
their schemes — the first two steps are fine, but at the third step unwanted
exponentials come into play that can not be eliminated.

In Chapter 5 the characteristic determinants of L are formed using the
asymptotically expanded solutions of Chapter 4. Assume that n is even. Rele-
tive to the sector Tp, we first form the modified solutions

uok(t, p) = voi(t, p) = yr(t, p) + e Egro(t, p)p~ ™,
k=0,1,...,0—1,

ok (t, p) = e PRugi(t, p) = yr(t, p) + P By (t, p)p™™,
k=v,...,n—1,

and then define the characteristic determinant by
Ag(p) = det(B;(uok(-,p)))

for p € Gy, where Gy is the open set {p € Int T} | |p| > Ro}. For working on
the sector T7, we form the modified solutions

uo(t, p) = e *uig(t, p),

w1k (t, p) = vik(t, p), k=1,...,v—1,
u1,(t, p) = v1,(t, p),

urk(t, p) = e PRuy(t, p), k=v+1,...,n—1,

and then define an alternate form of the characteristic determinant by

A1 (p) = det(B;(ux(-,p)))

for p € G1, where Gy is the open set {p € Int Ty | |p| > Ro}.
Upon expanding the determinant for Ag(p), we obtain the representation

Ag(p) = ma(p)e®” + mi(p)e” + mo(p)
+ Po2(p)e” + B (p)e” + Poo(p)
for p € Gy, where the functions m;(p) = m;(p,m), i = 0,1,2, are the same
functions that appeared earlier in the approximate characteristic determinant
A(p,m), and where the functions ®y,(p), ¢ = 0, 1,2, are analytic on Gy and

satisfy the estimates |®g;(p)| < v|p|~(™~P0) for p € Gy. This is Theorem 5.1.
There is a similar representation of A (p) given in Theorem 5.2, viz.,

A1 (p) = ma(p) + mi(p)e™ + mo(p)e >
+ P12(p) + P11 (p)e ™ + P1g(p)e 7

for p € Gy with |[B1;(p)| < 7|p|~™~P0) for p € G;.
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For the special case n = 2, £ = —(d/dt)? + q(t), and m = 3, we describe
in some detail the possible forms taken by the characteristic determinant.
These forms are categorized as Cases 1-5, and the regular, simply irregular,
and degenerate irregular differential operators are identified in each case. The
one exception is Case 5 where we can only guarantee that L is irregular. In
Example 5.3 the differential operator L is determined by the boundary values

Bi(u) = u'(0) +u/(1), By (u) = u(0) — u(1),

and it belongs to this exceptional case. If ¢(0) # ¢(1), then p =g = —1 and L
is simply irregular; in Chapter 7 it is shown that the spectrum o(L) consists
of two sequences of points A, = (p})%, k = ko,ko + 1,..., and X = (p})?,
k =ko,ko +1,..., plus a finite number of additional points, where

o= 2k +7/2)+€., k=koko+1,...,
or =02k —7/2)+€, k=koko+1,...,

with |e}.| < v/k and |¢}| < v/k for k = ko, ko + 1,.... On the other hand,
for the principal part of L, which is the differential operator T" determined by
7 = —(d/dt)? and by the same boundary values Bj, B, in Example 10.2 it is
shown that the spectrum is o(7") = C. Consequently, the differential operators
L and T have very different spectral properties.

In previous work we operated under the premise that the spectral theory
of a differential operator L is a perturbation of the spectral theory of its
principal part T, which was true in the cases that we studied (see [34, p. 87
and p. 212]). This example shows this premise to be false in general.

Assume that n is odd. For the sector Ty we form the modified solutions

uOk(t7p) = ka(ta p) = yk(t7p) + eipw}CtEOk:O(t?p)p_ma
k=0,1,... .01,

uor(t, p) = e PRugi(t, p) = yi(t, p) + P D Egpo(t, p)p™™,
k=v,...,n—1,

and then define the characteristic determinant by
Ao(p) = det(Bi(uok( -, p)))

for p € Gy, where Gy is the open set {p € IntTy | |p| > Rp}. For the sector
T1 we begin with the modified solutions

uik(t, p) = e ot p),  k=0,1,...,v—1,
Ulk(t7p):U1k(taP)a k:U,...,TL—l,

and then define the alternate form of the characteristic determinant by
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for p € G4, where Gy is the open set {p € Int Ty | |p| > Ro}-
These characteristic determinants have the representations

Ao(p) = mi(p)e” + mo(p) + Por(p)e'” + Poo(p)

for p € Gy, and
Ax(p) = 7 (p)e™ " + ) (p) + Pra(p)e™ + P1o(p)

for p € G;. Here the functions m;(p) = m;(p,m), i = 0,1, and 7}(p) = 7 (p,m),
i = 0,1, are the same functions that appeared earlier in the approximate
characteristic determinants A(p,m) and A(p,m); and the functions P, (p),
i = 0,1, are analytic on G and satisfy the estimates |Do;(p)| < |p|~ (" ~Po)
for p € Go, while the functions ®1,(p), i = 0,1, are analytic on G; and satisfy
the analogous estimates |®1;(p)| < v|p|~(™~P0) for p € G1. See Theorem 5.4
and Theorem 5.5.

In Chapter 6 we study the resolvent Ry(L) = (A\[—L)~! and the associated
Green’s function G(t, s; A), where

Rx(L)u(t) = /OlG(t,s; MNu(s)ds, 0<t<1, wueL?0,1].

Assume that n is even, n = 2v, and take any point A = p" in C with p € Gy
and Ag(p) # 0, so A belongs to the resolvent set p(L). The resolvent Ry (L)
can be expressed as the sum of two parts. First, for the differential operator
Lg defined by

D(Lo) = {u e H"0,1] | " D(0)=0,i=1,...,n},  Lou={lu,

the Green’s function for AI — Lg is given by

n—1
g(t78,>\) = ZUOk(tap)nOk(37P)7 OS S<t§ 17
k=0
g(t,s;0) =0, 0<t<s<l,
where the functions nog (-, p), Kk =0,1,...,n—1, are determined by the linear
System
n—1
ZU(()(;)(&P)UM(&P):_5anflina a:O,l,...,n—l,
k=0

for 0 < s < 1. We modify g(¢, s; \) by forming the function

v—1
ko(t73§p):ZUOk(t>P)nOk(57P)a 0<s<t<1,
k=0
n—1
ko(t,sip) = — > vok(t, p)nor(s,p),  0<t<s<I,
k=v
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and then use this function to define the integral operator Ko, on L?[0,1] by

1
Kopu(t) = | ko(t,s; p)u(s)ds, 0<t<1,
0

for u € L?[0,1]. The operator Ky, makes up the first part of the resolvent
Ry(L). Tts kernel satisfies the growth rate |ko(t, s;p)| < 2/|p|"~! for p € Sy
with |p| sufficiently large.

Second, for any function u € L?[0, 1] there exist constants cg,c1, ..., Cn_1
such that

n—1
R)\(L)u(t) = K()pu(t) + Z CkuOk(tap)v 0 S t § 17
k=0

where the constants are determined by the linear system

n—1
ZBi(U’Ok('vp))Ck:_Bi(K()pu)v i=1,...,n.
k=0
The functions uog(-,p), k =0,1,...,n — 1, are the modified solutions intro-

duced in Chapter 5, in terms of which Ag(p) is defined. Upon working out
the details, we arrive at the representations (6.25) and (6.26) for the resolvent
R, (L) and the Green’s function G(t,s; A). This leads to our principal result
(6.37) for the growth rate of the Green’s function:

2 Vel
G(t,s;N)| < +
e T LV ]
for A = p™ in C with p € Sy of sufficiently large modulus and with Ag(p) # 0.
In (6.63) and (6.64) we have similar representations for the resolvent and
the Green’s function that are valid for A = p™ in C with p € G; and with
Aq(p) # 0, leading to the growth rate (6.77):

2 n vlp[P°
lp|"=t " nlp|n=1[A1(p)]

for A = p™ in C with p € S of sufficiently large modulus and with A;(p) # 0.

The corresponding representations and growth rates for the case n odd,
n = 2v—1, are divided into four different subcases: (i) p € Go with Ag(p) # 0,
and p € Sy with Ag(p) # 0 and Imp > 0, (ii) p € G with Ag(p) # 0, and
p € Sy with Ag(p) # 0 and Im p < 0, (iii) p € Gy with A1(p) # 0, and p € S
with Aq(p) # 0 and Imp < 0, and (iv) p € Gy with Ay(p) # 0, and p € S
with A1(p) # 0 and Imp > 0. In each subcase an appropriate basis for the
solution space of () is selected. The principal growth rates for the Green’s
function are given in (6.118), (6.148), (6.189), and (6.219).

In Chapter 7 we compute the zeros of the characteristic determinants
Ag and A; for the case n even; this leads directly to the eigenvalues of the

G(t,5:0)] <
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differential operator L. As a part of the process, growth rates are derived
for Ag and A; on various regions of the p plane; these growth rates are
essential for establishing the completeness of the generalized eigenfunctions.
Our methods are similar to those in [34, pp. 128-146]. The form of the zeros
is determined by the constants a,, b4, ¢, that are the leading coefficients of
the functions ma(p), 71 (p), mo(p) introduced in Chapter 3. The integers p and
q satisfy p = q or p < ¢q. For the special case p = g, let {; and 7y be the roots
of the quadratic polynomial Q(z) = ap22 + bpz + ¢p. The discussion divides
naturally into three cases.

Case 1. p = q, § # 1n9. We prove that Ay has two sequences of zeros in
the horizontal strip I". These sequences can be expressed as

pr = 21k + Arg &) —iln|&o| + €, k=koko+1,...,
pr = (27k + Argno) +iln[éo| + €,  k=koko+1,...,
with |e},| < v/k and |€]/| < v/k for k = ko, ko + 1,..., and they produce the
two sequences
%:(pgc)n, k=koko+1,...,
%:(pg)n7 k=ko,ko+1,...,
of eigenvalues for L. Each of these eigenvalues has algebraic multiplicity 1;
together they account for all but a finite number of the eigenvalues of L. See
Theorem 7.2. The principal growth rates for Ag and A; are given in (7.9) and
(7.10). These growth rates also apply to Case 2.
Case 2. p = q, & = 1. For this case A has two sequences of zeros in the
horizontal strip I
pr =2k + Arg&o + €, k=ko,ko+1,...,
pg:27T]€+AI‘gfo+6g, k:kmko-i-].,...,
with |e},| < v/Vk and |€}| < v/Vk for k = ko, ko + 1, . ... The corresponding
eigenvalues
?c:(p;c)n> k=ko,ko+1,...,
g:(p%)n’ k:kOakO—’_la"'a
have algebraic multiplicities 1 or 2, so multiple eigenvalues are possible in
this case. The X}, A} account for all but a finite number of the points in the
spectrum o(L). See Theorem 7.3.

Case 3. p < q. For this so-called logarithmic case, let no = g —p, let po =
—bg/cp # 0, and let p1 = —by/a, # 0. Then the characteristic determinants
Ag and A; have sequences of zeros in the sectors Sy and Sy:

pi. = (2mk — Arg o) + ino In[| po| /™ (27k — Arg o)) + €5,
k=ko,ko+1,...,
pi = 2k + Arg ) — ing In[|uo| /" (27k + Arg )] + €,
k=ko,ko+1,...,
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with |e}.| < vyInk/k and |¢]/| < vInk/k for k = ko, ko + 1, . ... The eigenvalues

?c:(p;c)n> k=ko,ko+1,...,
g:(p%)n’ k:kOakO—’_la"'a

all have algebraic multiplicity 1, and account for all but a finite number of
the eigenvalues of L. See Theorem 7.5. The principal growth rates for Ay and
Aj are given in (7.31) and (7.36).

In Chapter 8 we compute the zeros of the characteristic determinants
Ag and A; for the case n odd. These zeros produce the eigenvalues of the
differential operator L, and give a complete description of the spectrum o(L).
At the same time we derive growth rates for Ag and A; on various regions of
the p plane. This treatment follows along the same lines as used previously in
[34, pp. 146-181]. The four constants a,, by and a; = by(w,)?, b, = ap(w,—1)?
determine the form of the zeros. The case n odd divides naturally into the three
cases where p = ¢, p < ¢, and p > ¢, the latter two cases being logarithmic
cases.

Case 1. p = q. Let & = —bp/a, # 0 and 19 = —b,/a;, # 0. Then we
show that Ag has a sequence of zeros in the horizontal strip Iy, and A; has
a sequence of zeros in the horizontal strip ;. These zeros take the form

pr = (2mk 4+ Arg &) — iln[&o] + €, k=ko,ko+1,...,
pr = —27k + Argno) —iln & + €}, k=ko,ko+1,...,

with |e| < v/k and |e}/| < v/k for k = ko, ko + 1,.... The corresponding
eigenvalues

!/

r=(0R)", k=koko+1,...,
L=00" k=koko+1,...,

have algebraic multiplicity 1, and there are only finitely many additional eigen-
values for L. See Theorem 8.2. The principal growth rates for Ay and A; are
given in (8.6), (8.7) and (8.9), (8.10).

Case 2. p < q. Let ng = ¢ —p, o = —by/a, # 0, and py = —ay /b, # 0.
Then Ay has a sequence of zeros in the sector Sy, and A; has a sequence of
zeros in the sector Si:

Pl = 27k + Arg o) — ing In[|uo| /" (27k + Arg po)] + €,

k= ko ko+1,. ...
P = —(2rk — Arg juy + 7o) — ing In[|po| /™0 (27k — Arg py + mng)] + €f,
k=koko+1,...,

with |€)| < yInk/k and |e¢]| < yInk/k for k = ko, ko + 1,.... The associated
eigenvalues
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;Cz(p;c)n7 k:kOakO+la"'a
;g/:(p;q/)n7 k:k07k0+1a"'7

all have algebraic multiplicity 1, and the spectrum o(L) consists of the X,
A, plus a finite number of additional points. See Theorem 8.4. The principal
growth rates for Ay and A; are given in (8.31), (8.34) and (8.39), (8.42).
Case 3. p > q. Let no = p —q, o = —a,/by # 0, and py = —b;,/a;, # 0.
Then Ag and A; have sequences of zeros in the sectors Sy and S of the form

P, = 2k — Arg o) + ing In[|uo| /™ (27k — Arg po)] + €5,

k=ko,ko+1,...,
pi = —(27k + Arg pi1 + 7o) + ing In[|uo|"/™ (2wk + Arg iy + 7n0)] + €,
=k ko+1,....

with |e}.| < vInk/k and |¢}| < yInk/k for k = ko, ko + 1,.... These zeros
produce the eigenvalues

/

k:(p;c)n7 k:kOakO+la"'a
%:(pg)n7 k=koko+1,...,

which are all of algebraic multiplicity 1. There are at most a finite number of
additional eigenvalues. See Theorem 8.6. The principal growth rates for Ag
and A; are given in (8.68), (8.71) and (8.76), (8.79).

In Chapter 9 we prove that the generalized eigenfunctions of L are com-
plete in the Hilbert space L2[0,1]. Under our assumption that L is either
regular or simply irregular, the spectrum o(L) is an infinite countable set
with no limit points in C. Let o(L) = {A;}5°; be any enumeration of (L), let
m; (0 < m; < 0o) denote the ascent of the operator \;J — L for i = 1,2,...,
and let P;, i = 1,2,..., denote the projection of L]0, 1] onto the generalized
eigenspace N ((A\;I — L)™) along the range R((A\;I — L)™). Also, let sp(L)
denote the subspace of L2[0, 1] spanned by the generalized eigenfunctions of L,
and introduce the subspaces

Swo(L) = {u e 12[0,1] ‘ w= ZPiu}
i=1
and
My(L) ={u€ L?[0,1] | Pu=0for i =1,2,...}.

Then My (L) is closed, sp(L) C S (L), and sp(L) = S (L).
In Theorem 9.1 and Theorem 9.2 we show that

sp(L) = Soo(L) = L?[0,1] and M. (L) = {0},

with the first theorem treating the case n even and the second the case n odd.
The proof combines the growth rates for the Green’s function G(t, s; A) estab-
lished in Chapter 6 with the growth rates for the characteristic determinants
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Ag and A; established in Chapters 7 and 8, thereby obtaining growth rates
for the resolvent Ry (L) on various regions of the A plane. Included in these
regions are five equally spaced rays R;, j =1,...,5, with

IRA(L)]| = O(JAIY) as A — oo along each ray R;,
where N is a positive integer satisfying the conditions
N>(po—p—n+1)/n and N > (pp—q—n+1)/n.

The completeness results are then an immediate consequence of Theorem 6.2,
Chapter 2 of [34] or of Corollary XI1.6.31 of [8].

In Chapter 10 we present several examples of degenerate irregular differ-
ential operators for the special case where L is equal to its principal part T
When L = T, the mth order Birkhoff approximate solutions zx(t, p,m),
k=0,1,...,n— 1, reduce to the actual solutions

2i(t, p) = ePert k=0,1,...,n—1,

and the approximate characteristic determinant 2(p7 m) is independent of
the integer m and is identical to the characteristic determinant A(p) defined
for the differential operator L = T in [34, p. 100]. Example 10.1 examines the
nth order differential operator L = T' determined by initial conditions at the
endpoint ¢ = 0:

Bi(u) =u™9(0), i=1,...,n.

This model is indeed degenerate irregular with o(L) = @) and p(L) = C. For n
even Example 10.2 studies the differential operator L = T' determined by the
boundary values

Bi(u) = v D(0) + (=) 0(1),  i=1,...,n.

This model is also degenerate irregular, but with o(L) = C and p(L) = 0.
In both examples the characteristic determinant A(p) = z(p) is computed
explicitly.

For the special case n =4, L =T, we carry out an explicit calculation of
the characteristic determinant:

A(p) = Pi(p)e*” + Qo(p)e” + Po(p) + [Pa(p)e 2 + Qi (p)e*]e”
+ [Q2(p)e ™ + D(p)e "le” + [P3(p)e”* + Qs(p)e 7]

for p # 0 in C, where the polynomials P;(p), Q;(p), and D(p) are given ex-
plicitly by the formulas (10.39)—(10.43). We then reexamine our classification
scheme of Chapter 3 by exploiting the explicit forms of the polynomials Py(p),
Qo(p), and D(p). The classification takes the form of three cases.

Case I. n = 4, Py(p) # 0. In this case the fourth order differential
operator L = T' is either regular or simply irregular, and it is studied in the
previous chapters.
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Case II. n = 4, Py(p) = 0, Qo(p) £ 0. For this case the differential
operator L = T is degenerate irregular. The spectrum o(L) is quite unusual
in that it consists of a single sequence

Ak:(pk)47 k:k07k0+1a"'7

of eigenvalues, plus a finite number of additional points. The A; have algebraic
multiplicity 1, and they approach the negative real axis as k — oco. A model
for this case is given in Example 10.3, where the 4th order differential operator
L =T is determined by the boundary values

By (u) = u"(0) + 6u(0), Bz(u) =u"(0), Bs(u) =u'(0), Bs(u) = u(1).

Case III. n = 4, Py(p) = 0, Qo(p) = 0. For this case the differential
operator L =T is again degenerate irregular. The characteristic determinant
simplifies to

A(p) = D(p)e~ e = 8iygp’erel’

for p # 0 in C, where 7 is a constant, and we show that either o(L) = @) and
p(L) =C, or o(L) = C and p(L) = (. This third case is truly degenerate.

For the case n = 2v > 6, L = T, we establish some results that are
analogous to Case I and Case II for n = 4. In this new Case II the differential
operator is again degenerate irregular, and the spectrum o (L) consists of a
single sequence that lies near the negative real axis.

In Chapter 11 we present a list of unsolved problems in the spectral theory
of nth order two-point differential operators. Some of the problems are for
general L, and others are for the special case L = T. There still remain
fundamental unsolved problems even for the simplest two-point differential
operators, e.g., what is the subspace Soo (L) when n = 2, L = T, and L is
simply irregular?
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Approximate Solutions and Formal Solutions

In this chapter we construct approximate solutions and formal solutions to
the differential equation

("I — )u(t) = p"u(t) — iap(t)u(p) (t) =0, 0<t<1, (2.1)
p=0

for p # 0 in C. In this equation the two highest order coefficients are a,,(t) =
1/i™ and a,,—1(t) = 0. We will follow the pioneering work of Birkhoff [4]. Set

1"ap(t)
prTr

i ”ao (t)
P

71”’

bp(t7p) = , p=1,...n, bO(tap) =

80 by (t,p) =1, bp_1(t,p) =0, and

n n

i ing u(P) n u®)
- 0u = Y B iy = S0
P = r P

Thus, for p # 0 in C we can replace (2.1) by the equivalent differential equation

zn:b,,(t,p)m =0, 0<t<l (2.2)

2.1 Birkhoff Approximate Solutions

Let the positive integer n be written in the form n := 2v for n even and in
the form n := 2v — 1 for n odd, and let wy, := e27™%/™ for k = 0,+1,42,....
The constants wy are just the nth roots of unity with wy = w, = 1 and with
wy, = —1 for the case n = 2v. Fix p # 0 in C, and fix an integer k£ with
0 <k <n-—1 and an integer m with m > n. We look for an approximate
solution to the differential equation (2.2) of the form
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2k(t, p) = zn(t, pym) = P61 " () p 7,

where the coefficient functions zx;(t), j = 0,1,...,m—1, are to be determined.
In our notation for the approximate solution zy(t, p) = zk(t, p, m), we always
display the p dependence, but generally surpress the m dependence, using the
simpler notation zj(t, p). The coefficient functions z;(t), 7 =0,1,...,m — 1,
are to be selected independent of both p and m.

Substituting zx(, p) into the left side of (2.2), we see that the quantities

by (t, p) and z,(cp) (t,p)/pP appear as finite sums of the powers p° p=1, p72 ...,

and upon collecting like powers of p, the left side of (2.2) becomes a finite sum
of the powers p°,p~1, p=2,...,p~"*tm=1D The algorithm for calculating the
coefficients zy;(t), j = 0,1,...,m—1, is to force the coefficients of the powers
%, p~t, p2, ..., p~ ™ in the collected sum to be identically zero on the interval
[0, 1]; the terms involving the powers p~(m+1D p=(m+2) 5=(+m=1) are not
eliminated and form residual quantities.

Here are the details of the algorithm. For p = 0,1,...,n and for £ =

0,1,...,p, set agpe 1= (’tf)(iwk)p_e, and for £ =1,...,n set
n ‘n ‘n
1"ap_o(t)k n— 1"ap(t)
Cre(t, p) =Y bp(t, p)akpe = ke + — 2(3 et +"'+%
et P P
and set
n °n :n
1"y o () 1"ag(t)a
Cro(t, p) ::pr(tvp)akpoz ~ 2(2 hn-20 +--~+70() O

=0 p p"

By Leibniz’s rule z(p) (t,p) = &Pt 370 (S0, b e z,(C )(t)pP—¢=7, and hence,

n (p) ) ) n P m—1 , ]
Z by(t, = elPwrt Z Z by(t, p) akpgz,(w) (t)p_e_J
p=0 p=0¢=0 j=0

n m—1

H
<.
I
o

= olPwrt Z Z Cre(t, p) z,(c? (t)p —7,

¢=0 j=0

Introducing the notation Cye(t, p) := Z;:é crep(t)p~P, £ =0,1,...,n, where
creo(t) = agpe for £ = 1,...,n and ckoo(t) = 0, we can rewrite the last
equation as
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n m—1n—/{

n (p)
b (t ka (t,p) — olpwit 2O () p~t—p—i
Z p(tsp) P =e Z Z chép( )ij (t)p

p=0 £=0 j=0 p=0
n+m—1

=ert N NT (2 (1) .

s=0 {+p+j=s

Thus, the conditions determining the coefficients in the approximate solution
zi(t, p) are

S apalH) =0,  s=01,...m (2.4)
L+p+j=s

As we proceed to solve the system (2.4), it will be convenient to set

Ckep (t
t

) :=0, (=0,1,...,n, p=n—L+1n—L0+2 ...,
Ckgp()::o,

l=n+1n+2,..., p=0,1,2,....

Then in (2.4) we allow the ranges £ >0, p > 0,and 0 < j <m — 1.

At first glance the system (2.4) appears to be an over-determined system
of m + 1 equations for the m unknown functions zx;(t), 7 = 0,1,...,m — 1.
But for s = 0 the corresponding equation in (2.4) is simply croo(t)2ro(t) = 0,
which is a valid equation because cgoo(t) = 0. For s = 1 the corresponding
equation in (2.4) reads

cr10(t) 2o () + cro1 (t) 2uo(t) + croo(t) zx1(t) = 0
Oknl

or n(iwy)" 1z}, (t) = 0. This implies that zj(t) must be a constant: we will
choose zyo(t) = 1. With this choice we can replace (2.4) by the reduced system

S Al =0,  s=2...m, (2.5)
L+p+j=s

where it is assumed that zx(t) = 1. In (2.5) we have a system of m — 1
equations for the m — 1 unknown functions zy;(¢), 7 =1,...,m — 1.

Next, let us consider the system (2.5). Specifically, for the integer s with
2 < s <m — 1, the corresponding equation in (2.5) can be written as

s s5—jJ

SN hesmei ()2 (1) =0, (2.6)

=0 ¢=0

with zo(t) = 1. When j = s in (2.6), we obtain the term cko(f)2ks(t), which
is identically zero because cpoo(t) = 0. On the other hand, when j = s — 1 in
(2.6), we get the terms

ko1 (1) 2k s—1(t) + cr10(t) 2 -1 (t) = Q1 24 51 (1)
S—— S——

0 Apnl
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Thus, (2.6) simplifies to

[ V)

s—

<.

QU 21 (1) + Cre s—e—j(t)z) (t) = 0, (2.7)
7 ¢

Il
<
Il
<

valid for s = 2,...,m — 1 with zio(¢t) = 1. It is simple to check that (2.7) is
also valid for s = m.
Finally, we rewrite the system (2.7) as

Cresoeg( 20, s=2...m,  (28)

where 20(t) = 1 and ag,; = n(iwg)" "t # 0. Equation (2.8) expresses the
derivative 2, ,_;(f) in terms of the functions zyo(t), zk1(t),..., 2k s—2(t) and
their derivatives, and hence, we have a recursive scheme going here. If we set

t
chon () = /0 2y (6) de

1 s—28—j .t (29)
— (0)
==z ZZ/ che s—e—5(§) 23,5 (§) d€
knl =0 £=0 0
for s = 2,...,m, with zx(t) = 1, then the functions zx1(t),..., 2km—1(t)

are uniquely determined by equation (2.9). Since the functions cye,(t) are
infinitely differentiable on the interval [0, 1], it follows that the functions 2y, (t),
j=0,1,...,m — 1, are also infinitely differentiable on [0, 1].

Note that the recursive schemes (2.8) and (2.9) are not restricted in any
way to the range s = 2,...,m, but can be used for all values s = 2,3,....
Thus, we can use (2.8) and (2.9) to construct an infinite sequence of functions
zk0(t), zk1(t), zk2(t), . . .. These functions are independent of both p and m.
In forming the approximate solution zj(t,p) = zx(t,p,m), only the terms
2ko(t), 2k1(t), - - -, Zkm—1(t) are used from the infinite sequence.

For s = 2 in (2.8), we have

1

2 () = — - [cro2(t)zko(t) + crr(t) 2o () + cro(t) 20 ()]
3 i"ta, ot
nwg
and hence, .
aa(t) = — lm;j/o an_2(€)dE,  0<t<1. (2.10)

Let us summarize the above results as a theorem; this result is a refinement
of Lemma I appearing in [4].
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Theorem 2.1. For each integer k with 0 < k < n — 1, there exists a se-
quence of functions zpo(t), zk1(t), zk2(t), . . ., which are infinitely differentiable
on [0,1], such that zixo(t) = 1 and such that for any p # 0 in C and for any
integer m with m > n, if the function

2kt p) = zi(t, pym) = P> () p

is substituted into the differential expression — (1™/p™)(p"I — £)u(t), then the
coefficients of the terms e?“*tp=% s = 0,1,...,m, all vanish identically on the
interval [0, 1] (the terms involving ek p=° s=m+1,m+2,....,n+m—1,
still remain). Moreover, the functions z;(t), 7 = 1,2,..., can be calculated
recursively using equation (2.9).

Fix a positive integer m with m > n, and let us consider the n functions

m—1

Zk(t7p) = Zk(t7p7 m) = eiPWkt Z ij(t)pijv k= 07 17 cee, = 1)
7=0

determined by Theorem 2.1 and defined for 0 <¢ <1 and for p # 0 in C. We
will refer to these functions as the mth order Birkhoff approzimate solutions
of the differential equation (2.1). From (2.3) and (2.4) we have

n N (;D)
(p"I — O)zk(t,p) = —%pr(t’p) ,o(zf =

p=0
n+m—1

:—ipf:ei”“” > [ > ckzp(t)z;gj)(t)]p

s=m+1 L l+p+j=s

for k =0,1,....,n—1. For p # 0 in C and for £ = 0,1,...,n — 1, introduce
the functions

n ntm—1
melt,p) = et pom) s= = D7 [ > ckepa)z,i?(t)]p-s.

s=m+1 Ll+p+j=s

In terms of these functions the last equation can be rewritten as
(P = O)zk(t, p) = € ' m(t, p),  0<t <1, (2.11)

for p # 0 in C and for kK = 0,1,...,n — 1. The functions nx(¢,p), k =
0,1,...,n—1, will be referred to as the mth order residual functions. They are
linear comblnatlonb of the powers p~(mt1=n) ,=(m+2-—n)  ,=(min—1-n)
In Chapter 4 we will construct actual solutions of the dlfferentlal equation
(2.1), and in this construction both the Birkhoff approximate solutions and
the residual functions will play important roles.

Several remarks are in order that can greatly simplify the calculation of
the Birkhoff approximate solutions.
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Remark 2.2. Fix the integer m with m > n, and consider the Birkhoff ap-
proximate solutions zj(t, p) = e*wk! Z 0 zk]( )p 9, k=0,1,...,n—1. We
assert that

m—1

2i(t, p) = 20(t, pwy) = elPrt Z 204 (t) (pwr) 7, k=1,....,n—1. (2.12)
j=0

Thus, to calculate the Birkhoff approximate solutions, we need only calculate
zo(t, p). This result has been pointed out by Stone [44, p. 707].

Take any integer k with 1 < k <n — 1. To establish (2.12), it is sufficient
to show that

2kj () = 20;(t)(wg) ™ for j=0,1,...,m— 1. (2.13)

We will use induction on j. For j = 0 we have zpo(t) = z00(t) = 1, so (2.13)
is certainly true for this case. Assume that (2.13) is true for the values j =
0,1,...,s — 2, which implies that

z,g?(t) :z(()?(t)(wk)_j for j=0,1,...,5—2, £=0,1,2,.... (2.14)
Now from the definitions of the constants a1, we have
Ogn1 = a1 (wi)™ (2.15)

By treating the three cases £ = 0, f = 1,...,n,and { = n+ 1,n+ 2,...
separately, it is immediate from the definitions that

Crep(t) = corp(t) (wr)" P, (=0,1,2,..., p=0,1,2,.... (2.16)

Substituting (2.14), (2.15), and (2.16) into (2.8), we have

s5—25—] (g)
st 1 Ckt s—i— j Zk;] (t)
aknl
=0 ¢=0
2s—j
1 - ; ;
— E : —s+j,,(6) -
= n o1 Col s—0— ] wk)n s ]sz (t)(Wk) /
aOnl Wk J=0 £=0

(wk)nis ’

= W ZOs—l(t) = Z(I)s_l(t)(wk)*(s—l)'

From (2.9) we conclude that

t t
)= [ s de= [ 52O dg

= 2051 (t) (wp) "7V,

This shows that (2.13) is true for the value j = s — 1, and the proof of (2.12)
is complete.
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Remark 2.3. Let us look more carefully at the system (2.8) for the case

k = 0, which in combination with (2.9) determines the functions zy;(¢),
j=0,1,...,m— 1. Of course we start with zpo(t) = 1. From the definitions:
aon1 = ni™ ! and

cono(t) =1, con—10(t) = ni,

couo(t) = (Z)i"“, (=1,....n-2, (2.17)

Corp(t) an_p(t)<”gp>i2”“, 0=0,1,....,n—2,p=2,3,....n—1,

with all other coep(t) identically zero on the interval [0,1]. In particular,
coep(t) = 0 when ¢ + p > n. Consider the equation appearing in (2.8) for
s satisfying n + 1 < s < m. For the indices j and ¢ with 0 < j <s—n—1
and 0 < /¢ < s—j, we have

l+(s—L—j)=s—j>n+1 and cors—¢—;(t) =0,

and hence, the corresponding equation in (2.8) simplifies to

s—2 s—j
1 ¢
Z(/)sfl(t) == nin—1 Z ZCOE s—L—j (t) Zéj) (t) (218)
j=s—n =0

for the case n +1 < s < m.

For the case 2 < s < n, for any j with 0 < j < s—2 we have 2 < s—j < n,
while for the case n +1 < s < m, for any j with s —n < j < s — 2 we also
have 2 < s—j <n.For ¢ =2,...,n let {; be the gth order formal differential
operator defined by

Lou(t) == Z Cor q_g(t)u(@ (t).
=0

Note that the leading coefficient of ¢, is coqo(t) = (Z)i”_q, and for ¢ = n we
have

n n—2
£ault) = Y- cocnme @10 =u0) + Y ante) ()20 w0
=0 £=0
n—2
=ul™ () +i" D ag(t)ul (t) =i" fu(t)
=0
or
by =1i"0. (2.19)

Then for 2 < s < n equation (2.8) yields the recursion equation
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1 s—2
205 (t) = - o D e 20;(8). (2.20)
7=0

Thus, for this case the derivative z{,_;(t) is determined by the functions
zoo(t), 201(t), ..., z0s—2(t) and their derivatives up to order n (there are at
most n — 1 functions in this list). For n + 1 < s < m equation (2.18), which
is the simplified version of (2.8), yields the recursion equation

s—2
1
205-1(t) = — T Z ls—j 205(1). (2.21)

j=s—n

Therefore, for this latter case the derivative z{,_;(t) is now determined by
the n — 1 preceding functions zps—n(t), 20s—n+1(t), ..., 20s—2(t) and their
derivatives up to order n (there are n — 1 functions in this list).

In equations (2.20) and (2.21) we have obtained our most simplified form of
the system (2.8) for the index k = 0. This final system has a banded structure,
with at most n — 1 terms appearing in the sum on the right side, and once
again we see that the functions zg;(t), j = 0,1,2,. .., are independent of p and
m. The integer m specifies how many terms to include in forming the Birkhoff
approximate solutions; it does not affect the values of the coefficients in these
approximate solutions. In the next chapter we will see how to choose m; its
selection is determined by both the formal differential operator ¢ and by the
boundary values By, ..., B,. The selection of the integer m is a very subtle
feature in our development of the spectral theory.

Ezample 2.4. Consider the special case ¢ = 7 =1""(d/dt)",0 = 0,and L =T.
Here we have a,(t) =0 for p=0,1,...,n — 2, and from equation (2.17)

coo(t) = (’2)1”—@, (=1,...,n,

and all other cogp(t) are identically zero on [0,1]. Thus, for ¢ = 2,...,n the
differential operators ¢, are given by

Lyu(t) = Coqo(t)u(q) (t) = (Z)j”—qu(q)(t).
Yy

If u(t) is a constant function, then clearly f,u(t) = 0 for ¢ = 2,...,n.
)

From (2.20) and (2.9) it then follows that zo1(t) =0, ..., zon—1(t) = 0, and
from (2.21) and (2.9) that zo,(t) = 0, zon+1(t) = 0, .... We conclude that
20(t, p) = €', and hence, by (2.12)

2 (t, p) = ePrt, k=0,1,...,n—1. (2.22)

This is the expected result for this special case.
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Ezample 2.5. Let us consider the case n = 2 and £ = —(d/dt)? + q(t), where
the coefficient g(t) := ag(t) is infinitely differentiable on [0, 1]. We proceed to
calculate the two Birkhoff approximate solutions

m—1 m—1

20(t,p) = €1 Y " 205(0)p 77, 21(tp) = 20(t,—p) = €7D 205(8)(—p) .

=0 j=0

For n = 2 we have only the differential operator o = — ¢ = (d/dt)? — q(t).
Thus, starting with zg9(t) = 1, equation (2.20) gives

1 1

201 (t) = — % Uy 2o (t) = % q(t),

and hence,

5 [ a©de= 3 Q0. (223)

Cf. equation (2.10). For 3 < s < m equation (2.21) gives the recursion equa-
tion

ZOl(t) =

1 1

2s-1(t) = = 5 b2 2052(1) = = 5 [#05-2(8) = a(B)205-2(1)] - (2.24)
Thus, for s = 3 we get

alt) = — o [243(1) — a2 (0)] = 7 [ (1)~ a(DQ()),

()= 1 [ 10O - al©QOdE = 7 la() — a0 - FQVP. (225

and for s =4

(1) = — o [ (t) — a(0)z02(0)]

= — & [0~ Q) ~ 2a(0)” + 4(1)a(0) +  a()1Q?].
anlt) = =57 | [0 = (0Q() 2016 + 0©a(0) + 5 4 Q7] e

(2.26)
Therefore, for m = 3 the Birkhoff approximate solutions zo(t, p), 21 (¢, p) are

st ) = {14 2000 + [ {00 - 100 - Q07| 572

z1(t, p) = 20(t, —p) (2.27)
= {1 Qe+ a0 - a0 - Q2| o2}

for 0 <t <1 and for p # 0 in C.
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2.2 Formal Solutions

The previous material in this chapter is easily modified to obtain formal solu-
tions of the differential equation (2.1), or the equivalent differential equation
(2.2). Since the treatment of formal solutions follows along the same lines
as the treatment of approximate solutions, we will simply sketch the results.
Formal solutions will not be used in the sequel.

Fix p # 0 in C, and fix an integer k¥ with 0 < k < n — 1. We look for a
formal solution to the differential equation (2.2) of the form

Zi(t.p) = P Zij(t)p,
=0

where the coefficient functions Zj;(¢) are to be determined. The formal

derivatives are given by Z,gp) (t,p) = ePrt S0 >0 Qkpe Z,i?(t)pp_é_j for
p =0,1,...,n, and hence, upon formally substituting Zy (¢, p) into the left
side of (2.2) and collecting like powers of p, we obtain the equation

Zb 7’: lpwktz S an®ZY)®|p =0 (228

5=0 L l+p+j=s

The coefficients Z;(t), j = 0,1,2, ..., are calculated by setting the coefficients

of the powers po, p L, p’Q, ... in the collected sum equal to 0. This produces
the infinite system of equations
S an®Z) =0,  s=012.... (2.29)
l+p+j=s

In this system we allow the ranges £ > 0, p > 0, and j > 0.

For s = 0 the corresponding equation in the system (2.29) is simply
¢koo(t) Zko(t) = 0, which is automatically valid because cgo(t) = 0. For s =1
the corresponding equation becomes n(iwy)" 12}, (t) = 0. Thus, Zj(t) must
be a constant: we will choose Zj(t) = 1. With this choice we can replace
(2.29) by the reduced system

S an®z)® =0, s=23,..., (2.30)
L+p+j=s

where it is assumed that Zio(t) = 1. In (2.30) we have an infinite system of
equations for the unknown functions Z;(t), j =1,2,....
Next, for 2 < s < co the corresponding equation in (2.30) simplifies to

s—28—7 .
An1 L g1 (t) + Ches—o—j( Z()() 0,
=0 ¢=

o

and hence,
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1 .
Zho () =——— 3N chesrs(0Z0(1),  s=23..., (231)

where Zyo(t) = 1. Equation (2.31) is a recursive scheme which expresses the
derivative Zj, ,_,(t) in terms of the functions Zyo(t), Zi1(t), ..., Zrs—2(t) and
their derivatives. Setting

S

s— J

1

Opnl

/0 Cht s—t—;5 (&) Z;i? (€) d¢,

(2.32)
0<t<lands=23,... with Zx(t) = 1, the functions Zy (t), zk2(t), . .. are
uniquely determined by the recursive scheme (2.32). Clearly these functions
are infinitely differentiable on [0, 1]. Comparing equations (2.31) and (2.32) to
equations (2.8) and (2.9), we see that the coefficients Zj;(t) are identical to
the coefficients zj;(t) given in Theorem 2.1:

Ziea®) = [ 2y 1) = -

2 —
=0 £=0

ij(t) = Z}Cj(t), 0 <t< 1, (233)

for k=0,1,...,n—1 and for j = 0,1,2,.... Thus, for any positive integer
m > n and for any index k£ with 0 < k < n — 1, the corresponding Birkhoff
approximate solution zx (¢, p) = zi(t, p, m) is obtained from the formal solution
Zy(t, p) by taking just the first m terms in the infinite series for Zj(, p).

Finally, the formal solutions Zy(t, p), k = 0,1,...,n—1, are related by the
equation

o0
Zk(t7 p) = ZO(ta Pwk) = eiPUJkt Z ZO] (t) (pwk)ija k= 17 cees L. (234)
7=0

Consequently, to calculate the formal solutions, we need only calculate Zy (¢, p).
Also, upon careful examination, we see that for kK = 0 the system (2.31) can
be expressed as

s—2
1
Zh, () = — T > e Zo;(t), 2<s<n, (2.35)
j=0
1 s—2
Zh, () = — T > b Zoi(t), n+1<s<oo. (2.36)
j=s—n

Equations (2.35) and (2.36) give a simplified form of the system (2.31) for the
index k = 0. This final system has a banded structure, with at most n — 1
terms appearing in the sums on the right side.






3

The Approximate Characteristic Determinant:
Classification

For the nth order differential operator L in L?[0,1], we assume that n is
expressed in the form n = 2v for n even and in the form n = 2v — 1 for
n odd, that the boundary values Bi,..., B, have been normalized so that
the boundary coefficient matrix A is in reduced row echelon form, and that
Po = Z?:l m; where m; is the order of the boundary value B;. Fix an integer
m with m > n, and form the mth order Birkhoff approximate solutions

m—1
26(t, p) = zi(t, p,m) = elP=r? Z 2k (t)p7, k=0,1,....,n—1,
§=0

as in Theorem 2.1. At this point we add the additional condition that m be
greater than pg: m > n and m > pg.
3.1 The Approximate Characteristic Determinant

To simplify the discussion, we modify the Birkhoff approximate solutions by
introducing the functions

m—1
yi(t,p) == z(t, p) = €4~ 2 (t)p 7, k=0,1,...,v—1,
3=0
m—1
yk(t,p) == e PRz (t, p) = elPwr(t=1) Z zki(®)p™, k=v,...,n—1,
3=0

for 0 <t <1 and for p # 0 in C. These functions are again approximate
solutions of the differential equation (2.1) in the sense of Theorem 2.1. In terms
of the boundary values and these modified approximate solutions, we then
form the functions B;(yx (-, p)). Indeed, fori =1,... ,nand k =0,1,...,v—1,
we have
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P m—1
yP(t, p) —e"’w”Z ( ) (iwp )P~ Zz,(cﬁ()pp—f—j, p=0,1,....n—1,
=0

Jj=

and
Bilyn(+,0) = > gy (0,0) + Y Bipy” (1, p)
p=0 p=0
m; p m—1 » ,
=252 3 e (7t 0
p=0¢=0 j=0 (31)
m; p m—1
+ elPer Z Z Bip <€) (iwg)? Zz(?(l)pp_éﬂ
p=0¢=0 j=0
= Pi(p) + Qur(p)e*
for p#£0in C, whilefori=1,...,nand k=v,...,n—1
y;(gp)( elpwr(t=1) Z Z ( > iwg )P~ Zzéi)(t)pp7£7j7 p=0,1,...,n—1,
£=0 5=0
and
Bi(yr(+,p)) = Zazpy(p) 0,p) + Zﬁwy(p) p)
p=0
m; m—1 .
= *IP“”CZZ oy ( > iwg )P~ ez,i?(O)ppfeﬂ
p=0+¢=0 j=0 (32)
14 -1 )
+ZZ Bip < ) 1wk)p_£z,(€?(1)pp_e_7
p=0£=0 j=0

= Pi(p) + Qir(p)e™ 7"

for p # 0 in C. The functions ﬁik(p), @ik(p) are defined and analytic for
p # 0in C, and they can be calculated explicitly once the integer m has been
selected.

Fix the integer m with m > n and m > po. Let 7 and k be indices with
1<i<mnand 0 <k < v-—1, and let us consider the functions Pi(p),
@ik(p) defined by equation (3.1), where we express them in a format that
incorporates their dependence on the integer m:

m; P m—1 m;
~ P —f—7 A S
Palpom) =>- 3 Y- (1) 00~ = Y s

s=—(m—1)

m; P m—1 m;
~ P . _ —f—7 ~ S
Gulpm) =33 @-Z,(g)wk)” LOMP T = S Gue(m)p
j=0 s=—(m—1)
(3.3)
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for p # 0 in C. We are going to derive precise formulas for the constants
Diks (M), Gixs(m), determining their exact dependence on the integer m. Many
of them turn out to be independent of m. This analysis involves looking at
three cases.

Case 1. Fix the integer s with 0 < s < m,;. Suppose p, ¢, j are integers
satisfying 0 < p <m;, 0 <l <p, 0<j<m-—1,and p—¥¢—j =s. Then
p=s+l+j>s,s0s<p<myul=p—s—j<p—s,800<{l<p-—s;and
p — ¢ — j = s. Conversely, suppose p, ¢, j are integers satisfying s < p < my,
0</<p-s,andp—Ff—j=s5.Then0<s<p,so0<p<m;l<p—s<p,
so0</{l<p;j=p—s—{L>0andj=p—s—L<p<m; <pp<m-—1,so
0<j<m-—1;and p—¥—j =s. Thus, the conditions 0 < p < m;, 0 < ¢ < p,
0<j<m-—1,p—{—j=s are equivalent to the conditions s < p < m;,
0<¢<p-—s,p—Lt—j=s. It follows that the coefficients p;rs(m), gixs(m)
are given by

- ¢
pzks Zza2p< ) lwk p [Z](C; — 3(0)

p=s £=0

(3.4)
m; p—
[
qzks ZZﬁzp( ) lwk Z](c;)) {— s(]')
p=s £=0
for the case s = 0,1, ..., m;. These coefficients are independent of the integer
m. In terms of these results we introduce the constants
m;
¢
Diks ‘= Zzazp< > lwk p Zzl(c;g £— s(o)
p=s £=0
m; p—s
¢
e = 203 () G o)1)
p=s £=0
for s = 0,1,...,m;. The pjrs, qirs are constants that are independent of

the integer m, and from the above Pirs(m) = piks, Giks(M) = qigs for s =
0, ]., O 117

Case 2. Fix the integer s with —(m —m; —1) < s < —1. Suppose p, ¢, j are
integers satisfying 0 < p <m;, 0 <l <p,0<j<m-—-1l,andp—¥—j=s.
Then trivally 0 < p <m;, 0 < ¢ <p,and p— ¢ — j = s. Conversely, suppose
p, £, j are integers satisfying 0 <p <m;, 0 < /¢ <p,and p— ¢ —j =s. Then
j=p—f€—s>0+1>0andj=p—L—s<my;+(m—m;—1)=m—1,s0
0 < j < m — 1. Thus, the conditions 0 <p <m;, 0 <L <p,0<j<m-—1,
p— ¢ — j = s are equivalent to the smaller set of conditions 0 < p < m;,
0<?¢<p,p—L—j=s. It follows that the coefficients p;rs(m), dixs(m) are
given by
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¢
Pirs(m ZZa2p< ) (iwg)? z,i; +—(0),

p=0 £=0

(3.5)
szs ZZﬁzp( ) lwk p Ezl(f;)) l— s(l)
p=0 £=0
for the case s = —(m —m; — 1),...,—2,—1. These coefficients are also inde-

pendent of the integer m. Based on this analysis we introduce the constants

Diks ‘= Zza1p< ) lwk: p Zzl(f;z)) {— 3(0)

p=0¢=0
m; P p )
. ¢ (£
Qiks = ZZ@'pQ)(W " Zl(cp (1)
p=0 ¢=0
for s = —1,—2,.... Then the sequences p;xs, s = —1,—2,..., and gjrs, S =
—1,—2,..., are infinite sequences of constants that are independent of the in-
teger m, and pirs (M) = Piks, Giks(M) = s for s = —(m—m;—1),..., -2, -1.

A finite number of terms from these sequences appear in (3.3).

Case 3. Fix the integer s with —(m — 1) < s < —(m —m;). Suppose p, ¢, j
are integers Satisfyingo <p<m;,0<L<p,0<j<m—1,andp—£—j=s.
Clearly 0 < s+ (m—1) <m; — 1,50 0 < s+ (m — 1) < m,;. There are two
possibilities for the integer p: 0 < p < s+ (m—1) or s+ m < p < m;.
First, assume that 0 < p < s+ (m — 1). Then we have 0 < p < s+ (m — 1),
0<?¢<p,and p— ¥ — j=s. Second, assume that s +m < p < m;. Then we
have s+m <p<m;l=p—s—j>p—s—(m—1),s0p—s—(m—1) < £ < p;
and p — ¢ — j = s. Conversely, suppose p, £, j are integers satisfying either the
conditions 0 < p < s+ (m—1),0< ¢ <p, p—{¢—j=s or the conditions
s+m<p<my,p—s—(m—1)<l<p, p—L{—j=s. First, assume that
0<p<s+(m—-1),0<l<p,p—fl—j=5Then0<p<s+(m-—1) <m;,
00<p<m;;0<l<p;j=p—LC—s>0+(m—m;)>0andj=p—~L—s<
s+(m—-1)40—s=m—1,500<j <m—1;and p—€—j = s. Second, assume
that s+m <p <my,p—s—(m—1)<L€<p p—f—j=s Thenp > s+m > 1,
so0<p<miul>p—s—(m—-1)>s+m—-s—(m—1)=1,500<{<p;
j=p—L—5>0+(m—-—m;)>0and j=p—~f—s<s+(m—1)—s=m—1,
so 0 <j<m-—1;and p— ¢ — j = s. Thus, the conditions 0 < p < my,
0<?l<p,0<j<m-—1,p—+{—j = s are equivalent to the pair of
conditions 0 <p<s+(m—1),0<l<p,p—Ll—j=sors+m<p<m,
p—s—(m—1)<l<p,p—Lf—j=s.It follows that the coefficients p;xs(m),
Giks(m) are given by
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s+(m—1) p

pzks Z Zalp( ) lwk ;D ezl(sz £— s(o)
p=0 =
Py ..
fX 8 w(ferno

p=s+m {=p—s—(m—1)

(3.6)
s+(m—1) p )
qms Z Zﬂw( > lwk p fz](”z — 5(1)
p=0 =
o
ISR I ()[R R
p=s+m{=p—s—(m—
for the case s = —(m — 1), —(m — 2),...,—(m — m;). These coefficients are

dependent on the integer m.

We remark that it is easy to develop these three cases geometrically by
visualizing the triangular cylinder 0 < p < m;, 0 </ <p,0<j<m—1in
3-space being cut by the family of planes j = p — ¢ — s obtained by setting
s=—(m—=1),...,m,.

Applying the results from the three cases, we see that (3.3) can be rewritten
in terms of the constants p;ks, ¢irs that are independent of the integer m as
follows:

mi —(m—m;)
Prlpm)= Y. kst D Piks(m)p®,
s=—(m—m;—1) s=—(m—1) (37)
m; —(m—m;)
Qik(p,m) = Z Qiksp” + Z Giks(m)p®
s=—(m—m;—1) s=—(m—1)

for p # 0 in C. These are our results for the structure of the functions
Pi(p,m), Qix(p,m) for the indices i = 1,...,n and k =0,1,...,v — 1.

To complete this part of the discussion, ﬁx i and k w1th 1 < i < n and
v < k <n— 1. Then the corresponding functions Pix(p), sz( ) defined by
(3.2) can be expressed in the form

m; P m—1 m;

ﬁik (p7 m) = Z ﬂip (Ig) (iwk)p*ez’(c?(l)ppfzfj = Z f)iks (’rn)ps7

s=—(m—1)

P m— my
~ p\ .. ¢ a R R
Qulpm) =33 aip(€><1wk)p LOOP T = S Gua(m)p
j s=—(m—1)

(3.8)

for p # 0 in C, where the m-dependence has been incorporated into these
equations. Proceeding as above, set
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PDiks = 22@;:() )P éz,g; (1),

p=s £=0
m; p—S
[
Qiks ‘= Zza1p< ) lwk Zl(czz l— s(o)
p=s £=0
for s = 0,1,...,m;; the piks, qiks are constants that are independent of the

integer m. Then introduce the sequences

Piks = ZZﬁzp( ) lwk p ézl(fz)) — 5(1)

p=0 ¢=0
o\~ (P ©
. 0 (L
s =30 3 i (§) ()5, 0)
p=0 ¢=0
for s = —1,—2,.... These are again infinite sequences whose terms are con-
stants independent of the integer m, and prs(m) = piks, Giks(Mm) = igs for
s=—(m—m;—1),...,m;. In terms of the constants p;rs, ks, the functions

appearing in (3.8) can then be expressed in the form

mi —(m—my)
Pir(pm)= > pasp’+ Y, Dirs(m)p’,
s=—(m—m;—1 s=—(m—1
( ) ( ) (3.9)
. mi —(m—m;)
Qirlpym) = > qep®+ > Girs(m)p®
s=—(m—m;—1) s=—(m—1)

for p # 0 in C. These are our results for ﬁik(p, m), @ik(p, m) fori=1,...,n,
k=v,....,n—1.

Remark 3.1. For any integer m with m > n and m > py, we can form
the corresponding Birkhoff approximate solutions zx(t, p) = zx(t, p,m), k =
0,1,.. — 1, and at the same time form the functions z;(t), k = 0,1,...,
n—1, j = O 1,...,m—1. The constants p;xs, ¢iks can then be computed from
their deﬁnitions for any value of s with —(m —m; — 1) < s < m;. Thus, by
taking the integer m sufficiently large, any of the constants p;rs, gixs can be
calculated explicitly.

In terms of the functions B;(yx(-,p)) and the functions Pi(p), Qir(p),
the approximate characteristic determinant is defined by

Alp) = Alp,m) = det(Bi(yu( -, )))

for p # 0 in C. It is also defined and analytic for p # 0 in C, and can be
calculated explicitly once m has been chosen. For the case n = 2v even, we
express the approximate characteristic determinant in the form
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A(p) = det(Bi(yx(+, p)))

1<k<v—1 v+1<k<n-—1

Pio(p)+Q10(p)e? Pri(p)+Qur(p)e?k Py (p)+Q1u(p)e'® Piy(p)+Q1k(p)e™Pwk
= det

Pro(p)+Qno(p)e'” Pri(p)+@nk(0)€”“F Py (p)+Qny (p)e"” Prk(p)+Qni(p)e 7k
(3.10)

for p # 0 in C, where the future emphasis is on the Oth and the vth columns
of this matrix. Similarly, for the case n = 2v — 1 odd, we express it in the
form

A(p) = det(Bi(y( -, p)))
1<k<v-1 v<k<n-—1

Pio(p)+Quo(p)e”  Piu(p)+Qur(p)e'®k  Piy(p)+Qux(p)e™Pwk
= det

Pro(p)+Qno(p)e”  Por(p)+Qui(p)e'?“*  Poi(p)+Qui(p)e™ Pk

for p # 0 in C, with the future emphasis focusing on the 0th column of this
matrix. N

While the analysis of the structure of A(p) is slightly different for the two
cases n = 2v and n = 2v — 1, the general approach is the same. Consequently,
we examine the case n = 2v in detail, and then simply outline the case n =
2v —1.

3.2 Classification for n Even

Assume that n is even: n = 2v. Let us begin by expanding the determinant
in equation (3.10) using the linearity of the determinant function in the Oth
and vth columns:

o~

A(p) = Da(p)e™ + Dy (p)e + Do) (3.12)
for p # 0 in C, where

1<k<v-1 v+1<k<n-—1
Quo(p)  Pi(0)+Qii(p)e?*  Quu(p)  Pir(p)+Qir(p)e Pk
Dy(p) :=det | : : ; ;

@nO(P) ﬁn,k(p)""@nk(p)cipwk @nu(ﬁ) ﬁnk (p)"'—@nk(p)ciipwk
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1<k<v-1 v4+1<k<n-—1

Pio(p)  Prr(p)+Que(p)e™k  Quu(p)  Pir(p)+Qir(p)e 7k

Pro(p)  Par(p)+Qni(p)e?k  Quu(p)  Pur(p)+Qunr(p)e™Pwk

1<k<v-1 v+1<k<n-—1

Qio(p)  Pii(p)+Qur(p)es  Pi(p)  Pip(p)+Qur(p)e™ Pk

+ det : : : : ,

@no (P) ﬁnk(ﬂ)""@nk(p)eipwk lsnu(p) ﬁnk (p)+@nk(p)eiipwk

and
1<k<v-1 v+1<k<n-—1
Pio(p)  Pir(p)+Qur(p)e'*k  Pry(p)  Puip(p)+Que(p)e™ 7wk
BO (p) = det

ﬁnO (P) ﬁnk(ﬁ’)"‘@nk(l))eipwk ﬁnv(ﬂ) ﬁnk(ﬁ)"‘@nk(ﬁ)eiipwk

for p #£0in C.

Now consider the analytic functions ﬁi(p), 1 =0,1,2. Suppose we expand
ﬁg(p) using the linearity of the determinant in the columns with indices 1
through v — 1 and v+ 1 through n — 1. Then Dy (p) becomes the sum of 272
determinants, starting with the determinant

Q10(p) Pii(p) -+ Pr—1(p) Quulp) Prosa(p) - Pra—i(p)
ma(p) := det : : ,

~ ~ ~ ~

Q\n(.)(P) ﬁnl(P) T mefl(p) Qnv(p) Pm/+1(p) o Pan—1(p)

which is defined and analytic for p # 0 in C. Thus, Dy (p) can be expressed in
the form

Ds(p) = Tap) + P2(p),  p#0inC,

where the function @(p) is defined and analytic for p # 0 in C, and where
@5 (p) is the sum of 272 — 1 determinants with each determinant expressible
in the form of a product of some of the exponentials e'”*, k =1,...,v —1,
or e” @ k= v+ 1,...,n— 1, (at least one of these exponentials appears
in each product) times the determinant of an n x n matrix whose entries are
selected from among the functions Igﬂﬁ @ik. Similarly, the functions ﬁl(p),
ﬁo(p) can be expressed in the form

~ ~ ~

Di(p) =71(p) + @1(p),  Dolp) =o(p) + Po(p)

for p # 0 in C, where
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Pio(p) Pii(p) -+ Piu—1(p) Quu(p) Prusi(p) -+ Pia—i(p)

m1(p) = det : : :
ﬁno(p) Anl(P) e ﬁm/—l(p) Q\nV(P)ﬁnu+l(P) ce ﬁnn—l(p)
Qu(p) Pia(p) -+ Pr—1(p) Pru(p) Prusa(p) - Pra-1(p)
+ det : : : : : : )
C/2\710(p) ﬁnl(p) e ﬁnufl(p) ﬁm/(p) ﬁnVJrl (P) e ﬁnnfl(p)
Pio(p) Pii(p) -+ Pru-1(p) Pru(p) Prusa(p) -+ Pin-a1(p)
To(p) := det : : : : :

Pro(p) Par(p) - Pav—1(p) Pav(p) Prvt1(p) -+ Pan-1(p)
for p # 0 in C, and where the functions 51(/)), dgo(p) have the same structure

as the function 52(/)). We can now rewrite the approximate characteristic
determinant in the form

A(p) = Ralp)e® + 71(p)e + Folp) + Balp)e® + B (p)e” + Bo(p) (3.13)

for p# 0 in C. R R

We emphasize again that the functions Py (p), Qix(p), the approximate
characteristic determinant A(p), and the functions 7;(p), @;(p) are all defined
and analytic for p # 0 in C, and these functions can be calculated explicitly
once the integer m has been fixed.

The functions 72(p) and 7y(p) appearing in (3.13) are intemately related
to each other. To see this, note that wy = w, = 1 and wjwr = wgyq for
k = 0,1,...,n — 1. Consider the matrix that appears in the definition of
7o(p). Now for k =0,1,...,n — 2 equation (2.13) shows that

2 (8) = 28 () (wiwn) 7 = 2 (B)(wi) T for j,0=0,1,2,..,

while

26 (1) = 26 (1) (wrwn—1) 7 = 240, (1) (@)™ for j,0=0,1,2,....
Consequently, from the definitions of the functions ﬁik(p), @ik (p), we obtain
the following results: fori =1,...,nand k=0,1,...,v —2

Palpo) =33 X i (§) )~ 50 0)(on T = Puacia(p) (3:14)

Proa(pon) = 3 3 3 aip(§) a2, 000 = Gl
(3.15)
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for p£0inC;fori=1,....nand k=v,...,n—2

m; P m—1
Palpor) =33 ﬂw( ) )24 (1) (pen )"~ = Poria(p) (3.16)

p=0¢=0 j=0

for p£0in C;and fori=1,...,nand k=n—1

Proa(pon) 222%( ) w172 (1) () = Quolp)

p=0 (=0 j=0

(3.17)
for p # 0 in C. If we substitute (3.14)—(3.17) into the definition of 7y (p), then
we get

Pii(p) Pia(p) *++ Pro—1(p) Quu(p) Pruy1(p) **+ Pra—1(p) Qio(p)
7?0([)(&)1) — det . . . . .

Pas) Pasp) =+ Pavs(9) @) Pavis(0) =+ Pans(9) Qo)
= (~1)" s (p)
for p # 0 in C. Thus,
ma(p) = —To(pwi) for p # 0 in C. (3.18)

Next, we examine in detail the structure of the functions 7;(p), i = 0,1, 2,
determining their dependence on the integer m. We will show that associ-
ated with each of these functions is an infinite sequence of constants that
are independent of m. These sequences can be calculated explicitly using the
functions zo(t), zk1(t), zk2(t), ..., k=0,1,...,n—1, and the boundary val-
ues By, ..., By; they form important invariants for the differential operator L.
In terms of these sequences of constants we will (a) classify the differential
operator L as being regular, simply irregular, or degenerate irregular (this
section); (b) determine the exact sectors Ty, 11 to be used in the sequel to
develop asymptotic expansions for actual solutions of the differential equation
(2.1) (Chapter 4); (c) develop the characteristic determinant (Chapter 5); and
(d) derive the basic theory for the eigenvalues of the differential operator L
(Chapter 7).

Consider the function 72(p) = 72(p, m) that appears in the representation
(3.13) of the approximate characteristic determinant. Upon substituting the
representations (3.3) and (3.8) into the matrix appearing in the definition of
7a(p, m), we observe that each row of this matrix is a linear combination of
row vectors. Hence, appealing to the linearity of the determinant function in
its rows, we see that

ma Mn

Ralpm)= > o Y prTTdetIy(sy,. .. s0,m),  (3.19)

s1=—(m—1) sp,=—(m-—1)
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where IT5(s1, ..., Sy, m) is the n X n matrix of constants defined by
HQ(Sl, ey sn,m)
Gios;(m) Pr1is;(m) * Pro—1s5,(M) Gros; (M) Protrsy (M) **° Prn—1s(m)
Gnosp (M) Prisn, (M) Prnuv—1sy, (M) Gnuvsy (M) Prviis, (M) *** Prn_1s,(m)

It is immediate that T2(p, m) can be represented in the form

Po

Ralpm) = > am)p® (320)

rk=—n(m—1)

for p # 0 in C, where the a,,(m) are constants that depend on the integer m.
Specifically, for k = —n(m — 1),...,po we have

ax(m) = Z det ITy(s1, ..., Sn,m), (3.21)
s14Fsn=k

where the indices s1,...,s, satisfy the conditions —(m — 1) < s; < m; for
i=1,...,n. We will show that many of the a,(m) are actually independent
of m.

Indeed, in equation (3.21) the constant a,(m) depends upon the integer m
in two ways: first, through the entries of the matrices ﬁ2(817 .evySp,m), and
second, through the conditions —(m — 1) < s; < m; on the indices sq,. .., S,.
Fix an index s that satisfies the condition —(m — pg — 1) < k < pg. Let us
examine how the constant a,(m) is formed. How small can the index s; be and
still make a contribution to forming a,(m)? Initially we have the condition
—(m —1) < s1 < my. Note that

K—(po—m1)>—(m—po—1)—(po—m1) =—(m—1)+my > —(m—1).

Consider an index sy with —(m — 1) < s3 < kK — (po — m1) — 1. Then the
largest possible power of p*:™ 5 that can be produced is

sitmat-+my <k—(po—mi)—1+ma+-+my=r—1,

and hence, these powers make no contribution to the computation of a,(m).
Thus, in forming a,(m) it can be assumed that K — (pg — m1) < 81 < my.
We obtain similar conditions for the indices s, ..., s,. Summarizing, for any
index k with —(m —pg — 1) < k < pg, in forming the constant a.(m) by
means of equation (3.21), the indices s1, ..., s, can be assumed to satisfy the
more restrictive conditions k — (pg — m;) < s, < m; for ¢ = 1,...,n; these
conditions no longer depend on the integer m.

For integers s1,...,s, with —co < s; < m; for i =1,...,n, introduce the
matrices



48 3 The Approximate Characteristic Determinant: Classification

q10sy Plls; " "Plv—1sy Qlvs; Plv+ls;" "Pln—1s;
II5(81,. ..y 8n) i= )
dn0s, Pnls, " "Pnv—1s, Qnvs, Pnv+ls, " ‘Pnn—1s,

which are matrices with constant entries independent of the integer m. Now
continuing the discussion for x with —(m — pg — 1) < k < pp, for integers
i,k,s; with 1 <i<n,0<k<n-—1,and k — (po — m;) < s; < m;, we have

k= (po—m;) = —(m —po—1) — (po —m;) = —(m —m; — 1),
and hence, by the representations (3.7) and (3.9),
Diks; (M) =Diks, Giks (M) = Qiks,, (3.22)
which are constants independent of m. Thus, the matrix ﬁg(sl, ey 8p, M)

simplifies to R
I5(s1,. ..y Sp,m) = Ia(s1,...,8,),

and (3.21) in turn simplifies to

ax(m) = Z det IT5(s1, ..., Sn), (3.23)

S1t-F+sp=K
where the indices s, ..., s, satisfy the restricted conditions k — (pg — m;) <
s; <m;fori=1,...,n. Thus, the constants a,(m), Kk = —(m—py—1),...,po,

are independent of the integer m, and at the same time we have obtained an
explicit formula for calculating these constants.
In terms of the above analysis, set

a, = Z det IT5(s1,. .., 5n)
s1+-tsn=kK
for Kk = po,po — 1,...,1,0,—1,..., where the indices s1,...,s, are restricted

to satisfy the conditions k — (pg —m;) < s; <m, for i = 1,...,n. Clearly this
yields an infinite sequence of constants that are independent of the integer m,
and from the above a,(m) = a, for kK = —(m —pg— 1), ..., po. Therefore, the
function 72(p, m) has the representation

Po —(m=po)
R(pm)= D ag+ Y ax(m)p” (3.24)
k=—(m—po—1) r=—n(m—1)

for p # 0 in C. We emphasize again that the constants a., £ = pg,po — 1,

...,1,0,—1,..., can be calculated explicitly using the functions zpo(t), zx1(t),
zp2(t), ..., k=0,1,...,n— 1, and the boundary values By, ..., B,. The infi-
nite sequence a,, K = po,Po— 1,...,1,0,—1, ..., forms an important invariant

for the differential operator L.
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A similar discussion can be carried out for the functions 7 (p,m) and
7o(p,m), and we will simply state the results. For integers si,...,s, with
—o0 < s; <m; fori=1,...,n, introduce the matrices

P10s; Pl1sy "Plv—1s; Qlvs; Plv+1ls,  "Pln—1s;
H1(817...,Sn) = : : : : : ,
Pnos, Pnls,  ‘Pnv—1s, Qnvs, Pnv+ls," " "Pnn—1s,
410sy P11s;"""Plv—1s; Plvs; Plv+lsy "Pln—1s;
1 L . . . . . .
H(Sly"'as’n)'_ ’
dno0s, Pnls, " "Pnv—1s, Pnvs, Pnv+ls,” " ‘Pnn—1s,
and
P10s; Pi11sy"""Plv—1s; Plvsy Plv+ls;" "Pln—1s;
Ho(sl,...,sn) = : : : : s

Pnos, Pnils, " "Pnv—1s, Pnvs, Pnv+ls,  "Pnn—1s,

which are matrices with constant entries independent of the integer m. Then
form the infinite sequences of constants

b = Z [det ITy(s1,...,8,) +det IT (s1,...,5,)],
SitFsn=k
Cp 1= Z det ITo(s1,- .-, Sn),
S1+-t+sp=kK
K = po,po—1,...,1,0,—1,..., where the indices s1,...,s, are restricted to
satisfy the conditions k — (pg — m;) < s; <m; for i = 1,...,n. The functions

71(p,m), To(p, m) can be represented in the form

Po

/7%1(/)7 m) = Z bﬁ(m)pnv (325)

k=—n(m-—1)

DPo

Folpm) = Y enlm)p” (3.26)

r=—n(m—1)

for p # 0 in C, where the b,(m), ¢.(m) are constants that depend on the
integer m. Since b, (m) = b, and ¢,(m) = ¢, for k = —(m —po — 1), ..., Do,
this produces the representations

Po —(m—po)

Filpm)= D bt Y be(m)p”, (3.27)

k=—(m—po—1) k=—n(m—1)
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Po —(m—po)
Folpym) = > exp®+ D cx(m)p” (3.28)
rk=—(m—po—1) k=—n(m—1)

for p # 0 in C. The infinite sequences b., kK = pg,po — 1,...,1,0,—1,...,
and ¢., K = po,po — 1,...,1,0,—1,..., are also important invariants for the
differential operator L.

From equation (3.18) we see that

ax(m) = —wi'cx(m) = —wxex(m) fork =—-n(m—1),...,p0, (3.29)

and hence, a;, = —wge,; for Kk = —(m—pg—1),...,po. Since m can be chosen
arbitrarily large, it follows that

G = —WeC, for Kk =po,po—1,...,1,0,—1,.... (3.30)

We conclude this discussion of the m-dependence by defining the functions

Po
ma(p,m) == Z a.p”,
k=—(m—po—1)
Po
m1(p,m) == Z bep”,
k=—(m—po—1)
Po
mo(p,m) == Z crp”

k=—(m—po—1)

for p # 0 in C. The only dependence of these functions on the integer m is
in the lower limit —(m — pg — 1) of the summations, i.e., m determines how
many terms to use in forming the functions m;(p,m), i = 0,1, 2.

Finally, we use the three sequences ay, by, ¢k, K = po, po—1,...,1,0,—1,.. .,
to formulate our classification scheme for the differential operator L.

Definition 3.2. In the case n = 2v with the boundary values By, ..., By in
normalized form and pg = m1 + - - + my, the differential operator L is said
to be:

(%) regular if ap, # 0.

(#) simply irregular if ap, = 0 and a, # 0 for some integer x with
—00 < K < Pp-

(iii) degenerate irregular if a,, =0 for kK =po,po — 1,...,1,0,—1,....

Henceforth, we will assume that for the case n even, n = 2v > 2,
the differential operator L is either regular or simply irregular. Let
p be the largest integer with a, # 0, so —oo < p < py. From (3.30) we have
cp = —(wp)tap, #0and ay, = ¢, =0 for kK = p+1,...,po. At this point
we define a second integer ¢ as follows: First, if b, =0 for k = p+1,...,po,
then set g := p, so b; = b, in this case and the constant b, may be either
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zero or nonzero. Second, if b, # 0 for some integer x with p+ 1 < k < py,
then let g be defined to be the largest such integer, so p < ¢ < pg in this
case and the constant b, is nonzero. In either case we clearly have b, = 0
for k =g+ 1,...,po. The integers p, ¢ and the constants a,, by, ¢, will play
crucial roles in the sequel.

In the p plane let us introduce the two sectors

Sp: all p= \p\eie ceCwith0<9<

S

Si: allp:\p\eiee(CWith —ISGSO.
n

Each of these sectors has angular opening 7/n. In Chapter 5 we will show
that the exponentials e'P¥1, ..., elPwr—1 e=irwrt1 e 7lPwn-1 gg to zero very
rapidly on the sectors Sy and S;. For the case p = ¢, choose a constant d > 0
such that

Japle™ - byle™ + leple™ < lap] = 7 ley) (331)
and in terms of the constant d introduce the horizontal strip
I''={p=a+ibeCla>—mand |b| <d}.
Then select complex constants 79 and 7; and form the translated sectors
To:={p—10|peSo}t and T1:={p—71|pe€Si}

with the following properties: for the case p = ¢ we require that the sectors
Sp, S1 lie in the interiors of Ty, T3, respectively, and that the horizontal
strip I lies in the interiors of both Ty and T7; for the case p < g we require
only that the sectors Sp, S; lie in the interiors of Tpy, 17, respectively. The
translated sectors Ty and T also have angular opening 7/n. They have been
constructed by utilizing the constants or invariants a,, b4, ¢, determined by the
differential operator L, and their construction is independent of the integer m.
The asymptotic expansions developed in the sequel will take place in the
sectors Tp and T7.

Fix an integer m with m > n, m > pg, and —(m —pg — 1) < p < py, and
then form the Birkhoff approximate solutions corresponding to this choice
of m:

m—1
26(t, p) = 21(t, p,m) = Pkt Z zkj(t)p_j7 k=0,1,....,.n—1,
§=0

for 0 <t <1 and for p # 0 in C. As earlier in this chapter introduce the
modified functions
m—1

Uk(t, p) = yi(t, p,m) = 4N " i ()™, k=0,1,...,v—1,
7=0

m—1
yk(t, p) == yr(t, p,m) = glrwr(t=1) Z zkj(t)p_j, k=v,...,n—1,
§=0
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for 0 < ¢t <1 and for p # 0 in C, and form the approximate characteristic
determinant

Alp) := Alp,m) = det(Bi(yi(-, p,m)))
for p # 0 in C. Lastly introduce the functions

P
m(p) =)= Y aw”,
k=—(m—po—1)
q
m(p)i=mpm)= Y bt
r=—(m—po—1)
p
nolp) = molpm) = S et

k=—(m—po—1)

for p # 01in C. In anticipation of our future work, we rewrite the representation
(3.13) of the approximate characteristic determinant in its final form:

Ap) = malp)e + mi(p)e" + 7o (p)
_ —(m—po)
+ Z ax(m)p® + Ba(p, m)} e%ir
r=—n(m—1)
—(m—po)
+ Z b,{(m)p“ + 51([)’ m)} elP (332)
r=—n(m—1)
_ —(m—po) ~
+ Z<MMW+%WW}

k=—n(m—1)

for p#0in C.

For the case n = 2v even, all of the quantities introduced in the
last three paragraphs will remain fixed throughout the sequel. In
particular, the integer m will be held fixed with m > n, m > pg, and

—(m —po—1) <p < po.

3.3 Classification for n Odd

Assume that n is odd: n = 2v — 1. Let us proceed to outline the analogous
theory for this case. Recall that we are assuming n > 3, so v > 2. The starting
point for the odd order case is the representation (3.11) of the approximate
characteristic determinant A(p). Expanding the determinant for A(p) using
linearity in the Oth column, A(p) can be expressed in the form

A(p) = Di(p)e”” + Do(p) (3.33)
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for p # 0 in C, where the functions ZA)l(p)7 lA)O(p) are given by

Di(p) =71(p) + @1(p).  Dolp) = Fo(p) + Po(p)
)

for p # 0 in C. In this last equation the functions 71 (p), To(p) are defined by

Q0(p) Pri(p) -+ Pru-1(p) Pru(p) -+ Pra-1(p)
1 (p) := det : : : :

~ ~

Buo(0) Pus () -+ Pavr(9) Punp) -~ Pans(p)

Pro(p) Prip) -+ Pr-1(p) Pru(p) -+ Pra-1(p)

To(p) = det : : : : :
ﬁnO(P) ﬁnl(ﬂ) s ﬁnu—l(P) ﬁnu(ﬂ) e ﬁnn—l(p)

for p # 0 in C, and the functions il(p), 50(p) are the sums of 2771 — 1
determinants with each determinant expressible in the form of a product of
some of the exponentials e?** k=1,...,v—1,ore "k k=uv,....,n—1,
(at least one of these exponentials appears in each product) times the de-
terminant of an n X n matrix whose entries are selected from among the
functions Pk (p), Qir(p). Thus, the approximate characteristic determinant
can be rewritten in the form

A(p) = 71(p)e'” + Fo(p) + B (p)e™ + Bo(p) (3.34)

for p £ 0in C. R

The approximate characteristic determinant A(p) and the functions 7;(p),
®; (p) are all defined and analytic for p # 0 in C, and these functions can be
calculated explicitly once the integer m has been fixed.

Next, we examine the structure of the functions 7;(p), ¢ = 0, 1, determining
how each of these functions depends on the integer m. We will show that
associated with each of these functions is an infinite sequence of constants
that are independent of m. In terms of these sequences of constants we will
(a) classify the differential operator L as being regular, simply irregular, or
degenerate irregular (this section); (b) determine the exact sectors Ty, T to
be used in the sequel to develop asymptotic expansions for actual solutions
of the differential equation (2.1) (Chapter 4); (c) develop the characteristic
determinant (Chapter 5); and (d) derive the basic theory for the eigenvalues
of the differential operator L (Chapter 8).

Consider the function 7;(p) = 71(p, m). Appealing to the linearity of the
determinant function in its rows, we see that

my My,
Ti(p,m) = Z Z pS T det 11 (81, .. ., Sy, m)
51:_(m_1) Snz_(m_l)

(3.35)

Po

= Z ax(m)p”

k=—n(m—1)
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for p #£ 0 in C, where ﬁl(sl, ..., 8n,m) is the n X n matrix
I (81,8, m)

Gros:(m) Pris, (M) - Pro—is, (M) Prys, (M) -+ Prp—1s, (M)

(jnOSn(m) ﬁnlsn(m) ﬁnuflsn(m) ﬁnusn(m) ﬁnnflsn(m)

and the a,(m) are the constants given by

ax(m) == Z det ﬁl(sl, ey SnyM) (3.36)
S1t-FsSp=K
for k = —n(m — 1),...,po. Many of the constants a,(m) turn out to be

independent of m.
Indeed, let us introduce the matrices

Q10s; P11s; " Plv—1s; Plvsy " Pln—1s;
Hl(sla"'7sn) = : : : : :
dno0s, Pnls, "' Pnv—1s, Pnvs, '° ' Pnn—1s,
for integers s1, ..., S,, where —oco < s; < m,; for i =1,...,n, and then set
ay = Z det ITy(s1,. .., Sn)
s1++sn=kK
for Kk = po,po — 1,...,1,0,—1,..., where the indices s1,...,s, are restricted
to satisfy the conditions x — (po — m;) < s; < my; for i« = 1,...,n. The
a, form an infinite sequence of constants that are independent of m, and
ax(m) = a, for K = —(m — py — 1), ..., po. Therefore, the function 71 (p, m)
has the representation
Po —(m—po)
71(p,m) = Z acp” + Z a(m)p” (3.37)
k=—(m—po—1) r=—n(m—1)

for p # 0 in C. The constants a., kK = pg,po—1,...,1,0,—1,..., can be calcu-
lated explicitly using the functions zxo(t), zx1 (t), zk2(t), ...,k =0,1,...,n—1,
and the boundary values By,..., B,. This infinite sequence is an important
invariant for the differential operator L.

A similar discussion can be carried out for the function 7 (p, m). For in-

tegers si,...,8, with —oco < s; < m; for i = 1,...,n, introduce the n x n
matrices
P10s; Pilsy """ Plv—1s; Plvsy """ Pln—1s;
IIo(s1,...,8,) == : : : : : ,

Pnos, Pnls, **° Pnv—1s, Pnvs, '° " Pnn—1s,
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and then form the infinite sequence of constants

b, == Z det ITo(s1, .-, Sn)s
Sittsn=k
K = po,po — 1,...,1,0,—1,..., where the indices sy, ...,s, are restricted to
satisfy the conditions kK — (pg — m;) < s; < m,; for i = 1,...,n. The b, are

independent of the integer m. In terms of these constants the function 7 (p, m)
can be represented in the form

Do —(m—po)
Folpym) = > b+ > be(m)p” (3.38)
rk=—(m—po—1) k=—n(m—1)

for p # 0 in C, where the b, (m) are constants that do depend on m. The
infinite sequence by, k = pg,po — 1,...,1,0,—1,..., forms another important
invariant for the differential operator L. To conclude this discussion of the
m-~dependence, we form the two functions

Do Po
m1(p,m) = Z a.p”, mo(p, m) 1= Z bp"
rk=—(m—po—1) k=—(m—po—1)

for p # 0 in C. Their only dependence on the integer m is in the lower limit
—(m — pg — 1) of the summations.

The sequences a,, kK = pg,po — 1,...,1,0,—1,..., and b., kK = pg,po — 1,
..., 1,0,—1,..., are used to formulate our classification scheme for the differ-
ential operator L.

Definition 3.3. In the case n = 2v — 1 with the boundary values By, ..., By,
in normalized form and pg = m1+ - - -+my, the differential operator L is said
to be:

(%) regular if ap, # 0 and by, # 0.

(%) simply irregular if either a,, = 0 or b,y =0, and a, # 0 and by # 0
for some integers K, £ with —co < k, ¢ < pg.

(ii1) degenerate irregular if either a,, = 0 for Kk = po,po—1,...,1,0,—1,...
orb, =0 for k =pg,po—1,...,1,0,—1,....

Next, in the p plane we introduce the three sectors

So: all p=|ple'? € C with —;SOS
n
i 3
So: allp:|p|e19€(CWithl§9§—ﬂ-,
2n 2n

Si: allp:|p|e19€(Cwith7r—l§9§7r—|—l.
2n 2n

T
on’

Each of these sectors has angular opening 7/n, with the sectors Sy and S;
symmetric in the real axis. Observe that the sector Sy has been altered from
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its earlier form for the case n even. The reason for this change is to establish
a sector where the exponentials el#¥1, ... elPwv—1 e=irwr  e=irwn—1 g to
zero very rapidly. Indeed, on the original sector Sy the exponential e'P“v—1
does not go to zero when n is odd: for any point p = |p|ei”/" we have

. . a o w, 2m(v—1)
jeiPv—1| = ol coslarslipu—o)] _ olol cos[F+5+224=] _ ol cosfan/2] _ 1

The new sector Sy corrects this problem (see Chapter 5).
Now consider the sectors S, and S;. For p = |ple!’ # 0 we have

3
p650<:>1§9§—7r
2n 2n
T 2w 2w 3r 27
<— —+—v-1<0+—r-1H)<—+—((r-1
2n+n(y )< +n(y )_2n+n(y )
T T 3mow
<— —+—-(n—1< 1) < — +—(n—1
5, T o (n—1) Sarg(pwy—1) < .-+ —(n—1)

T 7T
— 71— — <arg(pw,—1) < T+ — < pw,_1 € 1.
2n 2n

Equivalently, p € S <— pw;_ll € S,. Thus, p € S, and p" is an eigenvalue
of L if and only if pw,_1 € S and (pw,—_1)" = p™ is an eigenvalue of L. It
follows that finding the eigenvalues A = p™ of L with p € S, is equivalent to
finding the eigenvalues A = p™ of L with p € S7. In the sequel we choose to
work on the sector S7 because of the simpler geometry.

The modified Birkhoff approximate solutions yx(¢,p), k =0,1,...,n — 1,
and the approximate characteristic determinant 2(,0) are designed to develop
the spectral theory of the differential operator L relative to the sector Sy.
In working on the sector S;, we must replace these quantities with alternate
forms. We begin by introducing the functions

m—1
xk(ta ,0) = eiiPszk(ta ,0) = eipw’C(til) Z ij(t)pijv k= 07 13 e V= 17
3=0
m—1
zi(t, p) == zi(t, p) = PRt Z 2k (H)p 7, k=v,....,n—1,
§=0

for 0 <t <1 and for p # 0 in C. These functions are again approximate solu-
tions of the differential equation (2.1) in the sense of Theorem 2.1. They are
related to the earlier modified Birkhoff approximate solutions by the equations

ﬂfk(typ):e_ipwkyk(t7p)7 k:()’l,...’U—l’
xk(tvp):eiPkak(tvp)v ]ﬂ:l/,...,ﬂ—l,

for 0 <t <1 and for p# 0 in C.
Applying the boundary values, fori =1,...,nand k=0,1,...,v —1 we
have
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Bi(z(+,p)) = e ¥ By(y(-, p)) = Pix(p)e ™ + Qux(p) (3.39)
for p£0in C, whilefori=1,...,nand k=v,...,n—1
Bi(zi(+,p)) = € Bi(yx(+, p)) = Pir(p)e™* + Qir(p) (3.40)

for p # 0 in C. In terms of these functions we then form a new approzimate
characteristic determinant by defining

Ap) = A(p,m) = det(B;(zx( -, p)))

for p # 0 in C. It is also defined and analytic for p # 0 in C; it can be
calculated explicitly once m has been chosen; and it is particularly well suited
for work on the sector Sj.

The new approximate characteristic determinant has the representation

A(p) = det(Bi(zx(-,p)))
1<k<v-1 v<k<n-—1
Pro(p)e™+Q10(p)  Prr(p)e "k +Q1n(p)  Pir(p)e*+Q1x(p)
= det

Pro(0)e P 4+Qno(p)  Pur(p)e P, +Qui(p)  Pur(p)e?k +Quni(p)
(3.41)

for p # 0 in C, where the future emphasis will focus on the Oth column of this
matrix. Settingn=1+w; +---+w,—1 —w, — -+ — wy_1, We can factor out
the exponentials appearing in the columns of the matrix in equation (3.41):

Ap) = e PemiPw L gTIrumigipwr L oipen—1 A(p) = TP A(p)  (3.42)

for p #£0in C.
Using equation (3.41), we proceed as above to expand the determinant for
A(p) using the linearity in the Oth column:

A(p) = Di(p)e™ + Do(p) (3.43)
for p # 0 in C, where the functions D; (p), Do(p) are given by

Di(p) =71(p) + @1(p),  Dolp) = Tolp) + Po(p)

for p # 0 in C. Here the functions 7 (p), 7o(p) are defined by

1310(,0) Cjn(ﬂ) @11/71(,0) @w(ﬂ) @1%1(/?)
71(p) := det : : : ;

~
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Q10(p) Qui(p) -+ Qrv-1(p) Qu(p) -+ Qin_1(p)
To(p) := det : : : :

o) Out (9) -+ Ovs(p) Or(0) -+ Broms(p)

for p # 0 in C, and the functions @;(p), Po(p) are the sums of 21 — 1
determinants with each determinant expressible in the form of a product of
some of the exponentials e "#** k =1,...,v—1, or some of the exponentials
eP“r k= v,...,n — 1, (at least one of these exponentials appears in each
product), times the determinant of an n x n matrix whose entries are selected
from among the functions Py, (p), @m (p). Thus, the approximate characteristic
determinant A(p) can be expressed in the form

A(p) =Tr(p)e ™™ + To(p) + Pr(p)e ™ + Po(p) (3.44)

for p # 0 in C. Again all these functions are defined and analytic for p # 0 in
C, and they can be calculated explicitly once the integer m has been fixed.

Let us consider the function 7 (p) = 71(p, m). Proceeding as above, we
see that

mi Mp
mi(p,m) = Z e Z pS T det I (s1, .. ., Sy, m)
s1=—(m—1) s,=—(m—1)
20 (3.45)
= Y ad(m)”
k=—n(m-—1)
for p # 0 in C, where ﬁl(sl, ..., 8p,m) is the n X n matrix
ﬁ1<81, ey sn,m)
Pros; (M) Gris,(m) -+ Gro—15,(M) Gros, (M) -+ Gin—1s,(m)
ZA)nOsn (m) (jnlsn (m) Q-1 Sn (m) (jnusn (m) o Qun-1 Sn (m)
and the a/.(m) are the constants given by
al.(m) := Z det ITy (s1,. .., $p,m), (3.46)
S1++Sp=kK
for kK = —n(m —1),...,po.
For integers s1,...,s, with —co < s; < m; for i =1,... n, introduce the
n X n matrices

P10s; Q11s; *° Qilv—1s; Qlvs; " Qin—1s;
/ o . . .
I (s1,...,8,) =

Pnos, 9nis, ' Qnv—1s, Qnvs, " Qnn—1s,
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and then set

a,, = Z det IT7 (81, - -, 8n)
S1ttSn=kK
for Kk = pg,po — 1,...,1,0,—1,..., where the indices s1,...,s, are restricted
to satisfy the conditions kK — (pg — m;) < s8; < m; for i = 1,...,n. The o,
form an infinite sequence of constants that are independent of the integer m,
a,.(m) = al, for k = —(m —pg —1),...,po, and the function 7 (p, m) has the
representation
Po —(m—po)

Tpm)= > apt+ Y a(m)p” (3.47)

r=—(m—po—1) k=—n(m—1)

for p # 0 in C. The constants a/,, kK = pg,po — 1,...,1,0,—1,..., can be
calculated explicitly, and they form an invariant for the differential operator L.
A similar discussion can be carried out for the function 7 (p,m). For in-

tegers si,...,8, with —oco < s; < m; for i = 1,...,n, introduce the n x n
matrices
4d10s; 9Q11s7 """ Qlv—1s; Qlvsy """ Qiln—1s;
! . . . . .
HO(Sl,...,Sn) = : : : : : 9
dn0s, Anls, " 9nv—1s, Qnvs, *°° nn—1s,

which have constant entries independent of the integer m. Then form the
infinite sequence of constants

b= Z det IT(s1, - -, 8n),
S1ttsn=k
K = po,po — 1,...,1,0,—1,..., where the indices s, ...,s, are restricted to
satisfy the conditions k—(pg—m;) < s; < m; fori =1,...,n. The constants b/,

are independent of the integer m, and in terms of them the function 7 (p, m)
can be written in the form

Po —(m—po)
Tolpm) = > Wt D b(m)p” (3.48)
rk=—(m—po—1) k=—n(m-—1)

for p # 0 in C, where the b/,(m) are constants that do depend on m. The infi-
nite sequence b/, Kk = po,po—1,...,1,0,—1,..., forms an additional invariant
for the differential operator L. We conclude the discussion of m-dependence
by introducing the functions

Po Po
Tpm) = > it mplpm)i= > bp"
k=—(m—po—1) k=—(m—po—1)

for p# 0 in C.
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There is a close relationship between the functions 71 (p) and 7o(p) ap-
pearing in (3.34) and the functions 7;(p) and 7o(p) appearing in (3.44).
Indeed, consider the matrix that appears in the definition of 71(p). From
equation (2.13) and the definitions of the functions Pi(p), @ik(p), we have
Qio(pwy—1) = Qiv-1(p) for i = 1,....n; P(pwy—1) = Qirtr—1(p) for
i=1,...,nand k=1,...,v—1;and Py(pwy—1) = Qik—v(p) fori=1,...,n
and k =v,...,n — 1. Thus, from the definition of 71 (p) we get

Qrv-1(p) Quulp) -+ Qrn1(p) Qro(p) -+~ Qru2(p)
71 (pw,—1) = det : : : :

= ()" V() = Fo(p),

or

7o(p) = T (pwy—1) for p#£0in C. (3.49)

A similar argument shows that
71(p) = To(pw,) for p#0in C. (3.50)

Henceforth, we will assume that for the case n odd, n = 2v—1 > 3,
the differential operator L is either regular or simply irregular. Let
p be the largest integer with a, # 0, so —oo < p < pg, and let ¢ be the largest
integer with b, # 0, so —oo < ¢ < pg. Then a, =0 for k =p+1,...,po, and
b, =0for k = g+1,...,po. The integers p, ¢ and the nonzero constants a,, b,
will play major roles in the sequel.

For the case p = ¢ choose a constant d > 0 such that

- - 1 .
[aple™ + [bple™ < 7 min{lay|, [by[}, (3.51)

and in terms of the constant d introduce the horizontal strips

In:={p=a+ibeCla>—mand |b| <d},
IN:={p=a+ibeC|a<mand b <d}.

Then select complex constants 79 and 7; and form the translated sectors

To={p—m|peSo}, Ti:={p—m|pe€Si}

with the following properties: for the case p = g we require that the sectors S,
S1 lie in the interiors of Ty, T, respectively, and that the horizontal strips Iy,
I7 lie in the interiors of Ty, 17, respectively; for the cases p < ¢ and p > q we
require only that the sectors Sp, Sy lie in the interiors of Ty, 17, respectively.
The translated sectors T, and 7T} have been constructed by utilizing the con-
stants or invariants a, and b, determined by the differential operator L, and
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their construction is independent of the integer m. The asymptotic expansions
developed in the next chapter will take place in the sectors Ty and T7.

Fix an integer m with m > n, m > pg, and —(m —pg — 1) < p,q < po,
and then form the Birkhoff approximate solutions corresponding to this choice
of m:

m—1
2u(t, p) := 21 (t, p,m) = Pkt Z zkj(t)p_j, k=0,1,....,.n—1,
j=0

for 0 <t <1 and for p # 0 in C. As earlier in this chapter, introduce the
modified Birkhoff approximate solutions

m—1
Ykt p) == yn(t, pym) = €PN " 2 (8)p 7, k=0,1,...,v—1,
j=0
m—1

vk(t, p) i= yi(t, p,m) = DN " W)p ™, k=, n—1,
=0

and

m—

g (t, p) ==z (t, p,m) = elPor(t=1) Z 2 (Op~, k=0,1,...,v—1,

Jj=

[

m—1
2t p) = it pym) = S g (0™, k=vin— 1,
j=0

for 0 <t <1 and for p # 0 in C, and form the approximate characteristic
determinants

Alp) = Alp,m) = det(Bi(yi( -, p,m))),

A(p) = Alp,m) = det(Bi(ax (-, p,m)))

for p # 0 in C. Lastly introduce the functions

p q
@) =mpm = Y awt mp)=mpm= > bt
r=—(m—po—1) rk=—(m—po—1)
and
Po Po
R =mem = 3 dt me) =mhem) = S bt
k=—(m—po—1) k=—(m—po—1)

for p # 0 in C. From (3.50) and (3.49) we have

al. =by(w,)® and b, = ae(w,—1)" (3.52)
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for k = po,po — 1,...,—(m — po — 1), and hence, a; # 0 and a;, = 0 for
k=q+1,...,pp, and b}, # 0 and b, =0 for Kk =p+1,...,po. It follows that
the functions 7} (p), 7} (p) simplify to

a P
T = Y ot m) = D, bt
k=—(m—po—1) K=—(m—po—1)
for p # 0 in C. Also, in the case p = ¢ we have |a},| = |b,| and |b| = |a,|, and
by (3.51)
_ a1
lalle™® + |b [e™¢ < 1m1n{|a;\, 07,1} (3.53)

For our future work we rewrite the representations (3.34) and (3.44) of the
approximate characteristic determinants in their final forms:

A(p) = mi(p)e'” + mo(p)
—(m—po)
+ as(m)p® + 51( ,m)|e”
L—-nz(;n-n o o) (3.54)
—(m—po)
X bl 4 Bolp.m)].

k=—n(m—1)
A(p) = w1 (p)e™ + my(p)
—(m—po) _
[ et + Eilpm)]e
hm 1) (3.55)
—(m—po) _
[ X bt + Folpm)]
rk=—n(m—1)
for p#0in C.

For the case n = 2v — 1 odd, the quantities introduced in the last
four paragraphs will remain fixed throughout the sequel. Specifi-
cally, the integer m will be held fixed with m > n, m > pg, and
—(m —po—1) < p,q < po.

3.4 Tests for Regularity

Some remarks are in order regarding the conditions for the differential opera-
tor L to be regular. These conditions are stated in Definition 3.2 and Definition
3.3 for the cases n even and n odd. It is important that these definitions be con-
sistent with the earlier definitions given in the monograph [34]. See Definiton
5.1 and Definition 6.1 in Chapter 4 of [34] for the definitions of the principal



3.4 Tests for Regularity 63

part T' being determined by regular boundary values Bi,..., B,, and then
see p. 212 for the general differential operator L, where we assume that the
boundary values By,..., B, are regular relative to the principal part T'. Let
us examine this question of consistency. R N

From equations (3.7) and (3.9) the functions Pix(p), Qik(p), i =1,...,n,

k=0,1,...,n — 1, have the representations
R m; —(m—m;)
Pir(p) = Z Diksp’ + Z Diks (M) p®,
s=—(m—m;—1) s=—(m—1)
=N mq —(m—m;)
Qin(p) = Y. s’ + Y Girs(m)p’
s=—(m—m;—1) s=—(m—1)

for p # 0 in C. In these formulas the leading coefficients are given as follows:
fori=1,...,nand k=0,1,...,v—1,

Pikm; = Z Za2p< ) IWk p ZZ]E;[; 0— é(O) :aimi(iwk)miv

p=m; £=0

my 0
P\, . e
Qikm,; = Z Z ﬁip <€) (1wk) Z}Ff; — s( ) = ﬁimi (lwk) i)

p=m; £=0
while fori =1,....,nand k=v,...,n — 1,
¢ N
Pikm; = Z Zﬂzp( ) IWk p Zzl(g; 0— 5( ):ﬂimi(lwk) i)
p=m; £=0

Qikm,; = Z Zazp< ) lwk Z](f; — S(O) = Qm, (iwk)mi'

p=m; £=0

Observe that these leading coefficients are determined exclusively by the nor-
malized boundary values By, ..., B,. They are independent of the formal dif-
ferential operator £ that determines L, and they are identical for both L and
for its principal part T'.

Assume that n is even: n = 2v. In our current work the differential operator
L is defined to be regular if and only if the constant a,, is nonzero. See
Definition 3.2. It is possible to obtain an explicit formula for the constant a,.
Indeed, for ¢ = 1,...,n define

NZO P

=]
—
s

~

(p)
(p) :
k(p)
Nik(p) :
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Moo o
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for p # 0 in C. From the definitions of the functions 7;(p), i = 0, 1,2, we see
that

det (Nir(p)) = Ta(p)e™ + T1(p)e” + o (p) (3.56)

for p # 0 in C, where by (3.24), (3.27), and (3.28) the functions 7;(p) have
the form

Po —(m—po)

Ta(p) = Z arp” + Z ax(m)p”,
k=—(m—po—1) rk=—n(m—1)
Po —(m—po)

Tp) = D>, b+ Y ba(m)pf,
r=—(m—po—1) k=—n(m—1)
Po —(m—po)

Rolp) = Y, e+ D cx(m)p”
k=—(m—po—1) rk=—n(m—1)

for p # 0 in C. The constants ap,, bp,, cp, are the leading coefficients of the
functions T2 (p), 71(p), To(p), respectively, and we have the important relation

Apy = —Wp, Cp, given in equation (3.30).
Now for ¢ =1,...,n define
Nio(p) := im, + Bim, €,
Niv(p) = Bim, (—1)™ 4 Qi (—1)™ e,
Mk(p) = a1m7wgh, 1 S k § v — 1,
Nir(p) := Bimwi™,  v+1<k<n-—1,

for p € C. If we expand the determinant on the left side of (3.56) using
linearity in all » columns and then pull out the factors of ip from the rows of
the resulting determinants, then it follows that

(ip)Po det (Nix(p)) + lower powers of p =
Ay P02 + by PP’ + 0 pP° + lower powers of p

for p # 0 in C, and hence,
det (Nix(p)) =177 (ap082ip + bpoeip + Cpo) (3.57)

for p € C. The justification for matching powers of p follows from simple limit
arguments and the facts that if p = ib is a pure imaginary, then

|pke??| = |bFe™? — 0, |pFel?| = [bFe™ — 0, 1=1—1

as b — oo for k=0,1,2,.... Equation (3.57) is identical to equation (5.20) in
Chapter 4 of the monograph [34], and it shows that the constant a,, occurring
in our current work is equal to the constant a,, that occurs in [34]. Specifically,
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1<k<v-1 v+1<k<n-1
Brm, Qim,wp Qm, (—1)™ Brm,wi"
ap, = i’° det : :
Brm., QWi Qpm,, (—1)™n Brm,wp ™
(3.58)

Cf. Naimark [36, p. 57].

From the above we draw the following conclusions for the case n even: (i)
the definition for the differential operator L being regular given in our current
work is consistent with the earlier definition of regular boundary values given
in [34]; (ii) the differential operator L is regular if and only if its principal part
T is regular; and (iii) in checking the condition a,, # 0 for regularity, only
the boundary values By,..., B, are relevant — the coefficients determining
L play no role. The constant a,, can be calculated explicitly using equation
(3.58), and does not require the calculation of any solutions of the differential
equation (2.1), nor the calculation of any characteristic determinants.

Next, assume that n is odd: n = 2v—1. In our current work, the differential
operator L is defined to be regular if and only if the constants ap,, and by,
are both nonzero. See Definition 3.3. Explicit formulas for these constants are
available. For i = 1,...,n define

Nio(p) == Puo(p) + Qio(p)e”,
Nin(p) == Pip(p), 1<k<v-—1,
Nir(p) :== Pir(p), v<k<n-—1,
for p # 0 in C. From the definitions of the functions 7 (p), To(p), we see that
det (Nig(p)) = F1(p)e™ + Fo(p) (3.59)
for p # 0 in C, where from (3.37) and (3.38) we have

Po —(m—po)

)= > awp®+ > ax(m)p”,
r=—(m—po—1) rk=—n(m—1)
Po —(m—po)

Top) = D> bept D ba(m)p”
k=—(m—po—1) rk=—n(m—1)

for p # 0 in C. The constants ap,, by, are the leading coefficients of the
functions 71 (p), To(p), respectively.

Now for ¢ =1,...,n define
J\/i (P) = Oéimi +/6imieip,
Nik(p) := qtim,wi", 1<k<v-1,

Nik(p) == Bim,wy, v<k<n-1,
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for p € C. If we expand the determinant on the left side of (3.59) using
linearity in all n columns and then pull out the factors of ip from the rows of
the resulting determinants, then it follows that

(ip)P° det (Nix(p)) + lower powers of p =
po PP’ + by, pP0 + lower powers of p

for p # 0 in C, and hence,
det (Nik(p)) =177 (ap,e” + by,) (3.60)

for p € C. Equation (3.60) is identical to equation (6.16) in Chapter 4 of [34],
and it shows that the constants a,,, by, occurring in our current work are
equal to the constants a,,, by, that occur in [34]. Specifically,

1<k<v-1 v<k<n-1

m m
ﬂlml Qim, Wy ! ﬂlmlwk !

ap, = i det : : : , (3.61)

My, Mn
5nmn Anm, Wi " ﬂnmnwk "

1<k<v—-1 v<k<n-1

mi mi
Q1m, A1m, Wy, ﬁlmlwk
bpo = iP0 det . (362)
Mn Mn
Apm, Anm, Wi ﬂnmnwk

Cf. Naimark [36, p. 56].

For the case n odd, we draw the same conclusions as before: (i) the defini-
tion for the differential operator L being regular given in our current work is
consistent with the earlier definition of regular boundary values given in [34];
(ii) the differential operator L is regular if and only if its principal part T is
regular; and (iii) in checking the conditions a,, # 0 and by, # 0 for regularity,
only the boundary values By,..., B, are relevant — the coefficients deter-
mining L play no role. The constants ap, and b,, can be calculated explicitly
using (3.61) and (3.62), and do not require the calculation of any solutions
of the diffferential equation (2.1), nor the calculation of any characteristic
determinants.
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Asymptotic Expansion of Solutions

In this chapter we construct actual solutions of the differential equation (2.1)
for p belonging to the sectors Ty or T7. These solutions behave asymptotically
like the Birkhoff approximate solutions z(t, p) = 2 (¢, p, m), where the integer
m has been fixed with m > n, m > pg, and —(m —pg — 1) < p,q < py. Again
the discussion divides naturally into the two cases n even and n odd.

4.1 Expansions for n Even
Assume that n is even: n = 2v > 2. We begin by examining the relationship
between the complex numbers ipwg, ipws, ..., ipw,—1 for p belonging to the

sectors Sy or S1, where

So: all p=|ple’? € C with 0 <6 <

31

Si: all p=|ple'? € C with — = <6<0.

313

The results in the following lemma are variations of some well-known results
(see [4, p. 220] or [36, pp. 4345 ]).

Lemma 4.1. Let n be even: n = 2v. Then there exist permutations

wg,w(l), . ,wg_l and wé,w%, . ,w}b_l
of the nth roots of unity wo,w1,...,wn_1 such that
Re(ipw]) < Re(ipwl) < --- < Re(ipwl_,) for all p € Sp,
Re(ipwy) < Re(ipwi) < --- < Re(ipw}_|) for all p € Sy.
Proof. Note that the list wo,wl_l,wl,wgl, oW1, w, s a permutation of

wo, W1, .- - ,wp—1, and for p € Sy we have
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2
0 <arg(pwo) < —,  —— <arg(pwy!) < ——,
n n

Since the cosine is an even function and is decreasing on the interval [0, 7], it
follows that

cosfarg(pw; V)] < coslarg(pw,—1)] < -+ - < cosfarg(pwy )]

< cos[arg(pwi )] < coslarg(pw; )] < coslarg(pwo)]

for p € Sp, and hence,

Re(pw; ') < Re(pw,—1) < -+ < Re(pw; )
< Re(pw1) < Re(pw; ') < Re(pwo)

(%)

for all p € Sy. It is easy to visualize these inequalities geometrically by sim-

ply plotting the complex numbers pwy, pwfl, PW1, p(.ugl7 ey pwy_1, pwytas
points on the circle of radius r = |p|. Similarly, wal, w1, wfl,wg, e ,w;_lhw,,
is a permutation of wg,ws,...,w,_1, and

Re(pw,) < Re(pw,2;) < --- < Re(pws)
< Re(pwi ') < Re(pwr) < Re(pwy ')

()

for all p € S;.
Next, consider the cases where v is odd or even. First, assume v is odd:
v=2u—1 Thenn=4p—2, p = (n+2)/4, and

2 2
n 4 n
2 2

+W{3<n+ )—1] —or+ L.
n 4 n

Thus, for any point p € Sy, the point ipws,_o belongs to Si, and by (#x)

arg(iws,—2) =

DI R R

arg(iws,—1) =

Re(ipws,—2w,) < Re(ipws,—ow, )

< -+ < Re(ipwsu—swi) < Re(ipwsu—owy ).

On the other hand, for any point p € Sp, the point ipws,—1 belongs to So,
and by (x)
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Re(ipws,— 1w, ') < Re(ipws,—1wy,—1)

<. < Re(ipwgu_lwl_l) < Re(ipwzu—1wo)-

This establishes the desired inequalities for the case v odd.
Second, assume that v is even: v = 2u. Then n = 4u, u = n/4, and

T — o
R

arg(iws,) =
Therefore, for any p € Sy, we have ipws, = p € Sy, and by ()
Re(ipwww;l) < Re(ipwspwy—1) < -+ < Re(ipwguwfl) < Re(ipwsuwo);
for any p € S1, ipws, = p € S1, and by ()
Re(ipws,w,) < Re(ipwsuw, ;) < -+ < Re(ipwzuwi) < Re(ipws,wy ).

This completes the proof of the lemma. O

Let wf,w?, ..., wl 1 and w,wi,...,wl_; be the permutations of wy,ws,

s ¥n—1 »*n—1
...,wp_1 determined in the last lemma. In this section we will select constants
Cy, Cy, My, M1,79,7%, Ry that can be used concurrently for the translated
sectors Ty and T7. Indeed, for the first two constants we choose Cy > 0 such
that |aq(t)] < Cp for 0 <t <1 andfora=0,1,...,n—2, and in terms of the
sectors To ={p—T9 | p€ So} and T3 = {p— 71 | p € S1}, we choose C; > 0
such that

eiro(wiofw?)(tfs) < Ol and ei‘rl(u.)ilfwjlv)(tfs) < Cl
for all ¢,s € [0,1] and for 4,5 = 0,1,...,n — 1. At this point we fix our
attention upon the sector T, returning later in the section to a discussion of
the sector Tj.
Fix any integer k with 0 < k < n — 1, and let k be the integer satisfying
0< kK <n-—1and wg = wg. Let us reconsider the Birkhoff approximate
solution

m—1 m—1
2 (t, p) = ePert Z 2 (t)p 7 = elrent Z 21 (t)p ™7, 0<t<1,
3=0 §=0

on the sector Ty. Our goal in the first part of this section is to construct an
actual solution wvg(t, p) of the differential equation (2.1) for p € Ty with |p|
sufficiently large, with vgx(t, p) behaving asymptotically like zx(t, p) on the
sector Ty and with vog (¢, p) having nice regularity properties on T relative to
the ¢ and p variables.

Applying Lemma 4.1, for any point p € T we have

Re(i(p + 70)u) < Re(i(p+10)w?) < --- < Re(i(p+mo)wl_y).  (41)
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Now take any point p € Tp. Then for j = 0,1,..., x the estimates (4.1) give

Re(ipw?) < Re(ipwg +i(p + 70) (W2 — w?)) = Re(imo(w? — w?) +ipw?),
so for 0 < s <t <1 we obtain the estimates
|eipw?(tfs)| _ eRC(ipw;J(tfs)) < eRc(iTO(wgfw?)(tfs)%»ipwg(tfs))

: o_ 0 _ s 0/y : Oy
_ ’6”'0(“’,‘; w;)(t s)||elpwﬁ(t s)| §01|elpwn(t s)|’

or .
’eipwj (t—s) | < Cl |eipwk (t—s) | (42)

for 0 < s <t <1, for p €Ty and for j = 0,1,...,k. Similarly, for j =
k=+1,...,n—1 the estimates (4.1) yield

Re(—ipw?) < Re(—ipw! +i(p+ 70)(? — w2)) = Re(irg(w? — &) — ipw?),
sofor0<t<s<l1

eipw?(t—s)‘ _ eRe(—ipw?(s—t)) < eRe(iTo(w?—wg)(s—t)—ipwg(s—t))

_ ’ei‘ro(wgfw?)(tfs”|eipw2(t75)| < Clyeipwg(tfs)L

or
|eipw?(t—s)’ < ‘eipwk(t—S)‘ (4.3)

for0<t<s<1forpeTp,and for j=rk+1,...,n—1.
Let Ky and Ky be the functions defined by

K n—1
KOl(t737p) = _Z(iw?)eipw?(t_8)7 KOQ(ta87p) = Z (iw?)eipw?(t_S)
j=0 j=k+1

for t,s € [0,1] and for p € C; let kg be the function defined by
1

ko(t,s,p) = np"_1 KOl(t,& ), 0<s<t< 1,
1
ko(t,s,p) = ’np”_l Kog(t,& ), 0 S t<s S 1,

for p # 0 in C; and let Ko, be the integral operator on L?[0, 1] defined by
1
Kopu(t) :== / ko(t, s, p)u(s)ds, 0<t<1, wueL?0,1],
0

for each p # 0 in C. From our earlier work [34, pp. 103-105], we know that if
u € L?[0,1] and v = Kopu, then v € H"[0,1] and (p"I — 7)v = u. Also, the
derivatives of v are given by
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1 qa
o) = [ TR 15 pyu(s) s
0

1 - 0ya+1 " gt
_ 0\ o[ elrw; (t—s) d
Y ;0%) p /0 u(s) ds (4.4)

n—1

1
Z (iw?)a—i-lpa/ eipw?(t—s)u(s) ds

Jj=r+1 ¢

1

+ npnfl

for 0 <t <1andfor a=0,1,...,n — 1. We will use the integral operator
Ko, extensively in deriving our asymptotic expansions, with the estimates
(4.2) and (4.3) producing bounds for the various operators relative to the
sector Tj.

Next, we begin the construction of actual solutions of the differential equa-
tion (2.1), looking for solutions of the form u(t, p) = zk(t, p) + &(t, p) where
zi(t, p) is the Birkhoff approximate solution. From equation (2.11) we know
that

(P"I = 0)zi(t, p) = P (t, p) (4.5)
for 0 <t <1and p=#0in C, where the residual function n(¢, p) is given by

n n+m—1

nk(typ)Z_fT Yol X an®io]

s=m+1 Ll+p+j=s

for 0 <t <1 and p # 0 in C. The function n(t, p) depends on the fixed
integers m and k. Choose a constant My > 0 such that

[k (£, p)| < Molp| =171 (4.6)

for 0 < ¢ <1 and for p € C with |p| > 1 (recall that m > n). Without loss of
generality we can assume that the constant M is independent of the integer
k.

Fix any point p # 0 in C. As we determine solutions to (2.1) and
to other equivalent equations, the various functions wu, ¢, and constants
co,C1,---,Cn_1 that appear will all depend upon the fixed integer k and the
fixed parameter p. For the time being we will surpress this dependence on k
and p in our notation. The only exceptions are in the Birkhoff approximate
solution zx( -, p) and the associated residual function ny( -, p), where we con-
tinue to display both the k and p dependence, and in the integral operator Ko,
where we continue to show the p dependence but surpress the &£ dependence.

Suppose u € H™[0,1] is a solution of the differential equation (2.1), and
let ¢ € H™[0,1] be the function defined by the equation u(t) := 2k (¢, p) + ¢(¢)
for 0 <t < 1. Then by (4.5) we have

0= (p"1 = Oyu(t) = " (t, p) + (p"I = 7)(t) — oo(t)

or
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(0" = 7)$(t) = o (t) — e e (t, p)
for 0 <t < 1. Set v(t) = ’COP(U (t) — ePring(t,p)) for 0 < ¢t < 1. Then
v belongs to H"[0,1] and (p"I — 7)v(t) = o¢(t) — e***!ni(t, p), and hence,
(p"I —7)(o(t) —v(t)) =0 for 0 <t < 1. Tt follows that there exist complex
constants cg, ¢1,...,c,_1 such that

3(t) = v(t) = coe " + crePrt oot o gelPen
or

$(t) = Kopop(t) — Ko, (" i (t, p)) + Z cjelreit (4.7)

for 0 < ¢ < 1. Equation (4.7) is an 1ntegr0—d1fferent1a1 equation for the func-
tion ¢.

Conversely, suppose ¢ € H"[0, 1] is a solution of (4.7) for some constants
€0,C1, - .-, Cn—1. We assert that the function u(t) := zk(t, p) + ¢(t) is a solution
of the differential equation (2.1). Clearly u belongs to H™[0, 1], (p"I —7)¢(t) =
op(t) — eirrtn, (¢, p) for 0 <t < 1, and by (4.5) again

("I — Ou(t) = Py (t, p) + (p"I = T)b(t) — o (1)
= PN ni(t, p) 4+ o (t) — P (t, p) — od(t) =

for 0 < t < 1. This establishes the assertion. We conclude that finding solu-
tions u to the differential equation (2.1) is equivalent to finding solutions ¢ to
the integro-differential equation (4.7) with arbitrary constants cg, c1, ..., ¢p—1.

Next, consider the special case of equation (4.7) where all the constants
c¢;j are set equal to zero:

$(t) = Kopod(t) — Ko, (" (t, p)) (4.8)
for 0 <t < 1. Suppose ¢ € H™[0,1] is a solution of equation (4.8). Clearly
0(t) = oKopo(t) — oKop (7 i (t, )
for 0 <t < 1. Let ¢ be the function defined by the equation
od(t) :=ePHp(t),  0<t<1
Clearly v € H?[0,1] and v € C0,1], and
UE) = &P Ky, (e (1)) — e K, (P 1, )

for 0 <t < 1. Writing out the last equation in detail, we get

t n—2 8aK
—1 W —s 01
P(t) = Pt = (b5, p)[$(s) = ks, p)] ds
1 1"‘2 9K,
—ipw —s 02
T ), > aa(t)e ekl )Tta (t,5,p)[¥(s) = nk(s, p)] ds
a=0

(4.9)
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for 0 <t < 1. Equation (4.9) is an integral equation for the function 1.
Conversely, suppose ¢ € C[0, 1] is a solution of the integral equation (4.9).
Let ¢ and u be the functions in H™[0, 1] defined by

O(t) = Kop (€ [ (t) — mi(t, p)])
Zlc(t7 P) + ¢(t) = Z/c(t7 P) + ICOp (eipwkt[w(t) - Uk(t, p)])

<
—~

~+
~—

I

for0<t<1.
First, we assert that o@(t) = e*“rtyp(t) for 0 < ¢t < 1. Indeed, from the
definition of ¢ we have

o(t) = ﬁ / Kou(t, 5, ) [ih(s) — mi (s, p)] ds

1 L .
b [ Kaaltss 960 100s) — (s ) s
np t

for 0 <t <1, and hence, by (4.9)

elpwit t n—2 (s 9 Koy
70t) = S [ 3 a0 T s ) [s) = el )] ds

a=0

eipwkt = —ipwi(t—s a061(02
+W/t Zaa(t)e Pk )W(ES,P) [&(s) = (s, p)] ds

a=0

= Pt (1)

for0 <t <1.
Second, again from the definition of ¢ we have

¢(t) = ICOpO'd)(t) - ICOp (eipwktnk (t, p))

for 0 < ¢ < 1, and hence, ¢ is a solution of (4.8). By our earlier work it
follows that the function w is a solution of the differential equation (2.1).
Summarizing, if ¢» € C[0,1] is a solution of the integral equation (4.9), then
the function

O(t) = Kop (" [ (t) —mu(t,p)]),  0<t <1, (4.10)

belongs to the space H"[0, 1] and is a solution of the integro-differential equa-
tion (4.8), og(t) = ePwriy)(t) for 0 <t < 1, and the function

u(t) = zk(t, p) + ¢(t)

eipwkt tfiw —s
—aaltop)+ S [ Rt o) sl ds

np™

eipwkt

1
/ o) K (¢, 5, p)[t6(s) — (5. p)] ds,

-1
np" t
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0 <t <1, belongs to H"[0,1] and is a solution of the differential equation
(2.1). Moreover, the derivatives of u are given by

elpwnt /teipwk(ts) 0*Ko1
npnfl 0 ata

eipUJkt ! —ipwy (t—s aaKOQ
e [T s ) 0s) — ()

ul@(t) = 2 (t,p) + (t, 5, p)[ib(s) — mie(s, p)] ds

(4.12)

for 0 <t <1andfora=0,1,...,n—1. We conclude that finding solutions ¢
to equation (4.8) is equivalent to finding solutions v to equation (4.9). In view
of this fact, the emphasis now shifts to solving the integral equation (4.9) for
the function 1. At this point the sector T comes into play. We will show that
equation (4.9) is uniquely solvable for all p € Ty with |p| sufficiently large.
For fixed p # 0 in C, let Ao, be the integral operator on C|0, 1] defined by

1
Aopu(t) == / go(t, s, p)u(s)ds, 0<t<1, wuecC|0,1],
0

where the kernel is defined by

12 . 0K,
go(t,s,p) == — aa(t)p‘(”‘z)e‘l’)“”“(t‘s)aT01 (t,s,p), 0<s<t<l,
n (0%
a=0
12 . 0K,
go(t,s,p) == — aa(t)p‘(”‘z)e‘l’)“”“(t‘s)aT02 (t,s,p), 0<t<s<l.
n (0%
a=0

Then the integral equation (4.9) can be written in the operator form
1 1
[I- ;Aop]w(t) = —;Aop n(t,p), 0<t<1, (4.13)

in the setting of the Banach space C[0, 1].

Lemma 4.2. For any point p € Ty with |p| > 1,

6QK01
ot

(.5.9)] < Cunlpl*[ =+~

for0<s<t<1and fora=0,1,2,...;

o~ K02
ate

(.5.9)] < Cunlpl*| 4

for0<t<s<1andfora=0,1,2,...; and |go(t,s,p)| < CoCin := M for
t#sin|0,1].
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Proof. Take any point p € Ty with |p| > 1. Then from (4.2) we have

K

. Oya+l o ipw(-) t—s
Z(Wj) preirs =)
=0

’a Koi < n‘p‘acl|eipwk(t75)| (*)

(1) =

for 0 <s<t<1andfor«=0,1,2,.... Similarly, by (4.3)

60[[(02 = s Oyatl o ipw?(t—s) o ipwi (t—s)
e (L5 P)| = D (W)t pretre <n|p|*Cile | (x)
Jj=r+1

for 0 <t <s<1andfor « =0,1,2,.... The estimate for |go(t, s, p)| follows
immediately from (%) and (x%). O

By the last lemma the norm of the operator Ao, satisfies the condition
Aoyl < My for all p € Ty with |p| > 1. Set 7o := max{1, M;} > 1. Take any
point p € Ty with |p| > ro. Then |p| > 1, |p| > My, and ||(1/p)Ao,|| < 1, and
hence, in the operator space B(C[0,1]) the operator I — (1/p).Ao, is invertible
with its inverse given by the Neumann expansion

1

[I_%AOP]_l :Z

Jj=0

= oad
pl 0

It follows that the integral equation (4.9), or the equivalent operator equation
(4.13), has a unique solution %o( -, p) in C[0, 1] given by

oo

1 1 -1 1 :
Yor(t, p) = > 1 - ;Aop] Aopi(t,p) == P AL et p)  (4.14)
=0

for 0 <t < 1, where the series in (4.14) is converging in C10,1] under the
supremum norm. In denoting the solution ¥o( -, p), we have now displayed
the full dependence upon the integer k£ and the parameter p, with p restricted
to belong to the sector Ty with |p| > ro.

Now use (4.11) to define the function vog( -, p) € H"[0,1] by

eipb%t ! —ipwg (t—s
vok(t, p) = zi(t, p) + W/e Port=2) o1 (¢, 5, p) [Yor (s, p) — ni(s, p)] ds
0
elpwit 1 s
1 /e_”“’“( ~ Koa(t, 5, p) Yok (s, p) — ma(s, p)] ds
t

(4.15)

for 0 <t <1 and for p € Ty with |p| > rg. By our earlier work the function
vor( -, p) is a solution of the differential equation (2.1), and by (4.12) the
derivatives of vk ( -, p) are given by
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o$(t,p) = 2Lt p)

eipwkt t (s 0K,
7/6 pun(f )Ttam (t,s,p)[Yox(s, p) — (s, p)] ds
0

npnfl
eipwkt ! —ipwg (t—s aaKOQ
1 /te Pk )W(ﬂsaﬂ)[%k(s»ﬂ)—ﬁk(&P)] ds

(4.16)

for 0 <t <1, for p € Ty with |p| > rg, and for « =0,1,...,n— 1.
For p#0in C and for « =0,1,...,n—1 let

1 e—ipwk(t—s) 9% Ko

hoa(t, s, p) := T 50 (t,s,p) for0<s<t<1,
1 : 0K
hoa(t, s, p) := T e_‘p‘”’“(t_s)TaO? (t,s,p) for0<t<s<1,

and let Boo, be the integral operator on C[0, 1] defined by

1
Boapu(t) := / hoa(t, s, p)u(s) ds, 0<t<1, wueC]o,1].
0
From Lemma 4.2 we have

|hoa(t; 8, )| < le7iPwr(t=9)| . Cyn|p|®|ePer =) | = Cy|p| (P17

n|p|["1
for t # s in [0,1], for p € Ty with |p| > 1, and for « = 0,1,...,n — 1, and
hence, the norm of the operator Boq, satisfies the estimate

HBOapH <Ci |p|_(n_1_a)

for p € Ty with |p| > 1 and for a = 0,1,...,n — 1. In terms of By, equation
(4.16) can then be written as

ot p) = 28, p) + €74 Boa ok (t, p) — mie(t,p)]  (4.17)

for 0 <t <1, for p € Tp with |p| > ro, and for « =0,1,...,n — 1.
Note that

. o« 1 t )
Boapu(t) = e Port —— { /K01(t, s, p)[ePF u(s)] ds
ap ote npnfl 0 [ ]

1
’I’Lpn71

; [mm@mwwwmw}

ipwnt 9% ipwit
=e D Kople™* u(t)],
which shows that the operator Bo,, maps C0, 1] into H"~*[0, 1], and is con-
tinuous from the sup norm-structure to the H"~“-structure. Combining this
fact with (4.17) and (4.14), we conclude that
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oo
a o $ow 1 .
00 = A7)~ S LB, Al milrp) (419
3=0

for 0 <t <1, for p € Ty with |p| > rg, and for « =0,1,...,n — 1, where the
series converges in the space H"~ [0, 1] under the norm | |gn-a.
For p € Ty with |p| > ro and for « =0,1,...,n — 1, set

Eorka(t, p) = p"" Boap[Yor(t, p) =kt p)],  0<t <1
The function Egka( -, p) belongs to H* [0, 1], and (4.17) can be rewritten as

v (t,p) = 24 (¢, p) + €7+ Eoga (£, p) p " (4.19)

for 0 <t <1, for p € Ty with |p| > ro, and for « = 0,1,...,n— 1. To estimate
the growth rate of the function Fogs( -, p), consider any point p € Ty with

|p| > 2rg. Then

1 M, 1

7-/10 ‘ <5< 5
Hp Pl T2
and from (4.13) and (4.6) we have

”%k('vp)ﬂoo_illwo;f( o + = M|p| (m+1=n).

or
1ok () lloe < Mo|p| =17 (4.20)

for p € Ty with |p| > 2r¢. Cf. equation (4.6). It follows that
1 Eoka(-sp)llse < lp|™™* - Culp|= 1) - 2My|p| =17 = 201 My,

or
I Eoka( s p)lloo < 2C1 My == (a constant) (4.21)

for p € Ty with |p| > 2rg and for & = 0,1,...,n — 1. In (4.19) and (4.21)
we have established our asymptotic formulas for the solution v (-, p) and its
derivatives relative to the sector Tj.

Next, we apply the above construction to create a basis for the solution
space of the differential equation (2.1). For k =0,1,...,n—1 and p € T with
|pl > ro, let

UOO('ap)av()l('7p),'~~71}0n—1('7p) € Hn[oal]

be the solutions of the differential equation (2.1) constructed above. We assert
that these solutions are linearly independent for |p| sufficiently large. Indeed,
from Chapter 2 the derivatives of the Birkhoff approximate solutions are given
by

H

m— m+p—1

p
AP () = PP TN g 2 (p7 T = pPe ot ST f(8)p”
¢=0 j=0 =
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for k,p=0,1,...,n—1, where fiu0(t) = agpo = (iwg)?. Combining this result
with equation (4.19), we have

m+ta—1

v (£, p) = pelrrt [(iwk)”‘ + Y fras(®)p ™" + Boralt, p)p ™

s=1

for 0 <t <1, for p € Ty with |p| > rg, and for k,a = 0,1,...,n — 1, where
by the bound given in equation (4.21)

m+ta—1
(W)™ + Y fras(t)p™" + Eokal(t, p)p™™ — (iwg)®
s=1
uniformly on [0,1] x Ty as |p| — oo for k,a = 0,1,...,n — 1. Since the

Vandermonde matrix ((iwx)®) is nonsingular, using the continuity of the de-
terminant, we can choose a constant Ry > 2r such that the matrix

m+a—1

V(t,p) = {(iwk)“ + Z Jras(t)p™* + Eozm(t,p)p‘m}

s=1

is nonsingular for 0 < ¢ < 1 and for p € Ty with |p| > Ro. It follows that the
Wronskian

W(Uoo, Vo1,---,00 n—l)(ta p) = det [’U(()(;:)(t, p)}

_ p1+2+~-+(n—1)eip(wo+w1+~~-+wn,71)t det V(t, p)

= p" V2 det V¢, p)

is nonzero for 0 < ¢t < 1 and for p € Ty with |p| > Rp. This proves that
the solutions vox (-, p), k =0,1,...,n—1, are indeed linearly independent for
p €Ty with |p| > Ry.

To develop the regularity properties of the functions ¥o (¢, p) and vok (¢, p),
we will use Lemma 12.1 and Lemma 12.2 of the Appendix (Chapter 12). Again
fix the integer k with 0 < k <n — 1. Set

Go = {p € Int Ty | |p| > Ro},
an open set in the p plane. We know that
p ¢ _
ne(t,p) = — n Z Z Ck@p(t)zl(cj) )| p~*
s=m+1 Ll+p+j=s

for 0 <t <1and p+#0in C, and hence, the function (¢, p) is continuous on
[0,1] x Go, and 8% Nk (t, p) exists and is continuous on [0,1] x Go. For p # 0
in C define
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_ i 0K,
bo1(t, s, p) Zaa (n=2)gipwrli= S)T (t, s, p) nk(s, p),
0<s<t<l,
n—2
1 —(n— —ipw s) a K02
dua(t: 5,p) 1= — Y aa(t)p” " De I =T (85, p) (s, ),
a=0
0<t<s<1,
and set

do(t, s, p) = do1(t,s,p) for0<s<t<1, peQqG,
do(t,s,p) == do2(t,s,p) for0<t<s<1l, pée€QqGy.

Clearly ¢o(t, s, p) = go(t, s, p)nk(s, p) for t # s in [0,1] and p € Go, and

1
'AOpnk(t7p) = /d)O(tasap) dS, 0 S t S 17 pe G0~
0

From Lemma 12.1 we conclude that Ag,nx (¢, p) is continuous on [0, 1] x Gy, and
a% [Ao,ni(t, p)] exists and is continuous on [0, 1]xGy. Proceeding by induction,

for j =0,1,2,... the function Aépnk(t, p) is continuous on [0, 1] X Gy, and the
derivative 6% [Aépnk(t, p)] exists and is continuous on [0, 1] x Go.

Next, for each p € Gy let us examine the unique solution g (¢, p) of the
integral equation (4.9), where by equation (4.14)

Yok(t, p) Z - A} (¢, p)

for 0 < t < 1, with the series converging in C[0,1] for each p € Gy. For the
partial sums of the series,

Son(t,p) = Z Akt p),

N = 1,2,..., it follows that Son(t,p) is continuous on [0,1] x Go, and
d% [Son(t, p)] exists and is continuous on [0, 1] x Gj.
Since || Ao, || £ My and |p| > Ry > 2M; for p € Gg, we have
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oo

1 .
lor(-,0) = Sow ()l = || D0 = A0
j=n1 P o
- 1 j —(m+1-—n
< X g () Mol
j=N+1 P

e s} Mj+m+1—7z
= Mo(a) i 3

Pt ‘p‘j+m+17n
. 1
—(m+1—n
< Mo(My) =" Y 7
j=N+1
27(m+17n)M0(M1)7(m+17n)
= oN
for each p € Gy, and hence,
Moy (2M, —(m+1—n)
[Whok(- ) — Son(-p) oo < MOEM (1.22)

for p € Gy and for N = 1,2, .... This result shows that the functions Son (¢, p)
converge uniformly on [0,1] x G to ¥ok(t, p) as N — oo. From Lemma 12.2
we conclude that g (¢, p) is continuous on [0,1] x Go, and the derivative
a% [tok(t, p)] exists and is continuous on [0, 1] X Gp. It is immediate that the
function

do(t, p) = mk(t,p) = = i Aok (t, p)
=0

is continuous on [0, 1] x Go, and the derivative a% [Yor(t, p) — ni(t, p)] exists

and is continuous on [0, 1] x Gj.

Finally, consider the derivative functions véz) (t, p) given by equation (4.16)

for 0 <t <1, for p € Ggy, and for « =0,1,...,n—1. Again by Lemma 12.1 we
see that v(()z) (t, p) is continuous on [0, 1] x Gy, and the derivative a% [v(()z) (t,p)]
exists and is continuous on [0, 1] x Gj.

We summarize these results for the sector T in the following theorem.

Theorem 4.3. Let n be even: n = 2v; let To = {p— 71 | p € So} be the
translation of the sector Sy selected in the last chapter; let m be the integer
chosen in the last chapter with m > n, m > pg, and —(m —pg — 1) < p < po;
and for each p # 0 in C let

m—1

Zk(tap) :eip"%t Z ij(t)p7j7 k:()v]-v"'vn_]-a

=0

be the Birkhoff approzimate solutions of the differential equation (2.1) that
are determined by Theorem 2.1. Then there exists a constant Ry > 0 such
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that for p € Ty with |p| > Ro, there exist n functions voo( -, p),vo1(*,p), .-,
Von—1(+,p) in H™[0,1] that are linearly independent solutions of the differen-
tial equation (2.1), with

vé(l:)( 7p) - Z]E;a) (t7 ,0) + eipwktEOka (t7 p)p_m+a

for0 <t <1, for p € Ty with |p| > Ry, and for k,a = 0,1,...,n— 1. The
function Eora (-, p) belongs to H*~ %[0, 1] with |Eoga(t, p)] < v (a constant)
for 0 <t <1, for p € Ty with |p| > Ry, and for k,a = 0,1,.. ,n— 1. For
the open set Go = {p € Int Ty | |p| > Ro} and for k,a =0,1,...,n — 1, the
function v( )(t p) is continuous on [0,1]x Gy, and the derwatwe 88 [v(()k)(t, p)]
exists and is continuous on [0,1] x Gj.

To construct solutions of the differential equation (2.1) on the sector T3, we
will follow the procedure used above for the sector Tj. Since the development
is so similar, we simply sketch the results. In working on the sector Ty, we
will utilize the permutation wj,w;, ... ,wk_; of wo,w1,...,w,_1 determined
by Lemma 4.1. Fix any integer k£ with 0 <k <n —1, and let x be the unique
integer satisfying 0 < k < n — 1 and w! = wg. Then as an application of
Lemma 4.1 we obtain the estimates

!eipwjl- (t—s)’ <Oy

elrwn(t=9))| (4.23)
for0<s<t<1,for peTi, and for j =0,1,...,k; and

eipwj.(t—s)’ < |eipwk(t—8)‘ (4.24)

for0<t<s<1lforpeTi,and for j=rk+1,...,n—1.
Let K17 and K75 be the functions defined by

K n—1

: ipwl(t—s . ipwl(t—s
Kll(t787p) = _Z(lel')ep ](t )7 K12(t78ap) = Z (lel')ep ](t )
7=0 Jj=r+1

for t,s € [0,1] and for p € C; let ky be the function defined by

1

ki(t,s,p) = = 1K11(t $,0)s 0<s<t<1,
1

ki(t,s,p) = = — Kia(t, 8, p), 0<t<s<l1,

for p # 0 in C; and let K, be the integral operator on L?[0, 1] defined by
K1pu(t) /k:ltsp s) ds, 0<t<1, wuelL*0,1],

for each p # 0 in C. Again let zx(t, p) be the Birkhoff approximate solution,
and let 7y (¢, p) be the associated residual function. These functions have been
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used extensively in our work on the sector Ty, and they will be used again
here for our work on the sector T7. They are independent of the sectors.
Fix any point p # 0 in C. Let u, ¢ € H™[0,1] be functions related by the
equation
u(t) = zx(t,p) + ¢(t) for 0 <¢ < 1.

Then it follows that u is a solution of the differential equation (2.1) if and
only if there exist constants cg,cy,...,c,_1 such that

n—1
B(t) = K1,00(t) — K1, (" ni(t, p)) + Y c;e?" for 0 <t < 1. (4.25)
j=0

This is an integro-differential equation for the function ¢.
Next, we consider the special case of (4.25) where all the ¢; are set equal
to zero:

B(t) = K1,00(t) — K1, (e 'ni(t,p)) for 0 <t <1 (4.26)

Suppose ¢ € H™[0,1] is a solution of equation (4.26), and let ¢ € H?[0,1] be
the function defined by the equation

o¢(t) == ePrtah(t) for 0 <t < 1.
Then ¢ belongs to C[0,1], and ¢ is a solution of the equation
Ut) = eIy (¢p(1)) — PR, (P (1, ),

which reduces to the integral equation

1 R K
—ipwg (t—s 11
’LZJ(t) - npn—l o O;)aa(t)e Pk (t )W (t,s,p) [1/’(5) - nk(sap)] ds
1 [T , K
—ipwy (t—s) 12 _
+ npn_l \ Z aa(t)e : ot (tvsvp) [1/’(3) nk(sap):l ds
(4.27)
for0 <t <1.

On the other hand, suppose ¢ € C[0, 1] is a solution to the integral equa-
tion (4.27). Let ¢ € H™[0,1] and u € H™[0, 1] be the functions defined by

B(t) = K1p (e [ (t) — mu(t, p)]) (4.28)

u(t) = Zk(tv p) + (b(t) = Zk(tv p) + K:lp(eipwkt[z/)(t) - nk(t’ p)D (429)

for 0 <t < 1. Then o¢(t) = eP“riah(t) for 0 < t < 1, ¢ is a solution to
equation (4.26), and u is a solution of the differential equation (2.1). Conse-
quently, our attention now focuses on solving the integral equation (4.27) for
the function .
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For fixed p # 0 in C, let A;, be the integral operator on C0, 1| defined by
1
Aipu(t) == / g1(t, s, p)u(s) ds, 0<t<1, wuecC|0,1],
0

where the kernel is defined by

n—2
1 . Y7¢
01(t5.0) =+ 3 aa(t)pm e TRy g ci<n,
n «
a=0
n—2
1 . i
01(t5.0) =+ 3 aa()p et TRz ) gy cicn
n «
a=0

The integral equation (4.27) can then be written in the operator form
1 1
(1= Al = = Aagmilt.p),  0<t<T, (4.30)

in the setting of the Banach space C|0, 1]. Up to this point the sector T} has
not been a factor — the situation is about to change.

Indeed, for p € Ti with |p| > 1, the operator A, satisfies the bound
|A1,]] < My, where M; = CoCin is the constant introduced previously.
As earlier set rg = max{1,M;} > 1. Then for any p € Ty with |p| > ro,
|(1/p)Ai1,]| < 1, the operator I —(1/p)A1, is invertible with its inverse given
by

1 =1
[I_f‘AlP] :Zi“Ajlpﬂ
p =
and the integral equation (4.27), or the equivalent operator equation (4.30),
has a unique solution ¢1( -, p) in C[0,1] given by
1 (oo}

1 -1 1 ;
T/)lk(t,P) = _; [I - ;‘Alp] Alp nk(tap) = - Z pj+1 ‘A{jlnk(tap) (431)
j=0

for 0 <t < 1, where the series in (4.31) is converging in C]0,1]. Applying
(4.29), the function vy (-, p) € H™[0,1] defined by

vik(t, p) = zi(t, p) + K1, (€75 W11 (t, p) — ni(t, p)]) (4.32)

for 0 <t <1 and for p € Ty with |p| > ro, is a solution of the differential
equation (2.1). The derivatives of vi( -, p) are given by

ot p) = 27 (L, p)

elpwit t B 0K
* Aem”“$ (4,5, )1k (5, p) — (5, p)] ds

npn—l ot
eipwkt /1 . 8(1K12

eipen(ime) (t, s, p)[1k(s; p) = mi(s, p)] ds
npn=1 J, ote [ )

(4.33)
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for 0 <t <1, for p € Ty with |p| > rg, and for « =0,1,...,n — 1.
For p #0in C and for « = 0,1,...,n — 1 let

1 (t—s) 6“K11

hia(t, s, p) = i e ipwr 5 (t,s,p) for0<s<t<1,
1 ; 0*K
hia(t, s, p) = T eﬂpwk(t*s)T;Q (t,s,p) for0<t<s<l,

and let By,, be the integral operator on C[0, 1] defined by
1
Biapu(t) :== / hia(t, s, p)u(s)ds, 0<¢t<1, weC,]1].
0

The operator By, satisfies the bound
H‘BlapH < CI|P|_(n_1_a)

for p € Ty with |p| > 1 and for « = 0,1,...,n— 1, and equation (4.33) can be
written as

VOt p) = 2Dt p) + P B[kt p) — it p)]  (4.34)

for 0 <t <1, for p € Ty with |p| > rg, and for « =0,1,...,n — 1.

Note that the operator Bi,, maps C|0, 1] into H*~ %[0, 1], and is continu-
ous from the sup norm-structure to the H™"~“-structure. Combining this fact
with (4.34) and (4.31), we conclude that

@ « ipwyt - 1 i
vt 0) = 27 (tp) — Pty i Biap AL, Mk (t, p) (4.35)
7=0

for 0 <t <1, for p € Ty with |p| > rg, and for « =0,1,...,n — 1, where the
series converges in the space H"~*[0, 1] under the norm | |gn-a.
For p € Ty with |p| > ro and for « =0,1,...,n — 1, set

Erga(t,p) = p" " Biap[twk(t, p) —me(t,p)],  0<t<1
The function Fiio( -, p) belongs to H" [0, 1], and (4.34) can be rewritten as
Vit p) = 57 (t, p) + €7 By (t, p)p~ (4.36)

for 0 <t <1, for p € Ty with |p| > ro, and for « = 0,1,...,n — 1. As in our
previous work we obtain the estimates (see (4.6))

915+, p) oo < Mplp|~(mF1=m) (4.37)
for p € Ty with |p| > 2r¢, and

[ E1kal s p)lle < 2C1 Mo =70 (4.38)
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for p € Ty with |p| > 2rg and for & = 0,1,...,n — 1. In (4.36) and (4.38)
we have established our asymptotic formulas for the solution v (-, p) and its
derivatives relative to the sector T3.

Next, for k =0,1,...,n— 1 and for p € T} with |p| > ro, let

vio( -+, p),v11(-,p)s - v1n-1(-,p) € H"[0,1]

be the solutions of the differential equation (2.1) constructed above. Applying
the argument used earlier to determine the constant Ry, we can choose a
constant Ry > 2ry such that the Wronskian

W (v10,011, - - -, V1 n—1)(t, p) = det [vﬁz)(t, p)]

is nonzero for 0 < ¢t < 1 and for p € Ty with |p| > R;. Thus, the solutions
vig(-,p), K = 0,1,...,n — 1, of (2.1) are linearly independent for p € T
with |p| > R;. By choosing the maximum of Ry and R;, we can assume that
R; = Ry in the sequel.

The regularity properties of the functions 11 (t, p) and v (t, p) are iden-
tical to those for the functions ¥ok(t, p) and voi (¢, p); they are also based on
Lemma 12.1 and Lemma 12.2 of the Appendix (Chapter 12). Fix the integer
k with 0 <k <n—1, and set

Gr:={peIntTi||p| > Ro},

an open set in the p plane. The function 11 (¢, p) is continuous on [0, 1] x G,
and the derivative 6% [tk (t, p)] exists and is continuous on [0,1] x Gy; for

a=0,1,...,n — 1 the derivative vgz)(t,p) is continuous on [0, 1] x Gy, and

a 1, ()

the derivative 5 [v1% (£, p)] exists and is continuous on [0,1] x G1.

These results for the sector T} are summarized below in a theorem.

Theorem 4.4. Let n be even: n = 2v; let Ty = {p—711 | p € S1} be the
translation of the sector Sy selected in the last chapter; let m be the integer
chosen in the last chapter with m > n, m > pg, and —(m —py — 1) < p < py;
and for each p # 0 in C let

m—1

Zk(tap) :eip(‘%t Z ij(t)p7j7 k:O71a"'7n_17
7=0

be the Birkhoff approzimate solutions of the differential equation (2.1) that
are determined by Theorem 2.1. Then there exists a constant Ry > 0 such
that for p € Ty with |p| > Ro, there exist n functions vig( -, p),v11(-,p), ...,
V1n—1(+,p) in H™[0,1] that are linearly independent solutions of the differen-
tial equation (2.1), with

ol (1) = 2 (t p) + € Ergat, p)p
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for 0 <t <1, for p € Ty with |p| > Ry, and for k,a = 0,1,...,n — 1. The
function Eip(-,p) belongs to H*[0, 1] with |E1ka(t, p)| < vo (a constant)
for 0 <t <1, for p € Ty with |p| > Ry, and for k,aa = 0,1,...,n — 1. For
the open set G1 = {p € IntT1 | |p| > Ro} and for k,a = 0,1,...,n—1, the
function viz)

exists and is continuous on [0,1] X Gy.

(t, p) is continuous on [0, 1] x Gy, and the derivative a% [vgz) (t,p)]

4.2 Expansions for n Odd

In the last part of this chapter, we establish the asymptotic expansion of
solutions to the differential equation (2.1) for the case n odd. The development
here is identical to the case n even, and hence, we simply indicate the main
features of the theory. Assume that n is odd: n = 2v — 1 > 3. Relative to the
sectors Sy, S1 given by

So: all p= |p|ei0 € C with — s <6< 1,
2n 2n
Si: all p= |p|ei9 G(vaithw—L §9§7r+l,
2n 2n
we have the following analogue of Lemma 4.1.

Lemma 4.5. Let n be odd: n = 2v — 1. Then there exist permutations

0 0 0 11 1
W, Wiy sWh_y  and  wi,Wwi,. .., Wh_y
of the nth roots of unity wo,w1,...,wn_1 such that

Re(ipw]) < Re(ipwl) < --- < Re(ipwl_;) for all p € So,

n—1

Re(ipwy) < Re(ipwi) < --- < Re(ipw}_|) for all p € Sy.
Proof. Let Xy and X7 be the sectors in the p plane defined by

So:all p=|ple? € Cwith0 <6<,
n

1z all p=|ple € C with —%gego.

1

The two lists wo,wfl,wl,wgl,wg, . ,w;fl,wy,l and wal,wl,wf17w27w5 ,

. ,w,,,l,w,;ll are permutations of wg, w1, ...,w,_1 with
Re(pw,—1) < Re(pw; 1)) < -+ < Re(pws) < Re(pw; ')
< Re(pw1) < Re(pw; ") < Re(puwo)

(%)

for p € Xy, and

Re(pw, 1) < Re(pw,—1) < -+ < Re(pwy ') < Re(pws)
< Re(pwi ") < Re(pwr) < Re(pwy ')
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for p € 2.

Assume v is odd: v = 2pu—1. Then arg(iwq—,) = 7/(2n) and arg(iws_3,) =
—m—m/(2n). Thus, for any point p € S, the point ipw;_, belongs to Xy, and
by ()

Re(ipwi—pwy—1) < Re(ipwl,uw,;ll) <o < Re(ipwi—pws) < Re(ipwl,uwgl)
< Re(ipwi—,wi) < Re(ipw;—,wit) < Re(ipw;—,wo).

Similarly, for any point p € Si, the point ipws_3, belongs to X7, and by (%)

Re(ipw2,3#w;}1) < Re(ipwe—szuwy—1) < -+ < Re(ipw273uw271)
< Re(ipwa—zuw2) < Re(ipwg,gﬂwfl)
< Re(ipwa—zuwr) < Re(ipwg,gﬂwal).
Assume v is even: v = 2. Then arg(iw_,) = —7/(2n) and arg(iwi_3,) =
—m + m/(2n). Thus, for any point p € Sy, we have ipw_, € X1, and by (¥x)
Re(ipw_,w, ;) < Re(ipw_ wy—1) < -+ < Re(ipw_,wy ') < Re(ipw_ ,w2)
< Re(ipw_uwi ) < Re(ipw_,w1) < Re(ipw_,wyb).
Also, for any point p € S1, the point ipwi_3, belongs to Xy, and by (x)
Re(ipwi—suwy—1) < Re(ipwl_guw;_ll) < -+ < Re(ipwi_3uw2)
< Re(ipwl_;wwz_l) < Re(ipwi—3,w1)
< Re(ipwl_guwl_l) < Re(ipwi—3uwo)-

This completes the proof of the lemma. O

Let wl,w?,...,w? | and w,wi,...,wl | be the permutations of wp,ws,

...,wp_1 determined in Lemma 4.5. We begin our expansion of solutions for
p belonging to the translated sector Ty. Fix any integer k with 0 < k < n—1,
and let x be the integer satisfying 0 < x < n — 1 and w? = wy. Let Ko and
Koz be the functions defined by

K n—1

. ipw? (t—s . ipw?(t—s

KOl(t787p) = E (leo')ep ](t )7 KOQ(taSap) = § (leo')ep J(t )
=0 j=r+1

for t,s € [0,1] and for p € C; let kg be the function defined by
1
kO(t,svp) = WK()l(tasap)a 0§S<t§1,

1
kO(t,svp) = WKOQ(tasap)a 0<t<s<],

for p # 0 in C; and let K, be the integral operator on L?[0, 1] defined by
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1
Kopu(t) := / ko(t, s, p)u(s)ds, 0<t<1, wueL?0,1],
0

for each p # 0 in C. The operator Ko, has the same properties as its earlier
version for the case n even.
For the fixed integer k, we form the Birkhoff approximate solution

m—1 m—1
2kt p) = P 3" a0 = PN T, 0t <L
7=0 3=0

and the corresponding residual function

n n+m—1
1% 4 —s
Uk(t,/’) =~ Z [ Z Ckep(t)zlg:j) (t)] P 0<t<1,

! s=m+1 L l+p+j=s
with _
(P = 0)zi(t, p) = P (t, p) (4.39)

for 0 <t <1and p+#0in C, and with
Im(t, p)| < Mo|p| ="+ (4.40)

for 0 <t <1 and for p € C with |p| > 1. Fix any point p # 0 in C. A function
u(t) belonging to H™[0, 1] is a solution of the differential equation (2.1) if and
only if the function ¢(t) = u(t) — z(t, p) is a solution of the integro-differential
equation

n—1
o(t) = Kopod(t) — Ko, (eip‘”’“tnk(t,p)) + Z cjeip“’jt, 0<t<1, (4.41)
=0

for some constants cg, ¢1,...,Cn_1.
Consider the special case of equation (4.41) where all the constants ¢; are
equal to zero:

P(t) = Kopod(t) — Kop (e mi(t,p)),  0<t<1 (4.42)

If ¢(t) is a function in H™[0, 1] that is a solution of equation (4.42), then the
function 9 (t) = e P“ktag(t) is a solution of the integral equation

00) = iy [ an(tpe 7 S s ) [0(e) — s )] ds

n 1 1 7§a (t)e—ipuk(t—S)% (t,s,p) [w(s) — k(s ,0)] ds
e “ ot V77 ) ’

(4.43)
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0 <t < 1. Conversely, if ¥(¢) is a function in C[0,1] that is a solution of the

integral equation (4.43), then the function ¢(t) = Ko, (e**[1h(t) — ni(t, p)])
is a solution of equation (4.42), and the function

u(t) = zi(t, p) + ¢(t) = zi(t, p) + Kop (" [(t) — m(t, p)])

elpwkt t .
B —ipwy (t—s) _
= Zk(ta ,0) + ’n,p"—l /oe ’ Kol(tasap)[w(s) nk(s’p)] ds (444)

ipwit

e

1
/ TP Ko (5, p) [(s) — 1k (s, p)] ds,

-1
np" t

0 <t <1, is asolution of the differential equation (2.1), where the derivatives
of u(t) are given by

. A Y ¢
W) = 2 (1) + S e S 1 ) Tu) — . )] s
np 0 te

goert 19O,
# S [ T s o) . ) s

(4.45)

for 0 <t <1andfora=0,1,...,n—1. It is in solving equation (4.43) that
the sector Ty comes into play.
For each p # 0 in C, let A, be the integral operator on C|0, 1] defined by

1
Appu(t) == / go(t, s, p)u(s)ds, 0<t<1, wuecC|0,1],
0

where the kernel is defined by

1 . 57¢
go(t,s,p) := — aa(t)pf("fz)eﬂp‘”’“(t*s) L o1 (t,s,p), 0<s<t<l,
n = ot™
n—2
1 . £57¢
go(t.5.0) 1= - 3 an Do L0 gy cicn
n «
a=0

Then the integral equation (4.43) can be written in the operator form
1 1
[I - ;‘Aop]w(t) = _;‘AOP nk(t7p)7 0<t<, (446)

in the setting of the Banach space C[0, 1].

It follows that the operator Ay, is bounded, [|Ag,| < My, for all p € Tj
with |p| > 1. Setting ro := max{1,M;} > 1, for any p € Ty with |p| > 7o
the integral equation (4.43), or the equivalent operator equation (4.46), has a
unique solution Yok ( -, p) in C|0, 1] given by

oo

1 1 1
¢0k(t7p) = _; [I — ;AOp] AOp nk t p Z 7AJ+1ﬁk t p) (447)
7=0
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for 0 < t < 1, where the series in (4.47) is converging in C0,1] under the
supremum norm. Now use (4.44) to define the function vox(-,p) € H"[0,1]
by

vor(t, p) = zk(t, p)

elpwrt t
pwn(t—s) _
e e Koa(t5,)ltos(5,9) — sl )54

ipwit

e

1
e [ Kaatt s, pluon(s:) s ) ds
t

for 0 <t <1 and for p € Ty with |p| > r¢. The function vox( -, p) is a solution
of the differential equation (2.1), and by (4.45) the derivatives of voi( -, p) are
given by

o$(t,p) = 27t p)

eipwkt t (s 0K,
+ o1 /e perlt )Tam(t, s, p)[Yox (s, p) — Mk (s, p)] ds
0

eipwkt 1 o (e aozKO2
+ npnfl /te porl S)aT (tasap)[w()k:(&p) _nk(sap)] ds
(4.49)

for 0 <t <1, for p € Ty with |p| > rg, and for « =0,1,...,n — 1.
Next, for p # 0 in C and for « =0,1,...,n — 1 let

1 g 0°K,

hoa(t, s, p) := o pur(t )Tam(t,s,p) for 0 <s<t<l,
1 o 0°K,

hou(t, s, p) := —— pur (¢ ‘)TQOQ (t,s,p) for0<t<s<I,

and let Boa, be the integral operator on C[0, 1] defined by
1
Boapu(t) := / hoa(t, s, p)u(s) ds, 0<t<1, weC[0,1].
0

The norm of Bo,, satisfies the estimate || Boa,|| < Cilp|~ 1) for p € Ty

with |p| > 1 and for « =0,1,...,n — 1, and in terms of this operator we can
rewrite (4.49) as
vop (£ p) = 2 (1, p) + €0 Boaplbon(t, p) = mi(t.p)]  (4.50)

for 0 <t <1, for p € Tp with |p| > ro, and for « =0,1,...,n — 1.
For p € Ty with |p| > rg and for « = 0,1,...,n — 1, set

EOka(t’P) = Pm_a BOap[ka(tvp) - nk(tap)]v 0 S t S 1.

The function Eoga (-, p) belongs to the space H"~*[0, 1]; equation (4.50) can
be expressed as
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v (t,p) = 2 (t,p) + €74 Bopa (£, p)p~ " (4.51)

for 0 <t <1, for p € Ty with |p| > rg, and for « = 0,1,...,n — 1; and
1 Eoka (s 0)lloo < 70 (a constant) (4.52)

for p € Ty with |p| > 2r¢ and for « = 0,1,...,n — 1. Equations (4.51) and
(4.52) are our asymptotic formulas for the solution vog( -, p) and its derivatives
relative to the sector Tj.

Finally, we repeat the above construction for £k = 0,1,...,n — 1 and for
p € Ty with |p| > ro, producing the solutions

Uoo(',P),Um(',P)w'-7U0n71('7/)) € H"[O,l]

of the differential equation (2.1). These solutions are linearly independent for
p € Ty with |p| sufficiently large. The regularity properties of the solutions
vok(t, p) then follow from the lemmas in the Appendix (Chapter 12).

These results for the sector Ty are collected below in a basic theorem. Cf.
Theorem 4.3.

Theorem 4.6. Let n be odd: n =2v — 1; let To = {p—710 | p € So} be the
translation of the sector Sy selected in the last chapter; let m be the integer
chosen in the last chapter with m > n, m > pg, and —(m—po—1) < p,q < po;
and for each p # 0 in C let

m—1

2t p) = PNz (t)p, k=0,1,...,n—1,
=0

be the Birkhoff approzimate solutions of the differential equation (2.1) that
are determined by Theorem 2.1. Then there exists a constant Ry > 0 such
that for p € Ty with |p| > Ro, there exist n functions voo( -, p),vo1(,p),- -,
von—-1(+,p) in H™[0,1] that are linearly independent solutions of the differen-
tial equation (2.1), with

u$ (8, p) = 2 (1, p) + €K Egpa (t, p)p~ ™

for 0 <t <1, for p € Ty with |p| > Ro, and for k,a = 0,1,...,n—1. The
function Eoga (-, p) belongs to H" [0, 1] with |Eora(t, p)| < v0 (@ constant)
for 0 <t <1, for p € Ty with |p| > Ry, and for k,a = 0,1,...,n — 1. For
the open set Go = {p € Int Ty | |p| > Ro} and for k,a =0,1,...,n — 1, the

(@)

function vy, (t, p) is continuous on [0,1]x Gy, and the derivative 2 [vé‘;) (t.p)]

op
exists and is continuous on [0,1] x Gj.

To obtain solutions of the differential equation (2.1) for p belonging to the
sector T7, we use the exact same argument used earlier for the case n even.
Indeed, fix any integer k with 0 < k <n — 1, and let x be the unique integer
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satisfying 0 < x < n — 1 and w} = wi. The key to this work is to introduce
the integral operators Ky, and A;,. First, let Ki; and K2 be the functions
defined by

K n—1

K1 (t,s,p) == —Z(iw;)eiw;(t—s)7 Kio(t,s,p) == Z (iwgl)eipw;(t_s)
j=0 j=k+1

for t,s € [0,1] and for p € C; let k; be the function defined by

1

npn non—1

1
k1(t, s, p) ::WKlg(t,s,p), 0<t<s<,

ki(t,s,p) = Ki1(t, s, p), 0<s<t<1,

for p # 0 in C; and let K, be the integral operator on L?[0,1] defined by
1
Kipu(t) :== / k1(t, s, p)u(s)ds, 0<t<1, wueL?0,1],
0

for each p # 0 in C. Second, for each p # 0 in C, let A, be the integral
operator on C[0,1] defined by

1
Aipu(t) == /0 g1(t, s, p)u(s) ds, 0<t<1, wuecC|0,1],

where the kernel is defined by

K

g1(t,s,p) == — Zaa Yp~ (M2 e ipwn(t= S)aat M (t,s,p), 0<s<t<l,
K

g1(t, s, p) = — Zaa )p~ (PR ipwn(t= S)aat 2 (t,s,p), 0<t<s<l.

Then for p € Ty with |p| > 79, r¢ sufficiently large, the integral equation
1 1
[I— ;.Alp]i/)(t) = —;Alp n(t,p), 0<t<1, (4.53)

has a unique solution ¥1x( -, p) in C[0, 1] given by

oo

1 1 -1 1 ;
¢1k(t7/’> = _; [[ - ;'Alp] Alp nk(t7p) = Z F‘A{:lnk(tvp) (454)
=0

for 0 <t <1, where the series is converging in C[0, 1]. The function v (-, p)
in H"[0, 1] defined by

'Ulk(ta l)) =2k (ta p) + Klp (eipwkt[wlk(t7 p) — Nk (t7 P)]) (455)
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for 0 <t <1 and for p € Ty with |p| > 79, is then a solution of the differential
equation (2.1), with the derivatives of vix (-, p) given by

W (t,p) = 27(t, p)

eipwkt t (s 0K
+ npn_l /Oe puoi (t=2) 8ta11 (ta Sap)[q/}lk(S)p) - T]k(S,p)] ds

eipwkt 1 o (e aaKm
+w/te Pk S)W(t,s,p)[%k(s,p) — ni(s, p)l ds
(4.56)

for 0 <t <1, for p € Ty with |p| > rg, and for « =0,1,...,n — 1.
Carrying out this construction for £ =0,1,...,n — 1 and for p € T} with

|p| > ro, we are lead to the following basic theorem for the sector 7;. Cf.
Theorem 4.4.

Theorem 4.7. Let n be odd: n =2v —1; let Ty = {p— 71 | p € S1} be the
translation of the sector Sy selected in the last chapter; let m be the integer

chosen in the last chapter with m > n, m > pg, and —(m—po—1) < p,q < po;
and for each p # 0 in C let

m—1
2i(t, p) = elPwrt Z 2k (t)p7, k=0,1,...,.n—1,
j=0

be the Birkhoff approximate solutions of the differential equation (2.1) that
are determined by Theorem 2.1. Then there exists a constant Ry > 0 such
that for p € Th with |p| > Ry, there exist n functions vig(+,p),v11(*,0)s. .,
Vin—1(-,p) in H™[0,1] that are linearly independent solutions of the differen-
tial equation (2.1), with

v (¢, p) = 2 (¢, p) + €7 By (t, p)p ™

for 0 <t <1, for p € Ty with |p| > Ry, and for k,a = 0,1,...,n — 1. The
function E1g(-,p) belongs to H* [0, 1] with |E1ka(t, p)| < vo (a constant)
for 0 <t <1, for p € Ty with |p| > Ry, and for k,a = 0,1,...,n — 1. For
the open set G1 = {p € IntT1 | |p| > Ro} and for k,a = 0,1,...,n— 1, the
function viz)(t, p) is continuous on [0,1]xG1, and the derivative 8% [’U%Z) (t,p)]

exists and is continuous on [0,1] X Gy.






5

The Characteristic Determinant

Now that we have constructed independent solutions of the differential equa-
tion (2.1), the next step is to develop the characteristic determinant on the
sectors Ty and T7.

5.1 The Characteristic Determinant for n Even
Assume that n is even: n = 2v > 2. Consider the sectors

So: all p= \p\eie ceCwith0<0< %,

Sy: all p=|ple’? € C with —% <6<0,

and the corresponding translated sectors Ty, 17. For each point p € Ty with
|p| > Ro let voo( -, p),vo1(+,p0)s--,Von—1(+,p) be the n linearly independent
solutions of the differential equation (2.1) constructed in Theorem 4.3. For
fixed p the function vy (-, p) belongs to H™[0, 1], and vox( -, p) and its deriva-
tives have the asymptotic expansions

U(()Z) (t.p) = Z;E;n) (t, p) + P Egpn (t, p)p~ ™" (5.1)

for 0 <t <1, for p € Ty with |p| > Ry, and for k,n =0,1,...,n — 1. In this
representation the function z(t,p) = e'P@rt Z;.n:_ol 2k (t)p™ is the Birkhoff
approximate solution of (2.1) constructed in Chapter 2, and the function
Eoin( -, p) belongs to H"~"[0,1] and satisfies the bound |Eog,(t, p)| < 7o for
0 <t <1, for pe Ty with |p| > Ry, and for k,n = 0,1,...,n — 1. The
functions vog(-,p), k =0,1,...,n — 1, form a basis for the solution space of
the differential equation (2.1) for p € Ty satisfying |p| > Ro.

Similarly, for each point p € Ty with |p| > Ro let vip(-,p),v11(,p), ...,
v1n—1(+,p) be the linearly independent solutions of the differential equation
(2.1) constructed in Theorem 4.4. Again the function wvix(-,p) belongs to
H™[0,1] with
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oD (t,p) = 2V (t, p) + €PK By (t, p)p (5.2)

for 0 <t <1, for p € Ty with |p| > Ry, and for k,n = 0,1,...,n — 1.
Here the function F1g,( -, p) belongs to the space H™""(0, 1] and satisfies the
bound |Eky(t,p)| < 7o for 0 < ¢t < 1, for p € Ty with |p| > Ry, and for
k,n=0,1,...,n— 1. The functions vix(-,p), k=0,1,...,n — 1, also form a
basis for the solution space of the differential equation (2.1) for p € Ty with
lpl > Ro.

We will use these two bases to construct the characteristic determinant
of the differential operator L. The first basis is used for the construction on
the sector Ty, and the second for the construction on 7. For the sector Ty
we develop the theory in detail. Since the development for the sector T3 is
similar, we simply sketch the theory for T;.

In Chapter 4 we showed that

m+n—1
oo (8 ) = P [(wn)" + D7 Fune(t)p™" + Bonn(t, p)p "]
l=1
1= p"e ¥ (iwg)" + Fokn(t, p)]

for 0 <t <1, for p € Ty with |p| > Ry, and for k,n = 0,1,...,n — 1. The
function Fory(-,p) belongs to H"~"[0, 1] with Fo,(t,p) — 0 uniformly on
[0,1] x Ty as |p| — oo for k,n = 0,1,...,n — 1. Choose a constant Ry > Ry
such that

(5.3)

| Fory(t, p)| < 1 (5.4)

for 0 <t <1, for p € Ty with |p| > Ry, and for k,n =0,1,...,n— 1.
Relative to the sector Tj, we form the modified solutions of the differential
equation (2.1):

ok (t, p) := vor(t, p) = yk(t, p) + ¥ Egro(t, p)p~ ™,
k=0,1,...,v—1,

uor(t, p) = e PR ug(t, p) = yi(t, p) + D Egro (8, p)p™ ™,
k=v,....,n—1,

for 0 <t <1 and for p € Ty with |p| > Ry. Cf. the definitions of the functions
yr( -, p) given at the beginning of Chapter 3. Clearly these functions also form
a basis for the solution space of the differential equation (2.1) for p € Ty with
|p| > Ro. It will be convenient to use these modified solutions in the sequel.

Using (5.1) and (5.3), the derivatives of the solutions wugg(-,p) can be
expressed as

gl (1 p) = g (8, p) + &P Eop (£, p)p~ "7
_pnelpw}ct[lwkn_FFOkn( p)}a k:Oala"'aV_la

ul) (t,p) = " (8, p) + €D By (£, p) p~ 4
= phelrwr(t=1) [(wk)" + Fory(t, p)], k=v,....,n—1,
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for 0 <t <1, for p € Ty with |p| > Ry, and for n =0,1,...,n — 1. Applying
the regularity results of Theorem 4.3, for fixed ¢ € [0, 1] the functions u((ﬂc) (t, p)
and Fogy(t, p) are analytic functions of the p variable on the open set

Go = {p € Int Ty | |p| > Ro}

It follows that the boundary data ug,? (0, p), u((;,?(l,p), k,n=0,1,...,n—1,
consists of functions of p that are analytic on Gy.

Next, we establish various bounds and growth rates relative to the sector T
for the functions appearing above. Fix a real number o with 0 < o¢ < /10,
set a :=sin(og/n) > 0, and then form the sector

I a11p=|p|ew€(CWith —2—W+@§0§2—W—@
n n n n
in the p plane. The reason for the constant 7/10 is that eventually we will
apply the basic completeness theorem [34, p. 80] in which we need five rays
with the angles between adjacent rays being less than 7/2 (see Chapter 9).
Clearly —27/n + o¢/n < —7/n < w/n < 2w /n — og/n, and hence, any p in
ToUT; with |p| sufficiently large lies in the sector Y. Without loss of generality
we can assume that the constant Ry > 0 chosen earlier (see Theorem 4.3 and
Theorem 4.4) has the additional property that p € Top U Ty with |p| > Rg
implies p € X.
Take any point p = a +ib € Y. Then

’eiprt| _ {eipt| — e*bt’ 0<t<1, (5.6)

elpwu(tfl) ‘ _

eip(l—t)‘ =011 0<t<l1. (5.7)

Clearly these two exponential functions are unbounded on the sector Y. For
k=1,...,v—1we have oo/n < 21 /n — go/n and

)

n n

o0 2 2t oo 2r(v — 1)
)

L (L T ey |
2 n n p = MU =5
and hence, 7/2 + 0¢/n < arg(ipwit) < 37/2 — oo /n. It follows that

Re(ipwit) = |ipwit| coslarg(ipwyt)]

™ 00 . 0o
< t|p| cos (f + —) = —t|p|sin —
2 n n

and eipwkt’ — eRe(ipwkt) < e—ta\p\ <1,or

|eipwkt‘ < e—ta|P| < ]_7 0 <t< 1, (58)

forp=a+ibe XY and for k =1,...,v — 1. Similarly, for k=v+1,...,n—1
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2 2 1
_W+(_W+%)+W+>
2 n n

< arg(ipwy(t — 1))
so m/2+ og/n < arg(ipwg(t — 1)) < 37/2 — op/n. This leads to the estimate
|eipwk(t—1)‘ < e~ (1=t)alp| <1, 0<t<1, (5.9)

forp=a+ibe Y andfork=v+1,...,n—1.
From the estimates (5.6)—(5.9) it is immediate that

|eipwo| _ }eip —e?, (5.10)
e | = |eie| = e b, (5.11)
|eipwk| Sefa\p\ <1, k=1,...,v—1, (5.12)
e | <eoll <1, k=v+1,...,n—1, (5.13)
for all p = a +ib € Y. Thus, the exponentials e?*0 = e /v = ¢ are

unbounded on ¥ as b — —oo, while the exponentials e***, 1 < k < v — 1,
and e 9k 41 <k <n—1, goto 0 very rapidly on X as |p| — oo. Note
that the estimates (5.6)—(5.13) are also valid for p € Ty U Ty with |p| > R,
and in particular, they are valid for p € Sy U Sy with |p| > Ry or for p € Gy
or p € Gy.

Applying the estimates (5.6)—(5.9) and (5.4) to the representations (5.5)
with n = 0, it follows that

luoo(t, p)| < 2e7b, (5.14)
|uow (£, p)| < 2e7°070), (5.15)
luor (t, p)| < 2e7tlPl < 9, k=1,...,v—1, (5.16)
lug (t, p)| < 2e"07D0lPl <2 p=p41,... n—1, (5.17)

for 0 <t <1andfor p=a+ib € Ty with |p| > R;. In particular, for p = a+1ib
belonging to the sector Sy (where b > 0) with |p| > Ry, we have

luor(t,p)| <2,  0<t<1, k=0,1,....n—1. (5.18)

These bounds will be used in Chapter 6 to determine the growth rate of the
Green’s function and the resolvent.

Using the modified solutions wuo(t,p), k = 0,1,...,n — 1, we form the
functions

Moik(p) = Bi(uor(+,p)) = Y il (0,p) + > Bimu) (1, p)
n=0 n=0

for p € Ty with |p| > Rp and for i =1,...,n and k =0,1,...,n — 1. Clearly
these functions are analytic on the open set Gy. For i = 1,...,n and k =
0,1,...,v —1 define
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-P(]zk ZamEOkn(O p) +7]7 Q(]zk ZﬁmEOkn 1 P)
n=0 n=0
for p € Ty with |p| > Rp; fori=1,...,nand k =v,...,n — 1 define
POzk ZﬁmEOkn 1 P) m+n7 QOzk ZamEOIm(O ,0) i
n=0

for p € Ty with |p| > Rp; and in terms of these functions and the functions

Pi(p), Qir(p) appearing in equations (3. 1) and (3.2), for s = 1,...,n and
k—O,l,...,n—l define

Poir(p) = Pi(p) + Poir(p)s  Quir(p) = Qir(p) + Qoir(p)

for p € Ty with |p| > Ry. Clearly these functions are analytic on the open set
Gp. We can then express the functions My, as follows: for i = 1,...,n and
k=0,1,...,v—1

MOzk Zazn (m) 0 p + E0k77<0 p) m+n]

+Zﬁm 1 P +elpUJkE0k ( ,P)P_m-m]

= zk(P) + Poin(p) + Qir(p)e”* + Qoir(p)e*

while fori=1,...,nand k=v,...,n—1

Moit(p) = 3 atiy [y (0, p) + €7 17% oy (0, p)p~"+7]

n=0
+ 3 Bin " (1. p) + Eory (1, p)p~ ™)
n=0

= Qu(p)e™ " + Qoir(p)e ™" + Pi(p) + Poir(p)-
Thus, fori=1,...,nand k=0,1,...,v — 1 we have
Moik(p) = [Pir(p) + Poir(p)] + [Qik(p) + Qoin(p)]e"*
= Poic(p) + Qoir(p)e?*
for p € Ty with |p| > Ry, and for i =1,...,nand k =v,...,n — 1 we have
Moi(p) = [Pir(p) + Poir(p)] + [Qir (p) + Qoir(p)]e ™
= Poir(p) + Qoir(p)e "**

for p € Ty with |p| > Ryp.

(5.19)

(5.20)
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The characteristic determinant of the differential operator L relative to
the sector T is the analytic function A defined by

Ag(p) := det(B;(uok (-, p))) = det(Moir(p)) for p € Gy.

For any complex number A = p™ with p € Gy, we know that A is an eigenvalue
of L if and only if Ag(p) = 0, and hence, in Chapter 7 we will proceed to
compute the zeros of Ag in the sector Ty. Applying (5.19) and (5.20), we can
express the characteristic determinant in the form

Ao(p) =
1<k<v-1 v+1<k<n-—1

Po10(p)+Qo10(p)e"” Po1r(p)+Qo1k(p)e** Po1,(p)+Qo1u(p)e'” Poir(p)+Qoik(p)e™ =k
det

Poro(p)+Qono(p)e'” Ponk (p)+Qonk (0)€P“! Pony (p)+Qonv ()™ Ponk(p)+Qonk (p)e™ <%

(5.21)

for p € Gy. Cf. equation (3.10) for the approximate characteristic determinant.
For the functions Pi;(p), Qik(p), we see from either (3.1), (3.2) or (3.7),

(3.8) that the powers of p appearing in the sums are p™:, p™i=1 ... p=(m—1
Hence, there exists a constant 7y > 0 such that
[ Pir(p)] < v0lpl™,  1Qir(p)] < olpl™ (5.22)

for p e Cwith |p| >1and fori=1,...,nand k=0,1,...,n— 1. In the defi-
nitions of the functions Py, (p), QOik(p), we see that the functions Eog, (0, p),
Eokn(1, p) are bounded for p € Ty with |p| > Ry by Theorem 4.3, and that
the powers of p appearing in the sums are p’(m*mi),p’(m*mi“), e, p ™
Thus, there exists a constant v; > 0 such that

| Poit(p)] < mlpl~m=™), Quik ()] < lp|~ (™™ (5.23)
for p € Ty with |p| > Ry and fori=1,...,nand k=0,1,...,n — 1.
Fori=1,...,n define
Foi(p) = Poir(p) + [Qir(p) + Qoir(p)Je™*,  k=1,...,v—1,
Foir(p) == Poix(p) + [Qi(p) + Qo (p)Je ¥, k=v+1,...,n—1,

for p € Ty with |p| > Ry. Clearly these functions are analytic on the open set
Go. From the estimates (5.12), (5.13) and (5.22), (5.23) we have

|Foir(p)] < mlpl™ ™™™ + [yolp[™ + 1]p| =" el

) (5.24)
< Yalp| 7™
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for p € Ty with |p| > Rp, fori=1,...,n,and for k =1,...,v — 1 and k =

v+1,...,n—1. In terms of these functions we can rewrite the representation
(5.21) of the characteristic determinant in the form
Ao(p) =
1<k<v-1 v+1<k<n-—1

Po10(p)+Qo10(p)e"  Pir(p)+Fork(p)  Porv(p)+Qorv(p)e”  Pii(p)+Foir(p)

det
Pono(p)+Qono(p)e'”  Prk(p)+Fonk(p)  Ponv(p)+Qonv(p)e'”  Prk(p)+Fonr(p)
(5.25)

for p € Gp.

We now proceed to expand the determinant for Agp(p) that appears in
equation (5.25). These expansions parallel the ones used earlier in equations
(3.10)~(3.13) for the approximate characteristic determinant A(p), and in
fact, the functions 7;(p), i = 0,1,2, that were introduced in Chapter 3 will
also appear in these new expansions for Ag(p).

Indeed, suppose we expand the determinant in (5.25) using the linearity
of the determinant in the Oth and vth columns:

Ao(p) = Doz(p)e” + Dox(p)e” + Doo(p) (5.26)
for p € Gy, where

1<k<v-1 v+1<k<n-—1

CA?lo(P)Jr@(no(P) ﬁlk(P)Jrﬁolk(P) @1V(P)+@01V(P) ﬁlk(ﬂ)“l’ﬁOlk(P)
Dog(p) := det

Q@n0(P)+Q0n0 () P (p)+Fonk (p) Qo (p)+Qonw (p) P (p)+Fonk (p)

1<k<v—1 v+1<k<n—1

Pio(p)+Po10(p) Pur(p)+Forr(p) Quv(p)+Qo1v(p) Pir(p)+Foir(p)

Dp1(p) := det
Pro(p)+Pon0(p) P () +Foni(p) Quu (p)+Q0nw (p) Purc(p)+Font (p)
1<k<v—1 vH1<k<n—1
Q10(P)+Qo10(p) Pri(p)+Foik(p) Pru(p)+Poru(p) Pir(p)+Foik(p)

+ det

Qn0(P)+Q0n0(0) Pric(0)+Foni (p) Prv (p)+Ponu (p) Prr(0)+Fonr (p)

and
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1<k<v—-1 v4+1<k<n—1
1310(»0)+1~3010(P) ﬁlk(ﬂ)+ﬁ01k(P) Islu(P)JrIB(nu(P) ﬁlk(ﬂ)+ﬁ01k(P)

Doo(p) = det
Pro(p)+Pono(p) Prur(p)+Fonk(p) P (p)+Ponu(p) Par(p)+Fonk(p)

for p € Gy. Clearly the functions Dy;(p), ¢ = 0, 1,2, are analytic on the open
set Gg. In these representations we will treat the “hat terms” as principal
terms and the “tilde terms” as small perturbation terms. See (5.22)—(5.24).

Now consider the function Dgs(p). If we expand Dgsa(p) using the linearity
of the determinant in its n columns, then Dg2(p) becomes the sum of 2"
determinants, starting with the determinant

Q0(p) Pri(p) -+ Prv—1(p) Quu(p) Prvsa(p) -+ Pra_a(p)
Ta(p) = det| : : : : : ;

~

@nO(p) ﬁnl(p) e ﬁnufl(p) @nu(p) Pnu+1(,0) e ﬁnnfl(p)

which is precisely the function introduced in Chapter 3. Each of the remaining
2" — 1 determinants contains at least one column consisting of the functions
Qoio(p), i = 1,...,n, or of the functions Fpr(p), i = 1,...,n, or of the
functions éow(p), 1 = 1,...,n. When such a determinant is expanded, it
becomes the sum of n! products each having modulus less than or equal to

m—m;)

p™rt e p| ™ = | p| (o)

YlpI™ p|™ -+ [p ™ [p] ¢

by virtue of the estimates (5.22)—(5.24). It follows that the function Dgs(p)
can be expressed as

Doa(p) = 72(p) + Po2(p)

for p € Gy, where the function 502(p) is analytic on the open set Gy and
satisfies the estimate

o2 (p)| < ys]p| =P

for p € Gy. Similarly, we can express Do1(p) and Dgg(p) as

Doi(p) = 71(p) + Pos(p), Doo(p) = Tolp) + Poo(p)

for p € Gy, where the functions Q~501(p), ioo(p) are analytic on the open set
Go with

o1 (p)] < valp| =P, | Bog(p)] < yslp| (PO

for p € Gp.
Combining the above results, we obtain our principal representation of the
characteristic determinant Ag relative to the sector Tj:

Ao(p) = Ta(p)e?? +71(p)e'? + o (p) + oz (p)e®? + o1 (p)e” + Boo(p) (5.27)
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for p € Go, where the functions 7;(p), ¢ = 0,1, 2, are analytic for p # 0 in C,
and the functions @g;(p), i = 0, 1,2, are analytic on the open set Gy with

|§01(p)| < 73|p|—(m—p0)7 = 07 11 2, (528)

for p € Gy. The functions 7;(p), i« = 0, 1,2, are the functions introduced in
Chapter 3 in our formation of the approximate characteristic determinant
A(p) = A(p,m); they are determined completely by the Birkhoff approxi-
mate solutions. The functions 50i(p), 1 =0, 1,2, contain all the perturbation
terms that are produced in constructing the actual solutions of the differential
equation (2.1).

Let us recall some of the results of Chapter 3 where we constructed the ap-
proximate characteristic determinant and classified the differential operator L.
First, we are assuming that n is even and that the differential operator L is
either regular or simply irregular. This yields the integer p with —oco < p < py,
ap #0and ¢, #0, and a, = ¢, =0 for k =p+1,...,pg. Second, the integer
q is defined as follows: if b, =0 for k =p+1,...,pg, then ¢ = p and by = b,
can be either zero or nonzero; if b, # 0 for some k with p+1 < k < pg, then ¢
is the largest such integer and b, is nonzero. In either case we have p < ¢ < pg
and b, =0 for k = ¢+ 1,...,po. Third, the translated sectors Ty and T} are
formed subject to the condition (3.31). Fourth, the integer m is fixed with
m > mn, m > pg, and —(m —pg — 1) < p < pg, and then the corresponding
Birkhoff approximate solutions zx(t, p), k = 0,1,...,n — 1, are formed, and
the modified Birkhoff approximate solutions yi (¢, p), k = 0,1,...,n — 1, are
determined. Fifth, the functions m;(p), ¢ = 0, 1,2, are defined by

p q P
m(p) = D awp® mp)= > bt mp)= > cup”
k=—(m—po—1) k=—(m—po—1) k=—(m—po—1)

(5.29)
for p #£ 0 in C. From equations (3.24), (3.27), and (3.28) it is immediate that

—(m—po)

Talp) =malp) + Y an(m)p",

r=—n(m—1)
—(m—po

)
Fi(p) =mp) + Y be(m)p”, (5.30)

r=—n(m-—1)
—(m—po)

Fo(p) =mlp) + Y cu(m)p”

r=—n(m-—1)

for p #£0in C.
Finally, in terms of (5.27) and (5.30) we define the functions
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—(m—po)
Boa(p) = > an(m)p® + Po2(p),
rk=—n(m—1)
—(m—po) _
Dor(p) = Y bu(m)p® + Doi(p),
k=—n(m—1)
—(m—po) _
Doo(p) = Z cx(m)p™ + Poo(p)

rk=—n(m—1)

for p € Gy. These functions are clearly analytic on the open set Gy, and by
using them we can rewrite the representation (5.27) in the simpler form

Ao(p) = ma(p)e® +mi(p)e'” + 70 (p) + Poz(p)e®” +Po1(p)e” +Poo(p) (5.31)

for p € Go. In equation (5.31) the functions m;(p), i« = 0,1,2, are given by
(5.29), they are analytic for p # 0 in C, and they are determined exclusively
by the Birkhoff approximate solutions and the boundary values By, ..., By;
the functions ®g;(p), @ = 0, 1,2, are analytic on the open set Gy and satisfy
the growth rates

[@0i(p)| < qalpl "), i=0,1,2, (5.32)

for p € Gy. The representation (5.31) is our working form for the characteristic
determinant Aq relative to the sector Tp. Compare the representation (5.31)
for the characteristic determinant Ay to the representation (3.32) for the
approximate characteristic determinant A. In Chapter 7 we will determine
the zeros of Ag in the open set Gy, and hence, determine eigenvalues for the
differential operator L.

The above results are summarized in the following theorem. Here we as-
sume the conditions set forth in Chapter 3: (i) n = 2v is even; (ii) the differ-
ential operator L is either regular or simply irregular; (iii) the integers p and
q have been determined with —oo < p < ¢ < pg and with a, # 0, ¢, # 0, and
ar =cx,=0fork =p+1,....,ppand b, =0 for k = g+ 1,...,po; (iv) the
translated sectors Ty and 77 have been chosen; (v) the integer m has been
fixed with m > n, m > po, and —(m—po—1) < p < po; and (vi) the functions
mi(p), 1 = 0,1, 2, have been determined as per Chapter 3 or equation (5.29).

Theorem 5.1. Let n be even: n = 2v. Under the above assumptions (i)—
(vi), let vor(-,p), k = 0,1,...,n — 1, be the linearly independent solutions
of the differential equation (2.1) constructed in Theorem 4.3 for p € Ty with
|pl > Ro, let uor(-,p), k =0,1,...,n — 1, be the modified solutions of (2.1)
defined above for p € Ty with |p| > Ro, and let Ay be the characteristic
determinant of the differential operator L given by

Ao(p) = det(Bi(uok (-, p))) for p € Go,
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where Go = {p € Int Ty | |p| > Ro}. Then Aq is analytic on the open set Gy,
and Agy has the representation

Ao(p) = ma(p)e® + mi(p)e” + mo(p) + Poa(p)e™” + P (p)e' + Poo(p)

for p € Gy, where the functions ®o;(p), ¢ = 0,1,2, are analytic on Gy and
satisfy the estimates |Do;(p)| < v|p|~™~P0) for p € Gy and fori=0,1,2.

Next, for the case n = 2v even, we form the characteristic determinant
on the sector T7. The starting point for the discussion is the set of functions
vig(-,p), k=0,1,...,n— 1, which form a basis for the solution space of the
differential equation (2.1) for p € Ty with |p| > Ry. We can rewrite (5.2) in
the form

m+n—1

v (t,p) = PP [(wi) + Y frne (ot + B, p)p "]
=1

= pneipwkt [(iwk)" + Flkn(ta p)]

(5.33)

for 0 <t <1, for p € Ty with |p| > Ro, and for k,n = 0,1,...,n — 1. The
function Fipy(-,p) belongs to H""[0,1] with Fyp,(t,p) — 0 uniformly on
[0,1] x T} as |p| — oo for k,np = 0,1,...,n — 1. Without loss of generality
we can assume that the constant R; chosen earlier in this section satisfies the

additional condition that

Fi(t )] <1 (5.34)
for 0 <t <1, for p € Ty with |p| > Ry, and for k,n =0,1,...,n — 1. Let us
now proceed to construct the characteristic determinant on the sector T7.

First, we first introduce the modified solutions of differential equation (2.1)
relative to the sector T7;:

uo(t, p) := e Puig(t, p) = e P yo(t, p) + P Ergo(t, p)p~ ™,

ulk(ta P) = ’Ulk(t7 P) = Z/k(t7 P) + eipwktElkO(ty p)pimy
k=1,...,.v—1,

u1, (t,p) = v1,(t, p) = €7 [y, (t, p) + P "D By 0(t, p)p~™],

uik(t, p) = e PR (t, p) = yi(t, p) + ePF TV By (8, p)p ™™,
k=v+1,...,n—1,

for 0 <t < 1and for p € T} with [p| > Ry, where the functions y (-, p) are de-
fined at the beginning of Chapter 3. The functions u1x(-, p), k =0,1,...,n—1,
also form a basis for the solution space of the differential equation (2.1).

Applying (5.2) and (5.33), we can express the derivatives of the solutions
u1k( -, p) in the form
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(¢, p) = 70 [y (¢, p) + 0 Broy (£, p)p~ )
— pﬂeipwo(tfl) [(in)n + Flon(tp)},
u{ (L p) =y (¢, p) + €9 By (£, p)p~ ™+
= plletrwrt [(iwk)” + Flkn(t,p)], k=1,...,v—1,
u{D(t, p) = € [y{D (t, p) + # TV By, (£ p)p ]
= p"e? [(iw,)" + Fug(t, )],
P (t,p) = 5" (8, p) + €D By (8, p)p
= p"eip"”“(t_l) [(iwk)" + Fipy(t, p)]7 k=v+1,...,n—1,

for 0 <t <1 and for p € Ty with |p| > Ry, and for n = 0,1,...,n — 1.

From the regularity results of Theorem 4.4, for ¢ € [0, 1] fixed the functions

ugz) (t,p) and Fip,(t, p) are analytic functions of the p variable on the open set

G1={pe€ntT | |p| > Ro}. Thus, the boundary data uﬁ)(o,p), ugz)(l,p),
k,n=0,1,...,n — 1, consists of functions of p that are analytic on Gj.

Take any point p = a +ib in the sector X'. Then by direct calculation and
by the previous estimates (5.8) and (5.9):

(5.35)

{eipwo(t—l)’ - ’eip(t—l)’ =Y <<, (5.36)
|eipwyt _ |e—ipt’ = 0<t<1, (5.37)
|eipwkt| < e telel <, 0<t<1, k=1,...,v—-1, (5.38)
|eipwk(t—1)| <e U=telll <1 0<t<1, k=v+1,...,n—1. (5.39)
From these estimates it is immediate that
|e—ipwo’ _ ’e—ip = b, (5.40)
|efeer | = Jeio| = el (5.41)
’eipwk| < e—lol <1, k=1,...,v—1, (5.42)
|e—ipw| <e <1 k=v+1,...,n—1, (5.43)

for all p = a +ib € X. Thus, the exponentials e™##“0 = elfvr = ¢~1¥ are
unbounded on ¥ as b — oo, while the exponentials e***, 1 <k < v —1, and
e Pk 4+ 1< k<n-—1,goto0 very rapidly on X as |p| — oo. Clearly
the estimates (5.36)—(5.43) are also valid for p € Ty with |p| > Ry, and in
particular, they are valid p € Sy with |p| > Ry or for p € G;.

Applying the estimates (5.36)—(5.39) and (5.34) to the representation
(5.35) with n = 0, it is immediate that

|U10(t, P)| < 26b(1_t)7 (
lu, (t, p)| < 2%, (5.45
wug(t, p)| < 2etelel < 2, k=1,...,v—1,
p
(t.p) (

lusg(t, p)] < 2e~(=Dall <o p=p 1. n—1,
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for 0 <t <1 and for p = a+ib € Ty with |p| > R;. In particular, for p = a+1ib
belonging to the sector S; (where b < 0) with |p| > Ry, we have

luik(t,p) <2,  0<t<1, k=0,1,...,n—1. (5.48)

These bounds will also be used in Chapter 6 to determine the growth rate of
the Green’s function and the resolvent.

Second, in terms of the modified solutions w1 (¢, p), k =0,1,...,n—1, we
form the functions

m; m;

M) = Bl ) = S 0.0+ 3 20,0

for p € Ty with |p| > Rp and for ¢ = 1,...,n and k = 0,1,...,n — 1. These

functions are analytic on the open set G;. Fori =1,...,nand k =0,1,...,
v — 1 define
Plzk ZamElkn(O p)p +777 lek ZﬁmElkn 1 ,0)
n=0 n=0

for p € Th with |p| > Rp; fori=1,...,nand k =v,...,n — 1 define

m;

Plzk Zﬁanlkn 1 P) +7]’ lek ZamElkn(O P) +n
n=0 n=0

for p € Ty with |p| > Rp; and in terms of these functions and the func-
tions Pir(p), Qik(p) (see equations (3.1) and (3.2)), for i = 1,...,n and
k=0,1,...,n— 1 define

Puik(p) == Pu(p) + Prx(p),  Quir(p) := Qur(p) + Quin(p)

for p € Ty with |p| > Ry. All of these functions are analytic on G, and the
functions My, (p) can then be expressed as follows: for i =1,...,n

Miio(p) = e [Pio(p) + Prio(p) + Qio(p)e™ + Quio(p)e],

Miik(p) = Pir(p) + Prin(p) + Qir(p)e* + Quik(p)e'™*,
k=1,...,v—1,

M (p) = e [Qun(p)e ™ + Quin(p)e ™ + Py (p) + Priv(p)],

~

M (p) = Qir(p)e ™ + Quin(p)e™“* + Pi(p) + Prix(p),
k=v+1,....,n—1

Thus, for p € T1 with |p| > Rp and for i = 1,...,n, we have



108 5 The Characteristic Determinant

Mio(p) = e~ *{[Pio(p) + Prio(p)] + [Qio(p) + Quio(p)]e? }

| _ (5.49)
= e " [Prio(p) + Quio(p)e”],

Myik(p) = [Pir(p) + Pri(p)] + [Qir(p) + Quik(p)]e'* (5.50)
= Prir(p) + Quir(p)e'”*, k=1...v-1

Minlp) = e {[Pule) + Pr(p)] + Qulp) + Quaplle™ )
=e P[Pi(p) + Quiv(p)e ],

Mgk (p) = [Pir(p) + Prin(p)] + [Qir (p) + Quir(p)]e™#** (5.52)

= Prik(p) + Quir(p)e <", k=v+1,...,n—1.

Third, the characteristic determinant of the differential operator L relative
to the sector 77 is the analytic function A; defined by

Aq(p) == det(B;(uig (-, p))) = det(Myin(p)) for p € Gy.

For any complex number X = p™ with p € G1, we know that A is an eigenvalue
of L if and only if A;(p) = 0. In Chapter 7 we will compute the zeros of A;
in the sector T7. Applying (5.49)—(5.52), we can express the characteristic
determinant in the form

Aq(p) = e HPx
1<k<v-1 v+1<k<n-—1

P110(p)+Q110(p)e"” Pi1x(p)+Q11k(p)e*** P11, (p)+Q11u(p)e'” Prir(p)+Q11x(p)e™ Pk
det

P10(p)+Q1n0(p)e"” Pink (p)+Q1nk (0)ePk Piny(p)+Q1nw (p)e™ Pink(p)+Qink(p)e™ *<%

(5.53)

for p € G. Cf. equation (3.10) for the approximate characteristic determinant.
Observe that the determinant in (5.53) that produces A; has exactly the
same form as the determinant in (5.21) that produces Agy. Consequently, in
expanding this determinant to obtain A;, we will use the same procedures
that were used earlier to obtain Ag.

Fourth, the estimates (5.6)—(5.13) and the estimates (5.36)—(5.43) are
valid for p € T; with |p| > Ry and for p € G; as was shown earlier,
and the estimates (5.22) for the functions Pix(p), Qik(p) remain valid for
p € C with |p| > 1. In the definitions of the functions ]Suk(p), @uk(p), we
see that the functions Ei4,(0,p), Eik,(1,p) are bounded for p in T; with
|p| > Ro by Theorem 4.4, and that the powers of p appearing in the sums are
p~(m=mi) p=(m=mi+1) = 5=m Hence, there exists a constant y; > 0 such
that

1Prix(p)| < mlpl~ ™™D Quik(p)| < yalp|”mTm) (5.54)
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for p € Ty with |p| > Rgand fori=1,...,nand k=0,1,...,n— 1.
For i =1,...,n define

Fuin(p) == Pur(p) + [@ik(ﬂ) + Quir(p)]elrer, k=1,...,v—-1,
Fuin(p) == Prur(p) + [@ik(/’) + Quin(p))eiPen, k=v+1,...,n-1,

for p € Ty with |p| > Ro. These functions are analytic on the open set Gy
with

[ Fuin(p)| < ol pl =07 (5.55)
for p € Ty with |p| > Ry, for i = 1,...,n, and for k = 1,...,v — 1 and
kE=v+1,...,n— 1. In terms of these functions we can rewrite (5.53) as

Aq(p) = e HPx
1<k<v-—-1 v+1<k<n-—1

Pi1o(p)+Q110(p)e””  Pir(p)+Fi1k(p)  Priv(p)+Qi1v(p)e®  Pix(p)+Fiik(p)
det
P1ao(p)+Q110(p)e” Pk (pP)+Fink(p)  Pinw(p)+Q1nu (p)e”  Pri(p)+Fink(p)
(5.56)

for p € G;.
Fifth, expanding the determinant in (5.56) using the Oth and vth columns,
we get
Ai(p) = Dia(p) + Dir(p)e™ + Dig(p)e ™ (5.57)

for p € G1, where
1<k<v-1 v+1<k<n-—1

Q10(p)+Q110(p) Prr(p)+Fi1(p) Qv (p)+Q110(p) Prr(p)+Firk(p)

D13(p) := det : : : : ,
Qno(P)+Q110(p) Prk(p)+Fink (p) Quu (p)+Q1nu (p) Pk (p)+Fink(p)
1<k<v—1 v4+1<k<n—1
Pro(p)+Pr10(p) Pir(p)+Fr1k(p) Quv(p)+Q11u(p) Prr(p)+Fiik(p)
D11(p) := det
Pro(p)+P1n0(p) Pure(p)+Finic(p) Quu (p)+ Q1w (p) Pur(p)+Fini(p)
1<k<v—1 v+1<k<n—1
Q10(P)+Q110(p) Prr(p)+F11k(p) Pru(p)+Piru(p) Prr(p)+Fiik(p)
+ det : : s |

Qno(P)+Q1n0(p) Puk(p)+F1n1(p) Prv(p)+Prnw (p) Prk(p)+Finr(p)
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and
1<k<v-1 v+1<k<n-—1
ISIO(P)JF}BIIO(P) ﬁlk(p)+ﬁllk(p) ﬁlu(ﬂ)JrISlly(P) ﬁlk(ﬂ)+ﬁllk(P)

D10 (p) = det
Pro(p)+P10n0(p) Prk(p)+Fink(p) Pav(p)+Piny(p) Pak(p)+Fink(p)

for p € G1. Clearly the functions D1,(p), i = 0, 1,2, are analytic on the open
set G1. In these representations we treat the “hat terms” as principal terms
and the “tilde terms” as small perturbation terms.

Sixth, if we expand the determinants for the functions Dy;(p), i = 0,1, 2,
using the linearity of the determinant function in its n columns, then we can
express these functions in the form

Dui(p) = 7i(p) + Pri(p), ©1=0,1,2,

for p € G1, where the functions 51i(p) are analytic on the open set G; with
|1i(p)| < 3lp| =P, ©=0,1,2,

for p € Gy. For the characteristic determinant A; we obtain the representation

Ai(p) = Ta(p) + T1(p)e™ + To(p)e "

" - O . (5.58)
+ @12(p) + Pra(p)e™ ™ + Prg(p)e™ >

for p € G1, where the functions 7;(p), ¢« = 0,1,2, are analytic for p # 0 in
C and are the functions introduced earlier, and where the functions @1;(p),
1 =0,1,2, are analytic on the open set G; with

|$11(p)| S 73|p|7(m7p0)a 1= Oa la 2) (559)

for p € Gy.
Seventh, equations (5.29) and (5.30) are still valid for p # 0 in C, and
hence, setting

—(m—po)

Dia(p) = Y ax(m)p® + P12(p),

k=—n(m—1)
—(m—po)

Di(p) = Y bu(m)p" + P11(p),

k=—n(m—1)
—(m—po)

Bro(p) = Y ca(m)p” + Pio(p)

k=—n(m—1)

for p € Gy, we can rewrite (5.58) in the final form
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Ai(p) = ma(p) + mi(p)e™ + mo(p)e” 27

. . (5.60)
+ P12(p) + D11(p)e ™ + Dig(p)e >

for p € G1. In this representation the functions m;(p), ¢ = 0,1, 2, are given by
(5.29), and they are analytic for p # 0 in C; the functions ®1,(p), i = 0, 1,2,
are analytic on the open set G; and satisfy the growth rates

1D1:(p)] < yalp| 7P, i=0,1,2, (5.61)

for p € G1. The representation (5.60) is our working form for the characteristic
determinant A; relative to the sector T7j.

Let us summarize the above results for the characteristic determinant A;
in a theorem.

Theorem 5.2. Let n be even: n = 2v. Under the above assumptions (i)—
(vi), let vig(-,p), k = 0,1,...,n — 1, be the linearly independent solutions
of the differential equation (2.1) constructed in Theorem 4.4 for p € Ty with
lpl > Ro, let uig(-,p), k =0,1,...,n — 1, be the modified solutions of (2.1)
defined above for p € Ty with |p| > Ro, and let Ay be the characteristic
determinant of the differential operator L given by

Ai(p) = det(B;(uik(-,p))) forp € G,

where G1 = {p € Int Ty | |p| > Ro}. Then Ay is analytic on the open set Gy,
and A1 has the representation

A1 (p) = ma(p) + mi(p)e ™ + mo(p)e >
+ P15(p) + P11 (p)e ™ + P1g(p)e 7

for p € Gy, where the functions ®1;(p), ¢ = 0,1,2, are analytic on Gy and
satisfy the estimates |®1;(p)| < ¥|p|~™P0) for p € Gy and fori=0,1,2.

In Chapter 7 we will calculate the zeros of Ay and Ay, showing that they
consist of two sequences in the p plane. These sequences lie near the positive
real axis argp = 0, and they produce two sequences of eigenvalues for the
differential operator L that lie near the positive real axis in the A plane.

5.2 Special Case: n = 2

To illustrate these ideas, let us examine the special case n = 2, where the
differential operator L is determined by the formal differential operator

(= — <5t)2 +q(t),  q(t) = ao(?),

and by the boundary values
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By (u) = a1u/(0) + by’ (1) + agu(0) + bou(1),
Ba(u) = c1u/(0) + diu' (1) + cou(0) + dou(1).

The boundary coefficient matrix

_ (a1 b1 ag by
A= (61 d1 Co do)
is assumed to be in reduced row echelon form with rank 2, and pg = mi + ms
can have the values 2, 1, or 0. Let A;;,1 <17 < j < 4, denote the determinant of
the 2x2 submatrix of A obtained by retaining the ith and jth columns. The six
parameters A;; play a very prominent role in the characteristic determinants
of L.

Fix the integer m at the value m = 3. In Example 2.5 the Birkhoff ap-
proximate solutions zo(t, p), z1(t, p) were calculated for m = 3:

alt.p) = {1+ 2 Q™ + [ alt) — 1a0) - 5 1)),

4
. 1 1
z21(t, p) = e_lpt{l —

1 1
2 -1, [t _ 2 2 2] -2
S QW™ + [Fa(t) = J9(0) — £ Q(1)?]p%}
for 0 < ¢ <1 and for p # 0 in C, where Q(t) = f(f q(&) d€ for 0 <t < 1. The
corresponding modified Birkhoff approximate solutions are

woltsp) = {1+ 2 QO™ + [Falt) — {a(0) — S QW52
n(tp) =1 L Q0+ [Jalt) — {a(0) ~ 5 QW)
(5.62)
for 0 <t <1 and for p # 0 in C, with derivatives
(t.p) =i {14+ - Q) + [ a(t) — 1 a(0) — 5 Qo7
vt { L qnp™ + [10 ) - Tamem]e}
(t,p) = —ipe DL QU + [T alt) — 1 a(0) — L @(1?] o)
re 0 L™ + (140 - Jane)] o)
(5.63)

for 0 <t <1 and for p # 0 in C. We can then form the functions
Bi(yx (-, p)) = Pix(p) + Qir(p)e” (5.64)

for p # 0in C and for i = 1,2, k = 0,1, and hence, obtain the approximate
characteristic determinant:
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(p) = det <ﬁ10(p) * @10(/’)eip ]311(0) + éll(P)eiP>
Pao(p) + Q0(p)e’” Poa(p) + Qan(p)e” (5.65)

= 7a(p)e® + 71 (p)e” + To(p)

A

for p # 0 in C. Cf. equation (3.13). The functions 7;(p), i = 0,1, 2, are given

~ Q10(p) C511(0) N 1310(0) ﬁll(p)
o =det| _ . i = —To(—p) = det| . N ,
) ( 20(P) Q21(,0)> o7 ) (PQO(p) 21(P)>
(5.66)
#1(p) = det( 10(p) CE (P)) 4 de t(Qlo(P) Al(ﬂ)) (5.67)
Pao(p) Q1(p) @20(p) P21(p)
for p# 0 in C.
From equations (3.24), (3.27), and (3.28) we have
—(83—po)
Z Gn,O + Z an ",
—(2—po) w=—4
—(3—po)
Z bp” + Z bi(
—(2—po) w=—4
—(3—po)
Z cp” + Z
—(2—po) w=—4

for p # 0 in C, with

Po Po
D aw®, mp)= Y b, mlp Z cep”  (5.68)

=—(2—po) k=—(2—po) #=—(2—po)

for p # 0 in C. Therefore, the powers of p appearing in the functions m;(p),
i =0,1,2, are py = 2:p27p1ap0; Po = 1:/)17/)07/)71; Po = O:p07p717p72' It
follows that in calculating the functions 7;(p), ¢ = 0, 1,2, if we compute the
coefficients of the powers p2, p!, p°, p~1, p~2 explicitly, then the corresponding
functions m;(p), ¢ = 0,1, 2, can be read off.

Next, we calculate the functions appearing in (5.65). Substituting (5.62)
and (5.63) into (5.64), the functions Piy(p), Qir(p) are first determined. Then
using (5.66) and (5.67), the functions 7;(p), ¢ = 0, 1, 2, are computed. After a

lengthy calculation we arrive at the results:
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=—App*+ {%Ale(l) +i(A1s + Azs)}ﬁ

#{da[ o)+ a0+ GO+ G0+ 42)Q) — s}

4
+{~Aw[ 10O + 7400 - 1 ¢(1) + 7 11Q) |
+idu [ i q(1) - Z q(0) — é Q(l)ﬂ
. 1 1 1 2 i —1
— 1A23 [ — q(].) + Z Q(O) + g Q(l) } + 5 A34Q(1)}p
+{~ [ 4 0QM) + 5 a)a(1) + 5 a(0)* + 1 40)Q(1)?]

i 140) + 1 aQ) |~ idxs [ ¢1) - Ta()Q) |

W~

4 4

— Aua T = F00) = SRR |} + 57 terms, »
5.69

7/1\'1 (p) = 21(1413 + A24)p — i(Al?, + A24)q(0)p_1 + ,0_3, /)_4 terms, (570)

i .
= A12p” + {§A12Q(1) +i(As + A23)},0

~{Ai] Ja0) + 5 a0) + 5 Q1| + 5 (4w + 4)Q(1) — Ags )

o An[ 100 + 00 - 1)+ {aR)]

+iAiy

(5.71)

for p # 0 in C. Equations (5.69)—(5.71) uniquely determine the key functions

mi(p),

i = 0,1,2, and then equations (5.31) and (5.60) lead immediately to

the asymptotic expansions of the characteristic determinants Ay and A;.

Let us look at the possible forms of the characteristic determinants. We
will follow the classification scheme given in the four part series [30, 31, 32, 33].
See [30, p. 280].

Case

1. Ay5 # 0. For this case the boundary coefficient matrix A must have

the form
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10&0[)0
OlCQdO’

and hence, Ajo = 1, m; = mg = 1, and py = 2. From (5.69)—(5.71) we see
that p = q = 2, ag = —ca = —1 (see equation (3.30)), and by = 0. In Case 1
the differential operator L is regular. From (5.31) and (5.60) the characteristic
determinants have the asymptotic expansions

Ag(p) = [=p* + O(p)]e*” + O(p)e” + [p* + O(p)]  for p € Gy,

2 —i 2 —2i (5.72)
A1(p) = [=p"+ O(p)] + O(p)e™" + [p” + O(p)le™ ™" for p € G1.

Case 2. A15 =0, A4 + Aaz # 0. Here there are three possible forms for the
boundary coefficient matrix A:

1b10b0 1b1a00 010b0
00 1dy)’ \oo o1/ \oo01dy)’

and for each of these cases it is clear that pg = 1. The forms

01 ag 0 0010
0001/ \ooo1

are not possible because of the condition A4+ Asg # 0. Also, we have p = ¢ =
17 a] = Cc1 = i(A14 +A23), and b1 = 21(A13 +A24). The differential operator L
is again regular in this case. For the characteristic determinants we have the
asymptotic expansions

Ao(p) = [((Ara + Azz)p + O(1)]e*” + [2i(Ars + Aoa)p + O(1)]e”
+ [i(A14 + Azd)p + O(].)] for pE G07

A1(p) = [i(Avs + Azg)p + O(1)] + [2i( A3 + Aay)p + O(1)]e ™
+ [i(A1q + A23)p + 0(1)]6721,; for p € G;.

(5.73)

Case 3. Alg = 0, A14 + A23 = 0, A34 7& 0, A13 + A24 = 0. The boundary
coefficient matrix A must have either the form

1 b1 0 b

00 1dy)’
where pg = 1, or the simple form

0010

0001)’

where pg = 0 and the boundary conditions are Dirichlet boundary conditions;
the forms
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1b1a00 Olobo 01@00
00 01/ \oo1dy)  \oo 01

are impossible because of the conditions on the A;;. From (5.69)-(5.71) we
see that p = ¢ = 0, a9 = —cg = —Asz4, and by = 0. Thus, the differential
operator L where pg = 1 is simply irregular, while the differential operator
L where pg = 0 (Dirichlet) is regular. For the characteristic determinants we
obtain the asymptotic expansions

Ao(p) = [—Asa+ O(p~")]e® + O(p™")e” + [Asa + O(p™ )] for p € Go,
Ai(p) = [~ A3+ O(p™ ] +O0(p~ e ™ +[Aza + O(p~")]e " for p € G1.
(5.74)

Case 4. A15 =0, A1y + As3 =0, Azy # 0, A13+ Aay # 0. For the fourth case
the boundary coefficient matrix A has one of the two forms

1b10b0 01(100
or s
0 0 1do 00 01

so pg = 1. Again the forms

1 b ag 0 010 b 0010
00 01/ \oo1dy/’ \ooo01

are impossible because of the conditions on the A;;. From (5.69)—(5.71) we
see that p = 0, ¢ = 1, ag = —cg = —Asz4, and by = 21(1413 + A24), and
hence, the differential operator L is always simply irregular in this case. For
the characteristic determinants we have the representations

Ap(p) = [~Aza+ O(p~")]e”™ + [2i(Arz + Aaa)p + O(p~')]e”
+ A3+ O(p7 )] for p € Go,

Ai(p) = [~Aza+ O(p™ )] + [2i(A13 + A24)p + O(p~ V)] ™™
+ [As4 + O(p~H]e 2 for p € G.

(5.75)

Case 5. A15 =0, A1y + A3 = 0, A3y = 0. In this last case the boundary
coefficient matrix A must have the same form as in Case 4:

1 b1 0 by 01a O
or ,
0 0 1 dy 00 0 1

and hence, pg = 1. The functions m;(p), ¢ = 0, 1,2, are extracted from (5.69)—
(5.71) by keeping only the powers p', p°, p~1. Thus,
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ma(p) = {iAna] 7 a(0) - 3 a(0) - 5 QY
~ i a(1) + 7a(0) + 5Q07 ]},
m1(p) = 2i(A13 + Aza)p — i(A13 + A24)q(0)p ",

molp) = {iua] Fa(1) — 2 4(0) - £ QQIY]

~ i a0+ Ja(0) + 5Q07 ]}

4
for p # 0 in C, and for the invariants we have a; = c¢; =0, ag = —cg = 0,
1 3 1
1=cp =iAu| > q(1) = S q(0) — S Q(1)2
a1 =coy =idu| 7o) - S a(0) - 5 QO
S| 1 1,
—idas| (1) + a(0) + 5 Q(? .
and

by = 2i(A13+ A2s), bo =0, b_1=—i(A13+ A24)q(0).

This shows that the differential operator L is irregular. More precisely, if
a_1 # 0, then p = =1, ¢ = 1 or ¢ = —1, and L is simply irregular. On
the other hand, if a_; = 0, then we can not determine whether L is simply
irregular or degenerate irregular. To get a definitive classification, we must
use a larger integer m, thus enlarging our “window” for viewing the constants
Gy b, €. In the simply irregular case where a_; # 0, the characteristic
determinants have the form

Ao(p) = [a—1p™" + O(p™ )] + [bip+b_1p™" + O(p~?)]e”
+lep 072 for p € Go,

Ai(p) =[a_1p™ + 0] + [bip+b1p™ ' +O0(p~?)]e™
+leip P+ O0(p?)]e ®  for p e G.

(5.76)

Ezample 5.3. Consider the 2nd order differential operator L determined by
the formal differential operator £ = —(d/dt)? + q(t) and the boundary values

Bi(u) =u/(0) +4/(1),  Ba(u) =u(0) —u(1),

where the boundary coefficient matrix is

110 0
A= .
001 -1
Clearly Aj2 =0, Aj3 =1, A1y = —1, Aoz =1, Aoy = -1, A34 =0, and

A1p =0, Ay +A3=0, A3=0, A3+ Ay =0.
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Hence, L belongs to Case 5.
Assume that ¢(0) # ¢(1). Then

1

a1 =c1=—3 [q(1) — q(0)] # 0, by =0b_1=0,

and hence, p = ¢ = —1, the differential operator L is simply irregular, and
the characteristic determinants have the asymptotic expansions

i

Aolp) = { =3 [a(1) = a(0)] ™" + O(p~2) e + O(p~2)e¥

2
+§—2[qﬂ)—q®ﬂpl+CKp2)} for p € Go, (5.7
M1(p) = { =3 [a() =g~ + 00~ } + O(p e
+{~5 la) = a]p +0(p™) }e™™  for pe G,

From these representations it follows that the spectrum o (L) consists of two
sequences of points A, = (p})%, k = ko,ko + 1,..., and N} = (p})% k =
ko, ko + 1,..., plus a finite number of additional points, where

o= 2k +7/2)+e., k=koko+1,...,
oh =02k —7/2)+¢, k=koko+1,...,

with |e},| < v/k and |€}/| < v/k for k = ko, ko + 1,.... See Chapter 7. On the
other hand, for the principal part of L, which is the differential operator T’
determined by 7 = —(d/dt)? and by the same boundary values By, By, we
know that the characteristic determinant is given by A(p) = 0 and that the
spectrum is
o(T) =C.

See Example 10.2 or [34, p. 28]. Consequently, the differential operators L and
T have very different spectral properties. Some additional remarks on Case 5
are given in Section 8 of [30].

5.3 The Characteristic Determinant for n Odd
Assume that n is odd: n = 2v — 1 > 3, and consider the sectors

So: all p=|ple!? € C with — — <0< —,
2n 2n

Syt allp:|p|eiee(Cwith7r—lSGSW—}-l,
2n 2n

and the corresponding translated sectors Tg, T}. The development of the char-
acteristic determinants for the case n odd is almost identical to the develop-
ment for the case n even. Consequently, we will indicate only the highlights
of this theory.
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For each p € Ty with |p| > Rg let voo( -, p),vo1(,p),---,von—1(-,p) be the
linearly independent solutions of the differential equation (2.1) constructed in
Theorem 4.6. The function vo( -, p) belongs to H™[0, 1], and voi( -, p) and its
derivatives have the asymptotic expansions

U(()Z) (t,p) = Z](cn) (t,p) + eip“”“tEozm (t,p)p~ "t (5.78)

for 0 <t <1, for p € Ty with |p| > Ry, and for k,n = 0,1,...,n—1. Similarly,
for each p € Ty with |p| > R let vig(-,p),v11(-,p)s. .., v1n—1(-,p) be the
linearly independent solutions of the differential equation (2.1) constructed in
Theorem 4.7. Again each function vy (-, p) belongs to H"[0, 1] with

VI (1, p) = 20 (, p) + P4 By (£, p)p~ ™ (5.79)

for 0 <t <1, for p € Ty with |p| > Rp, and for k,n = 0,1,...,n — 1. In
these expansions the function zi(t,p) is the Birkhoff approximate solution
constructed in Chapter 2.

Let us begin by developing the characteristic determinant of the differential
operator L for p belonging to the sector Ty. From Chapter 4 we have

m+n—1

) = g )+ D e Bt
=1 -

= pﬂeipwkt [(iwk)n + F()k:’r](ta P)]

for 0 <t <1, for p € Ty with |p| > Ro, and for k,n = 0,1,...,n — 1, with
Forn(t, p) — 0 uniformly on [0,1] x Ty as |p| — oo for k,n =0,1,...,n — L.
Choose a constant Ry > Ry such that

Fop(t,9)] < 1 (5.81)
for 0 <t <1, for p € Ty with |p| > Ry, and for k,n =0,1,...,n — 1. Relative

to the sector Ty, form the modified solutions of the differential equation (2.1):
uok(t, p) = vor(t, p) = Yk (t, p) + € Boro(t, p)p~ ™,
k=0,1,...,v—1,
uOk(ta p) = e_ipwkUOk(ta p) = yk(tv p) + eipwk(t_l)EOkO(t’ p)p_nla
k=v,....,n—1,

for 0 <t <1 and for p € Ty with |p| > Ry, where the y, (¢, p) are the functions
defined at the beginning of Chapter 3. These modified solutions form a basis
for the solution space of the differential equation (2.1) for p € Ty with |p| > Ry,
and their derivatives can be expressed as

g (tp) =y (¢, p) + €74 Eop (£, p)p~ ™"

= plleirwrt [(iwk)" + Fory(t, p)]7 k=0,1,...,v—1,
uS (8, p) = g\ (1, p) + PV By (8, p)p~ ™40

= pneipwk(til) [(lwk)n + FOkT](t7 p)}a k= Vyoooy M — 17

(5.82)
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for 0 <t <1, for p € Ty with |p| > R, and for n =0,1,...,n — 1. Applying
Theorem 4.6, for fixed ¢ € [0,1] the functions uéz) (t,p) and Foy,(t, p) are
analytic functions of the p variable on the open set

Go = {p € Int Ty | |p| > Ro}

Hence, the boundary data ug,? (0, p), uéz)(l, p), k,n=0,1,...,n— 1, consists
of functions of p that are analytic on Gy.
Next, fix op with 0 < o9 < /10, set a := sin(og/n) > 0, and form the
sector
So: all p=|ple® e Cwith — 2+ 2 <p< T 20
n o n n o n
in the p plane. Clearly any point p in Ty with |p| sufficiently large lies in the
sector Xy. Without loss of generality we can assume that the constant Ry > 0
chosen earlier (see Theorem 4.6) has the additional property that p € Ty with
|p| > Ro implies p € Xy. Now take any point p = a + b € Xy. Then arguing
as in the even order case, we obtain the following crucial estimates:

leirwot| = [eot| = e, 0<t<1, (5.83)
|eipwkt‘ Se—ta|/7| <1, 0<t<, k= 1,...,v—1, (584)
|eipwk(t*1)‘ < e*(lft)a‘l" < 1’ 0<t< 17 k= VyoooyM — 1. (585)

It is immediate that
|eiPw0| = |eiP| = e_b7 (5.86)
|eipwk| Sefozlpl <1, k=1,...,v—1, (5-87)
|e—ipwk| <e ol <1, k=v,...,n—1, (5.88)

for all p = a +ib € Xy. Thus, the exponential e’ = ¢! is unbounded on the
sector X as b — —o0, while the exponentials e/?**, 1 < k < v—1, and e 1P*,
v <k <n-—1, go to zero very rapidly on X as |p| — oo. The estimates
(5.83)—(5.88) are also valid for p € Ty with |p| > Ry, and in particular, they
are valid for p € Sy with |p| > Ry or for p € Gy.

Applying the estimates (5.83)—(5.85) and (5.81) to the representation
(5.82) with n = 0, it is immediate that

luoo(t, p)| < 2e7", (5.89)
luok (t, p)| < 2e7tlPl < 9, k=1,...,v—1, (5.90)
|u0k(tap)| < Qei(lit)a‘p‘ < 27 k= Vyooohy o — 13 (591)

for 0 <t <1 and for p = a+ib € Ty with |p| > R;. In particular, for p = a+1ib
belonging to the sector Sy with |p| > Ry and b > 0, we have

luok(t,p)| <2,  0<t<1, k=0,1,...,n—1. (5.92)
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Using the modified solutions ugx(t, p), k = 0,1,...,n — 1, form the func-
tions

Mok (p) := Bi(uok(- Zamu% 0,p) + Zﬁ“}uOk (1,p)

for p € Ty with |p| > Rp and for ¢ = 1,...,n and k = 0,1,...,n — 1. These

functions are analytic on the open set Ggo. Fori =1,...,nand k =0,1,...,
v — 1 define
POzk ZamEOkn(O ,0) —m+n QOzk ZﬁmEokn(l p)p_7"+n
n=0 n=0

for p € Ty with |p| > Rg, and fori =1,...,nand k =v,...,n — 1 define

m; m;

POzk ZﬁmEOkn 1 p)p +77’ QO k ZamEOkn(O P) e
n=0 n=0

for p € Ty with |p| > Rp; and in terms of these functions and the functions
Pir(p), Qix(p) appearing in equations (3.1) and (3.2), for ¢ = 1,...,n and
k=0,1,...,n— 1 define

Poir(p) := Pu(p) + Poir(p),  Qoir(p) := Qik(p) + Qoir(p)

for p € Ty with |p| > Ryp. Clearly these functions are analytic on the open set
Go. Using these functions, we can express the functions Mo, (p) as follows:
fori=1,...,n
Moik(p) = Pi(p) + Poir(p) + Qik(p)e™* + Qoin(p)e*,
k=0,1,...,v—1,
Moik(p) = Qix(p)e ™" + Qoik (p)e™** + Py(p) + Poix(p),
k=v,....,n—1.

Therefore, for p € Ty with |p| > Ry and for i = 1,...,n, we have

Moir(p) = [Pir(p) + Poik(p)] + [Qir(p) + Qoir (p)]e'*
= Poir(p) + Qoir(p)e™*, k=0,1,...,v—1,

Moik(p) = [Pir(p) + Poir(p)] + [Qik (p) + Qoin(p))e <"
= Poir(p) + Quir(p)e **,  k=wv,...,n—1L

(5.93)

(5.94)

The characteristic determinant of the differential operator L relative to
the sector Ty is the analytic function A, defined by

Ao(p) = det(Bi(uok(-,p))) = det(Moix(p)) for p € Go.
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For any complex number A\ = p" with p € G, we know that X\ is an eigenvalue
of L if and only if Ag(p) = 0. Applying (5.93) and (5.94), we can express the
characteristic determinant in the form

1shsy=l v<k<n—1
Po10(p)+Qo10(p)e™”  Po1k(p)+Qo1k(p)e”*  Po1x(p)+Qo1k(p)e Pk

Ap(p) = det
Pono(p)+Qono(p)e”  Ponk(p)+Qonk(p)e***  Ponk(p)+Qonk(p)e™#*k

(5.95)

for p € Gy. Cf. equation (3.11) for the approximate characteristic determinant.
For the functions Pix(p), Qix(p), we obtain the estimates

[Pie(p)l < v0lpl™,  [Qik(p)] < 0lp|™ (5.96)
for p € C with |p| > 1 and for i = 1,...,nand k =0,1,...,n — 1, while for
the functions Po;k(p), Qoir(p), we obtain the analogous estimates

1Poik ()] < mlpl ™™™ |Qoik(p)] < yalp| ) (5.97)
for p € Ty with |p| > Rp and for ¢ = 1,...,n and k = 0,1,...,n — 1. For
i1=1,...,n define

Foik(p) = Poir(p) + [Qir(p) + Qoin(p)]e*, k=1,...,v—1,
Foir(p) := Pou(p) + [Qik(p) + Qoir(p)]e™ ", k=v,...,n—1,

for p € Ty with |p| > Ry. These functions are analytic on the open set Gy,
and for them the following estimates are obtained:

|Foir(p)] < yalp| =m0 (5.98)

for p € Ty with |p| > Ry, for i = 1,...,n, and for k = 1,...,v — 1 and
k=v,...,n—1. In terms of these functions we can rewrite the representation
(5.95) of the characteristic determinant in the form
1<k<v-1 v<k<n-—1
Po10(p)+Qor0(p)e””  Puir(p)+Foir(p)  Pix(p)+Fork(p)

Ap(p) = det : : : (5.99)
Pono(p)+Qono(p)e”  Prk(p)+Fonk(p)  Pok(p)+Fonk(p)
for p € Gp.

We now proceed to expand the determinant for Ag(p) that appears in
equation (5.99). These expansions parallel the ones used earlier in equations
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(3.11), (3.33), and (3.34) for the approximate characteristic determinant A(p),
and in fact, the functions 7;(p), ¢ = 0,1, that were introduced in Chapter 3
will also appear in these new expansions for Ag(p).

Indeed, suppose we expand the determinant in (5.99) using the linearity
of the determinant in the Oth column:

Ao(p) = Dox(p)e” + Doo(p) (5.100)
for p € Gy, where

1<k<v-1 v<k<n-—1

Q10(p)+Qo10(p)  Prr(p)+Forr(p)  Pir(p)+Fork(p)

Dy1(p) := det
Qno(P)+Qono(p)  Pur(p)+Fonk(p)  Pur(p)+Fonk(p)
and
1<k<v—1 v<k<n—1
Pio(p)+Poro(p)  Pir(p)+Four(p)  Pu(p)+Foik(p)
Doo(p) := det

ﬁnO(p)""ﬁOnO(p) ﬁnk(p)"'ﬁ()nk (P) ﬁnk(p)""ﬁ()nk(p)

for p € Gy. Clearly the functions Dg;(p), i = 0,1, are analytic on the open
set Gy.

If we expand Dy (p) using the linearity of the determinant in its n columns,
then it can be expressed in the form

Do1(p) = 71(p) + Po1(p)

for p € Gy, where

Quo(p) Pii(p) -+ Pru—1(p) Pru(p) -+ Pin-1(p)
m1(p) = det : : : :

~ ~

o) Pus(9) - Pavs(0) Pun(p) -+ Prnr(p)

is the function introduced in Chapter 3, and where @0, (p) is the sum of 2™ — 1
determinants, with each determinant containing at least one column consisting
of the functions QOio(p), i1 =1,...,n, or of the functions fol-k(p), i=1,...,n.
The function 501(;)) is analytic on the open set G and satisfies the estimate
|Bo1(p)| < yslp|~(™=P0) for p € Gy. Similarly, the function Dgo(p) can be
expressed as _

Doo(p) = To(p) + Poo(p)

for p € Gy, where
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~ ~ ~

Pio(p) Pri(p) - Pr—1(p) Pru(p) -+ Prn-1(p)

~ ~ ~

Bao(9) Pur(p) -~ Prvr(p) Pan(p) - Pans(0)

is the function defined in Chapter 3 and where the function ®qq (p) is analytic
on Go with |@oo(p)| < vslp|~(™=P0) for p € Gy.

Combining the above results, we obtain our principal representation of the
characteristic determinant Ag relative to the sector To:

Ao(p) = F1(p)e + Fo(p) + Por(p)e'” + Poo(p) (5.101)

for p € Gy, where the functions 7;(p), i = 0,1, are analytic for p # 0 in C,
and the functions @y, (p), i = 0, 1, are analytic on the open set Gy with

B0i(p)] < 3slp|~m7P),i=0,1, (5.102)

for p € Gy. The functions 7;(p), i« = 0,1, are the functions introduced in
Chapter 3 in our formation of the approximate characteristic determinant
A(p); the functions @y;(p), ¢ = 0,1, contain all the perturbation terms that
are produced in constructing the actual solutions of the differential equation
(2.1). Compare equation (5.101) to equation (3.34).

Let us recall some of the results from Chapter 3 for the case n odd. First,
we are assuming that the differential operator L is either regular or simply
irregular. This identifies the integer p with a, # 0 and a, = 0 for k =
p+1,...,p0, and the integer g with b, # 0 and b, =0 for k =g+ 1,...,po.
Second, the translated sectors T and T are formed subject to condition
(3.51) in case p = ¢. Third, the integer m is fixed with m > n, m > pg, and
—(m —po—1) < p,q < pg, and then the corresponding Birkhoff approximate
solutions z(t,p), k = 0,1,...,n — 1, are formed, and the modified Birkhoff
approximate solutions yx (¢, p), k = 0,1,...,n—1, are determined. Fourth, the
functions m;(p), i = 0,1, are defined by

m(p) = D awp®, mlp)= Y bup” (5.103)

k=—(m—po—1) k=—(m—po—1)

for p # 0 in C. From equations (3.37) and (3.38) it is immediate that

—(m—po) —(m—po)
A =m) + S axm)®, Folp) =ml) + 3 be(m)”
r=—n(m—1) k=—n(m—1)

(5.104)

for p#£0in C.
Finally, in terms of (5.101) and (5.104) we define the functions
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—(m—po)
Dor(p) = Y ax(m)p® +Poi(p),
w=—n(m—1)
—(m—po) _
Doo(p) = Z b (m)p"™ + Poo(p)

rk=—n(m—1)

for p € Gy. These functions are analytic on the open set Gg, and using them
we can rewrite (5.101) as

Ao(p) = m1(p)e” + mo(p) + Po1(p)e™ + Poo(p) (5.105)

for p € Go. In equation (5.105) the functions m;(p), i« = 0,1, are given by
(5.103) and are analytic for p # 0 in C; the functions @g;(p), ¢ = 0,1, are
analytic on the open set Gy and satisfy the growth rates

[@oi(p)| < qalpl =), i=0,1, (5.106)

for p € Gp.

The representation (5.105) is our working form for the characteristic de-
terminant A relative to the sector Ty. Compare the representation (5.105)
for the characteristic determinant Ag to the representation (3.54) for the ap-
proximate characteristic determinant A.

The above results are summarized in the following theorem. We assume
the conditions set forth in Chapter 3: (i) n = 2v —1 is odd; (ii) the differential
operator L is either regular or simply irregular; (iii) the integers p and ¢ have
been determined with —oo < p,q < pp and with a, # 0, b; # 0, and a,, =0
fork =p+1,...,po and b, = 0 for k = g+ 1,...,pg; (iv) the translated
sectors Tp and T have been chosen; (v) the integer m has been fixed with
m >mn, m > pg, and —(m —po — 1) < p,q < po; and (vi) the functions m;(p),
i =0, 1, have been determined as per Chapter 3 or equation (5.103).

Theorem 5.4. Let n be odd: n = 2v — 1. Under the above assumptions (i)—
(vi), let vor(-,p), k = 0,1,...,n — 1, be the linearly independent solutions
of the differential equation (2.1) constructed in Theorem 4.6 for p € Ty with
|pl > Ro, let uor(-,p), k =0,1,...,n — 1, be the modified solutions of (2.1)
defined above for p € Ty with |p| > Ro, and let Ay be the characteristic
determinant of the differential operator L given by

Ao(p) = det(B;(uok(-,p))) for p € Go,

where Gy = {p € Int Ty | |p| > Ro}. Then Aq is analytic on the open set Gy,
and Aqy has the representation

Ao(p) = mi(p)e” + mo(p) + Por(p)e’” + Poo(p)

for p € Gy, where the functions $o;(p), ¢ = 0,1, are analytic on Gy and satisfy
the estimates |Po;(p)| < ¥|p|~™P0) for p € Gy and for i =0,1.
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In the final part of this section we form the characteristic determinant
on the sector T7. The starting point for the discussion is the set of functions
vig(-,p), k=0,1,...,n— 1, which form a basis for the solution space of the
differential equation (2.1) for p € Ty with |p| > Ro. Using the representation

of z,(:])(t, p) given in Chapter 4, we can rewrite (5.79) in the form

m+n—1
v (8, p) = p1e P [(wr)” + > frne(®)p™" + Bugy(t, p)p™]
=1
1= p"e PRt [(iwy,)" + Py (t, p)]

for 0 <t <1, for p € Ty with |p| > Ry, and for k,n = 0,1,...,n — 1, with
Fiiy(t, p) — 0 uniformly on [0,1] x T as |p| — oo for k,n =0,1,...,n — 1.
Without loss of generality we can assume that the constant R; chosen earlier
in this section satisfies the additional condition that

(5.107)

Fi(t,0)] <1 (5.108)

for 0 <t <1, for p € Ty with |p| > Ry, and for k,n =0,1,...,n — 1. Let us
now proceed to construct the characteristic determinant on the sector T7.

First, we introduce the modified solutions of differential equation (2.1)
relative to the sector T7:

uik(t, p) := e PR (t, p) = e PRy (t, p) + PR Byt p)p T,
k=0,1,...,0—1,

uik(t, p) = vik(t, p) = €y (t, p) + €PF Exgo (8, p)p™ ",
k=v,...,n—1,

for 0 <t <1 and for p € Ty with |p| > Ry, where the functions yi( -, p) are de-
fined at the beginning of Chapter 3. The functions u1x (-, p), k =0,1,...,n—1,
also form a basis for the solution space of the differential equation (2.1).

Applying (5.79) and (5.107), we can express the derivatives of the solutions
u1k( -, p) in the form

Wt p) = ey (1, p) + €D By (¢, p)pm

= pneipwk(t_l) [(iwk)" + Flkn(t, p)]7 k=0,1,...,v—1,
. _ (5.109)
ulP (¢, p) = €2y (1, p) + € By (1, p)p

= pllelPwit [(iwr) + Figy(t, p)], k=v,....,n—1,

for 0 <t <1 and for p € Ty with |p| > Rg, and for n =0,1,...,n — 1. From

the regularity results of Theorem 4.7, for ¢ € [0, 1] fixed the functions uﬁ) (t, p)
and Figy(t, p) are analytic functions of the p variable on the open set

G = {p eIntTy | |p| > RO}
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Thus, the boundary data ugz)((),p), ugz)(l,p), k,n=0,1,...
of functions of p that are analytic on G;.
Second, in the p plane we introduce the sector

,n — 1, consists

P allp:|p|eieG(Cwith7r71+@§9§7r+zf@.
no n n o n

Clearly any point p in the sector T7 with |p| sufficiently large lies in the sector
1. Without loss of generality we can assume that the constant Ry > 0 chosen
earlier (see Theorems 4.6 and 4.7) has the additional property that p € T}
with |p| > Ry implies p € 2.

Take any point p = a+1ib € Xy. Arguing as above, we obtain the following
key estimates:

|eiPo(t=D| = |lP=D| = e~P0-1 0 <t <, (5.110)
lelPert=D| < o=(=Dalel <1 0<t<1, k=1,...,v—1, (5.111)
lelrert) <e7telrl <1 0<t<1, k=v,...,n—1 (5.112)

It follows that

|e—ipwo| _ ‘e—ip - eb7 (5.113)
|efipwk| Sefalp\ < 17 k:lw..,l/*l, (5114)
|eipwk‘ ge‘““" <1, k=v,...,n—1, (5.115)

for all p = a+ib € X;. Therefore, the exponential e~#“0 = e~ is unbounded
on the sector X as b — 0o, while the exponentials e % 1 < k < v —1, and
ek y <k <n—1,goto 0 very rapidly on X as |p| — oco. The estimates
(5.110)—(5.115) are also valid for p € T} with |p| > Ry, and in particular, they
are valid for p € Sy with |p| > Ry or for p € G;.

Applying the estimates (5.110)—(5.112) and (5.108) to the representation
(5.109) with n = 0, it is follows that

[uio(t, p)| < 2e7°071, (5.116)
luk(t, p)| < 2e~ABelel <o k=1, v—1, (5.117)
lurk(t, p)| < 207l < 2, k=wv,...,n—1, (5.118)

for 0 <t <1andfor p=a+ib € Ty with |p| > R;. In particular, for p = a+1ib
belonging to the sector S; with |p| > Ry and b < 0, we have

lue(t,p)| <2,  0<t<1, k=0,1,...,n—1 (5.119)

Third, in terms of the modified solutions u1x(t, p), k =0,1,...,n — 1, we
form the functions

m; my
Muik(p) = Bi(uir(-,p)) = > aiui?(0,0) + 3~ Baull (1, p)
n=0 n=0
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for p € Ty with |p| > Ry and for ¢ = 1,...,n and k = 0,1,...,n — 1. These
functions are analytic on the open set G;. For i = 1,...,nand kK =0,1,...,
v — 1 define

Pu(p) == ZainE1kn(0,p)P_m+n7 Quirlp) == ZﬁinElkn(l,P)P_m+n
n=0 n=0

for p € Ty with |p| > Ry, and for i =1,...,nand k =v,...,n — 1 define

Plzk(ﬂ) = Z ﬂinElkn(lv p)pfm+n’ lek(ﬂ) = Z ainElkn(Oa p)pfm+7]
n=0 n=0

for p € Ty with |p| > Rp; and in terms of these functions and the func-
tions Pig(p), Qir(p) (see equations (3.1) and (3.2)), for ¢« = 1,...,n and
k=0,1,...,n— 1 define

Prir(p) == Pi(p) + Pur(p),  Quin(p) = Qix(p) + Quir(p)

for p € T1 with [p| > Ry. All of these functions are analytic on the open
set G1. In terms of them, the functions Mi,i(p) can be expressed as follows:
fori=1,...,n

My (p) = 775 [Py (p) + Prir(p) + Qir(p)e** + Quin(p)e'*],
k=0,1,...,v—1,
Miix(p) = €% [Pir(p) + Prik(p) + Qir(p)e ™% + Quik(p)e ],
k=v,...,n—1.
Thus, for p € T1 with |p| > Rp and for i = 1,...,n, we have
Myin(p) = €% [Prk(p) + Quir(p)e'™*], k=0,1,...,v—1, (5.120)
My (p) = e [Prk(p) + Quin(p)e **], k=v,...,n—1.  (5.121)

Fourth, the characteristic determinant of the differential operator L rela-
tive to the sector T} is the analytic function A defined by

Aq(p) := det(B;(uik( -, p))) = det(Myir(p)) for p € Gy.

A complex number A = p™ with p € G; is an eigenvalue of L if and only if
Ay (p) = 0. Applying (5.120) and (5.121), the characteristic determinant can
be expressed in the form

1<k<v-1 v<k<n-—1
Pi1o(p)e” " +Q110(p)  Prin(p)e” Pk +Q11k(p) Pr1k(p)e”k +Q11k(p)
Aq(p) = det
Pin0(p)e P +Q1n0(p) Pink(p)e Pk +Q1nk(p) Pink(p)eP“* +Qink(p)

(5.122)
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for p € G;. Compare this representation to the representation (3.41) for the

approximate characteristic determinant A. N R
Fifth, the estimates (5.96) for the functions P, (p), Qir(p) remain valid for

p € C with |p| > 1. For the functions Py, (p), Q1ir(p), we obtain the estimates
|Pr(p)l < mlpl =™ 1Quin(p)| < ol (5.123)

for p € Ty with |p| > Rp and for ¢ = 1,...,n and k = 0,1,...,n — 1. For
1=1,...,n define

Fuin(p) == [Pix(p) + Pun(p)le ™ + Quin(p), k=1,...,v -1,
Frir(p) := [Pi(p) + Prir(p)]e” + Quin(p), k=v,...,n—1,

for p € Ty with |p| > Ro. These functions are analytic on the open set Gy
with

|Fri(p)| < yalp] =m0 (5.124)
for p € Ty with |p| > Ry, for i = 1,...,n, and for k = 1,...,v — 1 and
k=wv,...,n— 1. Using these functions, we can rewrite (5.122) as

1<k<v—1 v<k<n—1

Pr1o(p)e P 4+Q110(p) Fiin(p)+Q1r(p) Fiin(p)+Q1x(p)

Aq(p) = det
Pino(p)e P+ Q1n0(p) Fink(p)+Qur(p) Fink(p)+Qur(p)
(5.125)
for p € G;.
Sixth, expanding the determinant in (5.125) using the Oth column, we get
Ai(p) = Dir(p)e™ + Dio(p) (5.126)

for p € G, where
1<k<v—1 v<k<n—1

Pio(p)+Piio(p)  Fiin(p)+Qux(p)  Fiir(p)+Qux(p)

Di11(p) := det
Pro(P)+P1no(p)  Fink(p0)+Qnr(p)  Fink(p)+Qni(p)
and
1<k<v—1 v<k<n—1
Quo(P)+Q110(p)  Fi1k(p)+Q1k(p)  Fi1k(p)+Q1x(p)
D1o(p) := det

Qno(P)+Q1n0(p)  Fink(p)+Qni(p)  Fink(p)+Qnr(p)
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for p € Gy. Clearly the functions Dy;(p), ¢« = 0, 1, are analytic on the open
set G1.

Seventh, if we expand the determinants for the functions Dy;(p), i = 0,1,
using the linearity of the determinant function in its n columns, then we can
express these functions in the form

Dui(p) = 7i(p) + P1i(p), i=0,1,

for p € Gy, where the functions 7;(p), ¢ = 0, 1, are analytic for p # 0 in C and
are the functions introduced earlier in Chapter 3, and where the functions
®1;(p) are analytic on the open set Gy with |®;(p)| < 73]p|~(™m~P0), i =
0,1, for p € G1. Thus, for the characteristic determinant A; we obtain the
representation

A1(p) = F1(p)e™ + Fo(p) + P11 (p)e ™ + P1o(p) (5.127)

for p € Gy, where the functions 7;(p), ¢ = 0, 1, are analytic for p # 0 in C and
the functions ®1,(p), i = 0, 1, are analytic on the open set G with

B1i(p)| < slpl~ ™), i=0,1, (5.128)

for p € G1. Compare equation (5.127) to equation (3.44).
Eighth, the functions }(p), i = 0, 1, introduced in Chapter 3, are given by

q r
T = . At mp) = Y. bp” (5.129)
k=—(m—po—1) k=—(m—po—1)

for p # 0 in C. From equations (3.47) and (3.48) it is immediate that

—(m—po) —(m—po)
Tp) =milp) + Y. ak(m)p®, Folp)=mhlp) + Y. b.(m)p"
r=—n(m—1) k=—n(m—1)

(5.130)

for p # 0 in C. In terms of (5.127) and (5.130) we define the functions

~(m=po) N ~(m=po) N
Di(p) = Y. a(m)p®+Pulp), Pwolp):i= > b(m)p"+P1o(p)
k=—n(m-—1) k=—n(m—1)

for p € G;. These functions are clearly analytic on the open set G1, and by
using them we can rewrite the representation (5.127) in the simpler form

Ai(p) = i (p)e™ + 7 (p) + P11(p)e ™ + P1o(p) (5.131)

for p € Gy. In equation (5.131) the functions 7j(p), i = 0,1, are given by
(5.129), and they are analytic for p # 0 in C; the functions @1;(p), i = 0,1,
are analytic on the open set G; and satisfy the growth rates
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[®15(p)| < qalpl~t"7P), =01, (5.132)

for p € G;. Recall that the functions m;(p), ¢ = 0,1, appearing in the repre-
sentation (5.105) of the characteristic determinant Ag(p) are related to the
functions 7}(p), ¢ = 0,1, appearing in the representation (5.131) of the char-
acteristic determinant A (p) by equations (3.49) and (3.50), namely

m(p) = mo(pwy),  mo(p) = mi(pwy—1) (5.133)

for p#£0in C.

The representation (5.131) is our working form for the characteristic de-
terminant A; relative to the sector Ti. Compare the representation (5.131)
for the characteristic determinant A; to the representation (3.55) for the ap-
proximate characteristic determinant A.

The above results are summarized in the following theorem.

Theorem 5.5. Let n be odd: n = 2v — 1. Under the above assumptions (i)—
(vi), let vig(-,p), &k = 0,1,...,n — 1, be the linearly independent solutions
of the differential equation (2.1) constructed in Theorem 4.7 for p € Ty with
|pl > Ro, let uig(-,p), k =0,1,...,n — 1, be the modified solutions of (2.1)
defined above for p € Ty with |p| > Ro, and let Ay be the characteristic
determinant of the differential operator L given by

Ai(p) = det(B;(uik(-, p))) for p € G1,

where G1 = {p € Int Ty | |p| > Ro}. Then Ay is analytic on the open set Gy,
and Ay has the representation

Ai(p) = mi(p)e ™ + mp(p) + Pri(p)e”” + Pio(p)

for p € Gy, where the functions ®1,(p), i = 0,1, are analytic on G1 and satisfy
the estimates |P1;(p)| < v|p|~"™=P0) for p € Gy and fori=0,1.
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The Green’s Function

For both n even and n odd, if we start with any point A = p™ in C with
p € Go and Ag(p) # 0 or with p € G1 and A;(p) # 0, then A belongs to the
resolvent set p(L) and the resolvent Ry (L) = (M — L)~ ! exists as an integral
operator on L?[0,1] with the Green’s function G(t, s; \) as its kernel:

Ra(L)u(t) = /OlG(t,s;)\)u(s) ds, 0<t<1, weL0,1].

In this chapter we construct important representations of the resolvent and
the Green’s function, and then use these representations to derive their growth
rates for p belonging to the sectors Sy and S;. Our representations are first
developed for p belonging to the open set Gy, and then analogous represen-
tations are established for p in the open set Gj.

6.1 The Green’s Function for n Even

Assume that n is even: n = 2rv > 2. For the even order case recall that the
sectors Sy and S7 are given by

s
]

Sp: all p= \p\eie ceCwith0<g<

3

Si: allp:\p\eiee(CWith —I§9§0,
n

with Ty and T3 the corresponding translated sectors. For each p € Ty with
|p| > Ro, let us consider the basis voo( -, p),vo1(,p); .- von-1(+,p) for the
solution space of the differential equation (2.1) determined in Theorem 4.3.
In Chapter 5 we showed that

WOt p) = peP 4 [(iwr)® + Foalt, p)] (6.1)

for 0 <t <1, for p € Ty with |p| > Ry, and for k,a = 0,1,...,n — 1, where
the function Fyra (-, p) belongs to H" [0, 1] with
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for 0 <t <1, for p € Ty with |p| > Ry > Rg, and for k,a =0,1,...,n — 1.
Also in Chapter 5, for p € Ty with |p| > Ry we formed the modified solutions
woo(+,p)suo1(+5p)s .- uon—1(-,p) of the differential equation (2.1). These
functions have the representations

ul (8, p) = p*e Pt [ (iwr)® + Foral(t, p)], k=0,1,...,v—1,

(@) aipwp(t=1) (7 \a (6.3)

U (t7p):pepk [(lwk) +F0ko¢(tap)]a k:’/w-wn*lv
for 0 <t <1, for p € Ty with |p| > Ro, and for « = 0,1,...,n — 1. From
equation (5.18) we have the bounds

|u0k(t,p)|§2a Ogtglv k:()v]-a"'vn_]-v (64)

for p = a + ib belonging to the sector Sy (where b > 0) with |p| > R;.
Let Lo be the nth order differential operator in L2[0,1] defined by

D(Lo) = {u e H"0,1] | u"(0)=0,i=1,...,n},  Lou=lu.

Clearly the resolvent set p(Lg) is equal to C due to the initial value condi-
tions at ¢ = 0. We begin by computing the Green’s function g(t, s; A) of the
differential operator AI — Ly, and then use it to compute the Green’s func-
tion G(t,s; \) of the differential operator AI — L. The algorithm in Example
II1.3.18 of [28] will be employed.

For A = p™ in C and p € Ty with |p| > Ry, our earlier work has shown
that the Green’s function g(¢, s; A) is given by

n—1
g(t75;/\) = ZUOk(tvp)TIOk(svp)’ 0<s<t<l,
k=0
(6.5)
g(t,s;\) =0, 0<t<s<l,

where the functions nog (-, p), K = 0,1,...,n — 1, belong to H"[0, 1] and are
determined by the linear system

n—1

Zvéz)(sap)%k(sap) = _5an—lina a=0,1,...,n—1, (66)
k=0

for 0 < s < 1. Using equation (6.1), the system (6.6) can be rewritten in the
form

n—1
Z [(iwk)a + FOka(Sa p)]eipukSUOk(sv P) = —dq n—linﬂ_(n_l),
k=0 (6.7)

a=0,1,...,n—1,
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for 0 < s < 1. We will treat (6.7) as a linear system for the unknowns
elP@rsno (s, p), k= 0,1,...,n — 1, with n x n coefficient matrix Ay(s,p) :=
((iwe)™ + Foka(s, p)). Previously in Chapter 4 this matrix was shown to be
nonsingular for 0 < s < 1 and for p € Ty with |p| > Rp.

For the Vandermonde matrix

1 1 1
. in iw1 cee iwn_l
V= ((lwk)a) - : : : ’
(iwo)”_l (iwl)n—l (iwn—l)n 1

the inverse is given by

V—l _ 1 (in—k—lwg—k) _ ( 1 wn—k)

nin—1 nik ¢
in—1,.,n :n—2, n—1 2,2
el i w T e e wo
in—1, n :n—2 n— 202
1 il 1T e dwf wy
- ninfl :
in—1,.n :n—2, n—1 22
L B o

Let us write the inverse of Ag(s, p) in the form

Ao(s, ) i= (g i ™ [1+ Gora(s, )]

for 0 < s <1 and for p € Ty with |p| > Ry. Then from (6.7) it follows that

e%pwosﬁoo(s’ p) 0

101 (s, p) :

. = AO(Svp)_l 0
eipwn,lsnon_l(s,p) _inp—(n—l)

wO[l + C:On—l 0(57P)]
3 wi[l +Gon-11(s,p)]

npnfl

wWn—1[14+ Gon-1n-1(5,p)]

and hence,
iw k

Nok (s, p) = — e PS4 Gt 1(5, p)] (6.8)

npn—l
for 0 < s <1, for p € Ty with |p| > Rg, and for K =0,1,...,n — 1. Since the
functions 7o ( -, p) belong to H™[0, 1], the functions Gon—1%( -, p) also belong
to H™[0,1].

We assert that the functions Goa (s, p) — 0 uniformly on [0,1] x Ty as
|p| = oo for k,a = 0,1,...,n — 1. Take any € > 0. Using the continuity of
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matrix inversion and the fact that the Vandermonde matrix V' is nonsingular,
choose a number § > 0 such that if W = (wqg) is an n x n matrix with

|(lwg)® — war| < 9 for a,k =0,1,...,n — 1, then W is nonsingular, and the
inverse W1 = (1,4) satisfies

iw”_k—x <€ for a, k =0,1 n—1

nik o ak s v — Uy by eeey .

Choose a constant Rs > Ry such that |Fora(s,p)| < 6 for 0 < s <1 and for
p € Ty with |p| > Ry, for a,k = 0,1,...,n — 1. Then for 0 < s < 1 and for
p € Ty with |p| > Rs, we have

|(iwn)® = [(wr)® + Fora(s, p)l| = [Foka(s, p)| <0

for a, k=0,1,...,n — 1, and hence, from the above
i = w1+ Gora(s, )| = = [Gorals )] <
nik Wa nik We, 0kal\S, P)|| = n 0ka\S, P €

for 0 < s <1 and for p € Ty with |p| > Rs, for k,a = 0,1,...,n — 1. This
establishes the assertion. Based on this assertion, without loss of generality
we can assume that the constant R; chosen earlier also yields the bound

|G0ka(57p)| <1 (69)

for 0 < s <1, for p € Ty with |p| > Ry, and for k,a =0,1,...,n— 1.
Summarizing, for A = p™ in C and p € Ty with |p| > Ry, the Green’s
function for the differential operator A\I — Lg is given by

1 = : ipwi (t—s
9t 38) = = 2y D) Pl I+ o k(5,9)
0<s<t<,
g(t,s;A) =0, 0<t<s<l,
(6.10)

where the functions Foro( -, p) and Gopn—1%( -, p) belong to H™[0, 1] and satisfy
the bounds given in equations (6.2) and (6.9).
Next, we rewrite (6.5) or (6.10) in the form

g(t787>‘) = kO(ta S,,O) +£0(t,s,p)
for t # s in [0,1] and for A = p™ in C and p € Ty with |p| > Ry, where

v—1

ko(taS;p) = Z%k(@ﬂ)ﬁ%(&ﬂ% 0 S s<t S 17
= (6.11)
ko(t,sp) i= — Y vok(t, p)mow(s,p),  0<t<s<1,

k=v
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and
n—1

lo(t, s5p) Zv% (t, p)nok (s, p), 0<ts<l.
k=v

The Green’s function g(t,s; ) is the kernel of the integral operator Ry(Lo),
which assigns to each u in L?[0, 1] the unique solution z € D(Lg) of the initial
value problem (Al — Lg)z = u. Also, the function ¢y(t, s; p) is the kernel of an
integral operator which maps L?[0, 1] into the solution space of the differential
equation (p"I — £)u = 0.

For each p € Ty with |p| > R, let Ko, be the integral operator on L?[0, 1]
defined by

1
Kopu(t) = / ko(t, s; p)u(s)ds, 0<t<1,
0

for u € L?[0,1]. From the above remarks it follows that if u € L?[0,1] and
v = Ko,u, then v belongs to H"[0, 1] and (p™I —{)v = u. By direct calculation

we have
/ ko(t,s; p)u(s)ds

= Z'Uok (t ,0/ nox (8, p)u(s) ds — ZUOk (t p/ nok (s, p)u(s) ds

for 0 <t <1, and using equation (6.6) with o = 0, we get

v—1

Z”Ok (t p/ nok(s, p)u(s) ds + > vok(t, p)mow (t, p)uf(t)
k=0
- Z%k (t.p / ok (s, pYu(s) s+ S vow(t, p)ron(t, p)u(t)
k=v

v—1
=Zvak<t,p/n0k<s P ds—ZUOktp/ nok(s, pu(s) ds
k=0

L Ok

= [ Gt soputs)ds

for 0 <t < 1. Proceeding by induction, we see immediately that the deriva-
tives of v = Ky,u satisfy the equations

, L ik
@) (4) — 0
v (1) T2 (1, 55 pyuls) ds

= Z v(J) / Nok (s, p)u(s) ds — Z v(]) / Nok (s, p)u(s) ds

k=0
(6.12)
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for 0 <t <1andforj=0,1,...,n—1, valid for each p € Ty with |p| > Ry.

Using (6.1) and (6.8), for p € Ty with |p| > Ro the kernel ko(t, s; p) can be
expressed as

v—1
1 : ipwy (t—s
ko(t, s;p) = Tt > (iwr)e? T [1 4 Foro(t, p)][1 + Gon-1k(s, p)],
k=0

0<s<t<,
1 n—1 )
ko(t,s;p) = 1 ;j(iwk)emw’“(t*s)[l + Foro(t, p)I[1 + Gon-1k(s, p)],
0<t<s<l1.
(6.13)

Now take any point p = a + ib € Ty with |p| > Ry. If ¢, s are real numbers
with 0 < s <t <1, then 0<t¢—s <1, and by (5.8) we obtain the estimates

|etrwolt=s)] = gbli=s), 6.14)

|eirwrlt=s)] < e=(=salel <1 k=1 v-1 (6.15)

On the other hand, for real numbers ¢, s with 0 <t < s < 1, we have
0<s—t<1, -1<t—-—s5<0, 0<1+t—s<1,

and hence, by (5.9)

‘eipw,,(t—s)‘ — o ts—t), (6.16)
|eipw,€(t75)| _ |eipwk(1+t7571)| < e~ (s—t)alp| <1, k=v+1,...,n—1
(6.17)

In particular, if p = a 4+ ib € Sy with |p| > Ry, then these estimates give

|etPert=o)] <1, 0<s<t<l1l, k=0,1,...,v—1, (6.18)
|eirert=9)| <1 0<t<s<1, k=v,...,n—1 (6.19)

Applying (6.18), (6.19) and (6.2), (6.9) to the representation (6.13), it follows
that

2
WML&MISﬁF;— (6.20)

for t # s in [0,1] and for p € Sy with |p| > R;.

Finally, fix any point A = p™ in C with p € Gg, and assume that Agy(p) # 0,
so the point A belongs to the resolvent set p(L). Using the integral operator
Ky,, we can establish our representations of the resolvent Ry(L) and the
associated Green’s function G(t, s; \). Indeed, take any function u € L?[0, 1],
and set
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v=Kopu and w=Ry(L)u.
Clearly the functions v and w belong to H"[0, 1], and
M-0v=u= A\ —w

Thus, there exist constants cg, ¢y, ..., c,—1 (depending on p) such that
Ry(D)u(t) = w(t) =v(t) + Y _ cruor(t,p),  0<t <1,

The functions wox(-,p), K = 0,1,...,n — 1, are the modified solutions of
the differential equation (2.1) introduced earlier. They form a basis for the
solution space of (2.1), and the characteristic determinant Ag(p) is defined in
terms of them.

Applying the boundary value B; to both sides of the last equation, we
obtain the linear system

ZMM Jer = —Bi(v),  i=1,...,n, (6.21)
for the constants ¢, c1,...,cnh_1, where as in Chapter 5
MOik:(p) = B uOk ZOZ”’LLOk 0 p + Zﬂ”u(()]k)

fori=1,...,n,k=0,1,...,n— 1. The n X n coefficient matrix (Mop;x(p)) in
(6.21) is nonsingular because det(My;x(p)) = Ao(p) # 0.

Fix an index ¢ with 1 < ¢ < n, and consider the quantity B;(v) =
B;(Ko,u). From equation (6.12) and equations (6.1), (6.8), we have

n—1

1
Zv(” / nok (s, p)u(s) ds
= n — 1 Z 1wk 1wk

1
+ For; (0, P)]/ e P+ Gon—1k(s, p)lu(s) ds
0

and

Zv% 1,0/77%(5 pyu(s) ds
= n — 1 Z 1wk 1(,41]C

—‘y—Fij(l,p)]/o 1pwk( [ +G0n lk(s p)] ( )dS
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for j=0,1,...,n — 1, and hence,
mg ) mq
v) = Zaijvm(m + Zﬁuv(”(l)

= Z{Z 1) B (iwp) p? [(iwy )’ +F0kj(1vp)]}

k=0 j5=0
X/O elpwr (1= [ + Gon-1k(s,p)|u(s)ds (6.22)
npn—1t Z{Z o (iwy ) 7 [ (1w, )? +F0kj(0,p)}}
k=v j=0

1
></ e_ip‘”’“s[l + Gon-1k(s,p)lu(s)ds
0

fori=1,...,n.Fori=1,...,nand k=0,1,...,v — 1 define

Toir(p) == > _(=1)Bij(iwr)p [(iw)’ + Forj (L, p)]

Jj=0

for p € Ty with |p| > Ry, and for i =1,...,n and k =v,...,n — 1 define
%zk Zalj lwk lwk) +F0kj(0ap)]

for p € Ty with |p| > Rp; and for k =0,1,...,v — 1 define
Uok(s, p) :=€#* =1 4 Goro1i(s,p)],  0<s<1,
for p € Ty with |p| > Ry, and for k =v,...,n — 1 define
Uok(s, p) = e P**[1 4+ Gon—1k(s,p)], 0<s<1,

for p € Ty with |p| > Ry. Then we can express (6.22) in the simpler form

n—1 1
1
Bi(0) = s > Toulp) [ Ul pus) ds (6.2
— 0
for i =1,...,n, where the functions 7y, (p) are analytic functions of p on Gy,

and for fixed p in Ty with |p| > Rg the functions Up( -, p) belong to H™[0, 1].
In terms of the matrix (Mo (p)), let Mo;(p) denote the cofactor of the

entry Mo (p):
M()ik(p) := (—=1)"**! times the determinant of the (n — 1) x (n — 1)
submatrix of (My;.(p)) obtained by deleting

the ith row and kth column.
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Clearly the cofactors Moik(p), t=1,...,n, k=0,1,...,n — 1, are analytic
functions in the p variable on the open set G. These cofactors arise naturally
when we solve for the constants cg,¢1,. .., c,—1 in the linear system (6.21) by
means of Cramer’s rule:

kth column

_ Moio(p) -+ Bi(v) -+ Moin-1(p)
o Ao(p) det ’ ’
Mono(p) -+ Bu(v) -+ Monn—1(p)
p— _1 -
~ Ao(p)
C’“:W;;Mw ) To(p) / Uni(s,pu(s)ds  (6.24)

for k=0,1,...,n— 1.
Combining the above results, we conclude that

Ra(D)u(t) = KOpu< )

1
- 17 Z ZMojk )Toju( )UOk(tP)/ Uni(s, p)u(s) ds
m AO 0

k JA1=07=1
(6.25)

for 0 <t <1 and for u € L?[0,1], where (6.25) is valid for A = p" in C with
p € Gp and with Ag(p) # 0. Also, from (6.25) the associated Green’s function
is given by

G(t,s;0) = ko(t, s; p)

6.26
_W) Z ZMng %]l )U(m(t,p)Uoz(Sm) ( )
o ke l=0 j—1

for t # s in [0, 1], where (6.26) is valid for A = p™ in C with p € G and with
Ao(p) # 0.

To effectively use the representations (6.25) and (6.26), we must determine
bounds or growth rates for the various functions appearing there. For the
basis functions wog (¢, p) we have already established the necessary bounds in
equation (6.4). For the kernel ko(t, s; p) the required growth rate is given in
equation (6.20). Let us proceed to calculate bounds and growth rates for the
functions Zoik(p), Uok(s, p), and Mok (p).

First, consider the functions Zg;x(p). From their definitions and the esti-
mate (6.2), it is immediate that
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[Zoir(p)] < yilpl™ (6.27)

for p € Ty with |p| > Ry and for i =1,...,n, k=0,1,...,n — 1. Second, for
the functions Uy (s, p), from their definitions and the earlier estimates (5.8),
(5.9), together with (6.9), we obtain the estimates (replace ¢ by 1 — s)

|Uoo(s, p)| < 2e700=9), (6.28)
|Uow (s, p)| < 2e7°, (6.29)
|Uok(s,p)| < 2e"(=8)elel <9 =1, v—1, (6.30)
|Uok (s, p)| < 267501l < 2, k=v+1,...,n—1, (6.31)

for 0 < s <1 and for p = a+1ib € Ty with |p| > R;. In particular, for p = a+1ib
belonging to the sector Sy (where b > 0) with |p| > Ry, we have

|Uok(s,p)| <2, 0<s<1, k=0,1,...,n—1 (6.32)

Third, fix indices ¢ and k with 1 < i <nand 0 < k < n —1, and let
us consider the cofactor Mo (p). It is formed by taking (—1)“*+1 times the
determinant of the (n — 1) x (n — 1) matrix obtained by deleting the ith row
and the kth column of the matrix

1<k<v-1 v+1<k<n-—1

Po10(p)+Qo10(p)e”  Pie(p)+Fo1k(p)  Porv(p)+Qorv(p)e”  Pii(p)+Foir(p)

Pono(p)+Qon0(p)e”  Pri(p)+Fonk(p)  Ponw(p)+Qonu()e”  Prr(p)+Fonk(p)

Suppose we proceed to expand the determinant for Mgik (p) in the same man-
ner as Ao(p) was expanded in Chapter 5. See equation (5.25). If 1 <k <v-—1
or v+ 1 <k <n-—1, then the determinant of the (n — 1) x (n — 1) submatrix
that leads to Mol‘k(p) is first expanded using linearity in both the Oth and vth
columns; this yields the terms €2, ¢?, 1. On the other hand, if k = 0, then
the initial expansion takes place in only the vth column; this gives the terms
e, 1. And if k = v, then the expansion initially is in the Oth column, leading
to the terms €', 1.

Next, all the (n — 1) x (n — 1) determinants are expanded using linearity
in all n — 1 columns. This expansion produces the representation

Moir(p) = 7 (p)e®? + 71y, (p)el + Fin(p)

N (6.33)
+ G0 (p)e™ + Gpir(p)e” + doir(p)

for p € Go. In this equation the functions 7/}, 7, , T;; are formed from the

functions Pjg, Q; introduced in Chapter 3 (see equations (3.1) and (3.2));
they are analytic for p # 0 in C, and each one has the simple form
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Po—m;
> Awp), p#£0inC.

j=—(n—1)(m-1)

Cf. (3.3); (3.20), (3.25), (3.26); and (5.30). All the perturbation terms are
contained in the functions ¢g;., ¢4k, Poix; they are analytic for p in the open
set G, and satisfy the growth rates

5 (0)] < alol =P (G ()] < |~ PEm,

_ (6.34)
|Goir (p)| < yalp|~(mPotmi)

for p € Go. In the special cases k = 0 or k = v, then 7/, (p) = 0 and
211 —
0i(p) = 0.
Take any point p = a + ib in the sector Sy with |p| > R;. Clearly b > 0,
le’’| = e=? <1, and |e??| < 1, and hence, by (6.33) and (6.34)

| Mok (p)] < 3y3]p|Po ™™ + 3ya|p| = (M Potmi) < | plPo=m (6.35)

fori = 1,...,n, k = 0,1,...,n — 1. Combining this result with (6.27), we
obtain the estimate

szmk VTos(p)] < 3 alol ™ ol < ol (6.36)
Jj=1

for p € Sp with |p| > R; and for k,1=0,1,...,n— 1.

Finally, take any point A = p™ in C with p = a 4+ ib € Sy, with |p| > Ry,
and with Ag(p) # 0. Clearly p € Ty with |p| > Ry > Ro, p € Gy, and b > 0,
and A belongs to the resolvent set p(L) with the Green’s function G(t,s; \)
given by (6.26). Applying the estimates (6.20), (6.36), (6.4), and (6.32) to
(6.26), we see that

n—1

2
|G(t,s;0)] < vslplPo -2 2,
lp|m 1 nlpl” 1|A Ik;o
or
2 vlpl?

(U= st 1 24
for t # s in [0,1], where (6.37) is valid for A = p" in C with p € Sy and
|p| > Ry and with Ag(p) # 0. Cf. equation (9.8) in Chapter 4 of [34]. This
is our principal result for the growth rate of the Green’s function G(t,s; \)
relative to the sector Sy when A = p™ and p € Sp.

We can derive alternate representations of the resolvent Rx(L) and the
Green’s function G(¢, s; A) that are in terms of the characteristic determinant
Aq(p) and the sectors Sy, T1. The treatment for A; and Sy, T3 is similar
to the one for Ag and Sy, Ty, but there are some subtle differences. For

(6.37)
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p € Th with |p| > Ry, let vig(-, p),v11(,p),. .., v1n-1(+,p) be the basis for
the solution space of the differential equation (2.1) determined in Theorem 4.4.
In Chapter 5 we showed that
WD (t, p) = pe?r [(1wp)® + Figa(t, p)] (6.38)
for 0 <t <1, for p € Ty with |p| > Ro, and for k,a« = 0,1,...,n — 1, where
the function Fixa(-,p) belongs to H" %[0, 1] with
|[Fika(t, p)| <1 (6.39)

for 0 <t <1, for p € Ty with |p| > Ry > Ro, and for k,a =0,1,...,n — 1.
Also in Chapter 5, for p € Ty with |p| > Ry we formed the modified solutions
uo(+,p)sur1(+,p)s - u1n—1(-,p) of the differential equation (2.1):
,p) = e PPyt p) = e [yo(t, p) + € Eroo(t, p)p~ ",
) = vik(t, p) = yk(t, p) + €K Eqpo(t, p)p~™
k=1,...,v—1,
w1, (t,p) = v1,(t, p) = €7 [y, (t, p) + #* "V By 0(t, p)p~™],
urk(t, p) = e o1 (t, p) = yi(t, p) + P Bt p)p ™,
k=v+1,...,n—1,

for 0 < t < 1. These functions also form a basis for the solution space of

the differential equation (2.1), and together with their derivatives they can be
expressed as

ul§)(t, p) = pe o1 [(iwo)* + Fioa(t, p)],
ug(z)(tﬂp)ipaemw}ct[(lwk) +F1ko¢ t p}a kzl,"'ayfla (6 40)
uis (8,p) = p*eP (1) + Fiualt,0)]

ugk)( p)_paelpwk(t 1)[(iwk) +F1ka(t, )], k=v+1,...,n—1,

for 0 <t <1 and for p € Ty with |p| > Ry, and for « =0,1,...,n — 1. From
equation (5.48) we have the bounds

luk(t,p) <2,  0<t<1, k=0,1,....,n—1, (6.41)

for p = a + ib in the sector S (where b < 0) with |p| > R;.

For A = p™ in C with p € T satisfying |p| > Ro, we can again compute
the Green’s function g(t, s; A) of the differential operator AI — Ly, but now we
use the basis vix(-,p), k=0,1,...,n—1:

3
|
—

g(t,s30) = > vie(t, p)me(s,p), 0<s<t<1,

>
Il
o

(6.42)
g(t,s;A) =0, 0<t<s<l,
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where the functions (-, p), k =0,1,...,n — 1, belong to H"[0,1] and are
determined by the linear system

n—1

ngz)(s,p)mk(s,p) = —ban_11", a=0,1,...,n—1, (6.43)
k=0

for 0 < s < 1. Using (6.38), we can write this system in the form

n—1

S [w)® + Fika(s, 0)] €111 (5, p) = —6anai™p~ ",

k=0 (6.44)

for 0 < s < 1. We will consider this as a linear system for the unknowns

ePwrsny (s, p), k=0,1,...,n — 1, with coefficient matrix

A1(s,p) = ((iwk)® + Fira(s, p))

that is nonsingular for 0 < s <1 and for p € T} with |p| > Ry.
Proceeding as above, we express the inverse A;(s,p)~! in the form

1
Ao, p) ™ 1= (g Wi L+ Gurals.0)))
for 0 < s <1 and for p € Ty with |p| > Ry, and it then follows that

iwy

Mk(s,p) = — e PR+ Gy o1 k(s )] (6.45)

npnfl
for 0 < s < 1, for p € Ty with |p| > Ry, and for k = 0,1,...,n — 1. For
fixed p the functions G1,-1%(-,p) belong to H"[0,1], and appealing to the
continuity of matrix inversion once more, the G4 (s, p) go to 0 uniformly on
[0,1] x Ty as |p| — oo for k,a =0,1,...,n — 1. Without loss of generality we
can assume that the constant R; chosen earlier also produces the bound

|Gika(s,p)] <1 (6.46)

for 0 < s <1, for p € Ty with |p| > Ry, and for k,a=0,1,...,n— 1.
Thus, for A = p™ in C and p € T} with |p| > Ry, the Green’s function for
the differential operator A\I — Ly is given by

n—1
1 : ipwg (t—s
9(t,550) = = e S (eI 1+ Bt )L+ G i)
k=0
0<s<t<L,
g(t,s;A) =0, 0<t<s<l,

(6.47)
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where the functions Fyio( -, p) and G1,-1%( -, p) belong to H™[0, 1] and satisfy
the bounds given in equations (6.39) and (6.46).

Next, recall that w,, = wy = 1 and w, = —1. To simplify the discussion,
we set

vln(tvp) = Ulo(t»P)»
Flnoz(tap) = FlO()t(t7p)7 0[20,1,...,77,*1,
Mn (8, p) 1= 1M0(8, p), Gin-1n(8,p) = Gin-10(s,p),

for 0 <t,s <1 and for p € T} with |p| > Rg. With this change of notation,
we can then rewrite (6.47) in the form

n

1 s ipwk (t—s
g(t.s;A) = — 1 ;(lwk)e PRI 4 Figo (8, p)I[1 + Grn1k(s, )],
0<s<t<,
g(t,s;A) =0, 0<t<s<l,
(6.48)

for A= p™ in C and p € T} with |p| > Ry. The representations (6.42), (6.47),
and (6.48) can be expressed in the alternate form

g(t, 53 X) = ka(t, 550) + €a(t, 55 )
for t # s in [0,1] and for A = p™ in C and p € T} with |p| > Ro, where

k1(t, s;p) : Zvlktp)mk(s 0, 0<s<t<l,

’”n (6.49)
ki(t, s;p) : Zvlktpmksp) 0<t<s<l,

k=v+1

and
n

G(tsip) =Y ot pmel(s,p),  0<ts <1
k=v+1

For each p € Ty with |p| > Ry, let K, be the integral operator on L?[0, 1]
defined by
1
Kqpu(t) := / k1(t, s; p)u(s)ds, 0<t<1,
0

for u € L?[0,1]. If w € L?[0,1] and v = Kj,u, then it follows that v belongs
to H™[0,1] and (p"I — £)v = u, and by direct calculation

1
o) = [ Falt.ssp)ute) ds

_Zvlktp/nlk(s p)u(s)ds — Z

k=v+1

vk (t, P)/75 me(s, p)u(s) ds
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for 0 <t < 1. Using equation (6.43) with « = 0, we get

n

v + 1
0= 3 ohatt / (s puls)ds — 3 viy(t, ) / nue(s, pYu(s) ds

k=v+1
1
= [ G esonuts) ds

for 0 <t < 1. Proceeding by induction, we see immediately that the deriva-
tives of v = K ,u satisfy the equations

: Lok
w9 (t) = ; 8tjl (t,s; p)u(s) ds
v ) t n . 1
=Y o) [ mutsippus)ds = S0 o) [ (s, phuts) ds
k=1 0 k=v+1 t
(6.50)

for0<t<1landfor j=0,1,...,n— 1, valid for each p € T} with |p| > Rp.
Using (6.38) and (6.45), for p € Ty with |p| > Ro the kernel k1 (¢, s; p) can
be expressed as

A .
kl (tv S; p) = _npn,1 Z(lwk)QIPWk(t )[1 + FlkO(ta p)} [1 + Gl n—1 k:(sa p)]7
k=1
0<s<t<,
1 o .
kit sip) = —— Y (iwr)e®* 1 4 Firo(t, p)][1 + G1n-14(s, ),
np k=v+1
0<t<s<l.
(6.51)

Now take any point p = a +1ib € Ty with |p| > Ry. If ¢, s are real numbers
with 0 < s <t <1, then 0 <t—s<1,and by (5.8) we obtain the estimates

|etrwr(t=9)] < em(tmsalel < 7 k=1,...,v—1, (6.52)
|eiren (t=8)| = blt=s), (6.53)
On the other hand, for real numbers ¢, s with 0 <t < s < 1, we have
0<s—t<1, -1<t—s<0, 0<1+t—s<1,
and hence, by (5.9)

}eipwk(tfs)’ _ |eipwk(1+t7571) < ef(sft)oz\p| <1, k=uv+ 1,...,n—1,
(6.54)

‘eipun(t—s) ’ — eb(S—t)_ (655)
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In particular, if p = a +ib € Sy (where b < 0) with |p| > R;, then these
estimates give

‘eip‘dk(t_s)‘ <1, 0<s<t<l, k=1,...,v (6.56)
|ei,0auc(t75)‘§17 0<t<s<l, k=v+1,...,n (6.57)

Applying (6.56), (6.57) and (6.39), (6.46) to the representation (6.51), it fol-

lows that
2

[ki(t,s:p)| < T (6.58)

for t # s in [0,1] and for p € Sy with |p| > R;.

Finally, fix any point A = p™ in C with p € G1, and assume that A;(p) # 0,
so the point A belongs to the resolvent set p(L). We are going to establish
representations of the resolvent Ry (L) and the associated Green’s function
G(t,s;)). Indeed, take any u € L?[0,1], and set

v=FKu and w= Ry(L)u.
Clearly the functions v and w belong to H™[0, 1], and
M —v=u= (N —w

Thus, there exist constants cg, ¢y, ..., c,—1 (depending on p) such that
Ra(L)u(t) = w(t) =v(t) + > _ cpurg(t,p),  0<t <1,

The functions uig(-,p), k = 0,1,...,n — 1, were introduced earlier. They
form a basis for the solution space of the differential equation (2.1), and the
characteristic determinant A;(p) is defined in terms of them.

Applying the boundary value B; to the last equation, we obtain the linear
system

ZMM = —Bi(v), i=1,...,n, (6.59)
for the constants cg, c1,...,c,_1, where as in Chapter 5
Mlik(ﬂ) - B ulk Zawulk 0 P + Zﬂ’b]u(l]k)

fori=1,...,n, k=0,1,...,n — 1. Note that det(My;1(p)) = A1(p) # 0.
Fix an index ¢ with 1 < i < n, and consider the quantity B;(v) =
B;(Ki,u). From equation (6.50) and equations (6.38), (6.45), we have
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n

‘ 1
vD0) =~ 3 w0, p)/ (s, p)u(s) ds
k=v+1
o D SRR (PN

n—1
np k=v+1
1 .
4 Fug(0.0)) [ P4 G p)luls) ds
0

and

1
v (1 Zvl / (s, p)u(s) ds
= n 1 Z 1wk 1wk

+F1kj(1,p)]/o PRI 4 Gy i(s, p)]uls) ds

for 7 =0,1,...,n — 1, and hence,

0= iaijv<j><o> n iﬁijv(j)<1>

= S (S D ) + Fies (100

k=1 7=0
1
X/ eipwk(l—s)[l +G1n—1k(3”0)}u(3) ds (6.60)
0
—|— Z {Za” iwp) P’ [(iwg ) +F1kj(0,p)]}
k v+1 j=0

1
< / IS 4 Gy (s, p)]u(s) ds
0

fori=1,...,n.Fori=1,...,nand k =1,...,v define
Tiik(p) = Z(_l)ﬁij(iwk)Pj[(iwk)j + Fig;(1, p)]
j=0

for p € Ty with |p| > Ry, and for i =1,...,nand k =v+1,...,n define
Tik(p ZO‘U iwg)p? [(iwr)? + Fixi (0, p)]

for p € Ty with |p| > Rp; and for k =1,...,v define
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Uik(s, p) i= €071+ Grpai(s,p)l,  0<s<1,
for p € Ty with |p| > Ry, and for k =v +1,...,n define
Uik(s, p) == e P51+ Grnak(s,p)],  0<s<1,

for p € Ty with |p| > Ry. Then we can express (6.60) in the simpler form

Biv) = IZTM /Ulk(s p)uls) ds (6.61)

fori=1,...,n, where the functions 7y;;(p) are analytic functions of p on Gy,
and for fixed p in Ty with |p| > Rg the functions Ui( -, p) belong to H"[0, 1].

In terms of the matrix (Myx(p)), let Myix(p) denote the cofactor of the
entry My (p):

Mlik(/)) := (=1)"***! times the determinant of the (n — 1) x (n — 1)
submatrix of (Mi(p)) obtained by deleting

the ith row and kth column.

Clearly the cofactors Muk(p), i=1,....,n, k=0,1,...,n— 1, are analytic
functions in the p variable on the open set GG;. Using these cofactors, we
proceed to solve for the constants cg, ¢y, ..., c,—1 in the linear system (6.59)
by means of Cramer’s rule:

kth column
X Miio(p) -+ Bi(v) -+ Min-1(p)
= ——det
*FT A : :
Man(P) e Bn(v) e Mlnnfl(p)
-1 &~
= My B;(v),
A1(p) ; 1Jk(p) J( )

or

n

Ck:n:iil(ZZMuk p)Tiji(p )/ Un(s, pu(s) ds (6.62)

=1 j5=1

for k=0,1,...,n— 1.
Combining the above results, we conclude that

RBa(L)u(t) = Klpu( )

AT Z 2 T Tt V)
(6.63)
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for 0 <t <1 and for u € L?[0, 1], where (6.63) is valid for A = p" in C with
p € Gy and with A;(p) # 0. Also, from (6.63) the associated Green’s function
is given by

Gt 55 0) = ka(t, 5: )

A EZ W (Y T (et ) Uui(s,p) 0OV
k): =1

for t # s in [0, 1], where (6.64) is valid for A = p™ in C with p € G; and with
Ai(p) #0.

Let us proceed to determine bounds and growth rates for the various func-
tions appearing in equations (6.63) and (6.64). For the basis functions u1x (%, p)
we have already established the necessary boundedness in equation (6.41). For
the kernel k1 (¢, s; p) the required growth rate is given in equation (6.58). Con-
sider the functions 7y;x(p), U1k (s, p), and Z/\Zik(p).

First, for the functions 77,;(p), from their definitions and the estimate
(6.39) it is immediate that

|T1ir ()] < milpl™ (6.65)

for p € Ty with |p| > Ry and for i = 1,...,n, k = 1,...,n. Second, for the
functions Uy(s, p), from their definitions and the earlier estimates (5.8), (5.9),
together with (6.46), we obtain the estimates (replace ¢ by 1 — s)

|Uri(s,p)| < 2e~(=8)elel <9 k=1, v—1, (6.66)
U1 (5, p)] < 2e70 ) (6.67)
|U1k(s,p)|§2 50"”' <2 k=v+1,...,n—1, (6.68)
Uin(s, p)| < 2¢° (6.69)

for 0 < s < 1and for p = a+ib € Ty with |p| > R;. In particular, for p = a+ib
belonging to the sector S; (where b < 0) with |p| > R;, we have

|Uir (s, p)| < 2, 0<s<1, k=1,...,n. (6.70)

Third, fix indices ¢ and k with 1 <¢ <mand 0 <k <n —1, and let us
consider the cofactor My (p) for p € Gy. It is formed by taking (—1)"+++!
times the determinant of the (n — 1) x (n — 1) matrix obtained by deleting
the ith row and the kth column of the matrix

1<k<v-1 v+1<k<n-—1

Piio(p)e " 4+Qu10(p)  Pir(p)+Fi1k(p)  Piin(p)e +Qu1.(p)  Pir(p)+Fiik(p)

Piao(p)e P +Q1n0(p)  Pur(p)+Fink(p)  Pinv(p)e  *+Quinu(p)  Puk(p)+Fink(p)
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Suppose we proceed to expand the determinant for Mlik (p) in the same man-
ner as Aq(p) was expanded in Chapter 5. See equation (5.56). If 1 <k <v-—1
or v+1 <k <n-—1, then in the determinant of the (n—1) x (n—1) submatrix
leading to My (p), we first factor out the term e~ from the original Oth and
vth columns, and then we apply linearity to these two columns; this yields
the terms 1, e"?, e2”. On the other hand, if £ = 0, then e~ is factored
out of the original vth column, and then linearity is applied to this column;
this yields the terms 1, e . And if k = v, then initially e~ is factored out
of the original Oth column, and then linearity is applied to this column; this
also yields the terms 1, e "%,

Next, all the (n — 1) x (n — 1) determinants are expanded using linearity
in all n — 1 columns. This expansion produces the following representations:
forl<k<v—lorforv+1<k<n-1,

Miig(p) = e #7[w1 ()" + i (p)e" + i o)
+ 01 () + Bl (p)e” + drin(p)]

) ) (6.71)
= i (p) + T (p)e ™ + Tig (p)e 27
+ &in(p) + Brin(p)e ™ + drin(p)e 7
for p € Gy; for k=0
MMO(P) = e P[Fjo(p)e” + Fio(p) + leuo (p)e” + b1io(p)] (6.72)
= 7o (p) + Fio(p)e ™ + Phin(p) + bri0(p)e ™
for p € G1; and for k =v
My (p) = e #[7,(p)e" + i (p) + B4, ()€ + b1in ()] (6.73)

= 7},(p) + T (p)e ™ + @11 (p) + driv (p)e

for p € G1 In these equations the functions 7)), 7}, 7 are formed from the

functions Py, Qm introduced in Chapter 3. They are the same functions that
appear in (6.33); they are analytic for p # 0 in C, and each one has the simple

form
Po—m;

Z Aikjpjv p#0in C.

j==(n-1)(m-1)

All the perturbation terms are contained in the functions gg'l’ik, ({)’Mk, J)uk; they
are analytic for p in the open set G1, and satisfy the growth rates

|50 (p)] < vl =P |8 (p)] < el TP,

b ~(m=po-tm, (6.74)
|¢1zk(,0)| §72|p| (m—po+m)

for p € G;.
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Fourth, consider any point p = a + ib belonging to the sector S; with
lp| > Ry. Clearly b < 0, |e™| = e® < 1, and |e=%”| < 1, and hence, by the
representations (6.71)—(6.73) and the bounds in (6.74),

| Mk (p)| < 3ys|pPo =™ + Brya|p| =Pt < oy plpo= s (6.75)

fori =1,...,n, k = 0,1,...,n — 1. Combining this result with (6.65), we
obtain the estimate

1N M) Taji(p)| < ulplPo=™ - yalp|™s < vs]plP0 (6.76)
j=1 j=1

for p € S7 with |p| > Ry and for k=0,1,...,n—1,1=1,...,n.

Finally, take any point A = p™ in C with p = a +ib € Sy, with |p| > Ry,
and with Ay(p) # 0. Clearly p € Ty with |p| > R1 > Ry, p € G1, and b <0,
and A belongs to the resolvent set p(L) with the Green’s function G(t,s; A)
given by (6.64). Applying the estimates (6.58), (6.76), (6.41), and (6.70) to
(6.64), we see that

9 1 n—1 n

)| < S .92
|G(t, s;\)] < lp[n—1 + nlp|" 1| A1 (p)] 2o L ¥spl )
or P
gl
G(t,s; 0| < 6.77
1 ) lpl"=t " nlp[" A (p)] (6.77)

for t # s in [0, 1], where (6.77) is valid for A = p™ in C with p € S; and
|p| > Ry and with Ai(p) # 0. Cf. equation (6.37) and equation (9.8) in
Chapter 4 of [34]. In Chapter 9 we will use the estimates (6.37) and (6.77) of
the Green’s function G(t, s; A) to establish the completeness of the generalized
eigenfunctions of the differential operator L.

6.2 The Green’s Function for n Odd

Assume that n is odd: n = 2v — 1 > 3. For the odd order case the sectors Sy
and Sp are given by

So: all p=|ple'? € C with —lgegl,
2n 2n

Sy: allp:|p|e19€(CWith7T—lSQSW—FL,
2n 2n

with Ty and T3 the corresponding translated sectors. In the last half of this
chapter we again construct representations of the resolvent and the Green’s
function, and then use these representation to derive their growth rates for p



154 6 The Green’s Function

belonging to the sectors Sy and S;. The treatment closely follows the develop-
ment in the first half for the case n even. Consequently, we will only indicate
the main features of the theory for the odd order case.

For each p € Ty with |p| > Ry, let voo(+,p),v01(+,p)s.-.,von—1(+,p) be
the basis for the solution space of the differential equation (2.1) determined in
Theorem 4.6. In Chapter 5 we showed that (see equations (5.80) and (5.81))

o$(t,p) = p P [(iwr)® + Foral(t, p)] (6.78)

for 0 <t <1, for p € Ty with |p| > Ro, and for k,a = 0,1,...,n — 1, where
the function Foka (-, p) belongs to H™ [0, 1] with

|Fora(t,p)| < 1 (6.79)

for 0 <t <1, for p € Ty with |p| > Ry > Rg, and for k,a =0,1,...,n — 1.
Also in Chapter 5, for p € Ty with |p| > Ry we formed the modified solutions
woo(+,0)suo1( -5 p)s .- uon—1(-,p) of the differential equation (2.1). These
functions have the representations (5.82):

u(()(::)(t7p) :paeipwkt I:(lwk)a+F0ka(ta /0)]’ k :0,17'“,1/7 1a (6 80)
Ué?c)(tvm — p()éeiﬂwk(t—l) [(iwk)a + FOka(tvp)]’ k= R 17

for 0 <t <1, for p € Ty with |p| > Ry, and for « = 0,1,...,n — 1. From
equations (5.89)—(5.91) we have the bounds

Juoo (t, p)| < 277, (6.81)
luok (t, p)| < 2e~tlPl < 2, k=1,...,v—1, (6.82)
|u0k(t7p)| < 267(17t)a|p| < 27 k= Vyooohy 0 — 17 (683)

for 0 <t < 1andfor p=a+ib € Ty with |p| > R;. In particular, for p = a+1ib
belonging to the sector Sy with |p| > Ry and b > 0, we have

luor(t,p)] <2,  0<t<1, k=0,1,...,n—1. (6.84)

We must form another set of modified solutions in order to treat the case of
p=a-+ibin Sy with |p| > Ry and b < 0.
Indeed, set voy,(t, p) := voo(t, p) and

FOna(tap) = FOOoc(t?p)7 042071,...7’)7,—17
for 0 <t <1 and for p € Ty with |p| > Ry, and then set

Uon (t, p) + = e P0ugg(t, p) = e Prug, (t, p)
= a1 1 Fyo(t, p)]

for 0 <t <1 and for p € Ty with |p| > Ry. Clearly
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ugy) (£ p) = e 0= [(1w)* + Fonalt, p)] (6.85)
for 0 <t <1, for p € Ty with |p| > Rp, and for « =0, 1,...,n—1, and clearly
the functions wgx(-,p), k = 1,...,n, also form a basis for the solution space

of the differential equation (2.1). Note that
|uon (t, p)| < 2707 (6.86)

for 0 <t <1 and for p =a+ib € Ty with |p| > Ry, and hence, for p = a +1ib
in Sp with |p| > Ry and b < 0, we have

In terms of this new basis, we can form the new characteristic determinant

Bi(uo1(-,p)) -+ Bi(uon(-,p)) _
A(p) = det : : =c¢ " Ao(p)
Bn(uol(ap)) Bn(u()n(;p))

for p € Gp.
Next, as earlier in this chapter let Ly be the nth order differential operator
in L2[0, 1] defined by

D(Lo) = {u e H"0,1] | ™ D(0)=0,i=1,...,n},  Lou={lu.

Then the resolvent set p(Ly) is equal to C, and the Green’s function g(t, s; A)
of the differential operator \I — L is given by

n—1
g(t,s;0) =Y wok(t, p)mon(s,p),  0<s<t<1,
k=0
(6.88)
g(t,s;\) =0, 0<t<s<l,

for A = p" in C and p € Ty with |p| > Ro. The functions nox(-,p), k =
0,1,...,n — 1, belong to H™[0,1] and are determined by the linear system

n—1

S0l (s, pmok(5.0) = —0am—i”,  a=0,1,...n—1,  (6.89)
k=0

for 0 < s < 1. This system can be rewritten in the form

n—1

> [(wr)® + Foka(s, p)] € *no(s, p) = =Gan-_1i"p~ "V,

k=0 (6.90)

a=01,...,n—1,
for 0 < s < 1. We know that the nx n matrix Ag(s, p) := ((iwg)*+ Fora(s, p))

is nonsingular for 0 < s < 1 and for p € Ty with |p| > Ry, and its inverse can
be expressed in the form
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1
A T (w1 +aG o
0(87/)) (nlkwa [ + Gok (87p)})
for 0 < s <1 and for p € Ty with |p| > Ry. It follows that

iw k

nok (8, p) = — e P14+ Gono1k(s, p)] (6.91)

npn—l
for 0 < s < 1, for p € Ty with |p| > Ro, and for k = 0,1,...,n — 1,
with the functions Gon—1%(-,p) belonging to H™[0,1]. Since the functions
Goka(s, p) — 0 uniformly on [0,1] x Ty as |p| — oo for k,a =0,1,...,n — 1,
we can assume that the constant R; chosen earlier also yields the bound

|Goka(s,p)| <1 (6.92)

for 0 < s <1, for p € Ty with |p| > Ry, and for k,a =0,1,...,n— 1.
Summarizing, for A = p™ in C and p € Ty with |p| > Ry, the Green’s
function for the differential operator AI — Lg is given by

1 — : ipwi (t—s
g(t,s0) = — 1 ;O(lwk)e PR + Foro(t, p)I[1 + Gon-1k(s, ),
0<s<t<1,

g(t,s;A) =0, 0<t<s<l,
(6.93)

where the functions Foro( -, p) and Gon—1( -, p) belong to H™[0, 1] and satisfy
the bounds given in equations (6.79) and (6.92).
Next, we rewrite (6.88) or (6.93) in the form

g(t78;>‘) = kO(ta 359) +£0(t78;p)

for t # s in [0,1] and for A = p™ in C and p € Ty with |p| > Rp, where

v—1
kolt,sip) =Y _ vor(t, p)nok (s, p), 0<s<t<l,
k=0
n—1
kot s;p) = — > wvor(t, p)mok(s,p),  0<t<s<l,
k=v

(6.94)

and
n—1

‘go(tas;p) = Zka(tap)nOk(s7p)v 0 St,s S 1.
k=v
The Green’s function g(¢,s; A) is the kernel of the integral operator Ry (L),
which assigns to each u in L?[0, 1] the unique solution z € D(Lg) of the initial
value problem (A — Lg)z = u. On the other hand, the function ¢y(t, s; p) is
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the kernel of an integral operator which maps L?[0, 1] into the solution space
of the differential equation (p™I — ¢)u = 0.

For each p € Ty with |p| > Ry, let Ko, be the integral operator on L?[0, 1]
defined by

1
Kopu(t) = / ko(t, s; p)u(s)ds, 0<t<1,
0

for u € L?[0,1]. From the above remarks it follows that if u € L?[0,1] and
v = Ko,u, then v belongs to H"[0, 1] and (p™I — £)v = u, and using equation
(6.89) and induction, the derivatives of v = Ko,u are given by

V(1) = O aajt’jo(t s; p)u(s) ds
1
_ Zv(J) / nox (8, p)u(s) ds — Zv(j) / ok (s, p)u(s) ds

(6.95)
for 0 <t <1andforj=0,1,...,n— 1, valid for each p € Ty with |p| > Ry.
Using (6.78) and (6.91), the kernel kg(t, s; p) can be expressed as

ko(t, s;p) Py Z iwp ) [1 4 Fogo(t, p)I[1 + Gon-1k(s, p)],

0<s<t<l,
n—1
1 : ipwg(t—s
ko(t, s;p) = T > (iwr)e 1+ Fogo(t, p)][1 + Gon-1k(s, p)],
k=

0<t<s<l,
(6.96)

for p € Ty with |p| > Ro. Now take any point p = a + ib € Ty with [p| > Ry.
If ¢, s are real numbers with 0 < s <¢ <1, then 0 < ¢t — s <1, and by (5.83)
and (5.84) we obtain the estimates

‘eipwo(t—s)‘ — e—b(t—s)’ (697)
|eirer(t=s)| < e=(t=salel < k=1,...,v—1. (6.98)

On the other hand, for real numbers ¢, s with 0 < ¢t < s < 1, we have
0<1+4+t—s<1,and hence, by (5.85)

|eirert=s)| = |elpwn(Itt=s=1)| < g=(s=talel < 7 k=v,...,n—1. (6.99)

In particular, if p = a+1b € Sy with |p| > R; and b > 0, then these estimates
give
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|eirent=s)| < 1, 0<s<t<l, k=0,1,...,v—1, (6.100)
‘eipwk(t—S)} <1, 0<t<s<l k=v,...,n—1. (6.101)

Applying (6.100), (6.101) and (6.79), (6.92) to the representation (6.96), it

follows that 4
[ko(t, s )| < T (6.102)

for t # s in [0,1] and for p = a +ib € Sy with |p| > R; and b > 0.

Now fix any point A = p™ in C with p € Gy and with Ag(p) # 0, so the
point A belongs to the resolvent set p(L). Take any function u € L?[0, 1], and
set

v=FKopu and w= Ry(L)u.

Then v and w belong to H™[0, 1], and (A —£)v = v = (Al — £)w. Thus, there

exist constants cg, ¢, ...,cp—1 (depending on p) such that
n—1
Ra(L)u(t) = w(t) =v(t) + > _ cpuox(t,p),  0<t <1,
k=0

The functions ugx( -, p), k =0,1,...,n — 1, are the modified solutions of the
differential equation (2.1) introduced earlier; the characteristic determinant
Ap(p) is defined in terms of them.

Applying the boundary value B; to the last equation, we obtain the linear
system

ZMM Jer = —=Bi(v),  i=1,...,n, (6.103)
for the constants ¢, c1,...,cn_1, where as in Chapter 5
Moix(p) = B;(uow( Za”uéjk) 0,p) + Zﬂwué]k)

fori=1,...,n, k=0,1,...,n— 1. The n X n coefficient matrix (Moy;r(p)) in
(6.103) is nonsingular because det(Mo;x(p)) = Ao(p) # 0.

Fix an index ¢ with 1 < i < n, and consider the quantity B;(v) =
B;(Kopu). From equation (6.95) and equations (6.78), (6.91), we have
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Z% +Zf’a (1

= 12{2 1) By (iwr) o7 [(iwr )? +F0kj(1,P)]}

k=0 3=0
1
X/ eipwk(l_s)[l+G0n,1k(s,p)]u(8) ds (6.104)
0
T Z{Z% iwi)o? [(iwor)? + For (0, 0)] }
k=v j=0

1
></ e—ipwk5[1 + Gon-1k(s,p)]u(s)ds
0

fori=1,...,n.Fori=1,...,nand k=0,1,...,v — 1 define

Toir(p) = i(—l)ﬁi]‘(iwk)ﬂj[(iwk)j + For; (1, p)]

=0

for p € Ty with |p| > Rp, and fori =1,...,nand k =v,...,n — 1 define
Toir(p ZO‘” iw)p? [(wk)? + For; (0, p)]

for p € Ty with |p| > Rp; and for k =0,1,...,v — 1 define
Uok (s, p) := P A= [1 4 Gop_11(s, p)], 0<s<1,
for p € Ty with |p| > Ry, and for k =v,...,n — 1 define
Uok(s, p) == e P**[1 4+ Gon—1k(s,p)], 0<s<1,

for p € Ty with |p| > Rp. Then (6.104) can be expressed in the simpler form

n—1 1
1
B;(v) = T > Toulp) / Uok (s, p)u(s) ds (6.105)
k=0 0
fori =1,...,n, where the functions 7y;x(p) are analytic functions of p on Gy,

and for fixed p in Ty with |p| > Rg the functions Up( -, p) belong to H™[0, 1].

In terms of the matrix (Myix(p)), let Moix(p) denote the cofactor of the
entry Mo;x(p). Clearly the cofactors Mgik(p), i=1,....,n,k=0,1,...,n—1,
are analytic functions in the p variable on the open set G, and in terms of

them we can solve for the constants cg,cq,...,c,_1 that appear in the linear
system (6.103):
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kth column
. Moio(p) -+ Bi(v) -+ Moin—1(p)
Ccr = A_( )det
olp ) :
MOnO(p) Bn(v) MOnnfl(p)
S
= Moir(p)Bj(v),
AO(P); OJIC( ) J( )
or
1 n—1 n 1
CkZWzZMOJk £)Toji( )/ Uni(s, p)u(s) ds (6.106)
=0 j=1

for k=0,1,...,n— 1.
Combining the above results, we conclude that

RA(L)u(t) = K()pu( )

1
- 17 Z Z MO]k %]l )UOk (tv p)/ UOl(Sa p)U(S) ds
"1 Ag(p 0

k =0 7=1
(6.107)

for 0 <t <1 and for u € L?[0,1], where (6.107) is valid for A = p" in C with
p € Go and with Ag(p) # 0. The associated Green’s function is then given by

G(tv 55 )\) = ko(t, 53 ,0)

(6.108)
- W Z ZMOJIC )Toj1(p)uok (t, p)Uoi(s, p)
k,l1=0j=1
for t # s in [0, 1], where (6.108) is valid for A = p™ in C with p € Gy and with

Ao(p) # 0.

Let us determine bounds and growth rates for the various functions ap-
pearing in equations (6.107) and (6.108). For the basis functions uox (%, p),
k=0,1,...,n — 1, we have the bounds given previously in equation (6.84).
For the kernel ko(t, s; p) the required growth rate is determined by equation
(6.102). Note the restriction Im p > 0 that applies to these estimates.

Consider the functions Zo;x(p), Uok(s,p), and Moik(p). First, from the
definitions of the Ty (p) and the estimate (6.79), it is immediate that

|Toir ()] < milpl™ (6.109)

for p € Ty with |p| > Ry and fori=1,...,n, k=0,1,...,n— 1. Second, from
the definitions of the Uy (s, p) and the estimates (5.83)—(5.85), together with
(6.92), we obtain the estimates (replace ¢ by 1 — s)
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Uno(s, p)| < 2e7°072), (6.110)
Uor(s, p)] < 2e~I=9lel <9 k=1, ,v—1, (6.111)
\Uoi (s, p)| < 2075011 < 2, k=wv,...,n—1, (6.112)

for 0 < s < 1and for p = a+ib € Ty with |p| > R;. In particular, for p = a+ib
belonging to the sector Sy with |p| > Ry and b > 0, we have

|Uok (s, p)| <2, 0<s<1, k=0,1,...,n—1. (6.113)

Third, fix indices ¢ and k& with 1 < ¢ < nand 0 < k < n — 1. The
cofactor Mo;x(p) is formed by taking (—1)iT*+! times the determinant of the
(n —1) x (n — 1) matrix obtained by deleting the ith row and the kth column
of the matrix

Po1o(p)+Qo10(p)e  Piu(p)+Foir(p)  Pir(p)+Forr(p)

Pono (p)+Q0n0(p)Cip ﬁnk(p)""FOnk(p) ﬁnk(p)"'ﬁ()nk (P)

Suppose we expand the determinant for Mois (p) in the same manner as Ag(p)
was expanded earlier. See equation (5.99). f 1<k <v—-lorv<k<n-1,
then the determinant of the (n — 1) x (n — 1) submatrix that leads to Moz (p)
is first expanded using linearity in the Oth column; this yields e, 1 terms. On
the other hand, if k£ = 0, then a 1 term is produced, but no e* term appears.

Next, all the (n — 1) x (n — 1) determinants are expanded using linearity
in all n — 1 columns. This expansion produces the representation

Moz‘k(ﬂ) = 7.(p)e” + 7 (p) + hir (p)e” + doi(p) (6.114)

for p € Gy. In this equation the functions 7/, 7;; are formed from the func-

tions Pjk, Q1 introduced in Chapter 3; they are analytic for p # 0 in C, and
each one has the simple form

Po—my; ]
Z Airgp?, p#0in C.

j==(n=1)(m-1)

The functions ¢~’I01‘kv boir are analytic for p in the open set Gy, and satisfy the
growth rates

|Boir(P)] < 2lp| PO o (p)| < yalp|TMTPOF)(6.115)

for p € Gy. For the special case k = 0, 7, (p) = 0 and %ik(p) =0.
Take any point p = a+ib in the sector Sy with |p| > Ry and b > 0. Clearly
le'”| = e~® < 1, and hence, by (6.114) and (6.115)
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| Moir (p)] < 2y3]p"° ™™ + 22| p| =P <y pfPo (6.116)

fori=1,...,n, k=0,1,...,n— 1. Upon combining (6.116) with (6.109), we
obtain the estimate

n n
1> Moji(p)Tou(p)| < D alplPo™™ - mlpl™ < s ol (6.117)
j=1 j=1

for p=a+ib € Sy with |p| > Ry and b > 0 and for k,1 =0,1,...,n— 1.

Finally, take any point A = p™ in C with p = a+ib € Sy, with |p| > R; and
b > 0, and with Ag(p) # 0. Clearly p € Int Ty with |p| > Ry > Ro, p € Gy,
and A belongs to the resolvent set p(L) with the Green’s function G(t,s; A)
given by (6.108). Applying the estimates (6.102), (6.117), (6.84), and (6.113)
to (6.108), we see that

n—1
4 1
G(t,s;\)| < Po. 2.2
Gt 0)] < W_l+n|p|n_1|A0(p)|kJZ:075\p\ :
or
VlplP

|G(t, s;\) (6.118)

S T AT 2ol
for ¢ # s in [0, 1], where (6.118) is valid for A = p™ in C with p = a +ib € Sy,
with |p| > Ry and b > 0, and with Ag(p) # 0.

The representation (6.108) of the Green’s function G(t,s; A) is still valid
for A = p" in C with p = a+1b € Sy and with |p| > R; and b < 0, but
in this form it is difficult to obtain the necessary bounds and growth rates.
To remedy this situation, we make simple modifications in the above work:
we first alter the integral operator Ky,, and then replace the basis uox( -, p),
k=0,1,...,n— 1, with the basis uox(-,p), k=1,...,n.

Recall that w, = wy = 1, and earlier we introduced the notation
von(t, p) 1= voo(t, p) and

Fona(t, p) == Fooa(t, p), a=0,1,...,n—1,
for 0 <t <1 and for p € Ty with |p| > Ry. Now set 1o, (s, p) := noo(s, p) and
Gorn (s, p) := Goro(s,p), k=0,1,...,n—1,
for 0 < s <1 and for p € Ty with |p| > Ry. Clearly
[Fono(t, p)| = [Fooo(t, p)| <1 (6.119)
for 0 <t <1 and for p € Ty with |p| > Ry, and
|Gon—1n(s,p)| = |Gon-10(s,p)| < 1 (6.120)

for 0 < s <1 and for p € Ty with |p| > Ry. With this change in notation, we
can rewrite the representation (6.93) of the Green’s function g(¢, s; A) as
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1 = : ipwg (t—s
1,5 0) = = oy D)1t Fosolt, )1+ Gor1(s, )
k=1
0<s<t<,
g(t,s;A) =0, 0<t<s<1,
(6.121)

for A = p™ in C and p € Ty with |p| > Ry. Here the functions Fogo( -, p) and
Gon-1k(+,p) belong to H™[0, 1] and satisfy the bounds given in (6.79), (6.92),
and (6.119), (6.120).

Next, we rewrite (6.88) or (6.121) in the alternate form

g(t,s;A) = kg (t, s3p) + £5(t, 53p)

for t # s in [0,1] and for A = p™ in C and p € Tj with |p| > Ry, where

v—1
ki (t, s; ) Zvok (t, p)nok(s, p), 0<s<t<1,
=1 (6.122)
kg (t,s;p) = ZUOktP)Uok(SP) 0<t<s<l,
k=v

and

(¢, s5p) - Zvoktp)n()k(s 0), 0<t,s<1.
k=v
Observe that the function £(¢, s; p) is the kernel of an integral operator which
maps L?[0, 1] into the solution space of the differential equation (p"I—£)u = 0.
For each p € Ty with |p| > Ry, let K, be the integral operator on L?[0,1]
defined by

Koyu(t) = [ i(tsppu(ds, 0<e<t,

for u € L?[0,1]. If u € L?[0,1] and v = K, u, then it follows that v belongs
to H™[0,1] and (p"I — £)v = u. Using equation (6.89) and induction, we see
immediately that the derivatives of v = K¢ ,u are given by

1 oa
4 Ok}
G (4) = 0 .
vV(t) = = (t,s; p)u(s)ds
0= [ G sl
v—1 ) 1
=> " vi(t.p /nOk(s plu(s) ds — E vg (¢, p/ 1ok (s, p)u(s) ds
k=1

(6.123)

for 0 <t <1andfor j=0,1,...,n— 1, valid for each p € Ty with |p| > Ry.
From (6.78) and (6.91) the kernel k§(¢, s; p) can be expressed in the form
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v—1
1 : ipwy (t—s
ko(t,s:p) = gy D (wr)e I+ Foo(t, p)[1+ Gon1x(s, )],
k=1
0<s<t<l,
* 1 - : ipwi (t—s
k3(t,5:) = -y D (i) L Foso(t, )L+ Gonora(s. )
k=v
0<t<s<1,
(6.124)

for p € Ty with |p| > Ro. Now take any point p = a + ib € Ty with [p| > Ry.
If ¢, s are real numbers with 0 < s <t <1, then 0 <t— s <1, and by (5.84)
we obtain the estimate

|eirent=s)| < o=lt=)alel <1 p=1,...,v—1. (6.125)

On the other hand, for real numbers ¢, s with 0 < ¢t < s < 1, we have
0<1+4+t—s<1,and by (5.85)

|eiﬁwk(t*5)| — |eiﬂwk(1+t*8*1)| < g~ (5=Nalpl <1
- - (6.126)
k=v,...,n—1,

|eipw"(t78)| — eb(sft)' (6127)

In particular, if p = a+1b € Sy with |p| > Ry and b < 0, then these estimates
give
ererlt=)) <1 0<s<t<l, k=1,...,v-1, (6.128)
|elrerli=e)] <1, 0<t<s<l, k=v,...,n (6.129)

Applying (6.128), (6.129) and (6.79), (6.119) and (6.92), (6.120) to the repre-
sentation (6.124), it follows that

. 4
kg (t,s50)| < T (6.130)

for ¢ # s in [0, 1] and for p € Sy with |p| > Ry and b < 0.
Using the integral operator K, the alternate basis wor(+,p), k=1,...,n,
and the alternate characteristic determinant

Bi(uoi(-,p)) -+ Bi(uon(-,p))
Al(p) = det =e PAo(p), p e G,
Bn(u01( ’ 7p)) T Bn(UOn( ’ ap))

(6.131)
we can establish alternate representations for the resolvent Ry(L) and the
associated Green’s function G(t, s; A). Fix any point A = p" in C with p € Gy,
and assume that Ag(p) # 0. Clearly Aj(p) # 0, and the point A belongs to
the resolvent set p(L). Take any function u € L?[0,1], and set v = K, u and
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w = Ry(L)u. The functions v and w belong to H™[0,1], and (A — )v = u =
(M — £)w. Thus, there exist constants c¢q,...,c, such that

Ra(L)u(t) = w(t) =v(t) + > cruor(t,p), 0<t< L

Applying the boundary value B; to the last equation, we obtain the linear
system

ZMM Yer = —Bi(v), i=1,...,n, (6.132)
for the constants cq,...,c,, where
Mgir(p) = Bi(uor( Zau%k 0,p) + Zﬁw“gk)

fori=1,...,n,k=1,...,n. The nxn coefficient matrix (Mg;.(p)) in (6.132)
is nonsingular because det(M;,.(p)) = Af(p) # 0.

Fix an index i with 1 < i < n, and consider the quantity B;(v) =
Bi(Kg,u). From equation (6.123) and equations (6.78), (6.91), we have

Z a0 (0) + Z 8,091

= lz{z 1)8i; (1w ) o7 [ (i )? +Fozw-(1,p)]}

k=1 75=0
1
></ P =91 4 Gk (s, p)]u(s) ds (6.133)
0
= — Z{Za” iwg)p’ lwk) JrFokj(O’P)]}
k=v 5=0

1
></ e PS4 Gopo1k(s, p)]u(s) ds
0

fori=1,...,n.Fori=1,...,nand k=1,...,v — 1 define

m;

Toie(p) =Y _(=1)Bi;(iwr) o’ [(iwk)? + Fow; (1, p)]

=0

for p € Ty with |p| > Ry, and for i =1,...,n and k = v,...,n define

oik(p Za” iwg)p lwk) + For;(0, p)]
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for p € Ty with |p| > Rp; and for k =1,...,v — 1 define

Uga(s,p) i= €701 + Goo_1(s,0)], 0= s<1,
for p € Ty with |p| > Ry, and for k = v,...,n define

Use(s,p) i= P41+ Gopoin(sap),  0<s <1,

for p € Ty with |p| > Rp. Then (6.133) can be expressed in the simpler form

BizMZM/%wum (6.134)

for i =1,...,n, where the functions 7, (p) are analytic functions of p on Gy,
and for fixed p in Ty with |p| > Ry the functions U, (-, p) belong to H™[0, 1].

For the matrix (Mg;.(p)), let Mg‘ik(p) denote the cofactor of the entry
M. (p). These cofactors are analytic functions in the p variable on the open
set Gg. They appear naturally when we solve for the constants ci,..., ¢, in
the linear system (6.132):

kth column

Mg1(p) -+ Bi(v) -+ Mg, (p)

or

Ck:np”_zié(p)zz 0 () Toji( )/Ua‘l(s,p)u(s)ds (6.135)

fork=1,...,n
From the above we conclude that

RA(L)ult) = K u(t)
ot D O Man )T st ) | (o phuts) ds
7 (6.136)

for 0 <t < 1 and for u € L?[0,1], where (6.136) is valid for A = p" in C
with p € Go and with Af(p) # 0 (equivalently Ag(p) # 0). From (6.136) the
associated Green’s function is given by
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G(t,s; M) = kg(t,S'p)

- W Z ZMogk To1(p)uok(t, p)Ug (s, p)

k‘lljl

(6.137)

for t # s in [0, 1], valid for A = p™ in C with p € Gy and with A§(p) # 0.

Next, we determine bounds and growth rates for the functions appearing
n (6.136) and (6.137). For the basis functions wog(t,p), k = 1,...,n, we
have already established the necessary bounds in equation (6.87). For the
kernel k§(t,s; p) the required growth rate is given in equation (6.130). Note
the restriction Imp < 0 that applies to these estimates. Let us calculate
bounds and growth rates for the functions 75, (p), U (s, p), and Mo;k( )-

First, consider the functions 7, (p). From their definitions and the esti-
mates (6.79) and (6.119), it is immediate that

Toix ()] < mlpl™ (6.138)

for p € Ty with |p| > Ry and for i = 1,...,n, k = 1,...,n. Second, for the
functions U, (s, p), from their definitions and the estimates (5.84) and (5.85),
together with (6.92) and (6.120), we obtain the estimates (replace t by 1 —s

Ug (s, p)] < 2e9lel <9 k=1, v—1, (6.139
Uz (s, p)] < 2e7%2lPl < 2, kE=v,...,n—1, (6.140
U (s, p)| < 2eb* (6.141

for 0 < s <1 and for p = a+ib € Ty with |p| > R;. In particular, for p = a+ib
belonging to the sector Sy with |p| > Ry and b < 0, we have

U (s, p)] <2, 0<s<1, k=1,...,n. (6.142)

Thirdkﬁx indices ¢ and k with 1 < ¢4 < nand 1 < k < n. Then the
cofactor M, (p) is formed by taking (—1)"** times the determinant of the
(n —1) x (n — 1) matrix obtained by deleting the ith row and the kth column

of the matrix
Pii(p)+Foi(p)  Pir(p)+Foir(p)  Poro(p)e *4+Qo10(p)

P (p)+Fonk(p)  Par(p)+Fonr(p)  Pono(p)e™ " +Qono(p)

Suppose we expand the determinant for Mgik (p) in the same manner as Aqg(p)
was expanded earlier. See equation (5.99). Now we emphasize the nth column
instead of the Oth column. If 1 < k < v —-1orv < k < n — 1, then the
determinant of the (n — 1) x (n — 1) submatrix that leads to M, (p) is first
expanded using linearity in the nth column; this yields e 7, 1 terms. On the
other hand, if k = n, then a 1 term is produced, but no e " term appears.
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Next, all the (n — 1) x (n — 1) determinants are expanded using linearity
in all n — 1 columns. This expansion produces the following representations:
forl<k<v—lorforv<k<n-1,

Mg (p) = e P[0 (0)e + Fur(p) + dhir ()€ + Poik(p)]

M _ , (6.143)
= 7. (p) + Tir(p)e ™ + Ghir(p) + Poir(p)e ™

for p € Gy; and for k = n,

Mg (p) = 7io(p) + boio(p) (6.144)

for p € Gy. In these equations the functions 7}, , 7;, and %ik, (Z)Oik are the same
functions that appear in equation (6.114). The functions 7, , 7;; are formed
from the functions ﬁik, @ik introduced in Chapter 3. They are analytic for
p # 0 in C, and each one has the simple form

Po—my; )
Z Airip’, p#0in C.

j=—(n—1)(m~1)

The functions ¢~)10ik7 doir are analytic for p in the open set Gy, and satisfy the
growth rates

|Boir (P)] < alpl =Pt ™) Gou(p)] < yalp| T TPOFT)(6.145)

for p € Gy.
Take any point p = a+ib in the sector Sy with |p| > Ry and b < 0. Clearly
le="?| = e’ < 1, and hence, by (6.143)(6.145)

| Mg, (p)| < 23] p|PO ™™ 4 2p| p| ~(mmPotma) <y plPo (6.146)

fori=1,...,n, k =1,...,n. Combining this result with (6.138), we obtain
the estimate

n

n
1> Mg ()T (p)| <D alplPo ™™ - mlpl™ < s ol (6.147)
j=1 j=1

for p=a+ib € Sy with |p| > Ry and b < 0 and for k,l=1,...,n.

Finally, take any point A = p" in C with p = a+ib € Sy, with |p| > R; and
b < 0, and with Ag(p) # 0, so Af(p) # 0. Clearly p € Int Ty with |p| > Ry >
Rg, p € Go, and X belongs to the resolvent set p(L) with the Green’s function
G(t,s; \) given by equation (6.137). Applying the estimates (6.130), (6.147),
(6.87), and (6.143) and the relation (6.131) to the representation (6.137), we
see that

4 1

G, ;M) < g + =T Vslp[P -2 2,
lp["=t " nlp I\Ao(pﬂg::l
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or
< el
= ol nlpln e[ Ao (p)]

for t # s in [0, 1], where (6.148) is valid for A = p™ in C with p = a +ib € Sy,
with |p| > Ry and b < 0, and with Ag(p) # 0. Compare this growth rate to
the growth rate given previously in equation (6.118). Note the extra factor e®
that appears in the denominator of (6.148).

To develop the growth rate of the Green’s function G(¢,s;\) for A = p™
with p belonging to the sector S;, we simply recopy the above material, and
then make the few changes needed for the new material. Let us proceed with
these extensions of the theory.

For each p € Ty with |p| > Ro, let v1g(-,p),v11(+,p)s. .-, v10-1(",p) be
the basis for the solution space of the differential equation (2.1) determined
in Theorem 4.7. In Chapter 5 we showed that (see (5.107) and (5.108))

G(t,5:\) (6.148)

1}%;) (t, ,0) = paeipwkt [(iwk)f’é + Fliea (t, p)] (6149)

for 0 <t <1, for p € T1 with |p| > Rp, and for k,a = 0,1,...,n — 1, where
the function Figa (-, p) belongs to H"~*[0, 1] with

|Fira(t,p)] <1 (6.150)

for 0 <t <1, for p € Ty with |p| > Ry > Rg, and for k,a =0,1,...,n — 1.
Also in Chapter 5, for p € Ty with |p| > Ry we formed the modified solutions
uro(+, p)sur1(-5p)s .- urn_1(-,p) of the differential equation (2.1). These
functions have the representations (5.109):

ul®(t, p) = p* P D [(wp)® + Fira(t,p)],  k=0,1,...,v—1,
Wl (t, p) = pe Pt [(1w)® + Firal(t, )], k=v,...,n—1,
(6.151)

for 0 <t <1, for p € Ty with |p| > Ry, and for « = 0,1,...,n — 1. From
equations (5.116)—(5.118) we have the bounds

luo(t, p)| < 207001, (6.152)
lure(t,p)| < 2e"070lel <o =1 v-1, (6.153)
lurk(t, p)| < 2e7telPl < 2, k=v,...,n—1, (6.154)

for 0 <t <1 and for p =a+ib € T with |p| > R;. In particular, for p = a+1ib
belonging to the sector Sy with |p| > Ry and b < 0, we have

luik(t,p)) <2,  0<t<1, k=0,1,...,n—1. (6.155)

We must form another set of modified solutions in order to treat the case of
p=a+1ibin Sy with |p| > Ry and b > 0.
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Indeed, set vi,(t, p) := v10(t, p) and
Fina(t, p) := Fioa(t, p), a=0,1,....,n—1,
for 0 <t <1 and for p € Ty with |p| > Ry, and then set
uin(t, p) : = €“Cug(t, p) = vin(t, p)
= ePnt[1 + Fino(t, p)]

for 0 <t <1 and for p € Ty with |p| > Ry. Clearly we have the representation

wO(t, p) = pe Pt [(iw,) + Fina(t, p)] (6.156)

for 0 <t <1, for p € Ty with |p| > Rg, and for &« = 0,1,...,n—1, and clearly
the functions uix(-,p), k = 1,...,n, also form a basis for the solution space
of the differential equation (2.1). Observe that

luin(t, p)| < 2e7b (6.157)

for 0 <t <1 and for p=a+1ib e T with |p| > Ry, and hence, for p = a + ib
in 1 with |p| > Ry and b > 0, we have

lue(t,p)| <2,  0<t<1, k=1,...,n (6.158)
In terms of this new basis, we can form the new characteristic determinant
Bi(uii(+,p)) -+ Bi(uin(-,p))
A7(p) = det : s = " A4 (p)
Bp(u11(-,p)) -+ Bn(uin(-,p))

for p € G;.
Next, let Ly be the nth order differential operator in L?[0,1] introduced
earlier:

D(Lo) = {ue H"[0,1] | D(0)=0,i=1,...,n},  Lou=tlu.

Clearly the resolvent set p(Lg) is equal to C, and the Green’s function g(t, s; A)
of the differential operator A\ — L is given by

n—1

g(t,s;0) =y vik(t, p)mr(s, p), 0<s<t<l,
. (6.159)

g(t,s;0) =0, 0<t<s<l,

~
Il

for A = p" in C and p € Ty with |p| > Ro. The functions nx(-,p), k =
0,1,...,n — 1, belong to H™[0,1] and are determined by the linear system
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n—1

ngz)(s,p)mk(&p) = —Oqn_1i", a=0,1,....,n—1, (6.160)
k=0

for 0 < s < 1. This system can be rewritten in the form

n—1
iwk)® + Fipa(s, p)lel?@rs $,p) = —0pqn_1i"p "1,
kgo[( k) 1ka (s, p)] mi(s, p) 1i%p (6.161)

a=0,1,...,n—1,

for 0 < s < 1. We know that the n xn matrix A4, (s, p) := ((iwk)”‘+F1ka(s, p))
is nonsingular for 0 < s <1 and for p € Ty with |p| > Ry, and its inverse can
be expressed in the form

_ 1 -
A1(57p) ! = ('I’lewa k[1+G1ka(S?p)])
for 0 < s <1 and for p € Ty with |p| > Ry. It follows that

iw :
b e PS4 Gy (s, )] (6.162)

nlk(87p) = npn,1
for 0 < s < 1, for p € T1 with |p| > Ro, and for k = 0,1,...,n — 1,
with the functions Gy,-1%(-,p) belonging to H™[0,1]. Since the functions
G1ka(s, p) — 0 uniformly on [0,1] x Ty as |p| — oo for k,a =0,1,...,n — 1,
we can assume that the constant R; chosen earlier also produces the bound

|Gira(s,p)| <1 (6.163)

for 0 < s <1, for p € Ty with |p| > Ry, and for k,a =0,1,...,n— 1.
Summarizing, for A = p™ in C and p € T} with |p| > Ry, the Green’s
function for the differential operator AI — Ly is given by

n—1
1 : ipwi (t—s
ot 0) = = g SO+ Fuaa(t, L+ Grora(s. )
k=0
0<s<t<,
g(t,s;A) =0, 0<t<s<1,
(6.164)

where the functions Firo( -, p) and G1,-1%( -, p) belong to H™[0, 1] and satisfy
the bounds given in equations (6.150) and (6.163).
Next, we rewrite (6.159) or (6.164) in the form

for t # s in [0,1] and for A = p™ in C and p € T1 with |p| > Rp, where
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n—1
Ei(t, s;p) := va(t,p)mk(&p% 0<s<t<l,
’“”; ) (6.165)
ki(t,s;p): Zvlktp)nlk(sp) 0<t<s<l,
k=0
and
v—1
l1(t, s;p) Zvlk (t, p)me(s,p), 0<ts<l.
k=0

For each p € Ty with |p| > R, let K;, be the integral operator on L?[0, 1]
defined by

1
Kiyu(t) == / k1(t, s; p)u(s)ds, 0<t<1,
0

for u € L?[0,1]. If w € L?[0,1] and v = K;,u, then it follows that v belongs
to H™[0,1] and (p"I — £)v = u, and by direct calculation

/kltsp s)ds
—Zvuctp/mk(sp ds—zvlktp/nlk(S p)u(s)ds

for 0 <t < 1. Proceeding by induction, we see that the derivatives of v = K ,u
satisfy the equations

V(1) = O aajt’jl (t, 5 p)u(s) ds
1
_ Z,U(J) / mk(s, p)u(s) ds — Zv(]) / Mk (s, pu(s) ds
(6.166)

for 0 <t <1andfor j=0,1,...,n— 1, valid for each p € T} with |p| > Ry.
Using (6.149) and (6.162), the kernel k; (¢, s; p) can be expressed as

1 n—1 ' )
ba(6,539) = = i )01+ Fusalt oL+ G5,
k=v
0<s<t<,
1 v—1
kl (ta S p) = npn,1 Z(iwk)elpwk (t=s) [1 + FlkO(t7 p)] [1 + Gl n—1 k(sv p)];
k=

0<t<s <,
(6.167)
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for p € Ty with |p| > Rp. Now take any point p = a+1b € T with |p| > Rg. If
t, s are real numbers with 0 < s <t <1, then 0 <t — s <1, and by (5.112)
we obtain the estimates

|eirwrlt=9)] < e=(t=salel <1 =y ... ,n—1. (6.168)

On the other hand, for real numbers ¢, s with 0 < ¢t < s < 1, we have
0 <1+4+t—s <1, and hence, by (5.111)

eipwo(t—s)’ — e—b(t—s)7 (6169)
’eipwk(t75)| _ |eipwk(1+tfsfl)| <e G Wall <1 p=1,...,v—1. (6.170)

In particular, if p = a +1b € S; with |p| > Ry and b < 0, then these estimates
give

elrent=s)| <1, 0<s<t<l, k=v,...,n—1, (6.171)
|etrwrt=o)] <1, 0<t<s<1l, k=0,1,...,v—1. (6.172)

Applying (6.171), (6.172) and (6.150), (6.163) to the representation (6.167),
it follows that

4
Ih@&mﬂémﬁj (6.173)

for t # s in [0,1] and for p = a +ib € S; with |p| > R; and b < 0.

Fix any point A = p™ in C with p € Gy, and assume that Aq(p) # 0, so the
point A belongs to the resolvent set p(L). Using the integral operator K,, we
can establish our representations of the resolvent Ry (L) and the associated
Green’s function G(t, s; \). Indeed, take any function u € L?[0,1], and set

v=FKu and w=Ry(L)u.
Clearly the functions v and w belong to H"[0, 1], and
M = 0v=u= (A —w.

Thus, there exist constants cg, c1,...,c,—1 (depending on p) such that
n—1
Ry(L)u(t) = w(t) = v(t) + Z crurg(t, p), 0<t<1.
k=0

The functions uyx(-,p), k =0,1,...,n — 1, are the modified solutions of the
differential equation (2.1) introduced earlier. They form a basis for the solution
space of the differential equation (2.1), and the characteristic determinant
Aq(p) is defined in terms of them.

Applying the boundary value B; to both sides of the last equation, we
obtain the linear system
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ZMM Yer = —Bi(v),  i=1,...,n, (6.174)
for the constants ¢, c1,...,cnh_1, where as in Chapter 5
m;
Mlik(ﬂ) = B ulk Zawulk 0 P + Zﬁljugjk)

fori=1,...,n, k=0,1,...,n — 1. Note that det(My;x(p)) = A1(p) # 0.
Fix an index i with 1 < i < n, and consider the quantity B;(v) =
B, (K, ,u). From equation (6.166) and equations (6.149), (6.162), we have

m;

0= Zaijv@(m + iﬁm—v“)(l)

= T Z{Za” (iwe) P’ [(iwg ) +F1kj(0,p)]}

k=0 j=0
1
x/ e_ip‘*’ks[l+G1n—1k(3,p)]u(8) ds (6.175)
0
o non—1 Z{z 1) B35 (iwg ) p [(1wk) +F1kj(1,,0)]}
k=v j=0

1
X/o P-4 Gy o1 k(s p)]u(s) ds

fori=1,...,n.Fori=1,...,nand k=0,1,...,v — 1 define
Ti(p ZO‘” iwg)p? [(iwr)? + Fixi (0, p)]

for p € Ty with |p| > Ry, and for i =1,...,n and k =v,...,n — 1 define
Tiik(p) == Z(—l)ﬁij(iwk)ﬂj[(iwk)j + Fig;(1, p)]
j=0
for p € Ty with |p| > Rp; and for k =0,1,...,v — 1 define
Ulk(sap) = e_ipwks[l + Gl n—1 k(Sap)]7 0<s< 1a
for p € Ty with |p| > Ry, and for k =v,...,n — 1 define
Uik(s, p) := =91 £ Gy 1 4(s,p)], 0<s<1,

for p € Ty with |p| > Ry. Then we can express (6.175) in the simpler form
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n—1 1
1
Bio) = s 3 Tunlo) | Unals,p)uts) ds (6.176)
np s 0
for i = 1,...,n, where the functions 774 (p) are analytic functions of p on G,

and for fixed p in T} with |p| > Ro the functions Uix( -, p) belong to H™[0, 1].

In terms of the matrix (M (p)), let Mlik(p) denote the cofactor of the
entry Mk (p). Clearly the cofactors Mh-k(p), i=1,...,n,k=0,1,...,n—1,
are analytic functions in the p variable on the open set GG;. These cofactors
arise naturally when we solve for the constants cg,cy,...,c,_1 in the linear
system (6.174) by means of Cramer’s rule:

kth column

Miio(p) -+ Bi(v) -+ Min-1(p)

Mino(p) -+ Bu(v) -+ Minn-1(p)

or

n—1 n

_ 1
= ﬁZZMW )Tju(p )/ Un(s, p)u(s) ds (6.177)

1=0 j=1
for k=0,1,...,n— 1.

Combining these results, we conclude that

Ry(L)u(t) = Ki,u(t)

1 1
—WMMM;EMMWMMW%WWWW
(6.178)

for 0 <t <1 and for u € L?[0,1], where (6.178) is valid for A = p" in C with
p € G1 and with Aq(p) # 0. The associated Green’s function is then given by

G(ta 53 >‘) = kl (ta 53 ,0)

(6.179)
- W Z ZMljk VTuu(p)uik(t, p)Un(s, p)
k,l=0j=1
for t # s in [0, 1], where (6.179) is valid for A = p™ in C with p € G; and with

Ai(p) #0.

Let us determine bounds and growth rates for the functions appearing in
(6.178) and (6.179). For the basis functions uix(t,p), k = 0,1,...,n — 1, we
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have already established the necessary bounds in equation (6.155). For the
kernel k1 (t, s; p) the required growth rate is given in equation (6.173). Note
the restriction Im p < 0 that applies to these estimates.

Consider the functions 71,1(p), Uik(s,p), and Myk(p). First, from the
definitions of the 77,4(p) and the estimate (6.150), it is immediate that

|Tvir(p)] < 7lp™ (6.180)

for p € Ty with |p| > Ry andfori=1,...,n, k=0,1,...,n—1. Second, from
the definitions of the Uik (s, p) and the estimates (5.111)—(5.112), together
with (6.163), we obtain the estimates (replace ¢ by 1 — s)

\U1o(s, p)| < 2eb, (6.181)
U1k (s, p)| < 2e7%01Pl < 2, k=1,...,v—1, (6.182)
Uri(s, p)] < 2e"U=9lPl <9 p=w,... n—1, (6.183)

for 0 < s < 1and for p = a+ib € Ty with |p| > R;. In particular, for p = a+ib
belonging to the sector S; with |p| > Ry and b < 0, we have

Uin(s,p)| <2, 0<s<1, k=0,1,...,n—1. (6.184)

Third, fix indices 7 and k& with 1 < i < nand 0 < k < n — 1. The
cofactor My;x(p) is formed by taking (—1)*T*+! times the determinant of the
(n—1) x (n — 1) matrix obtained by deleting the ith row and the kth column
of the matrix

1<k<v—-1 v<k<n-—1

P110(P)e_ip+Q11o(P) ﬁllk(p)“r@lk(ﬂ) ﬁllk(ﬂ)+@1k(ﬁ)

Piao(p)e P 4+Q1n0(p)  Fink(p)+Qni(p)  Fink(p)+Qni(p)

Suppose we proceed to expand the determinant for M 1ik(p) in the same man-
ner as Aq(p) was expanded in Chapter 5. See equation (5.125). If 1 <k <v-1
or v < k <n—1, then the determinant of the (n — 1) x (n — 1) submatrix
that leads to M, 1ik(p) is first expanded using linearity in the Oth column; this
yields e, 1 terms. On the other hand, if & = 0, then a 1 term is produced,
but no e~ term appears.

Next, all the (n — 1) x (n — 1) determinants are expanded using linearity
in all n — 1 columns. This expansion produces the representation

My (p) = I, (p)e ™ + g (p) + Pl (p)e ™ + Drix(p) (6.185)

for p € G;. In this equation the functions ZNYka, ZNYik are formed from the
functions Py, @Q;r introduced in Chapter 3; they are analytic for p # 0 in C,
and each one has the simple form
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Po—my; )
Z Birjp’, p# 0in C.

j=—(n—1)(m-1)

The functions @hk, ®1,, are analytic for p in the open set G, and satisfy the
growth rates

1,31(p)| < ol =PRI By (p)] < yelp| TP (6.186)

for p € G1. In the special case k = 0, then ﬁ{k(p) =0 and 5’1%( )=0
Take any point p = a+ib in the sector Sy with |p| > Ry and b < 0. Clearly
le~"?| = e’ < 1, and hence, by (6.185) and (6.186)

| Mk (p)] < 273|p|Po™ 4 25| p| T Tpotm) <y | plPos (6.187)

fori=1,...,n, k =0,1,...,n — 1. Combining this result with (6.180), we
obtain the estimate

n

\ZMm )T (p Z AloP™ o™ < slo (6.188)

for p=a+ib € Sy with |p| > Ry and b <0 and for k,l=0,1,...,n— 1.

Finally, take any point A = p™ in C with p = a+ib € S7, with |p| > R; and
b < 0, and with A;(p) # 0. Clearly p € Int T} with |p| > Ry > Ry, p € G1,
and A belongs to the resolvent set p(L) with the Green’s function G(t, s; A)
given by (6.179). Applying the estimates (6.173), (6.188), (6.155), and (6.184)
0 (6.179), we see that

4
G(t,s;0)] < + Vslpl -2 2,
"=t nlp|"= 1|A1 ,;l:o
or
VlplPe

S e+ ST A
for t # s in [0, 1], where (6.189) is valid for A = p™ in C with p = a +ib € Sy,
with |p| > Ry and b <0, and with A;(p) # 0.

The representation (6.179) of the Green’s function G(t,s; A) is also valid
for A= p™ in C with p = a+1b € S; and with |p| > R; and b > 0, but in this
form it is difficult to obtain the necessary bounds and growth rates. To remedy
this situation, we proceed to make simple modifications in the above work:
we first alter the integral operator K4,, and then replace the basis u1x( -, p),
k=0,1,...,n— 1, with the basis u1x(-,p), k=1,...,n

Recall that w, = wy = 1, and earlier we introduced the notation

(6.189)

vln(t7p) = UlO(t,p),
Flna(tap) = FIOa(tap)7 a:(),l,...,n—l,
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for 0 <t <1 and for p € Ty with |p| > Ry. Now set n1,(s, p) := n10(s, p) and
Giin (s, p) := Giro(s, p), k=0,1,....,.n—1,
for 0 < s <1 and for p € T} with |p| > Ry. Clearly
| Fino(t, p)| = [Fioo(t,p)| < 1 (6.190)
for 0 <t <1 and for p € Ty with |p| > Ry, and
|G1n—1n(5,p)] = |Gin-10(s,p)| <1 (6.191)

for 0 < s <1 and for p € T} with |p| > Ry. With this change in notation, we
can rewrite the representation (6.164) of the Green’s function g(t, s; A) as

n

1 : ipwi (t—s
glt958) = = iy 3 (e I+ Fusolt A+ G (5,0)
0<s<t<,
g(t,s;A) =0, 0<t<s<l,
(6.192)

for A = p™ in C and p € Ty with |p| > Ry. Here the functions Fix(-,p) and
G1n-1k(-,p) belong to H™[0,1] and satisfy the bounds given in equations
(6.150), (6.190) and (6.163), (6.191).

Next, we rewrite (6.159) or (6.192) in the alternate form

g(t,s; N) = ki (t, s:p) +1(t,55p)

for t # s in [0,1] and for A = p" in C and p € T} with |p| > Ry, where

kr(tv&p) = Zvlk(tvp)ﬁlk(svﬂ)7 0<s<t<l,
= (6.193)
ki(tsip) === > vik(t, p)mr(s,p),  0<t<s<l,
k=1
and
v—1
0 (t,s;p) = Zvlk(t,p)mk(s,p), 0<ts<I.
k=1

Note that the function ¢3(t,s; p) is the kernel of an integral operator which
maps L?[0, 1] into the solution space of the differential equation (p"I—¢)u = 0.
For each p € T with |p| > Ry, let K{, be the integral operator on L?[0,1]
defined by

1
K{,u(t) :== /0 ki (t, s; p)u(s) ds, 0<t<1,
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for u € L?[0,1]. If u € L?[0,1] and v = K7, u, then it follows that v belongs

to H™[0,1] and (p"I — ¢)v = u. Using equation (6.160) and induction, we see
immediately that the derivatives of v = K7 u are given by

Lok
o Ot

i : t v—1 ) 1
- ;vﬁ) (t, p)/o mx(s, p)u(s)ds — ’; v, p)/t ne(s, p)u(s) ds
(6.194)

v (t) = (t,s;p)u(s)ds

for 0 <t <1andfor j=0,1,...,n— 1, valid for each p € T} with |p| > Ry.
From (6.149) and (6.162) the kernel k3 (¢, s; p) can be expressed in the form

1 =,  \ iowe(is
ki 5:0) = = o (e 1+ Fisa(t, L+ Groin(s,9)]
k=v
0<s<t<,
1 v—1 )
k; (tﬂ S5 p) = npn_l Z(iwk)elpUJk(t_s) []- + FlkO(tv p)][]- + Gl n—1 k(sv p)]v
k=1
0<t<s<,
(6.195)

for p € T with |p| > Ro. Now take any point p = a + ib € Ty with |p| > Ry.
If t, s are real numbers with 0 < s < ¢ <1, then from (6.168) we obtain the
estimates
|etrerlt=9)] < em(tms)alel < 7, k=v,...,n—1, (6.196)
|eipon(t=9)| = eb(t=2), (6.197)
On the other hand, for real numbers ¢, s with 0 < ¢ < s < 1, from (6.170) we

get _
|eirent=s)| < o=(s=talel <1 k=1, 01 (6.198)

In particular, if p = a +1b € Sy with |p| > Ry and b > 0, then these estimates
give
erert=9)) <1 0<s<t<1l, k=uv,...,n, (6.199)
eirerlt=2) <1 0<t<s<l, k=1,..,v-1 (6.200)

Applying (6.199), (6.200) and (6.150), (6.190) and (6.163), (6.191) to the
representation (6.195), it follows that

4
ol

I (1, 5:.0)] < (6.201)
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for t # s in [0,1] and for p = a +ib € S; with |p| > R; and b > 0.
Using the integral operator K7,, the alternate basis uir(-,p), k =1,...,n
and the alternate characteristic determinant

Bi(uni(-,p)) -+ Bi(uin(-,p))
Ai(p) = det ; ; —MA(p),  peG,
Bn(uni(-,p)) -+ Bu(uin(-,p))
(6.202)
we now proceed to establish alternate representations for the resolvent Ry (L)
and the associated Green’s function G(t,s;A). Fix any point A = p™ in C
with p € G1, and assume that A;(p) # 0. Clearly Aj(p) # 0, and the point
A belongs to the resolvent set p(L). Take any function u € L?[0,1], and set
v = K{,u and w = Ry(L)u. The functions v and w belong to H"[0, 1], and
(M — 0)v = uw = (M — £)w. Thus, there exist constants ci, ..., ¢, such that

Ry(L)u(t) = w(t) = v(t) + i erurk(t, p), 0<t<1.

Applying the boundary value B; to the last equation, we obtain the linear
system

ZMM e =—B;(v), i=1,...,n, (6.203)
for the constants cq,...,c,, where
M. (p) = Bi(uak( Z%J“m (0, p) + Zﬁwugjk)

fori=1,...,n,k=1,...,n. The nxn coefficient matrix (M;,.(p)) in (6.203)
is nonsingular because det(M;,.(p)) = Af(p) # 0.

Fix an index i with 1 < i < n, and consider the quantity B;(v) =
B;(K7,u). From equation (6.194) and equations (6.149), (6.162), we have

Zaw +Zﬂn7}j

7=0

- 711 12{20"1 iwr) o7 [(iwy, )’ +F1kj(07p)]}

k=1 3=0

1
x/ e PS4+ Gy 1 k(s p)]u(s) ds (6.204)
0

np—1 Z{Z 1)Bi lwk)ﬂj[(iwk)j+F1kj(1,p)]}

k=v j=0

1
x/ PRI 4 Gy g a(s, p)]u(s) ds
0
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fori=1,...,n.Fori=1,...,nand k=1,...,v — 1 define
k() = aij(iwr) o’ [(iwk ) + Fiki (0, p)]
3=0
for p € Ty with |p| > Ry, and for i =1,...,n and k = v,...,n define
Ty (p) =Y _(=1)Bij(iwr)p’ [(iwk )’ + Firs (1, p)]
§=0
for p € Ty with |p| > Rp; and for k=1,...,v — 1 define
Ui(s,p) = e 7P [L 4+ Grp—1k(s,p),  0<s <1,
for p € Ty with |p| > Ry, and for k = v,...,n define
U1*k:<s7p> = eipWR(l_S)[l + Gl n—1 k(sap)L 0<s< 1)
for p € Ty with |p| > Ry. Then (6.204) takes on the simpler form
1 < !
Bi(v) = —— Z ﬁk(l))/ Uiy (s, p)u(s) ds (6.205)
np 1 0
for i =1,...,n, where the functions 7;%,(p) are analytic functions of p on G,

and for fixed p in T with |p| > Ry the functions U} (-, p) belong to H™[0, 1].

In terms of the matrix (M7, (p)), let Mﬁk(ﬂ) denote the cofactor of the
entry M7, (p). These cofactors are analytic functions in the p variable on the

open set GG1; they appear naturally when we solve for the constants cy, ..

in the linear system (6.203):

kth column

Ml*ll(p) Bl(v) Ml*ln(p)

-1
det

Ai(p)

Cp =

—1 - A7 E
= i) 2 kB0,

or
n
Chk = — T Av
np"~t A7 (p) = =
fork=1,...,n.
Combining the above results, we conclude that

.y Cn

SN M () T) / U(s, pyu(s)ds  (6.206)
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Ri(L)u(t) = K7 ,u(t)

-ty 2 D MO mele ) | Ui, pputs) ds

k=1 j=1
(6.207)

for 0 <t <1 and for u € L?[0,1], where (6.207) is valid for A = p™ in C with
p € Gy and with Af(p) # 0 (equivalently A;(p) # 0). Also, from (6.207) the
associated Green’s function is given by

G(t, s; \) = ki (¢, S'p)

nw ZZMW T (p)usk(t, p) U7 (5. p)

kll]l

(6.208)

for t # s in [0, 1], valid for A = p™ in C with p € G; and with Aj(p) # 0.

Next, we determine bounds and growth rates for the functions appearing
n (6.207) and (6.208). For the basis functions uix(t,p), k = 1,...,n, we
have already established the necessary bounds in equation (6.158). For the
kernel ki (t,s; p) the required growth rate is given in equation (6.201). Note
the restriction Imp > 0 that applies to these inequalities. Let us calculate
bounds and growth rates for the functions 77%, (p), Uy (s, p), and th( ).

First, consider the functions 7%, (p). From their definitions and the esti-
mates (6.150) and (6.190), it is immediate that

T35k (P) < (6.209)

for p € Ty with |p| > Ry and for i = 1,...,n, k = 1,...,n. Second, for the
functions U, (s, p), from their definitions and the estimates (5.111)—(5.112),
together with (6.163) and (6.191), we obtain the estimates (replace t by 1 —s)

U7 (s, p)| < 2e730lPl < 9, k=1,...,v—1, (6.210)
Ut (s, p)] < 2eU=90lel <90 p=w ... n—1, (6.211)
U7, (s, p)| < 2e700) (6.212)

for 0 < s <1 and for p = a+1ib € T with |p| > R;. In particular, for p = a+1ib
belonging to the sector Sy with |p| > Ry and b > 0, we have

U5 (s, 0)] <2, 0<s<1, k=1,...,n. (6.213)

Third, fix indices ¢ and k£ with 1 < ¢ < m and 1 < k£ < n. Then the

cofactor Mfm(ﬂ) is formed by taking (—1)"** times the determinant of the
(n —1) x (n — 1) matrix obtained by deleting the ith row and the kth column
of the matrix

1<k<v-—1 v<k<n—1

Fiir(p)+Qik(p)  Fiin(p)+Qir(p)  Piio(p)+Qi10(p)e'”

Fian(p)+Qni(p)  Fian(p)+Qnr(p)  Pino(p)+Q1no(p)e'”
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Suppose we expand the determinant for M7, (p) in the same manner as A; (p)
was expanded in Chapter 5. See equation (5.125). Now we emphasize the nth
column instead of the Oth column. If 1 <k <v—1orv <k <n—1, then
the determinant of the (n — 1) x (n — 1) submatrix that leads to M7, (p) is
first expanded using linearity in the nth column; this yields ", 1 terms. On
the other hand, if k = n, then a 1 term is produced, but no e term appears.
Next, all the (n — 1) x (n — 1) determinants are expanded using linearity
in all n — 1 columns. This expansion produces the following representations:
forl<k<v—lorforv<k<n-—1,

Mii(p) = €[y (p)e ™ + Hix(p) + Prix(p)e ™ + Prin(p)]

_ ~ ~ 4 (6.214)
= IT}},(p) + Ik (p)e” + @1 (p) + Prin(p)e™
for p € Gy; and for k = n,
My (p) = Hio(p) + Prio(p) (6.215)

for p € G1. In these representations the functions I’ ik Huc and @hk, (Phk are
the same functions that appear in equatlon (6.185). The functions )7d . sz

are formed from the functions sz, sz introduced in Chapter 3. They are
analytic for p # 0 in C, and each one has the simple form

Po—m; )
Z Birip?, p# 0in C.

j=—(n—1)(m-1)

The functions 5&11@ 511‘1@ are analytic for p in the open set G1, and satisfy the
growth rates

[@)31,(p)] < Yalp| =T | Byi(p)] < alp| PO (6.216)

for p € G;.
Take any point p = a+1ib in the sector S with |p| > Ry and b > 0. Clearly
le??| = e~ < 1, and hence, by (6.214)—(6.216)

| M35, (p)] < 2vs|p|P0 ™ 4 22| p| ~(m POt <y | plPom (6.217)

fori=1,...,n, k =1,...,n. Combining this result with (6.209), we obtain
the estimate

\Z%ﬂ7m <mewwwmw%wm (6.218)

Jj=1

for p=a+ib € Sy with |p| > Ry and b > 0 and for k,l=1,...,n
Finally, take any point A = p™ in C with p = a +ib € Sy, with |p| > Ry
and b > 0, and with A;(p) # 0, so Aj(p) # 0. Clearly p € IntT; with
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|o| > R1 > Ro, p € G1, and X belongs to the resolvent set p(L) with the
Green’s function G(t, s; A) given by equation (6.208). Applying the estimates
(6.201), (6.218), (6.158), and (6.213) and the relation (6.202) to (6.208), we
see that

4 1 -
Gt s M| € g+ P22
T A 2,
or | |p
yIp|P°
e < 6.219
| (787 )|— |p|n71 n|p|"7leib|Al(p)‘ ( )

for t # s in [0,1], where equation (6.219) is valid for A = p™ € C with
p=a+ib € Sy, with |p| > Ry and b > 0, and with A;(p) # 0. Compare this
growth rate to the growth rate given in equation (6.189). Note the additional
factor e~® that appears in the denominator of (6.219). In Chapter 9 we will
use the estimates (6.118), (6.148) and (6.189), (6.219) of the Green’s function
G(t,s; \) to establish the completeness of the generalized eigenfunctions of
the differential operator L.
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The Eigenvalues for n Even

In this chapter we compute the eigenvalues of the differential operator L for
the case n even. We assume the hypotheses of Chapters 3-5: (i) n = 2v > 2;
(ii) the differential operator L is either regular or simply irregular; (iii) the
integers p and ¢ have been determined with —co < p < q¢ < pg and with
ap #0,¢p #0,and a, = ¢, = 0for k = p+1,...,p0 and b, = 0 for
k=gq+1,...,po; (iv) the translated sectors Ty and T; have been chosen with
condition (3.31) being satisfied for the case p = ¢; (v) the integer m has been
fixed with m > n, m > pg, and —(m —po—1) < p < po; and (vi) the functions
7, @ = 0,1, 2, have been determined as per Chapter 3 or equation (5.29). The
functions 7; are given explicitly by the formulas

p q p
mp) = Y. axp®, mp)= D bept mlp)= Y, cp”
k=—(m—po—1) k=—(m—po—1) k=—(m—po—1)

(7.1)
for p # 0 in C. By our choice of the integer ¢, if p = ¢, then the constant
b, = by can be either zero or nonzero, while if p < ¢, then the constant b, is
nonzero.

Let Ag and A; be the characteristic determinants of L determined in
Theorem 5.1 and Theorem 5.2, respectively. Aq is analytic on the open set
Go={peIntTy||p| > Ro} and has the representation

Ag(p) = ma(p)e®™ + mi(p)e” + 7o (p)

%ip in (7.2)
+ Do2(p)e”” + Po1(p)e”” + Poo(p)
for p € Gy, where the functions @(;, i = 0,1, 2, are analytic on Gy with
[@0i(p)] < Alp| =P (7.3)

for p € Gg and for i = 0,1,2. Similarly, the characteristic determinant A; is
analytic on the open set G; = {p € Int T} | |p| > Ro} and has the representa-
tion
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Ai(p) = m2(p) +mi(p)e™ + mo(p)e 27

(1.4
+ @12(p) + Pr1(p)e™™ + Pro(p)e
for p € G1, where the functions @4;, ¢ = 0,1, 2, are analytic on G; with
[®1:(p)| < lp|~ (P (7.5)

for p € Gy and for ¢ = 0,1, 2.

To determine the eigenvalues of L, we calculate the zeros of the charac-
teristic determinants Ay and A;. The analysis divides quite naturally into
several cases determined by the relative size of the integers p and gq.

Assume that p = ¢. This case divides below into Case 1 and Case 2.
Case 1 corresponds to simple eigenvalues, while Case 2 allows the possibility
of multiple eigenvalues. These two cases include all the cases in which L is
regular, as well as many cases in which L is simply irregular. Consider first
the characteristic determinant Ay on the open set Gg. Let

folp) = apezip + bpeip +¢p

for p € C, an entire function, and let

- a = b L, c
golp):= > e Y Eodry Y e
k=—(m—po—1) P k=—(m—po—1) P rk=—(m—po—1) P
1 : .
+ 25 (202000 + or ()6 + Pon()]

for p € Go, where the function gg is analytic on the open set Gy. From (7.2)
we obtain the representation

Ao(p) = pP[fo(p) + go(p)] (7.6)

for p € Gj.
Next, consider the characteristic determinant A; on the open set G;. Here
we let
fi(p) == ap + bpe_ip + Cpe_mp =e " fo(p)

for p € C, an entire function, and let

p—1 p—1 p—1

K bm i K —92i
alp)= > ;LN+ X we Tt ) j%;ezp

r=—(m—po—1) rk=—(m—po—1) k=—(m—po—1)

1 . .
+ 25 [#12(0) + Pralp)e ™ + Profpe ]

for p € Gy, where the function g; is analytic on the open set G;1. From (7.4)
we have

Ai(p) = pP[f1(p) + g1(p)] (7.7)
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for p € G;.
Recall that the constant d > 0 has been chosen in Chapter 3 to satisfy
condition (3.31), namely

_ _ _ 1 1
|aple o |bple 4+ leple <= lap| = 1 lepl, (7.8)

and that the translated sectors Tj, 17 have been selected such that the sectors
Sp, S1 lie in the interiors of Ty, 17, respectively, and such that the horizontal
strip

I'={p=a+ibeCla>—mand b <d}

lies in the interiors of both Ty and T3.

Let us examine the functions fy and gy which make up the characteristic
determinant Ag. First, if p = a +ib € C with b > d, then |e!?| = e7® < e,
le?r| < e724] and by inequality (7.8)

[folp)l = lenl = laplle®?| — [by[le”|

_ _ 1
2> |Cp| - |ap|e 2d ‘bp|e ¢ > |Cp‘ 1 |Cp|-

Thus,
3 3
|folp)| > Z|CP| = Z|ap\ for p=a+ibe C with b > d.
Second, take any p = a +ib € Gy with b > —d. Clearly |e!?| = e7® < e
and |e?| < e??. Also, since —(m — pg — 1) < p < po, we have m — pg + p >
m —po — (m —po — 1) = 1, and hence, by (7.3)

7 1 V2
l90(p)| < =+ T
ol plP |p|™Po
o, st
lpl — [p|m—pote = p|
Therefore,
l90(p)| < %0' for p = a+ib € G with b > —d.

Third, if p = a+ib € C with b < —d, then [e7#| = e® < e™?, |e7 2P| < o724
and by inequality (7.8) again

[f1(p)| = lap + bpeiip + Cp672ip‘
_ _ 1
> |ap| - |bp|e 4 |Cp‘e 2 2 |ap‘ T |ap|~

Hence,

lf1(p)| > z lap,| for p=a+ibe C with b < —d.
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Fourth, consider the function g; appearing in the representation (7.7) for
Aq(p). Take any point p = a +ib € G; with b < d. Then |e7?| = b < e9,
le=2| < e?d and by (7.5)

e TS e e
lp[P [p|™=P0 = |p|

i

3
g1 (P < — +
ol

and hence,

lg1(p)| < %0‘ for p=a+ib € G; with b < d.

In terms of the constant vy appearing in the estimates for gy and g1, choose
a constant r; > Ry > Ry such that

1
Jo o2 lap| for all p € C with |p| > 71.

lp| — 4

It follows from the above that if p = a+1ib € G with |p| > r1 and b > d, then

[Ao(p)l = [plP{Ifo(P)] = lg0(p)[}

3 1 1 (7.9)
> 0P { S ool = Tl } = 5 bl > 0.
On the other hand, if p = a +ib € G with |p| > r; and b < —d, then
[A1(p) = |plP{lf1(p)| = lg1(p)[}
(7.10)

3 1 1
> o { S hanl = Tl } = 5 bl > 0.

The estimates (7.9) and (7.10) are our initial growth rates for the char-
acteristic determinants Ay and A; relative to the open sets Gy and Gy, re-
spectively. They will play a crucial role in Chapter 9 where we show that the
generalized eigenfunctions of the differential operator L are complete in the
Hilbert space L?[0,1]. As an immediate application of (7.9) and (7.10), we
have the following theorem which establishes apriori estimates for the eigen-
values of L relative to the sets Gy and G.

Theorem 7.1. Assume that p=q. Let A = p" € C with p=a+1ib € Gy and
with |p| > ry.

(a) If b > d, then Ag(p) # 0 and X € p(L).

(b) If X is an eigenvalue of L, then Ag(p) =0 and b < d.
In addition, let A\ = p™ € C with p = a+1b € Gy and with |p| > r1.

(c) If b < —d, then Ay(p) #0 and X € p(L).

(d) If X is an eigenvalue of L, then Ai(p) =0 and b > —d.

It follows from the theorem that the resolvent set p(L) is nonempty. Thus,
the differential operator L is a Fredholm operator with Fredholm set #(L) = C
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and with resolvent set p(L) # 0: this implies that the spectrum o (L) is a
countable set having no limit points in C. See [34, p. 58 or p.60].

We next focus our search for the zeros of Ay on the horizontal strip I'. Let
&o and 7o be the roots of the quadratic polynomial Q(z) := a,z? + by2z + ¢,
SO

Q(2) = aplz — &ol[z — no]

with a,&ono = ¢p, & # 0, no # 0 and with g = —1/(wp&o) by (3.30). Then
the function fy can be written in the form

fo(p) = aple’ — &][e™ — no]
for p € C, and we see immediately that the zeros of fj are given by

Wy, = (2mk + Arg &) —iln |&, k=0,+£1,42,...,
wy = (2mk + Argno) —iln|no|,  k=0,%1,£2,...,

with |no| = 1/|&0| and argng = — arg &y —2mp/n+n. From the above estimates
for fo, the zeros pj, pj must all lie in the interior of the horizontal strip
[Imp| <d, ie., —d <In|&| < d. In case & # no, we have uj, # pj for all k, [,
with each p) and each pf a zero of order 1 of fy. In the special case & = no,
where @ has a double root, we have b2 = —4a2 /w,,

b i
fo=m=—5-== and  [&| = [no| = 1,

T2,

and
We = pp = 2wk + Arg&o =y for k=0,41,£2,...;

in this case each py is a real zero of order 2 of fy, and the relation bg =
—4ag/wp implies that b, # 0. In both cases we will show that the zeros of Ag
and fo + go in I" appear as perturbations of the p), puj.

Since —m < Argéy < m and —7w < Argny < w, we can select a constant
w > 7 such that w — 27 < Argép < w and w — 27 < Argny < w. Then for
k=1,2,... we introduce the rectangles

i ={peC|lw—-2r<Rep<w+2mr(k—1)and [Imp| < d}.

Clearly these rectangles lie in the horizontal strip I, and hence, they lie in
the interior of the sector Tp, and the zeros py, uf lie in the interior of the
rectangle R. Choose a constant ¢ with 0 < 6 < 7/4 such that the two closed
disks |p — ug| < and |p — ug| < 6 both lie in the interior of R} and such that
these two disks are disjoint in the case £y # ng. For k = 0,+1,4+2,... form
the circles

Ii={peCllp—wl=0}, I} :={peCllp—puyl =7},

where in the case £y = 1y we set



190 7 The Eigenvalues for n Even
=1} =0 fork=0,+1,42,....

The following properties are obvious from these definitions: (i) the circles
I, I}, k > 0, lie in the interior of the horizontal strip I'; (ii) the I, I}’ and
the points inside them do not overlap each other in the case & # ng; (iii) the
I, and the points inside them do not overlap each other in the case { = nyo;
and (iv) for each positive integer k¢ the circles I, I}/, 0 < k < ko, lie in the
interior of the rectangle R} , the circles I}, I}/, k > ko, lie in the exterior
of R}, and to the right of R; , and the circles I/, I}, k < 0, lie in the exterior
of Rj and to the left of R] .

To complete the geometry, let I', be the subset of Ty defined by

I.:={p=a+ibe I'|pis not inside any of the circles I}, I} }.

In the sequel we refer to I'y as a punctured horizontal strip.
It is clear that fo(p) # 0 for all p € R} not in the circles I}, I} Set

m, = min{ | fo(p)| | p € R} with p not in I}, I} > 0.

Since fo(p + 27) = fo(p) for all p € C, it follows that |fo(p)| > m. for all
points p = a+ib € C with |b| < d and with p not in any of the circles I, I7.
If we set mg := min{3|a,|/4, m.} > 0, then our estimates for fy combine to
yield the result

fol@) 2 mo > 0 (7.11)

for all p € C with p not in any of the circles I}, I}
Select a positive integer ko such that the constant yo := w + 27(ko — 1)
has the following properties: yo > r1, Yo > w, and

70 MO o all p € C with |p| > o,

lol = 2
where vy is the constant introduced above in the estimates for go and g¢;.

Clearly yg > 1. Then for any point p = a + ib € I' with |p| > yo, we have
|p| > 1 > Ry, so p € Gy, and by our previous estimate for go,

"o mo
golp) < 2 < 20, 7.12

Combining (7.11) and (7.12), we conclude that

l90(p)] < 5 < mo < [folp) (7.13)

and
|fo(p) + g0(p)| = % (7.14)

for all p = a +ib € I', with |p| > yo, and hence, by (7.6)

m
o)) = 5 1pl” > 0 (7.15)
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for all p = a +1ib € I, with |p| > yo.

The estimate (7.15) is our principal result for the growth rate of the char-
acteristic determinant Ay on the punctured horizontal strip I, for the case
p = q. At this point we divide the discussion into the two cases where &y # 19
and &o = no.

7.1 Case 1. p = q, & # Mo

Assume that p = ¢ and &y # 1. Suppose p = a+ib is a zero of Ay in Gy with
a > —m, b> —d, and |p| > yo. What can we say about the location of p? By
Theorem 7.1 and the inequality (7.15), p must lie in one of the circles I, I}/
for some integer k.

Let us consider the circles I, I} for k > kg, which lie in the interior of Tj
and in the interior of the horizontal strip I" and to the right of the rectangle

o = lw—27,y0] x [~d, d]. From (7.13) we have |go(p)| < |fo(p)| for all points

pon I}, IV for k > ko, and hence, by Rouché’s Theorem Ag and fy+ go have
precisely the same number of zeros as fy inside I';, and I}/ for all k > kq. But
fo has only the single zero i}, of order 1 inside I}, and only the single zero pj,
of order 1 inside I}/, implying that Ay has exactly one zero pj, inside I}, with
p?“/ hav%ng order 1 for k > ko, and Ay has exactly one zero p} inside I} with
pr. having order 1 for kK > ko.

Setting

)‘;e = (pz)n’ k:k07k0+17"'7
Z:(pg)nv k:k07k0+1a"'7
it follows that the A}, A}, k = ko, ko + 1,..., are eigenvalues of L. Since the

points p}, py, k = ko, ko + 1,..., are zeros of order 1 of Ay, applying our
earlier work the corresponding algebraic multiplicities and ascents are

v(Xg) = m(Ay)
v(Ag) = m(Xy)

k=koko+1,...,

1,
(7.16)
1, k=koko+1,....

See Theorem 2.1 of Chapter 4 in [34]; the proof given for the principal part T
also works for the differential operator L.

Now suppose that A\g is any eigenvalue of L distinct from the A}, A,
k = ko, ko +1,.... Choose py € Sp U Sy such that \g = (pg)™. Clearly py €
Int Ty UInt T;. There are two possible locations for the point pg: either pg lies
in the disk [p| < yo, or |po| > yo. In the former case only a finite number of
such pg are possible because the spectrum o(L) is a countable set having no
limit points in C. Assume that py belongs to the latter case, so |pg| > yo. Let
po = ag +ibg. First, if by > d, then we would have pg € Sy with |pg| > r1, and
hence, pg would belong to the open set Gy with |pg| > r1; but Theorem 7.1
would then place Ag in p(L) — a contradiction. Thus, we must have by < d.
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Second, if by < —d, then we would have py € S7 with |pg| > r1, so pg would
belong to the open set G; with |pg| > r1, and Theorem 7.1 would again place
Ao in p(L) — a contradiction. Therefore, for the imaginary part of pg we must
have —d < by < d.

Now for the real part, clearly ap > 0 from the simple geometry of the
sector Sy U S7, and hence, pg lies in the interior of the horizontal strip I" and
po lies in Int Ty. Suppose ag > yo. We know that pg does not lie in any of the
circles Iy, I} for k > ko because Ao is distinct from the X}, A}. The circles
Iy, I}/, —0o < k < ko, either lie in the interior of the rectangle R}, or lie to
the left of R;w and hence, py can not be in any of these circles. This implies
that po belongs to the punctured horizontal strip I'x with |pg| > ag > yo, and
by inequality (7.15) we have Ag(pg) # 0 — again putting Ao in p(L). This
contradiction shows that we must have ayp < yp, and hence, py must lie in
the rectangle [0,yo] X [—d,d]. Only a finite number of such py are possible.
Thus, the X}, A/, k = ko, ko +1,. .., account for all but a finite number of the
eigenvalues of L.

To complete this case, we derive asymptotic formulas for the zeros pj,, pj
of Ap. Indeed, let G be the entire function defined by G(p) := ap[e?? — no],
and set

My == min{ |G(p)| | p € C with |p — pj| <} > 0.

Because G has period 2, it follows that |G(p},)| > Mo for k = ko, ko +1,. ...
If we set ¢}, := —go(pL)/E0G(p})s k = ko, ko + 1,..., then we can write the
equation fo(p}) + go(pl) = 0 as ek = & + &0¢., and upon dividing by
ek = &o, it becomes

elPe—ri) — 1 4 Ch.

But [Re(pj, — p,)| < [pf, — pi| <6 < /4, s0
P — W = —iLog[l + (1], k=koko+1,.... (7.17)
For each integer k > ko we have
Pkl = |uk] = ok — pi| = 27k + Arg §o — 6

227rk—7r—%26k—52k

and

190 (P3| Yo v
G| = < < 2. 7.18
AR ATARE: (715)
Since
—iLog[l + 2] = zH(z) for |z| <1,
with H analytic on the disk |z] < 1, from (7.17) and (7.18) we obtain the
estimate

|p;€—,u;€\§%, k= ko ko +1,..., (7.19)

for an appropriate constant v > 0. A similar argument shows that
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7

Ik — il < & k=koko+1,.... (7.20)

The estimates (7.19) and (7.20) are the desired asymptotic formulas for Case 1.
We summarize these results for the eigenvalues as a theorem.

Theorem 7.2. Let the differential operator L belong to Case 1, where the
integers p and q satisfy the conditions —oo < p = q < pg and where & and ng
are the roots of the quadratic polynomial Q(z) = a,z® + b,z + ¢, with & # Mo
(so |no| = 1/|&0| and argng = —arg&y — 2wp/n+m). Then the elements of the
spectrum o (L) can be listed as two distinct sequences

)\;C:(p;c>n7 k=ky,ko+1,..., Z:(pg)n7 k=ko,ko+1,...,
plus a finite number of additional points, where

p;c:(2ﬂk+Arg€0)_lln|£0|+€;€a k:k07k0+1a"'7
pr = (2rk + Argno) +iln|&| +€f, k=ko,ko+1,...,

with |e| < v/k and |€]| < v/k for k = ko, ko + 1,.... Moreover, the corre-
sponding algebraic multiplicities and ascents are

V(x\%):m()\;)zl, k':]f(),k'o—i-l,...,

u(/\%):m()\g)zl, k=ko,ko+1,....

7.2 Case 2. p=gq, & = 1o

Assume that p = ¢ and &y = 7. In this case the polynomial
Q(2) = ap2® +byz + ¢,

has the double root £ = 19, and multiple eigenvalues are possible. If p =
a+1ib € Gy is a zero of Ag with a > —7, b > —d, and |p| > yo, then by
Theorem 7.1 and (7.15) p must lie in one of the circles I, = I}, = I} for
some integer k. Let us consider the circles Iy, k > kg, which lie in the interior
of Ty and in the interior of the horizontal strip I' and to the right of the
rectangle R, = [w — 27, yo] X [~d, d]. From (7.13) we have |go(p)| < [fo(p)|
for all points p on Iy for k > ko, and hence, by Rouché’s Theorem Ay and
fo+ go have precisely the same number of zeros as fy inside Iy, for all k > k.
But fy has only the single zero uy of order 2 inside [, implying that Ag has
two zeros pj, and p) inside Iy for k > ko, where either pj, # p}/ with pj, and
pi both being zeros of order 1 or pj, = p} with p) being a zero of order 2.
Setting

;ﬁ::(p;i:)n7 k:k07k0+17"'7
%:(pg)n, kzko,k0+1,...,
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it follows that the A}, A}/, k = ko, ko +1, ..., are eigenvalues of L. In addition,
if pj. # pi, then A\, # X\ and by our earlier work the algebraic multiplicities
and ascents are

V) =mO) =1, v() =m(\) = 1 (7.21)

if p). = p}, then X;, = X/, and again by our previous work the algebraic
multiplicities and ascents are

v(N\,) =2, m(A,) =1 or m(A,) =2. (7.22)

Let Ag be any eigenvalue of L distinct from the A}, A/, k = ko, ko +1,....
Choose py € Sy U Sy such that A\g = (pg)™. Then either pg lies in the disk
|p| < yo, or the modulus satisfies the condition |pg| > yo with |Im pg| < d by
Theorem 7.1. In the latter case (7.15) implies that pg belongs to the rectangle
[0,90] x [—d,d]. In either case only a finite number of such py are possible
because the spectrum o(L) is a countable set having no limit points in C.
Thus, we conclude that the X, A/, k = ko, ko + 1,..., account for all but a
finite number of the eigenvalues of L.

Next, let us derive asymptotic formulas for the zeros p}., p} of Ay. Fix any
index k > ko. We know that fo(p},) + go(p),) =0, so

[elp;“ - 50]2 = —igo(PZ)-
Ap

By constructing an appropriate analytic branch of the square root v/ (de-
pending on k), the last equation can be rewritten as

, 1
ek =&+ [ —— go(p})
ap

and upon dividing by e** = &, it becomes

1 1

(P —hr) — 14—, /- — /

e =1+ g .
2 a4 0(pk)
—_———

G

Since |Re(p), — p)| < |p), — pr] < 0 < /4, we get
i — e = —iLog [1 + ¢i].
Now

™
|0kl = lpk] = 10l = pua| > 27k + Arg§o — 7 > 6k =5 > &

and
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1 1 1 Yo Y
Gl = =1/ = l90(p})] < = <—=.
M go] \ Tapl Mgl V anllokl — Vi
As in Case 1 this leads to the estimate
|P;C_Mk|§%7 k:k07k0+177 (723)

for an appropriate constant v > 0. The same argument shows that
1" B
Pr. — Mkl < —=, k=koko+1,.... 7.24
il < (7.24)
These last two results are our asymptotic formulas for the zeros in Case 2.
We now summarize the above results as a theorem.

Theorem 7.3. Let the differential operator L belong to Case 2, where the
integers p and q satisfy —oo < p = q < po and where { = 1o is the double root
of the quadratic polynomial Q(z) = apz® + byz + ¢ (so & = no = £i/ /).
Then the elements of the spectrum o(L) can be listed as two sequences

A?C:(p;c)n7 k:k(],k0+1,..., Z:(pg)n7 k:k(],k0+1,...,
plus a finite number of additional points, where

pr =21k + Arg &y + €, k=ko,ko+1,...,
p%:2ﬂk+Arg§0+eg7 k=koko+1,...,

with |€| < v/Vk and |¢}| < v/Vk for k = ko, ko + 1,.... For each k > kg if
Pr 7 PR, then A, # X and the algebraic multiplicities and ascents are

V%) =m(N) =1 and v\ = m(\) = 1,
while if pj, = p}., then X\, = X} and the algebraic multiplicities and ascents are
v(A\L) =2 and m(\,) =1 or m(\,) = 2.

Question. There are examples of differential operators L belonging to Case 2
that are regular, where the integers p and ¢ satisfy the conditions p = ¢ = py.
For example, consider a second order differential operator L determined by
periodic boundary conditions. Are there examples of differential operators L
belonging to Case 2 that are simply irregular, i.e., where the integers p and ¢
satisfy the conditions p = ¢ < po?

7.3 Case 3. p < q

Assume that p < ¢. This case becomes Case 3, the so-called logarithmic case.
For this case the differential operator L is always simply irregular. For the
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functions in (7.1) we know that the coefficients satisfy a, # 0, b, # 0, and
¢p # 0. Set ng :=¢g—p > 0. By (7.1) and (7.2) we can write the characteristic
determinant Ag in the form

Ao(p) = pP{ape® [1+ ¢o2(p)] + bgp™* e [1 + do1(p)] + cp[1 + doo(p)]} (7.25)

for p € Gy, where

p—1
a 1
bo2(p) = ~— + Po2(p),
n(;pol)appp appp
g—1
by 1
bo1(p) := — + —— Po1(p),
K__(T;po_l)bqpq bqpq
p c 1
Poo(p) = Z —— + —— Poo(p)

p—r »
k= (m—po—1) PP »P
for p € Gy. The functions ¢g;, i = 0,1, 2, are analytic on the open set Gy,
and recalling that m —pg+p > 1 and m — pg+ ¢ > 1, by (7.3) we obtain the
growth rates

|bo2(p)| < 12

w,|mwgﬁ [boo(p)] < 2> (7.26)

o’ ol
for p € Gy. Choose a constant 71 > R; > Ry such that
1/2< |1+ ¢02(p)| <2, 1/2< |1+ do1(p)| <2, 1/2<[1+ doolp)| < 2

for p € Gy with |p| > 7.
Similarly, by (7.1) and (7.4) the characteristic determinant A; can be
expressed as

A1 (p) = pP{ap[l+d12(p)]+bgp e [1+¢11(p)] +cpe P [L+r10(p)]} (7.27)

for p € G1, where

p—1
Ay 1
p12(p) = — + P12(p),
I{(’m,zp()l) appp a’ppp
qg—1
b, 1
b11(p) := — + —— P11(p),
n_—(r;pg—l)bqpq bqpq
pl c 1
d(p) = > = D10(p)

I pp_"ﬁ I pp
k=—(m—po—1) P P

for p € G1. The functions ¢1;, i = 0, 1, 2, are analytic on the open set G, and
by (7.5)
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Yo

o o
|’

|’

o

o

for p € G1. Without loss of generality we can assume that the constant rq
chosen above also produces the inequalities

[$10(p)] < (7.28)

lp12(p)| < lp11(p)| <

2< 1460 €2, 1/2<[1+6u() <2, 1/2< |1+ b1o(p)] <2

for p € Gy with |p| > 7.

Set o := —bg/cp, a nonzero complex constant, and let w be the positive
real number defined by the equation 1/w := 1/|ug|"/™ + ng. Choose real
numbers o and 3 with 0 < o < [1/(2]po|)]*/"°, B > [2/|pol]*/™, and
4 1

<=,
lpo|Bme — 4

Clearly 1/3 < |uo|*/™ < 1/a. We will first study the characteristic determi-
nant Ag on the sector Sy, which lies in Quadrant 1. Note that if p is any point
in Sy with |p| > Ry, then p belongs to the open set Go, and hence, we will be
working in a region where 4y is analytic. In terms of the constants o and (3,
form the region

1
2|pol(2a)™ < 3

2 = {p:a+ib €Sy | et/ < g < ﬂeb/”“}
and the two complementary regions
Do 1= {p: a+ibe Sy ’ a< aeb/”“},

Qoa = {p: a+1ib € Sy ’ ﬁeb/"" < a}.
Clearly these three regions lie in Quadrant I. An equivalent definition of {2
is
2y = {p =a+ibe Sy } a>aand noglnfa/B] <b < noln[a/a]},

so in the sequel (2 is referred to as a logarithmic strip. Also, observe that
nolnfa/B] < noInf|uo|'™a] < nglnfa/a]

for a > f3, so the logarithmic curve b = ng In[|o|*/™a] runs down the ‘middle’
of .Qo.

Let us begin by calculating the growth rate of Ag on the region 2,. For
any point p = a + ib € 2y, we have

p|<a+b< e/ 4 pgeb/mo

1
< 1/l + mole/"0 = = eb/m,

and hence,
nolnfw|p|] <b forall p=a+ib € . (7.29)
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Choose a constant zo > 0 such that z < ae®/™ and e=2% < 1/16 for all z € R
with & > xg, and then choose a second constant ro with ro > ry and ro > 3
and with z¢ < ng Injw|pl|] for all p € C with |p| > 7. If p = a+1ib € 2o With
|p| > o, then by (7.29) we have b > zq, b < ae?/™ and e=2* < 1/16, and

Ipl < a+b<aet/™ 4 aem0 = 2aeb/ 0. (7.30)

Take any point p = a + ib € 290 with |p| > ro. Clearly b > a9 > 0.
Combining (7.30) with (7.25), we have

Bo(p) = epp”{ [1+ du0(p)] = 10p™ [1 + Go1 (p)]e” + =2 [1 + G0 (p)]e? |

and (recall |a,| = |c,| by (3.30))
P 1 no ,—b —2b
[A0(P)l = lepllpl” § 5 = 2lollp|™e™ — 2e

1 o 1] .1
> el {5~ 2l ayoet - et 2 o d > e lop

or
1
[A0(p) = 7 lapllpl” >0 (7.31)

for all p = a+ib € 290 With |p| > rs.
To determine the growth rate of Ay on the region 2o, we first use (7.25)
to express 4 in the form

Ao(p) = quqeip{[l + do1(p)] + b C;pno [1+ ¢o2(p)]e”
q

¢ —i
e L+ Goo(P)le 1

for p € Gp. Then for any point p = a + b € 29 with |p| > ro we have

lp| > a > Be¥m, (7.32)
and hence,
1 2
2000 2 llre {5~ 2 e+ )
q 3 Trallpp €
1 4eb 1
> | PRl e N O S qo—b
> e 5 - o 2 g Ialole
1 Bno 4
=_1p Pop|toel > 2 P> _ P~
1 [allpl? - [p™e™ = == [bq|[pl” = P |bgllpP >0,
or 1 4
[Ao(p)l = ; |bgl|p|%e™" > Tl [bg|p? >0 (7.33)
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for all p = a +ib € 295 with |p| > 7.

Next, we rework the above material for the characteristic determinant Ay
on the sector S;. For p € S; with |p| > Ro, we have p € G1, and we are
working in a region of analyticity for A;. Now let us form the region

2 := {p: a-+ib e Sy | aetmo < g < ﬂe*b/”“}
and the two complementary regions
Moo 1= {p:a—l—ib €95 | a< Oze_b/"o}7

0= {p:a—i—ibé S1 |ﬁe_b/"0 < a}.

These three regions lie in Quadrant IV, and (2, can be expressed as
O ={p=a+ibe S |a>aand —nglnfa/a] <b< —nglnfa/p]}.

The logarithmic curve b = —ng In[|go|*/™a] runs down the ‘middle’ of £2;.
Let us first calculate the growth rate of A; on the region §21,,. For any
point p = a +ib in 21, we have

ol < a+[b] < a0 4 ngeltl/mo

1
< [1/|U0|1/n0 + no]e‘bvno = - e\b|/"o’

and hence,
ng lnjw|p|] < 10| for all p=a+ib € . (7.34)

Note that if p = a + ib € 215 with |p| > 72, then by (7.34) we have |b| > zo,
|b] < aelbl/m0 and e=2%l < 1/16, and

Ip] < a+ b < e/ 4 qelbl/mo = 2qeltl/mo, (7.35)

Now take any point p = a + ib € 214, with |p| > ro. Clearly |b| > z¢ > 0.
Combining (7.35) with (7.27), we have

Ai(p) = appp{[l + ¢12(p)] + %Pno[l +on(ple ™ + 21+ ¢>10(P)]e’2ip}

p ap

and
P 1 no b 2b
|A1(p)] = |ayl|pl 5—2\uol|p| e’ —2e
1 noa—b . b 1 1
> lapllo? {5 — 2ol - 2aye - =2 o> Tl
or

1
[A1(p)l 2 7 laplpl” > 0 (7.36)
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for all p = a4 ib € 214, with |p| > ry. Compare this growth rate to (7.31).
To determine the growth rate of A; on the region 214, we use (7.27) to
express A; in the form

p
bgp™o

@

(14 ¢12(p)]e” + bqﬁ 1+ ¢10(P)]e’ip}

Aa(p) = by {[1+ 601 (0)] +

for p € G1. Then for any point p = a + ib € £215 with |p| > ro we have

lp|l > a > pet/m0 = geltl/mo, (7.37)
and hence,
|A1(p)| = [b IIplqeb{1 - [e_”+eb]}
- 2 |pollp|mo
1 4eltl 1
q.b) = e - q.b
> lllret{ 5 - 2 | = e
1 Bro 4
> P p|0e= bl > 2 g P> _T p P
2 7 1bgllpl” - p[™e™ = == 1bq||pl" = MO||qllp| >0,
or 1 4
[A1(p)] = 7 [bgllp|%e” = — [bgllp[? > 0 (7.38)
4 |20l

for all p = a +ib € 215 with |p| > ro. Cf. (7.33).
As an application of these growth rates on the regions {2y, 200 and 21,
1o, we obtain the following apriori estimates for the eigenvalues of L.

Theorem 7.4. Assume p < q. For any point A = p™ € C with p = a+1ib € Sy
and |p| > ra:

(a) If p € 2000 or p € 0a, then Ag(p) # 0 and X € p(L).

(b) If A is an eigenvalue of L, then Ag(p) = 0 and p lies in the interior of
the logarithmic strip 2.
Also, for any point A = p™ € C with p=a+1b € Sy and |p| > ra:

(c) If p € 2100 07 p € 11, then A1(p) #0 and X € p(L).
(d) If X is an eigenvalue of L, then Ay(p) =0 and p lies in the interior of
the logarithmic strip (21.

The theorem implies that the resolvent set p(L) is nonempty, and hence,
by our earlier remarks the spectrum o (L) is a countable set having no limit
points in C.

Next, we calculate the eigenvalues of L that correspond to the zeros of
Ag in the logarithmic strip {29. Following this we compute the eigenvalues
corresponding to the zeros of A; in the logarithmic strip £2;. Set £ := 14+ng/«
and 7 := B+ ng. Then for p = a + ib € {2y we have

lp| <a+b<a+nglnfa/a] <a+ (no/a)a=Ea (7.39)
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and
lpl < a+b< Beb/mo 4 b < Geb/mo 4 pgeb/mo = peb/mo, (7.40)

In studying the characteristic determinant on the logarithmic strip 2y, we
use (7.25) to write Ag in the form

Ag(p) = cppPe?{e™ — pop™ 1 + ho(p)]} (7.41)
for p € Gy, where hg is the function given by

e ip ap
ho(p) = ¢00(p) + ¢01(p) + b pno
qP

o 1+ Gun(le”

for p € Gy. The function hg is analytic on the open set Gy. Observe that for
any point p = a + ib € 2y with |p| > ro, the inequalities defining {2y yield
e~ lp el 1 a™o 1

= < R
ol lpl™o = Juollplme  amo = |uglane’

Hop™

and clearly |1 4+ ¢o2(p)|[e?] = |1 + ¢o2(p)le™® < 2 because b > 0 for p € S,
and hence, by the inequalities in (7.26)

i
lho(p)| < " (7.42)

for p=a+ib € 2y with |p| > rs.
Set

QI = {p:a-i—leSo ’ CLZT'Q, ’I’Loln[a/ﬂ] Sbgnoln[a/a]}7

which is a subset of both Gy and 2y (recall that o > 8 > «). Fix a real
number § with 0 < § < 7/4 and 0 < ¢ < (In2)/(1 + ng), and then for
k=1,2,... define

af, = 21k — Arg po, By, = noIn[|uo|*/ ™0 alk],
Wy, = o, + 16y,
and introduce the circles
I ={peCllp— =0}

Choose an integer k1 > 2 such that yj := a;ﬂ — 7 > ry. Note that o) —m >
ro > (3 and o} > 37w for k = ki, k1 + 1,.... Also, introduce the logarithmic
rectangles

R, ={p=a+ibeC|aj—m<a<a,+m nolnfa/B] <b < nglnfa/a]}

for kK = ki,k1 + 1,.... Without loss of generality we can assume that k; is
sufficiently large to guarantee that each R}, is contained in Sy, and hence, for
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k = ki,k1 + 1,... the point p) lies in the interior of R} with R} a subset
of (2.

Fix any index k > kq, and take any point p = a+ib € C with |p— p}| < 0.
We assert that p lies in the interior of Rj . Indeed, we clearly have |a — o] <
§ < and |b—ngInf|u|*/™al]| <4, so

|b— no In[|o| /™ al| < [b—ng Inf|po|"/ ™ af]]
+ [no In[| o[/ ™ @) — no In|pso| /" a]|

<+ mnola— )| <81 +np) <In2.
It follows that ng In[(|uo]/2)Y/ ™0 a] < b < noIn[(2|uo|)'/™0a] and
nolnfa/B] < b < nglnfa/a].

This establishes the assertion, and it is immediate that the circle I, lies in
the interior of the logarithmic rectangle R for k = k1, ki1 +1,.... To complete
the setup of the geometry, for k = ki,k1 + 1,... let {2 be the punctured
logarithmic rectangle formed from R}, by removing all the points inside I7.

The next step is to establish the growth rate of Ay on each of the regions
2;.. Note that

e = o)™

fork=ky,ki+1,....Let fr, k=ky,ki1+1,...,and g, k= k1, k1 +1,..., be
the sequences of functions defined by

fi(p) :=e =) _ 1 for peC,
<~ (no\ T 1 IR TCAT
91(p) == ~ho(p) = > (") [ (0 = i) + E] [+ ho(p)] for p € G-
j=1 J ak ak

The functions fi are entire functions, while the functions g; are analytic on
the open set Gog. We can use (7.41) to write Ag in its final form

no paip S —ip . inl pmne
Aolp) = eppolf) e {e i — [ 1+ ho(o)] |

B —i(p— ’ ]_ 1 / no
= cppolafyopre {e =D — [ (o — ) + 0k 1] [1 4 ho(p)] ),

k k
or
Ao(p) = cppo(a)™ pPe”[fi(p) + g (p)] (7.43)
for p € Gy and for k = ky,k1+1,.... Here we have a family of representations

for Ag depending on the integer k. We will use the kth representation to
determine the growth rate of Ay on the kth region (2.
In terms of the constants «, [, d, choose dy > 0 such that

no Inf2/(|po| /™ a)] < do, no 2|0/ 8] < do,



7.3 Case 3. p< q 203
and § < dp, and then form the punctured rectangle
R.:={p=a+ibeC|—-nm<a<m —dy <b<dy, and |p| > §}.
Set mg := min{ [e™* — 1| | p € R} > 0.

Fix any index k > k; and any point p = a + ib € 2. It follows that
- <a-—oa) <m 7/a) <1/2 because aj > 3,

! A
a o T oy — T 1
ScBrley Lo T
QO Qg QO o

and

b— 6} < nonfa/a] — ng Influo|*/"0 )
= nInfa/ (o[ /™ aa})] < noIn2/ (ol /™ 0)] < do,

b~ Bt > nolnfa/B] — no Inflo|Y ™ ]
— noInfa/(|uo|"/™ Ba})] > noIn[1/(2lo[/™ B)] > —do.

Thus, the point p — p}, belongs to the punctured rectangle R, with |p— p}| <
7 + do. We conclude that

[fe(p)] = mo (7.44)

for k > ki and for p € £2;.. Note that the constant mg is independent of the
index k.

Clearly limy_. 1/a), = limg_. 5./}, = 0. In terms of the constant ~;
that appears in the inequality (7.42), select an integer ko > ki such that
yh = a}m — 1 > 719, such that

<

7o mo
ol = 4

for all p € C with |p| > yp,

and such that

o d Vi

3 <n°> [7T+,° + ﬂi@} [1 + %} <20 forall k > ko.

j=1 J ak ak:

Then for k > ko and for p = a+1b € 2, we have |p| > a > o}, — 7 >y > 72,
and hence, by (7.42) and the definition of the integer kq:

98(p)] < 52 < mo < |fup)l. (7.45)

Also, since a}, > 3w, we have ¢ > o}, —m > 2w or a/2 > w, and o), > a — 7 >
a/2 > |p|/(2€) by (7.39). Therefore, from (7.43) and (7.45) we conclude that

mo _ molapl|

q,—b

[ A0(p)| = lepllpol(ag)" | plPe™
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or

mola
2000 = "l et > o (7.46)
for k > ko and for p =a+1ib € £2;..

The estimate (7.45) is local in character in that it depends on k: it is
valid only on the region (2. In contrast, the estimate (7.46) is global because
the constant on the right is independent of k. If we introduce the punctured
logarithmic strip

oo
/ /
2= J 2,
k=ko

then we see that 2, consists of all points p = a+1ib € 2y which satisfy a > y,
and which do not lie inside any of the circles I}, for k > ko, and from (7.46)
and the definition of £2;:

molap||pol

2(2¢)

for all p=a+ibe (2.

With the basic estimates (7.45) and (7.47) in place, consider one of the
circles I, for k > k. Since (7.45) is valid for each point p on I, it follows by
Rouché’s Theorem that Ay and fi + g have the same number of zeros as f
inside I. But p) is the only zero of f, inside I}, ) being a zero of order 1.
Consequently, Ay has a unique zero pj, inside I, with pj having order 1 for
k > ko. Setting

|p]%et > molap||polam™

|Ao(p)| > = T 26y

lpl? >0 (7.47)

;ﬁz(p;c)n, k':ko,k'o—i-l,...,

the complex numbers \) are eigenvalues of L, and by our earlier work the
corresponding algebraic multiplicities and ascents are given by

vy =m(\) =1, k=koko+1,.... (7.48)

It is also easy to derive asymptotic formulas for the zeros pj of Ag. Set
¢ = —gx(p}) for k = ko, ko +1,.... Then e iPhmm) =1 4 ¢, and

o — tf = iLog[1+¢}] (7.49)
for k = ko, ko + 1,..., where

L s BTl m
/ < 71 no o Pk o
Gl < +Z(j T et

9%l k

Now for each k > ko, o, > 2mk—7 > k, 8}, < ng In[|po|'/™ (2nk+7)] < y2Ink,
and |pp| = [p| = [Pk — pi,| = o), =0 = 6k =5 > k, which yields [(;| < y3Ink/k

and Ik
n
|p;€—,u;€|<’yk7 k=koko+1,.... (7.50)
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To compute the zeros of A; in the logarithmic strip {21, we begin by using
(7.27) to express A in the form

Av(p) = appPe (e -y p™ 1+ ha(p)]} (7.51)

for p € Gy, where py 1= —by/a, = —po/wp , |p1| = |10, and hq is the analytic
function given by
elr

— ‘p —ip
ha(p) : T P12(p) + P11(p) + b [1+ ¢10(p)le

for p € G1. For any point p = a 4+ ib € 4 with |p| > ra, the inequalities
defining (2, give
et 1 a™° 1

= < Rl N
lallplme = Jpallplmo amo = |uolame’

‘ eip

H1p"0

and clearly [1+¢10(p)||e ™| = [1+¢10(p)|e® < 2, and hence, by the inequalities
in (7.28)

Ihi(p)| < 1% (7.52)

ol

for p =a+ib € 27 with |p| > ro.
We concentrate the search for zeros in the region

Q" :={p=a+ibe S |a>ry, —nglnfa/a] <b < —ngla/f]},

which is a subset of both G; and (2. Using the real number ¢ defined above,
for k=1,2,... define

ag =27k + Arg uq, ﬁ;;/ = —ng IHHNIP/”O@ZL
pi = oy i

and introduce the circles
Iy ={peC|lp—pyl = o}

Assume the positive integer k; also satisfies the condition yy' := aj —7 > ra.
Clearly we have o) — 7 > ry > § and o) > 37 for k = ky,k; +1,.... Let us
introduce the logarithmic rectangles

Rl :={p=a+ibeCloj—m<a<a)+m —nglnfa/a] <b< —nglnfa/A]}

for k = k1,k1 + 1,.... Without loss of generality we can assume that k; is
sufficiently large to guarantee that each R} is contained in Si, and hence, for
k = ki,k1 +1,... the point p) lies in the interior of R} with R} a subset
of £2”. As above the circle I} lies in the interior of the logarithmic rectangle
R} for k = ki, k1+1,.... Finally, for k = k1, k1+1,. .. let £2}/ be the punctured
logarithmic rectangle formed from R} by removing all the points inside I7.
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We next determine the growth rate of A; on each of the regions 2}
Observe that the points p) satisfy the equation

for k = kl,k1+1,.... Ika, k:kl,k1+1,..., and Gk, k= k’l,]{?1+1,..., are
the sequences of analytic functions defined by

Fr(p) = eP=r) _ 1 for p € C,

no 1 <Al .
Gi(p) = —halp) = (T;())[ag (p— i) + IZ’ET [1+hi(p)] for pe G,
j=1

then we can rewrite A; in the form

. . s 70
Al(p) = apul(a%)noppe—lp{elp e BE [ﬁ] [1 + h1(p)]}
k
= ap‘ul(ag)nﬂppefip{ei(pfﬂlg)
1 iB;) no
- ;%(P*NZ)JFOT;ZJrl] [1+h1(ﬂ)}}7

Av(p) = apia (af)" e [Fr(p) + Gi(p)] (7.53)

for p € Gy and for k = k1,k; 4+ 1,.... In the last equation we actually have a
family of representations for A; depending on the integer k.
Using the constant dy defined above, let us form the punctured rectangle

R.={p=a+ibeC|—-rm<a<m, —dy <b<dy, and |p| > ¢}.

Clearly min{|e” — 1| | p € Ry} = mg > 0. For any index k& > k; and any
point p = a +1b € 2}/, we again get —7m <a— o} <7 1/2 <a/a} <2, and
—do < b— ) < do, and hence, the point p — p} belongs to the punctured
rectangle R, with [p — p}/| <7+ dp, and

[Ex(p)| = mo. (7.54)

Since limg_o0 1/ = limg_.o0 B /af, = 0, in terms of (7.52) it can be
assumed that the previous integer kg also guarantees that yy := o —7 > ra,

— <

o] < for all p € C with |p| > vy,
P

no_mo
4

and

i no 7T+do n ‘ﬂl/ﬂ mo
j oyl o 4

J
} [1—|—%}§m0 for all k£ > kg.
k T2
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Then for each k > k¢ and each p = a +1ib € 2/, we have |[p| > a > o — 71 >
Yy > T2, and by (7.52) and the defining properties of ko:

m
|Gr(p)| < 70 <mg < |[Fy(p)l. (7.55)
Also, o > a—7 > a/2 > |p|/(2£), and from (7.53) and (7.55) it follows that

m mola.
21(0)] = gl () ol - ™0 > Mool s g (7.5

2 7 22
for k > ko and for p = a +ib € 2}/. Cf. the estimate (7.46).
The estimate (7.55) is local as it depends on k, while the estimate (7.56)
is global being independent of k. Introducing the punctured logarithmic strip

o=

k=kq

we see that 2/ consists of all points p = a+1b € 21 which satisfy a > y{ and
which do not lie inside any of the circles I} for k > ko, and from (7.56) and
the definition of (2;:

)| > m0|a;DH:u’0| | |q b~ mo\ap||,u0|a"0

2(26)"o 2(26)"o

for all p=a+1ib € 2. Cf. (7.47).

Consider one of the circles I} for k > ko. Inequality (7.55) is valid for
each point p on the circle I}, so by Rouché’s Theorem A1 and Fj + G have
the same number of zeros as Fy, inside I}. The point p) is the only zero of Fj
inside I’ with uf being a zero of order 1. We conclude that A; has a unique
zero pj inside I of order 1 for k > k¢. Setting

A1 (p ol >0 (7.57)

= (o)™ k=koko+1,...,
the A}/ are all eigenvalues of L with algebraic multiplicities and ascents
v(Xg) =m(X) =1, k=koko+1,.... (7.58)

To derive asymptotic formulas, set (}/ := —Gy(p}) for k = ko, ko +1,.. ..
It is immediate that Pk —#K) =1 4 ¢ and

ol — ufl = ~iLog[1 + ¢f] (7.50)
for k = ko, ko + 1, ..., where

o & Iﬁl}{ %}
s gy S+ B2

Jj=
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For each k > ko we have of > 21k — 7 > k, | 8}| < no In[|uo|*/ ™ (27k + )] <
voluk, and |p}| > |ui| — | — 1yl > o)) — 8 > 6k — 5 > k, which yields the
estimates |(}/| < y3Ink/k and

Ink
pg—ug|§7k . k=koko+1,.... (7.60)

Finally, we assert that the A}, A}, k = ko, ko + 1,..., account for all but
a finite number of the eigenvalues of L. Indeed, suppose A\g = (pg)™ is any
eigenvalue of L distinct from the X}, X}/, with py = a¢ + iby belonging to the
sector SpUS7. Only a finite number of such pg are possible in the disk |p| < ra.
Assume that |pg| > 7.

First, consider the case where py € Sy. By Theorem 7.4 we know that
Ap(po) = 0 and pg lies in the interior of the logarithmic strip £25. Now pg
does not lie in any of the circles I, for k > kg since Ao is distinct from the
Ay, and po does not lie in the punctured logarithmic strip 2, by virtue of
(7.47). Thus, we must have py € 2y with a < a¢ < yj,. But this implies that
0 < by < molnfag/a) < nglnfy}/al, so these pg lie in a bounded region of the
p plane, and again only a finite number of such py are possible.

Second, consider the other possible case where py € S;. By Theorem 7.4
we have Aq(pg) = 0 with po lying in the interior of the logarithmic strip (2;.
Following the same argument as in the previous case, only a finite number of
such pg are possible. This establishes the assertion.

We summarize the above results for this logarithmic case in the following
theorem.

Theorem 7.5. Let the differential operator L belong to Case 3, a logarithmic
case, where the integers p and q satisfy the conditions —oo < p < q < pg, and

let ng =q—p, o = —bg/cp # 0, and p1 = —bg/a, # 0 (so |u1] = |po| and
arg puy = arg o — 2np/n—+m). Then the elements of the spectrum o(L) can be
listed as two distinct sequences

?C:(p;c)n7 k=koko+1,..., Z:(pg)n7 k=ko,ko+1,...,
plus a finite number of additional points, where

Pl = 2k — Arg o) + ing Inf| po| /™ (2mk — Arg po)] + €,

k=koko+1,...,
Py = (2mk + Arg i) — ing Inf| o[/ (27k + Arg p1)] + €.,
k=koko+1,...,

with |¢},] < vInk/k and |e}| < ylnk/k for k = ko, ko + 1,.... Moreover, the
corresponding algebraic multiplicities and ascents are

l/()\%):m()\;g)zl, k:k}o,ko—i-l,...,
u(/\%):m()\g)zl, k=koko+1,....
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The Eigenvalues for n Odd

In this chapter we compute the eigenvalues of the differential operator L for
the case n odd. Throughout the hypotheses of Chapters 3-5 are assumed:
(i) n =2v —1 > 3; (ii) the differential operator L is either regular or simply
irregular; (iii) the integers p and ¢ have been determined with —oo < p, ¢ < pg
and with a, # 0, by # 0, and a, = 0 for k = p+1,...,pg and b, = 0 for
k=gq+1,...,po; (iv) the translated sectors Ty and 77 have been chosen with
condition (3.51) being satisfied for the case p = ¢; (v) the integer m has been
fixed with m > n, m > pg, and —(m —po — 1) < p,q < po; and (vi) the
functions m;, i = 0,1, and the functions 7}, ¢ = 0,1, have been determined as
per Chapter 3 or equations (5.103) and (5.129). Specifically, the functions
and m are given by

mp)= > aw®  wolp)= Y. bep" (8.1)

k=—(m—po—1) k=—(m—po—1)

for p # 0 in C, while the functions 7} and =, are given by

q p
mp)= >, apt mp)= D et (82)
rk=—(m—po—1) k=—(m—po—1)

for p # 0 in C. The leading coefficients in these representations are related by
equation (5.133), viz. |aj| = [by| and [b},| = |ay|.

To determine the eigenvalues of L, we calculate the zeros of the charac-
teristic determinant Ag in the open set Gg and the zeros of the characteristic
determinant A; in the open set G1. The basic properties of Ay and A; have
been developed previously in Theorem 5.4 and Theorem 5.5. Our analysis di-
vides naturally into the three cases where p = ¢, p < ¢q, and p > q. The latter

two cases are logarithmic cases.
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8.1 Casel.p=gq

Assume that p = ¢. This first case is a case with simple eigenvalues; it includes
all of the regular differential operators and many of the simply irregular ones.
We begin by working on the sector Ty and the corresponding open set Gy =
{p € Int T) I |p| > Ro} Let

fo(p) == ape'” + b, = a,[e” — &
for p € C, where & := —bp/a, # 0, and let

p—1 p—1 b, 1

olp) = Y et Y +— [o1(p)e’” + Doo(p)]

D—K D—K
nzf(mfpofl)p nzf(mfpofl)p P

for p € Gy. From the representation (5.105) or Theorem 5.4 we have

Ao(p) = pP[fo(p) + go(p)] (8.3)

for p € Gy, where the function f; is an entire function and the function gq is
analytic on the open set G. In Chapter 3 the constant d > 0 was selected to
satisfy condition (3.51):

_ _ 1.
layle™ + [byle™ < Zmln{|ap\,\bp|}. (8.4)
From equation (3.53) we also have
/,—d /| A—d L l / 1
laple™ + [bple™ < 1 min{|a,|, [b,|} = 1 min{|a,|, [by|}. (8.5)

Let us examine the functions fy and go which make up Ag. First, if p =
a+1ib € C with b > d, then || = e < e~¢ and by (8.4)

; _ 1
|fo(p)| = [by| — lap|le”] > |by] — |ayle 4> |bp| — —

4 |bp"

Thus, we obtain the inequality

o)l = 2 It

for p=a+1ib e C with b > d.

Second, take any point p = a+ib € Go with b > —d. Clearly |p| > Ry > 1,
lei| < e, and —(m—po—1) <p < pg,som—po+p > m—py—(m—pyg—1) = 1.
Applying (5.106), it follows that

" 1 V2
l90(P)| < 5+ T T
lpl ol |p|™—Po
_n n 72 < Y1+ 72 .
lp| ~ |p|mrote |
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Therefore,
Y

l90(p)| < "

for p=a+1ib € Gy with b > —d.
Third, if p = a +ib € C with b < —d, then |e?| = ¢’ < e~ ¢ and
i —i - - - 1
lfo(p)l = |e¥|lap + bpe™"| > e ’ {|ap| — |bple d} ze b{|ap| T |ap|}'

Thus,
[fo(p)| =

for p=a+1ib € C with b < —d.
Fourth, for any p = a +1ib € Gy with b < —d, by (5.106) once more

3
b
e ’lay| > 1 |ap]

=~

3 b 1 V4 b_ BTV
lgo(p)| < 757+ - e’ < e
|| P |p|™—Po ol ’
and hence,
—b
o€
l90(p)| <
|

for p=a+1ib € Gy with b < —d.
In terms of the constant vy that appears in the estimates for gy, choose a
constant vy > R; > Ry such that

€ <

ol

for all p € C with |p| > 7. It follows from the above that if p = a +1b € Gy
with |p| > 7 and b > d, then

|A0(p)| = 1pIP{1fo(P)| = l90(p)[}

. L
min{Jap|, [bp|} = 7 min{lag |, [0} [}

> =

3 1 1 (8.6)
> 1o {31l = 110 = 5 IplloP > 0
On the other hand, if p = a +ib € G with |p| > r; and b < —d, then
3 1
1209 2 I { F el = el
(8.7)

1, 1
= 2 e lagllop > 3 layllol? > 0.
The estimates (8.6) and (8.7) are our initial growth rates for the characteristic
determinant Ay relative to the open set Go.

Next, we consider the characteristic determinant A;, and proceed to ex-
amine its behavior on the open set G1 = {p € IntT1 | |p| > Ro}. Let
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Fip) = e+ by = e — ]
for p € C, where by (5.133) no := —b;,/a;, = 1/(wp&o) (cf. [36, p. 59]), and let
p—1 / p—1

Qg b; 1 —i
)= Y el > o o [Pu(p)e™ 4 o (p)]
rk=—(m—po—1)

rK=—(m—po—1)
for p € G1. Then from (5.131) or Theorem 5.5 we have

Ai(p) = pP[f1(p) + 91(p)] (8.8)

for p € G1, where the function f; is an entire function and the function g; is
analytic on the open set Gj.

Consider the functions f; and g;. First, if p = a +ib € C with b < —d,
then we have |e™#| = e® < e~? and by (8.5)

_ 1
[F1(p)] = 1by| = aple™ > [b),] — 7 1%
Hence,
3
IRGIE

for p=a+1ib € C with b < —d.
Second, take any point p = a +ib € Gy with b < d. Then |p| > 1,
le7i#| = e < e?, and by equation (5.132)

! ! ! !
7 L N - M e’ §
ol |plP |p|mPo 1]
Thus,
Y%
lg1(p)| < —
ol

for p=a+1ib € Gy with b < d.
Third, if p = a +ib € C with b > d, then |e??| = e® < e~? and
—i i _ 1
A1) = le™llap, + Be?] = e {lag] = Byle~} = e jay| = 7 lap | }-
Therefore,
3 bl ./ 3 /
)] = | = 5 oy

for p=a+1ib € C with b > d.
Fourth, for any p = a + ib € G; with b > d, using (5.132) once more, we

have , ) ,
V3 V4
(o) < eH{ B+ —
Il |plP [p[mPo

and hence,
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- Ye”
Ipl

g1 ()]

for p=a+1ib € Gy with b > d.
Without loss of generality we can assume that vo = 7, so
/

<

for all p € C with |p| > r1. It follows from the above that if p = a +ib € Gy
with |p| > 71 and b < —d , then

1A1(p)| = [pP{1f1(p)] = 92 (p)[}

. 1 .
min{Jay|, [by|} = 7 min{lag |, [0} [}

| =

3 1 1 (8.9)
> 1o {311 = 31051} = 5 84117 > 0.
while if p = a +1ib € Gy with |p| > r1 and b > d, then
3 1
40 = o {5 i) = g}
(8.10)

1 1
= s elayllol? = 5 laylpl” > 0.

The estimates (8.9) and (8.10) are our initial growth rates for A; relative to
the open set Gj.

As an immediate application of (8.6), (8.7) and (8.9), (8.10), we have the
following theorem which establishes apriori estimates for the eigenvalues of L.

Theorem 8.1. Assume that p = q. Let A = p™ € C with p=a+ib € Gy and
with |p| > ry.

(a) If |b| > d, then Ag(p) #0 and A € p(L).

(b) If A is an eigenvalue of L, then Ag(p) =0 and |b| < d.
In addition, let A = p™ € C with p = a +1ib € Gy and with |p| > r1.

(c) If |b| > d, then Ai(p) #0 and X\ € p(L).

(d) If X\ is an eigenvalue of L, then A1(p) =0 and |b| < d.

From the theorem the resolvent set p(L) is nonempty. Consequently, the
differential operator L is a Fredholm operator with Fredholm set (L) = C
and with resolvent set p(L) # 0; this implies that the spectrum o(L) is a
countable set having no limit points in C. See [34, p. 58 or p. 60].

We next focus our search for the zeros of Ay on the horizontal strip

In={p=a+ibeC|a>—r and |b| < d}.

Recall that the sector Ty was selected in Chapter 3 so that the horizontal strip
Iy lies in the interior of Tj. Clearly the zeros of fy are given by the sequence

Wy = (2rk + Arg&o) —iln ||, k=0,£1,4+2,...,
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where each p, is a zero of order 1 of fy. From the above estimates for fo, it
follows that the pj, all lie in the interior of the horizontal strip |Im p| < d, i.e.,
—d < In|&y| < d. We will show that the zeros of Ay and fy + go that lie in the
horizontal strip I appear as perturbations of the zeros ) .

Since —m < Argé&y < 7, we can choose a real number w > 7 such that
w— 21 < Arg &y < w. Then for kK = 1,2,... introduce the rectangles

r ={p€C|lw—21r <Rep <w+2n(k—1)and |Imp| < d}.

Clearly these rectangles lie in the horizontal strip Iy, and hence, they lie in the
interior of the sector T, and the zero uy lies in the interior of the rectangle R .
Choose a real number ¢ with 0 < ¢ < 7/4 such that the disk |p — pg| < lies
in the interior of R}. For k =0,+1,+2,... form the circles

I ={peCllp— | =10}

The following properties are obvious from these definitions: (i) the circles
I, k > 0, lie in the interior of the horizontal strip I; (ii) the I7, and the
points inside them do not overlap each other; and (iii) for each positive integer
ko the circles I, 0 < k < ko, lie in the interior of the rectangle R;w the circles
Iy, k > ko, lie in the exterior of R} ~and to the right of R , and the circles
I, k <0, lie in the exterior of R; and to the left of R, .

To complete the geometry, let {29 be the subset of the sector Ty defined by

Qo :={p=a+ibe I, | pis not inside any of the circles I} }.

In the sequel we refer to 2y as a punctured horizontal strip.
Clearly fo(p) # 0 for all p € R} which do not lie in the circle I7). Let

m. :=min{|fo(p)| | p € R} with p not in I} > 0.
Then fo(p + 27) = fo(p) for all p € C, and hence, |fo(p)| > m. for all

p=a+ib e C with |b] < d and with p not in any of the circles I}. Setting

. [3 3
mo = mm{4 lapl, 1 |bp! s m*} >0,
the estimates for fy combine to yield

| fo(p)| = mo >0 (8.11)

for all p € C with p not in any of the circles I7.
Choose a positive integer ko such that the constant yg := w + 27(ko — 1)
has the following properties: yo > 1 and

J0 < ™0 for all p € C with |p| > o,

lp| = 2
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where vy = 7, is the constant introduced above in the estimates for gg and g;.
Clearly yo > 1 and yo > w. Then for any point p = a + ib € Iy with |p| > yo,
we have |p| > r1 > Ry, so p € Gy, and by our previous estimates for go,

l90(0)| < 7 = 5 (8.12)
Combining (8.11) and (8.12), we conclude that
l90(p)| < % <mo < [fo(p)l (8.13)
and -
[fo(p) + 90(p)l = =~ (8.14)

for all p = a4 ib € 29 with |p| > yo, and hence, by the representation (8.3)
mo
[80()| 2 52 1ol > 0 (8.15)

for all p = a +ib € 29 with |p| > yo. The estimate (8.15) is our main result
for the growth rate of the characteristic determinant Ay on the punctured
horizontal strip {2. It immediately implies that Ag and fy + go have no zeros
in £2y when |p| > yo.
Now let us consider the circles I}, for k > ko, which lie in the interior of Tj
and in the interior of the horizontal strip Iy and to the right of the rectangle
ko = |w—2m,y0] X [=d, d]. From (8.13) we have |go(p)| < |fo(p)] for all points
p on I} for k > ko, and hence, by Rouché’s Theorem Ay and fo + go have
precisely the same number of zeros as fo inside I7, for all k > kq. But fo has
only the single zero p}, of order 1 inside I, implying that Ay has exactly one
zero p, inside I}, with p}, having order 1 for k > k¢. Setting

/

kZ:(p;C)n, k:ko,k0+1,...,

it follows that the A, k = ko, ko + 1,..., are eigenvalues of L, and by our
earlier work the corresponding algebraic multiplicities and ascents are

v(A,) =m(\,) =1, k=koko+1,.... (8.16)

Let us derive asymptotic formulas for the zeros p), k = ko, ko + 1, ..., of
Ag. If we set ¢, = —go(p})/(apéo), k = ko, ko + 1,..., then we can rewrite
the equation fo(p}) + go(p},) = 0 as ek = & + &(4, and upon dividing by
ek = &o, it becomes

elPe—ri) — 1 4 Ch.

But [Re(py, — p)| < [pf, — pil <6 < /4,50
Pk — iy, = —iLog [1 + (1], k=koko+1,.... (8.17)

Now fix an integer k > ko, and consider the zero p). Clearly
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1okl > || = 1), — pi| > 27k + Arg&o — 6
>2tk—m—w/4>6k—5>k

and

/

[€ollapl ~— [€ollapllprl

!
%. (8.18)
Since

—iLog[l+z] = zH(z) for |z| <1,

with H analytic on the disk |z| < 1, from (8.17) and (8.18) we obtain the
estimate ~
|p§c—u§€|ﬁz, k=koko+1,..., (8.19)

for an appropriate constant v > 0. This is the desired asymptotic formula.
Next, we compute the zeros of A in the horizontal strip

InN={p=a+ibeCla<mand |b| <d}.

Recall that the sector T} was selected in Chapter 3 so that the horizontal strip
I lies in the interior of T;. The zeros of the entire function f; are given by

pp = —(2nk + Argno) +iln|nol, k=0,%+1,4+2,...,

where [no] = 1/]&| and argny = —arg&y — 27p/n and where each pj is a
zero of order 1 of f;. Clearly the uj all lie in the interior of the horizontal
strip [Im p| < d, i.e., —d < In|ng| < d. We will show that the zeros of A; and
fi + g1 in I appear as perturbations of the pj.

Choose a constant w’ < 7 such that w’ — 27 < — Argny < w’, and then
for k =1,2,... introduce the rectangles

R} :={peCl|uw —2rk <Rep <w and |Imp| < d}.

Clearly the zero ug lies in the interior of the rectangle RY, so we can choose
a constant ¢’ with 0 < §’ < w/4 such that the disk [p — pj| < ¢’ lies in the
interior of R{. Without loss of generality we can assume that 6 = §’. For
k=0,£1,42,... form the circles

Iy ={peCllp—puy| = d}.

The following properties are obvious from these definitions: (i) the circles
IY, k >0, lie in the interior of the horizontal strip I7; (ii) the I} and the
points inside them do not overlap each other; and (iii) for each positive integer
ko the circles I/, 0 < k < ko, lie in the interior of the rectangle R} , the circles
Iy, k > ko, lie in the exterior of R}/ and to the left of R} , and the circles
I}, k < 0, lie in the exterior of R and to the right of R} . Finally, let (2,
be the punctured horizontal strip in the p plane defined by
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21 :={p=a+ibe I |pis not inside any of the circles I} }.

It is clear that f1(p) # 0 for all p € RY which do not lie in the circle I}'.
Set
m* := min{|f1(p)| | p € R{ with p not in I}'} > 0.

Since f1(p + 2m) = f1(p) for all points p € C, it follows that |f1(p)| > m* for
all p =a+1b € C with |b] < d and with p not in any of the circles I7. If we
set

. f3 3 .
Me = mln{4 |ag |, 1 |b7,|, m. } >0,
then the estimates for f; combine to yield

|fi(p)] = me >0 (8.20)

for all p € C with p not in any of the circles I7.
Select a positive integer k1 such that the real number zy := w’ — 27k; has
the properties: g < —ry and

10 oMo g all p € C with |p| > |xo],

ol — 2
where 79 = 7{, is again the constant introduced above in the estimates for
go and g1. Without loss of generality we can assume that k1 = kg. Clearly
|zo| > 71 > 1 and 29 < W’ — 2. Then for any point p = a + ib € I with
lp| > |xo|, we have |p| > 71 > Ry, so p € Gy, and by our previous estimates
for g1,

Yo _m
91(p)] < ﬁ <5 (8.21)
Combining (8.20) and (8.21), we conclude that
Mo
l91(p)| < == <mo <11 (p)| (8.22)
and m
[f1(p) + 91(p)| > = (8.23)

2
for p = a+ib € £ with |p| > |z, and hence, by the representation (8.8)

m.
[Ba(p)] = 2 ol > 0 (8.24)

for p=a+1ib € 21 with |p| > |zg|. The estimate (8.24) is our main result for
the growth rate of A; on the punctured horizontal strip 2;. It immediately
implies that Ay and f; + g1 have no zeros in 27 when |p| > |xo].

Now let us consider the circles F,;’ for k > ko, which lie in I} and to the left
of the rectangle R} = [z¢,w'] X [~d,d]. From (8.22) we have |g1(p)| < [f1(p)|
for all points p on I} for k > ko, and hence, by Rouché’s Theorem A; and
f1+ g1 have precisely the same number of zeros as f; inside I/ for all k > ky.
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But f; has only the single zero p} of order 1 inside I/, implying that A; has
exactly one zero pj, inside I}’ with p} having order 1 for each k > k. Setting

ZZ:(pg)n, k=koko+1,...,
the A} are eigenvalues of L with algebraic multiplicities and ascents
vAD) =m(\) =1,  k=koko+1,.... (8.25)

Let us derive asymptotic formulas for the zeros pj, k = ko, ko + 1,....
Indeed, set ¢/ = —gi1(p})/(ayn0), k = ko,ko + 1,.... Then the equation
F1(p}) + g1(p}) = 0 can be rewritten as

e~k =g + noCf,
and dividing by e ¥ = 5, it becomes e 1Pk —m) = 1 4 ¢y or
pr—pg =iLog[L+ ¢, k=koko+1,.... (8.26)
Now fix an integer k > ko, and consider the zero pj. Clearly
1Pk] = |1k = ok — ml = 27k + Argmo — 0
>2rk — 7 —7w/4 >k for k sufficiently large,

and hence,
|<I/€/ _ 91 (%) < Yo
nollag,l — Inollayl |
Since iLog[l + 2] = zH (%) for |z| < 1, with H analytic on the disk |z] < 1,
from (8.26) and (8.27) we obtain the estimate

<

17
% . (8.27)

v

\PZ—HHSE, k=koko+1,.... (8.28)

Finally, suppose that A\g # 0 is any eigenvalue of L which is distinct from
the M., AL, k= ko, ko+1,.... Then we can express \g in the form Ay = (pg)™
where pg = ag + ibg # 0 belongs to either the sector Sy or the sector S;. Let
us consider these two cases separately.

First, assume py € Sp. Clearly pg € Int Ty. There are two possible locations
for the point py: either pg lies in the disk |p| < yo, or |po| > yo. In the former
case only a finite number of such py are possible because the spectrum o (L)
is a countable set having no limit points in C. Assume that pg belongs to the
latter case, so |po| > yo. Then |po| > yo > 1 > Ro, and hence, py € Gy. By
Theorem 8.1we must have Ag(pp) = 0 and |by| < d. From the simple geometry
of the sector Sy it is immediate that ag > 0, and hence, pg lies in the interior of
the horizontal strip Iy. Suppose ag > yo. We know that pg does not lie in any
of the circles I, for k > ko because g is distinct from the A, . The circles I,
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—00 < k < ko, either lie in the interior of the rectangle R}, ~or lie to the left
of R;QO, and hence, pg can not be in any of these circles. This implies that pg
belongs to the punctured horizontal strip {2y with |pg| > ag > yo, and by the
inequality (8.15) we have Ag(pg) # 0 — a contradiction. This contradiction
shows that we must have ag < yg, and hence, py must lie in the rectangle
[0, yo] x [—d,d]. Only a finite number of such py are possible.

Second, assume pg € S1, so pg € IntTy. Now either py lies in the disk
|pl < |zol, or |po| > |xo|. In the former case only a finite number of such pg
are possible. Assume that |po| > |zo], so |po| > |zo| > 71 > Ro, and hence,
po € G1. Again by Theorem 8.1 we must have A;(pg) = 0 and |bg| < d. From
the simple geometry of the sector S; we must also have ag < 0. It follows that
po lies in the interior of the horizontal strip 7. Suppose a9 < xg. We know
that po does not lie in any of the circles I for k > ko because A¢ is distinct
from the A]. The circles I}/, —oo < k < ko, either lie in the interior of the
rectangle Rgo or lie to the right of ng and hence, py can not be in any of
these circles. This implies that py belongs to the punctured horizontal strip
£y with |pg| > |ao| > |zo|, and by the estimate (8.24) we have A;(pg) # 0 —
a contradiction. We conclude that zg < ag < 0, and hence, pg must lie in the
rectangle [z, 0] X [—d, d]. Again only a finite number of such pg are possible.

Combining the two cases, we conclude that the X, X}/, k = ko, ko +1,.. .,
account for all but a finite number of the eigenvalues of L.

These results for the eigenvalues are summarized below in a theorem.

Theorem 8.2. Let the differential operator L belong to Case 1, where the
integers p and q satisfy the conditions —oco < p = q < pg and where £y =

—bp/ap # 0 and no = —b;, /aj, # 0 (so |no| = 1/|€o|, argno = — arg §o—2mp/n).
Then the elements of the spectrum o(L) can be listed as two sequences

A;c:(p;:)n7 k:kOak0+17"'a g:(pg)n7 k:kOak0+17"'a
plus a finite number of additional points, where

p;cz(27rk+Arg§o)—iln|§0|+e§c, k=ko,ko+1,...,
p%:—(27rk+Arg770)—11n|§0\+6Z, k:ko,]fo-f—].,...,

with |e},| < v/k and |€}| < v/k for k = ko, ko + 1,.... Moreover, the corre-
sponding algebraic multiplicities and ascents are

V(/\%):m()\;ﬁ)zl, k:k(),ko—i-l,...,
V(AZ):TTL()\Z):L kzko,k0+1,....

8.2 Case 2. p< q

Assume that p < ¢. This second case is a logarithmic case; all differential
operators belonging to it are simply irregular. We begin by making some
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simple observations about the translated sectors To = {p — 79 | p € So} and
T, ={p—71]| p € S1}. Take any point p in the sector Tp. Then the point p+79
belongs to the sector Sy, and it can be expressed in the form p+7y = |p+7o|el’
with —7/(2n) < 0 < w/(2n) (recall n > 3). Hence,

Rep=Re(p+ 1) —Rery = |p+ 70| cosd —Rery

> |pl cos o — |rolcos - — R
cos — — |1p]| cos — — Reg.
Z|p om 0 m 0
It follows that Rep > 0 for all points p € Ty with |p| sufficiently large. A
similar argument show that Re p < 0 for all p € T} with |p| sufficiently large.
Without loss of generality we can assume that in forming the open sets

Gy = {,0 € Int Ty | ‘p' > Ro}, G, = {p € IntTy ‘ Ipl > Ro},

the constant Ry has been chosen sufficiently large to guarantee that Rep > 0
for all p € Gy and Rep < 0 for all p € G;. We will assume this property is
also valid for Case 3 which follows later in the chapter.

Set ng := g—p > 0, and consider the sector Ty and the corresponding open
set Go. By (5.105) or Theorem 5.4 and (8.1) we can write the characteristic
determinant Aq in the form

Aog(p) = pP{ape”[L+ do1(p)] + bgp™ (1 + oo (p)]} (8.29)

for p € Gy, where

p—1 1

dor(p) == Y e

appP—r appP
rw=—(m—po—1) ¥ P

Po1(p),

q—1

by 1
boo(p) = Z bypi—F + bopt Poo(p)

k=—(m—po—1)

for p € Gy. The functions ¢g1, ¢go are analytic on the open set Gy, and
recalling that m — po +p > 1 and m — pg + ¢ > 1, by (5.106) we obtain the
growth rates

bor(p)] < 120 ldoo(p)| < 2 (8.30)
| |
for p € Gp.
Set po := —bg/a, # 0. Choose a constant 71 > R1 > Ry such that

12< 1+ ¢0(p)l <2, 1/2< |1+ doo(p)] <2
for p € Gy with |p| > 1 and such that

2

- <
lol[p|™ —

1
4
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for all p € C with |p| > r1. Then (8.29) can be rewritten in the form

B0(p) = bap™{ [1+ do0lp)] + = [1 + do1 (p)]e”}

ap

bgp™

for p € Gy, and for any point p = a +1ib € Gy with |p| > 1 and b > 0, we
have

1 2 _
1Ao(p)| = |bq||0|q{2 ~ Tl © b}
L (8.31)

1
> bgllpl9 = — = -1 = = |by||p|? > 0.
>l { g - 31 = g lll >

Consequently, as we search for the zeros of Ay in the open set Gy, we will
concentrate our search in Quadrant IV.

Let w be the positive real number defined by the equation 1/w :=
1/|po|Y™ + ng. Choose real numbers a and 8 with 0 < a < [1/(2|uo])]*/™,
B> [2/|pol]/™, and

2
| 1o B0

Clearly 1/3 < |uo|*/™ < 1/a. We will first study the characteristic determi-
nant Ag on the sector Sy. Note that if p is any point in Sy with |[p| > Ry,
then p belongs to the open set G, and hence, we will be working in a region
where Ay is analytic. In terms of the constants pg, o, and (3, we form the
logarithmic strip

1 1
2 2a)"0 < = < =,
|:U/0‘( a) =3 =1

Qo={p=a+ibe Sy |b<0, ae™™ <a < pet/m}
={p=a+ibe Sy |a>a, b<0, —nglnfa/a] <b < —nglnfa/F]}
and the two complementary regions
D000 := {pza—l—ibe So ‘ b<0,a< ae_b/"o},
0a := {p:a—l—ibe So | b <0, ﬂe_b/”o §a}.
These three regions are contained in Quadrant IV. Note that
—no Infa/a] < —ngIn[|po|/™a) < —ngInfa/p]

for a > (3, so the logarithmic curve b = —ngIn[|ue|*/™a] runs down the
‘middle’ of the logarithmic strip (2.

Let us begin by calculating the growth rate of Ag on the region (2,. For
any point p = a + ib belonging to 2y, we have a > 0, b < 0, and

lp| < |a| + |b] < aeltl/m0 4 poelbl/mo

1
< [1/|pol ™ + nolel®l/mo = ;e'b‘/"fﬂ
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and hence,
no Infw|p|] < 10| for all p=a+ib € 2. (8.32)

Choose a real number xy > 0 such that z < ae®/™ for all z € R with z > Zo,
and then choose a real number r9 such that ro > r1 and ro > 3 and such that
xo < ng Infw|p|] for all p € C with |p| > ro. If p = a +1ib € 200 With |p| > 1o,
then by (8.32) we have |b| > z¢, |b| < aell/™0 and

] < |a| + |b] < ael®l/mo 4 qeltl/mo — 9qelbl/mo, (8.33)

Combining (8.33) with (8.29) gives

A0(p) = ap @ {[1+ dun ()] + 2 "0 [1+ duolp)e ™}

P
and
(1
209 > lagle~ {5 = 2ol et}
b1 no - — 1 _
> laplloPe {5 = 2ol )t | = Llaplllre
or
1 p,—b |a10| q
20012 {lanlloPe > 12 o > 0 (5.3)

for all p = a4+ 1b € 2y, with |p| > ry. The inequality (8.34) establishes the
growth rate for Ay on the region 2.
To determine the growth rate on the region (2yn, we again express the

characteristic determinant in the form
Aolp) = byp"{ 11+ doo(p)] +

ap

bgp™o

[1+ g1 ()l }

for p € Gy. Then for any point p = a + ib € 255 we have |p| > |a| > Belbl/m0,

and hence,
1 2e~0
Aop)] = b |pq{ - }
! 2 |uollp|mo
1 2¢l0l 1
> [bollplid = — — 2 LS 21010
> bl 5 - e | 2 1 bl
or

1
[A0(p)] = 7 [bgllp]* >0 (8.35)

for all p = a + ib € 29o. This is our growth rate for Ay on the region (2ya.

Relative to the sector T3 and the corresponding open set G, we can use
(5.131) or Theorem 5.5 and (8.2) to write the characteristic determinant A,
in the form



8.2 Case 2. p< q 223

/

: b
Ai(p) = p{ae™? [1+ 611(p)] + e[+ 010(0) b (s36)
for p € G1, where
qg—1

D DR S )

! —_
agpi™"  agp

rk=—(m—po—1)

= b 1
d10(p) = Z b o o P10(p)
k=—(m—po—1) P P

for p € G1. The functions ¢11, ¢1¢ are analytic on the open set G; with

% i
lp11(p)l < [P10(p)] < (8.37)
ol ol
for p € G1 (see equation (5.132)).
Set p1 := —aj /b, # 0. From (5.133) we have b, = w!_,a, and a], = wib,,
and hence,
p1 = —wibg/(wy_1ap) = Wngu-plio- (8.38)

Clearly |p1] = |uo| and arg uy = arg po + 2m(nov + p)/n. Choose a constant
r} > Ry > Ry such that

1/2 <1+ ¢u(p)| < 2, 1/2 <1+ ¢o(p)| <2

for p € G1 with |p| > r{ and such that

2

— <
[l [p|me —

1
4
for all p € C with |p| > r{. Then (8.36) can be rewritten in the form

/

2000 = e {1+ 00 )] + 2 1+ vl

for p € Gy, and for any point p = a + ib € G; with |p| > r} and b > 0, we
have

1 2 _
201 = ey = e} (5:39)
8.39
> ld qbl_l.l _ L iolaet 0
> [ayllple?] 5 = 7 -1} = 7 lallple® > 0.

In view of this result, our search for the zeros of the characteristic determinant
A1 in the open set GG will be concentrated in Quadrant III.

Set wy = w, a1 := «, and By = B. Clearly 1/w; = 1/\,u1|1/”° + ng,
0 < ay < [1/@m)]Y™, 61 > [2/|p /"0, and
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2
7 |l |(Br)mo

Note that for p € Sy with |p| > Ry, we have p € G, and we are working in
a region of analyticity for A;. In terms of the constants p1, aq, and (1, we
form the logarithmic strip

<-.

2|pa](2a1)™ <

e
==

2 :={p=a+ibe s | b<0, —fre /™ <a< —oqe*b/"o}
= {p =a+ibe S ’ a<-—ay, b<0, —noln[—a/a1] < b < —ng ln[—a/ﬁl]}
and the two complementary regions
Qoo ={p=a+ibe S |b<0, —are™?™ <a},

n = {P: a+1ib € 51 ’ b<0,a< _ﬂle—b/no}.

These three regions are contained in Quadrant III. Also, observe that
—noln[—a/a1] < —ng In[—|p1 |0 a] < —ng In[—a/B1]

for a < —f, so the logarithmic curve b = —ng In[—|u1|'/™a] runs down the
‘middle’ of £2;.

To calculate the growth rate of A; on (214, take any point p = a + ib
in 215. Clearly a < 0,5 <0, |a|] = —a < azeltl/m0and

1
lpl < la| + [b] < agel?l/m0 4+ ngel®l/mo < [1/)q |0 + ngleltl/mo = — ¢lbl/no
w1

or

no Injwi|p|] < 10]. (8.40)

For the constant x; := zg, we know that z < ae®/™ for all x € R with
x > x1. Choose a real number 4 such that r5 > r] and r5 > 1 and such that

x1 < ng Infwi|p|]

for all p € C with |p| > r4. By working with the maximum of the two constants
ro and 7, we can assume without loss of generality that ro = 5.

Now consider any point p = a + b € 21 with |p| > r5. Then by (8.40)
we have |b| > 2, and |b] < aiel®V/™ and hence,

ol < la] + [b] < anel?l/m0 4 aeltl/mo = 2q,eltl/m0,

We conclude that
p| < 20pelbl/mo (8.41)

for all p=a+1b € 15 with |p| > 75.
Combining (8.41) with (8.36), we have

A (p) = b {11+ dro(p)] + (ag/by,)p" [1 + pra1(p)le 7}
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and

1
30 = Byl { 5 - 2o

1 _ 1
> gl {5 2 e | > g,

or
1
[Ai(p)l = 7 B, [1pl” >0 (8.42)

for all p = a +1b € {210 with |p| > r5. The inequality (8.42) establishes the
growth rate for A; on the region 2.

For the growth rate on (214, we again express the characteristic determi-
nant in the form

/

A1(p) = dypte{[1+ 611 (p)] + —2 [1+ dr0(p))e}
q alp

0

for p € Gy. Then for any point p = a +1b € £215 we have |p| > |a|] > Brelbl/no,
and hence,

1 2e~ 0
)] = a;||p|<Ieb{ }

2 fuallp|mo

1 2¢l0l 1
> 4 qub) - = > Z / q.b
> lagllel*e {2 ] - (ﬁl)"oelb} 4 laallet'e’,

or
1 1
A1(p)] = 7 layllele” = ¢ lagl(B0)™]pl” > 0 (5.43)

for all p = a + ib € £21n. This is our growth rate for A; on the region (24.

As an application of these growth rates on the regions {2y, 200 and 21,
1o, we obtain the following apriori estimates for the eigenvalues of L. Recall
that we are assuming that ro = r.

Theorem 8.3. Assume that p < q. Let A = p™ € C with p =a +1ib € Sy and
with |p| > ra.

(a) If p € 2900 or p € 0a, then Ag(p) # 0 and X € p(L).

(b) If X is an eigenvalue of L, then Ag(p) =0 and p lies in the interior of
the logarithmic strip 2.
In addition, let A\ = p™ € C with p = a+1b € S1 and with |p| > ra.

(c) If p € 100 07 p € 1, then A1(p) #0 and X € p(L).

(d) If A is an eigenvalue of L, then Aq(p) =0 and p lies in the interior of
the logarithmic strip (2.

By the theorem the resolvent set p(L) is nonempty, and hence, by our
earlier remarks the spectrum o(L) is a countable set having no limit points
in C.
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Next, let us consider the behavior of Ay on the logarithmic strip (2.
Setting £ := 1+ ng/«, for each point p = a +ib € 2y we have

ol < lal + [b] < |a] + noIn[lal/a] < la| + (no/a)la| = ¢lal. (8.44)

Relative to the strip {29 the characteristic determinant can be written in the
form

Ao(p) = app”{e” — pop™ L+ ho(p)]} (8.45)

for p € Gy, where hg is the analytic function given by

o) = == ) + ()

for p € Go. If p=a+1ib € 2y with |p| > 7o, then

‘ el” e ? 1 |a|™ 1
= S . S )
popm | pollpl™ = |uollpfme amo ™ fuofarne
and hence, by (8.30)
gi!
lho(p)| < ol (8.46)

for all p = a+ib € 2y with |p| > ra.
Fix a real number § with 0 < 6 < 7/4 and 0 < ¢ < (In2)/(1 + ng), and
then for the integers k = 1,2, ... define

oy, =21k + Arg po, B = —no In[|po| /™00 ],
4 = o + 8,

and introduce the circles
I ={peCllp— | =0}

Choose a positive integer k; > 2 such that y] := a;ﬁ — m > ry. Note that
ap —m >ry > [ and o) > 3w for k = ki, ki +1,.... Also, we introduce the
logarithmic rectangles

R, ={p=a+ibeC|a,—7m<a<a,+m, —nglnfa/a] <b< —nglnfa/F]}

for kK = ki,k1 + 1,.... Without loss of generality we can assume that k; is
sufficiently large to guarantee that each R}, is contained in the sector Sy, and
hence, for k = k1,k; + 1,... the point yj lies in the interior of R with R} a
subset of 2.

Fix any index k > k1, and take any point p = a+ib € C with |p— p}| < 9.
We assert that p lies in the interior of R},. Indeed, we clearly have |a — o}, <
§ < 7 and |b+ ng Inf|ue|/™0al]| < 6, so
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|-+ 1o Iluo[ /" a]| < |b+ no Inf|uo] /™ o3|
+ o Inf| o] /™ a] = no In[|o[ /™ ]|
< +mnola— )| <51 +mnp) <In2.
Thus, —no In[(2|pe|)*/™0a] < b < —ngIn[(|po|/2) /™0 a] and
—nglnfa/a] < b < —nglnfa/s).

This establishes the assertion, and it is immediate that the circle Iy, lies in
the interior of the logarithmic rectangle R}, for k = k1, k1 +1,.... To complete
the setup of the geometry, for k = ki,k1 + 1,... let {2, be the punctured
logarithmic rectangle formed from R) by removing all the points inside I7.

The next step is to establish the growth rate of Ay on each of the regions
2,.. Note that

i

k= pio(ag)"™

fork:kl,k1+1,.... Let fk, k:kl,k1+1,...,andgk, k:k17k1+17...7be
the sequences of analytic functions defined by

e

fr(p) = olP=rk) — 1 for peC,
N (o \T 1 i3, 14
)= ~10(p) =3 (") 0= i)+ 2] [+ o)) tor p e G
j=1 J Qy Qy,

Then we can use (8.45) to write Ag in its final form:

Aolp) = appofaf) o pr {ei” - ek — [a%] Pl ho(o)] }

— appio af,)" pr { el [ai,(p*u )+ f’“ + 1} ht 1+ ho(p)] },

k k
or

Ao(p) = appo(ar)™ p’[fi(p) + gr(p)] (8.47)
for p € Gy and for k = k1, k1 +1, . ... Here we have a family of representations

for Ag depending on the integer k. We will use the kth representation to
determine the growth rate of Ag on the kth region (2.
In terms of the constants «, 3, §, choose dy > 0 such that

no In[2/(|pol*™a)] < do, no In[2|po|*/™ 8] < do,
and § < dp, and then form the punctured rectangle
R.:={p=a+ibeC|—-nm<a<m —dy <b<dy, and |p| > d}.

Set mg := min{ e — 1| | p € R.} > 0.
Fix any index k > k1, and take any point p = a+ib € £2;. Clearly we have
- <a-—a) <m 7/a) <1/2 because aj, > 3,
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a <a;€+7r

i el
7 A o7 o
and

b— B, > —ngInfa/a] + ng Inf|uo| /™ o]

= —noIn[a/(Jpo|/ ™ aa})] > —noIn[2/(|po| /™ )] > —do,

b— B < —ngnfa/B] + no In|ue|"/ ™ a}]
= —ngInfa/(|pol"/™ Bag)] < —noIn[1/(2lpo| /"™ B)] < do.

Thus, the translate p — uj. belongs to R, with |p — p}| < 7+ dp. It follows
that

| fr(p)| = mo (8.48)

for k > k1 and for p € £2;.. Note that the constant mg is independent of the
index k.

Clearly limy_.oo 1/}, = limy_o 5./}, = 0. In terms of the constant 7,
that appears in the inequality (8.46), select an integer ko > k1 such that

T g all p € C with |p| > vy,

lpl = 4
where y|, := 0‘;«0 — 1 > 79, and such that

0 ARV
Z(m))[w—i—do—i—w’f'] {1+%}§TZO for all k& > k.

/!
=\ a, Q. ro

Then for k > ko and for p = a+1b € 2, we have |p| > a > af, — 7 >y > 79,
and hence, by (8.46) and the definition of the integer ko,

9P| < 552 < mo < |filp)]- (8.49)

Also, since a}, > 3w, we have ¢ > o), —m > 27w or a/2 > m, and o), > a — 7 >
a/2 > |p|/(2€) by (8.44). Therefore, from (8.47) and (8.49) we conclude that

mo _ molay||pol

A > / \no D . 0 > q
[A0(p)] 2 lapllol(af )™ lpl” - 5P 2“5 ol
. ] 120]
mola.
[Aop)] 2 5B el > 0 (8.50)

for k > ko and for p € £2;.
The estimate (8.49) is local in character in that it depends on k: it is
valid only on the region (2. In contrast, the estimate (8.50) is global because
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the constant on the right is independent of k. If we introduce the punctured
logarithmic strip

oo
/ /
2= J 2,
k=ko

then we see that 2/, consists of all points p = a +1ib € 2y with a > y{ which
do not lie inside any of the circles F,é for k > ko, and from the above

mo|a
20(0) = ool o 0 (8.51)
forall p=a+1ib e £2..

With the basic estimates (8.49) and (8.51) in place, consider one of the
circles I, for k > ko. Since (8.49) is valid for each point p on I, it follows by
Rouché’s Theorem that Ay and fi + g have the same number of zeros as f
inside I7. But pj, is the only zero of fi inside I}, u}, being a zero of order 1.
Consequently, the characteristic determinant Ay has a unique zero p), inside
I with pj. having order 1 for k > k. Setting

)‘;c = (p;c)n7 ]{?:k07k0+17...7

the complex numbers A, are eigenvalues of L, and by our earlier work the
corresponding algebraic multiplicities and ascents are given by

v(\L) =m(A\) =1, k=ko,ko+1,.... (8.52)
It is also easy to derive asymptotic formulas for the zeros pj, k = ko,
ko +1,.... Set (j, == —gi(p)) for k = ko,ko + 1,.... Then we know that
elPk=rk) = 1 4+ ¢} and
P — 1y, = —iLog [1 + (i (8.53)
for k = kg, ko + 1, ..., where
CHl < +§: no\[ & BT L
M=) Jj)lag o ro |

/
| k| j=1

Now for each k > ko, o), > 21k — 7 > k, |8,] < noIn[|uo|'/™ 27k + 71)] <
Y2 In k, and

okl = lpk] = o — pi] > af — 0 > 6k — 5 > k,
which yields |(}| < ysInk/k and

Ink
|p;€—,u;€|§ryk . k=koko+1,.... (8.54)
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To determine the zeros of A; in the logarithmic strip {2y, we adopt an
approach similar to the above. Set n := 1 4+ ng/a;. Then for each point
p=a+1ib € £2; we have

ol < laf +[b] < |a] + noInflal/a1] < a] + (no/ax)la] = nlal. (8.55)

Relative to the strip 21 we can write 4A; in the form

1

p1p™0

Ai(p) = a;pq{e*ip - [1+ hl(p)]} (8.56)

for p € G1, where h; is the analytic function given by

hi(p) == —p1p™e P 11(p) + d10(p)

for pe G1. If p=a+1ib € £y with |p| > r}, then

no ,—i n n n ﬂ "0 n
luap™0e™ | = | |lp|"0e” < |pa| - 1" lal™ - (|alzzo = [ |(nB1)"™,
and hence, by (8.37)
,Y/
|hi(p)| < |T;1| (8.57)

for all p = a+1ib € 21 with |p| > r5.
Let ¢ be defined as above, s0 0 < § < 7/4 and 0 < § < (In2)/(14 ng). For
k=1,2,... define

af = —(2wk — Arg i1 + o), By := —ng In[—|u |0 af],
i = o+ B,

and introduce the circles

Iy ={peC|lp—pyl =}

Choose an integer k; > 2 such that yf = agl + 7 < —rf. Note that the
af satisfy of + 7 < —rh < —(3; and |af| > 37 for k = k1,k1 + 1,.... Also,
introduce the logarithmic rectangles

v={p=a+ibeCla)-m<a<oaf+m,
—ngln[—a/a1] < b < —ngln[—a/B1]}

for kK = k1,k1 + 1,.... Without loss of generality we can assume that this
new k; is identical to the k; introduced earlier, and that k; is sufficiently
large to guarantee that each R} is contained in the sector Sy, and hence, for
k= kq, k1 +1,... the point u} lies in the interior of the logarithmic rectangle
R} with R} a subset of the logarithmic strip (2;.
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Fix any index k > k1, and take any point p = a+ib € C with |p—pf| < 4.
We assert that p lies in the interior of Rj. Indeed, we clearly have |a — /| <
§ < 7 and |b+ ng In[—|u [V™0a}]] <6, so

b+ o (s [/7a)] < 1B+ g In[— s /"0
+ [no In[—|pa /"0 a] —ng In[—| 1 [/ ]|
< +mnola—ay| <5(1+mngp) <In2.

Hence, —ng In[—(2|u1])Y/™a] < b < —ng In[—(|p1]/2)"/™0a], and from the def-
initions of ay and f; it follows that —ngIn[—a/a1] < b < —ngln[—a/B1]. We
have established the assertion. It is immediate that the circle I} lies in the
interior of the logarithmic rectangle R} for k = ki,ki1 + 1,.... To complete
the setup of the geometry, for k = ki,k1 + 1,... let 2} be the punctured
logarithmic rectangle formed from R}/ by removing all the points inside I7.

Next, we establish the growth rate of A; on each of the regions §2;'. Observe
that

e = iy (af)m

for k = k1, k141, . ... Introducing the analytic functions Fj, k = k1, k1 +1,.. .,
and Gg, k= ki,k1 + 1, ..., defined by

Fr(p) == W) 1 for p e C,
UL, 1 i3/ J
Gulp) ==t -3 (") |2 = = | )] for e o
= \i/le p
we can use (8.56) to write Ay in its final form:
. iy 1
— o pife—ir. _© _
Aulp) = agp {e p(e)mo e 1+ hl(p)]}

_ mé(l/gg;m){ei(uﬁp) — [%]TLO[l + hl(P)]}

p
a pq . 1 iﬁ// no
- e‘(“k‘/’)_[, " _ _J_;’_l} 14+ h }7
e = p) = =R 1] T o)

or

U [F(p) + Gup)] (559
Ailp) = —2_[Fy(p) + .
l(p) /141(Ckg)n0 kP kP
for p € G and for k = ky, k1 +1,. ... Here we have a family of representations

for A; which depends on the integer k. We use the kth representation to
determine the growth rate of A; on the kth region (2}/.
In terms of the constant dy introduced earlier, we clearly have

non[2/ (| [V aq)] < do, no In[2[p V™0 61] < do,

and § < dy. As previously we can form the punctured rectangle
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R.={p=a+ibeC|—-n<a<m —dy <b<dy, and |p| > 4},

and determine the constant mg = min{ |e”” — 1] | p € R.} > 0.
Fix any index k > k1, and take any point p = a +ib € (2}. Clearly
—m <o) —a<m w/la)| <1/2 because |a}| > 3,

1

—a -y +7 s —a - — T s 1
7 < k 7 =1+ 7 <2, > k 1 57
—af —a) | —ay —a) |,

— b < —ngIn[—|p |V )] + no In[—a/ay]
= no In[—a/(|p [V ar (=a)))] < o I[2/(|p [V )] < do,

1= b> —noIn[—|p [V a] + noIn[-a/f]

= no In[=a/(|m V" B1 (=af))]
> noI[1/(2]p [0 B1)] = ~do.

Thus, the point p) — p belongs to the punctured rectangle R, with |u) — p| <
7+ do. It follows that
| Fi(p)| = mo (8.59)

for k > ki and for p € 2. Clearly the constant mg is independent of the
index k.

On the other hand, for any index k > k; and for any point p = a+ib € 2/,
we have —af/ /2 = |a}|/2 > m, —af — 7 > —a}//2, and
—of _ o

2 2

ol = la] = —a = —of

It follows that
n
Grloll < 1 +Z< >[

Since limy oo 1/0) = limy_o 0}/ = 0, in terms of the constant ] that
appears in (8.57), we can select an integer ko > k1 such that

73 ’
woean+ ] [+
k

T2

71<70

¥ for all p € C with |p| > —y{/,
p

where y{ := ak + 7 < —r}, and such that

> (7

j=1 il

218" J /
(r +do) + Eﬁ“'] {1—&—7}] <0 forall k> k.
k
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Then for k > ko and for p = a +1b € 2}/, we have
ol = la] = —a) — 7 = —yg =15,
and hence, by (8.57), the definition of the integer ko, and (8.59):
Gulp)] < 5F < mo < |Fi(p)] (8.60)

Also, for k > ko and for p = a +1b € (2}, we have |af| > 37, so af < —27
and o) +m < —m, and hence, a < o +7 < —7 and

| = —af < —a+7 < —2a =2|a| < 2|p|.

Therefore, from (8.58) and (8.60) we conclude that

@ lplt my  mold|
Alp)|2q7~7_7q P’
P2 e 2 2 2 !
or ,
() = e (8.61)
PO g 2oy P '

for k > ko and for p € £2/. If we introduce the punctured logarithmic strip

oo
"o, "
o= 2,
k=ko

then we see that 2/ consists of all points p = a + ib € 2, with a < y{ and
with p not inside any of the circles I}/ for k > ko, and from the last equation

mola’
A1 (p)] = =0l

———[p|” >0 8.62
= 22 (56

for all p € 02/,

Consider one of the circles I} for k > k. Since (8.60) is valid for each
point p on I, it follows by Rouché’s Theorem that A; and Fj + G, have the
same number of zeros as Fj, inside I}/. But yj is the only zero of Fj, inside
I7, 1y being a zero of order 1. Consequently, the characteristic determinant
A has a unique zero p} inside I} with p} having order 1 for k > k¢. Setting

g:(pg)n, k=koko+1,...,

the A} are eigenvalues of L with corresponding algebraic multiplicities and
ascents

v(Ag) =m(X) =1, k=koko+1,.... (8.63)

To derive asymptotic formulas for the zeros py/, define ¢} := —Gy(pj,) for
k= kO; kO + 1, .... Then ei(#g—pg) =14+ Cllg/ and
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o — i = iLog 1 + /] (8.64)
for k = ko, ko + 1, ..., where

s S0l b+

Jj=1

Now for each k > ko, || > 27k — 7 > k,

18] < o 1n[|M1|1/n° (2mk + 7+ mno)] < 5 Ink,

and
Pkl = |pi] = Pk — mxl = lag| =6 = 6k — 5 > k,

which yields |(}/| < ~v5Ink/k and

Ink
ol —mil < T2=0 k=koko+ 1, (8.65)

Finally, we claim that L can have only a finite number of eigenvalues
beyond the AL, A}, k = ko, ko+1,. ... Indeed, suppose A\ # 0 is any eigenvalue
of L distinct from the A}, A}. Then A can be expressed in the form Ao = (po)"
where the point py # 0 belongs to either the sector Sy or to the sector S;. We
look at these two cases separately.

First, assume py = ag + ibg € Sp. If |pg| < r2, then only a finite number
of such pgy are possible because the spectrum o(L) is a countable set having
no limit points in C. Assume that |pg| > 72. Then by Theorem 8.3 we must
have Ap(pg) = 0 and pg must lie in the interior of the logarithmic strip
2. If ag > y;, then either py € (2, or py lies inside one of the circles I,
k > ko. But these two possibilities can not occur because of (8.51) and the
fact that po must be distinct from the pj,, k > ko. Thus, a < ag <y and
—ngInfyy/a] < by < 0. Since these py come from a bounded region in the p
plane, only a finite number of such py are possible.

Second, assume pg = ag + ibg € S7. Again if |pg| < 72, then only a finite
number of such pg are possible. Assume that |pg| > 73. Then by Theorem 8.3
we must have Aj(pg) = 0 and py must lie in the interior of the logarithmic
strip £21. It is impossible to have ag < y because of (8.62) and the fact that
po must be distinct from the p}, k > ko. Therefore, yj < ap < —ay and
—ng In[—y{/a1] < by < 0. Again only a finite number of such pg are possible.

Combining the two cases, we conclude that the X, X/, k = ko, ko +1,...,
account for all but a finite number of the eigenvalues of L.

We summarize the results for this logarithmic case as a theorem.

Theorem 8.4. Let the differential operator L belong to Case 2, a logarithmic
case, where the integers p and q satisfy the conditions —oo < p < q < pg, and

let ng = q —p, po = —bg/a, # 0, and p; = —ag /b, # 0 (so |u1| = |po| and
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arg uy = arg ug + 2w (nov + p)/n). Then the elements of the spectrum o(L)
can be listed as two sequences

A;€:<p;€)n7 k:k07k0+17"'a g:([)g)n, k:ko,ko—f—l’...’
plus a finite number of additional points, where

pl, = 27k + Arg o) — ing In[|uo| /™ (27k + Arg po)] + €.,

k=ko,ko+1,...,
pr = —(2mk — Arg pu11 + mno) — ing 1n[|ﬂ0|1/n0 (2mk — Arg py + o)) + €,
k=ko,ko+1,...,

with |e},| < ylnk/k and |e}| < ylnk/k for k = ko, ko +1,.... In addition, the
corresponding algebraic multiplicities and ascents are

u()\;c):m()\;)zl, k:k](),k’o—f—l,...,
V()\Z):m()\g):]., k:ko,ko—f—l,....

8.3 Case 3. p > ¢q

Assume that p > g. The differential operators belonging to this case are always
simply irregular. It is also a logarithmic case. As in Case 2 we will assume that
the constant Ry has been chosen sufficiently large to guarantee that Rep > 0
for all p € Gy and Rep < 0 for all p € G1. Set ng :=p — ¢ > 0, and let us
begin work in the sector Ty and the open set Gy. By (5.105) or Theorem 5.4
and (8.1) we can write the characteristic determinant Ay in the form

A0(p) = p{ae? 1+ dmn )]+ S (14 0mlp)]} (8.06)

for p € Gy, where

p—1 1

Qg
dor(p) = Y +
pP—K P
K=— mfpgfl)app app
q

-1

(
by 1
Poo(p) = + —— Poo(p
00(p) (Z bt bopt 00(p)

Po1(p),

k=—(m—po—1)

for p € Gp. The functions ¢g1, ¢gp are analytic on the open set Gy, and
recalling that m —pp +p > 1 and m — pg + ¢ > 1, by (5.106) we obtain the
growth rates

0]

|’

0

|po1(p)| < o]

[P0 (p)] < (8.67)
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for p € Gy.
Set po := —ap/by # 0. Choose a constant 71 > R1 > Ry such that

1/2< 1+ ¢oi(p)| <2, 1/2 < |1+ ¢oo(p)| <2

for p € Gy with |p| > 1 and such that

2

<
lol[p™ —

1
4

for all p € C with |p| > r1. Then (8.66) can be rewritten in the form

B0(p) = ayp? e {[1-+ don ()] + s 1+ ool }

for p € Go, and for any point p = a +1b € Gy with |p| > 1 and b < 0, we
have

1 2
12000) 2 laglloPe{ 5 - e
(1 1 1 _ '
> laplloPe{5 - 71} = {lallole >0

Consequently, as we search for the zeros of Ay in the open set Gy, we will
concentrate our search in Quadrant I.

Let w be the number defined by the equation 1/w := 1/|uo|"/™ + no.
Choose real numbers « and 3 with 0 < o < [1/(2|po])]¥/ ™, B > [2/|po|]*/ ™,

and
1 2

4’ |po| B0

Clearly 1/8 < |uo|*/™ < 1/a. Note that if p is any point in Sy with |p| > Ro,
then p belongs to the open set Gy, and hence, we will be working in a region
where Ag is analytic. In terms of the constants pg, o, and (3, we form the
logarithmic strip

2ol (20)™ < <

1
1

2 ::{p:a—i—ibe So ‘ b>0, et/ < agﬁeb/"o}
={p=a+ibe Sy |a>a, b>0, nolnfa/B] <b<nolnfa/a]}
and the two complementary regions
D000 = {p:a+ib€ So | b>0,a< aeb/"o},
Q00 1= {p=a+ib€ So | b >0, Beb/m < a}.
These three regions are contained in Quadrant I. Also, we have

nolnfa/B] < noInf|uo|'™0a] < ngInja/a]
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for a > f3, and hence, the logarithmic curve b = ng In[|uo|'/™a] runs down
the ‘middle’ of the logarithmic strip 2.

Let us begin by calculating the growth rate of Ay on the region 2y,. Take
any point p = a +ib in {2yo. Clearly a > 0, b > 0, and a < aeb/™0 and

1| < la| + b] < ae/m0 4 ngell/mo < [1 /][0 4 moleltl/mo — L elbl/mo.
w
or

no Injw|p|] < 10| for all p=a+ib € 2. (8.69)

Choose a real number zy > 0 such that z < we®/™ for all z € R with z > x,
and then choose a real number 75 such that ro > r; and o > 8 and such that
zo < ng Infw|p|] for all p € C with |p| > rs.

Now consider any point p = a + b € 2ps with |p| > ro. Then by (8.69)
we have |b| > x¢ and |b] < ael®!/™ and hence,

] < |a| + |b] < ael®l/mo 4 qelbl/mo = 9qelbl/mo, (8.70)
Combining (8.70) with (8.66), we have

Ao(p) = bap{[1+ doo(p)] + (ap/bg)p™ [1 + po1(p)]e” }

and
q 1 no ,—b
[A0(P)] 2 [bllpl? § 5 = 2luollp[™e
q 1 no,b | ,—b 1 q
2 [ballpl* § 5 = 2ol - (2a)™ e - ™ 0 =~ [bgllp]",
or )
[A0(p)] = 7 lbgllpl* >0 (8.71)

for all p = a +ib € 2y with |p| > r2. The inequality (8.71) establishes the
growth rate for Ay on the region (2y,.

To determine the growth rate on 2yo, we again express the characteristic
determinant in the form

A0(p) = e {1+ omn )] + 5 [+ o))

0

for p € Gy. Then for any point p = a + ib € 255 we have |p| > |a| > Belb!/70,
and hence,

1 2eb
|Ao(p)| > |a Ipl”e"’{ - }
b 2 |pollp|™
1 2¢l?l 1
> p,~—bJ) - _ _ < > p,—b
7|ap‘|p| € {2 |M0.5n06|b}4|ap|p € 9



238 8 The Eigenvalues for n Odd

or
1 1 N
[A0(p)| = 7 lapllplPe™ > 7 1ap|(8)™[o]" > 0 (8.72)

for all p = a + ib € 29o. This is our growth rate for Ay on the region (2ya.

Relative to the sector 17 and the corresponding open set G, we can use
(5.131) or Theorem 5.5 and (8.2) to write the characteristic determinant A;
in the form

Ai(p) = p"{a’qe’ip [1+ 611(p)] + 0,0 [1 + b10(p)] } (8.73)

for p € G, where
q—1 ’ 1

oulp):= Y e+ P11(p),

/! — i
aqpq K aqpq

k=—(m—po—1)

= b, 1
dr0(p) = Y b + W P10(p)

k=—(m—po—1)

for p € G1. The functions ¢11, ¢19 are analytic on the open set G; with

/ /

|911(p)| < rﬁ, [P10(p)] < %O' (8.74)

for p € G (see equation (5.132)).
Set py := —b,/a;, # 0. From (5.133) we have b, = w}_;a, and a;, = wlb,,
and hence,
1 = —wp_qap/(WEbg) = Wneu—pho- (8.75)
Clearly |p1| = |uo| and arg pq = arg po + 2m(nov — p)/n. Choose a constant
r] > Ry > Ry such that
1/2 <1+ ¢u(p) <2, 1/2 <1+ 10(p)| < 2
for p € G with |p| > 7| and such that
2
[ lp|
for all p € C with |p| > r{. Then (8.73) can be rewritten in the form

1
< Z
— 4

/

A1p) = by {1+ 10(0)) + s 1+ dm (o)™ |

for p € Gy, and for any point p = a + ib € G7 with |p| > r} and b < 0, we
have

1 2
40 2 Iyl {5 - Tt
! (8.76)

1 1
> {5 - 3 1f = 1 Lot >0
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In view of this result, our search for the zeros of the characteristic determinant
A1 in the open set G; will be concentrated in Quadrant II.

Set w; = w, a1 := «, and f; := (. Clearly 1/w; = 1/|p1|*/™ + no,
0 < ay < [1/@lm)]™, 61 > [2/|ua /™0, and

1 2
2|p1|(2a)™0 < =, —
il o)™ < 20 T

Note that for p € Sy with |p| > Ry, we have p € G1, and we are working in
a region of analyticity for A;. In terms of the constants ui, «y, and (1, we
form the logarithmic strip

<

1 =

Q1 :={p=a+ibe S |b>0, —Bret/m0 < g < —oqeb/”o}
:{p: a+1ib e S | a< —a1, b>0,noln[—a/B] <b< noln[—a/al]}

and the two complementary regions
Moo = {p: a+1ib € Sy ’ b>0, —ae¥/m0 < a},
0= {pz a+1ib € S ’ b>0,a< —ﬂleb/"o}.
These three regions are contained in Quadrant II. Also, note that
noIn[—a/B1] < no In[—|u1|*/™a] < ngIn[—a/a]

for a < —f1, so the logarithmic curve b = ngIn[—|u;|*/™a] runs down the
‘middle’ of the logarithmic strip {2;.

Let us determine the growth rate of A; on the regions (21, and {215 . For
any point p = a + ib in 21, we have a < 0,0 >0, |a| = —a < ae?/m and

ol < la] + [b] < are™/0 + el /70

1
< [1/|pa]/™0 + nglell/mo = — elbl/no

w1
and hence,

no Injwi|p|] < 16| for all p=a+ib € . (8.77)
For the constant z; := g, we know that z < a1e®/m for all z € R with

x > x1. Choose a real number 7} such that r5 > 7| and 4 > (8; and such that
z1 < nolnfwy|p|] for all p € C with |p| > r5. Without loss of generality we can
assume that ro = r.

Now take any point p = a + ib € 21, with |p| > 7}. Then by (8.77) we
have |b| > x1, and hence, |b| < aqeltl/mo and

lp] < la| + |b] < arell/m0 4 apelbl/mo = 24 eltl/mo, (8.78)
Combining (8.78) with (8.73),

A1 (p) = alpe P{[L+ ¢11(p)] + (b, /ar)p™ [L + ¢10(p)]e™ }
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and
1 q,b 1 no ,—b
121000 = laj lolet{ £ = 2pullppe
/ q.b 1 no b —b 1 / q.b
> Iyl £ = 2l - Gagye - e} > Larfjope,
or
M) = Lot = 1%l s g (8.79)
1 p = 4 q p = 4(20[1)”0 p .

for all p = a +ib € 15, with |p| > . The inequality (8.79) establishes the
growth rate for A; on the region 2.

To determine the growth rate on 215, we again express the characteristic
determinant in the form

/

A1p) = {1+ 10(0)) + s 1+ dm (o)l |

for p € G1. Then for any point p = a + ib € 215 we have |p| > |a| > e/,
and hence,

1 2e?
s> el 2]

1 2e? 1
> lplPd = — ——— U i pp
> [by |10l {2 Iul-(ﬂl)"oe”} = 7 [0pllel",

or
1
()| = 5 Wl > 0 (5.:80)

for all p = a +ib € 215. This is our growth rate for A; on the region 214.
These growth rates on the regions {2y, 200 and 21, 210 combine to give
the following apriori estimates for the eigenvalues of L. Recall that ro = r.

Theorem 8.5. Assume that p > q. Let A = p™ € C with p = a +1ib € Sy and
with |p| > ra.

(a) If p € 2900 or p € 0a, then Ag(p) # 0 and X € p(L).

(b) If X is an eigenvalue of L, then Ag(p) =0 and p lies in the interior of
the logarithmic strip 2.
In addition, let A\ = p™ € C with p = a+1b € S1 and with |p| > ra.

(c) If p € 2100 o7 p € (21, then Ai(p) #0 and A € p(L).

(d) If A is an eigenvalue of L, then Aq(p) =0 and p lies in the interior of
the logarithmic strip (2.

The theorem shows that the resolvent set p(L) is nonempty, and hence,
the spectrum o(L) is a countable set having no limit points in C.

Next, let us compute the actual zeros of A in the logarithmic strip (2.
Setting & := 1+ ng/«, for each point p = a + ib € 2y we have
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] < lal + [b] < lal + noInflal/a] < |a| + (no/a)lal = ¢lal. (8.81)

Relative to the strip {2y the characteristic determinant can be written in the
form

1% [1+ ho(p)]} (8.82)

Ao(p) =a Pp{eip -
P fiop

for p € Gy, where hq is the analytic function given by
ho(p) = —pop"™ e bo1(p) + boo(p)
for p € Go. If p=a+1ib € £y with |p| > 7o, then
pre

lop™e?| = |po|lp™e™" < |pol - €™°]a|™ - a0 ol B,
and hence, by (8.67)
.
ho(p)| < |T)1| (8.83)

for all p = a +ib € 2 with |p| > rq.
Fix a real number § with 0 < § < 7/4 and 0 < § < (In2)/(1 + ng), and
then for the integers k = 1,2, ... define

af, = 2wk — Arg po, B :==no ln[|uo\1/"0a;€],
= o+,

and introduce the circles

I ={peCllp— | =0}

Choose a positive integer ky > 2 such that y] := O‘;cl — 7 > ry. Note that the
o, satisfy o), —m > 1y > and o) > 37 for k = kq, k1 + 1,.. .. Introduce the
logarithmic rectangles

R, ={p=a+ibeC|a)—m<a<a)+m, nolnfa/8] <b<nglnfa/a]}

for k = ki,k1 + 1,.... Without loss of generality we can assume that k; is
sufficiently large to guarantee that each R} is contained in the sector Sy, and
hence, for k = ki, ki + 1,... the point yj lies in the interior of R} with R}, a
subset of (2.

Take any index k > ki, and take any point p = a+ib € C with |p—pj| < 0.
We assert that p lies in the interior of Rj,. Indeed, we clearly have |a — o}, <
§ < 7 and |b— ng Inf|ue|/™0al]| <6, so

|b— no In(|po| /™ al| < [b—ng Inf|po|"/™ o} ]
+ [0 (|00 a] — no Inf|po|"/™ ]|

< +mnola— )| <51 +np) <In2.
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It follows that ng In[(|uo|/2)"/ ™ a] < b < ngIn[(2|uo|)'/™0a] and
nolnfa/f] < b < nolnfa/al.

This establishes the assertion, and it is immediate that the circle I}, lies in

the interior of the logarithmic rectangle R for k = ki, ki1 +1,.... To complete

the setup of the geometry, for k = ki,k1 + 1,... let {2 be the punctured

logarithmic rectangle formed from R}, by removing all the points inside I7.
To establish the growth rate of Ay on the region (2}, first note that

1
po(v )™

fork=Fky,ki+1,....Let fr, k=ky,k1+1,...,and g, kK = k1, k1 +1,..., be
the sequences of analytic functions defined by

eiu;C —

fu(p) =€ P=H) — 1 for p e C,

- no 1 / lﬁllc J
gk(p) == =ho(p) => - )| = (s, — p) = =2 | [1+ho(p)] for p € Gy,
= \i/lp p
Then we use (8.82) to write A in its final form:

e~k 1
pol(ag,)™  pop™

— %pno{ei(p—#;) _ [Oﬁcro[l n ho(p)]}

Ap(p) = appp{eip 1+ hO(P)]}

po(ay,)
appp ipfygC _ 1 I _ ﬂ o
- W{e( ) [p (i = p) == f +1] 1+ ho(p]},
or B appp
Ao(p) = CAR] [fr(p) + gr(p)] (8.84)

for p € Gy and for k = ky, k1 + 1,.... We will use the kth representation in
this family to compute the growth rate of Ag on the kth region (2;.
Choose a constant dy > 0 such that

no 2/ (|0l ™0 )] < do, no (20| 8] < do,
and § < dp, and then form the punctured rectangle
R.:={p=a+ibeC|—nm<a<m —dy <b<dy, and |p| > d}.
Set mg := min{ [e’” — 1| | p € R.} > 0.

Fix any index k > k;, and take any point p = a+ib € 2;.. Clearly we have
—m<a-—oa) <m w/a) <1/2 because aj, > 3,
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/ !
a a, +m a, —m _ 1
F < <2 F >
g g Qg .

and

b= i < nolnfa/a] = nonflo|/" af]
= no nfa/(|o] /™ aa})] < nonf2/(|jio| /™ )] < d,

b— B > nolnfa/B) — noInf|o|"/™ o]
= ngInfa/ (o] /" Ba)] = noInf1/ (2ol /™ B)] = ~do.

Thus, the point p — pj, belongs to the punctured rectangle R, with [p—p) | <
7+ do. It follows that

[fe(p)] = mo (8.85)

for k > ky and for p € Q,’f. Note that the constant myg is independent of the
index k.
On the other hand, for any index k > k; and for any point p = a+ib € §2;,
we have o). /2 = |a}|/2 > 7, o), — 7 > ), /2, and
/
P>l =a>aj—m> =

It follows that
no ARV
gi! o 2 2|, 71
gr(P) < 5+ (){ (7 + do) + 1+ 2.
T I NV R Y |avy | T2

Since limy o0 1/0), = limg_o0 55/}, = 0, in terms of the constant v; that
appears in (8.83), we can select an integer ko > k1 such that

T o all p € C with |p| > vy,

lpl = 4
where y(, := ako — m > 79, and such that

no 2 2 / J
Z(no){ — (m+do) + Mf’“'] {1+%]§m0 for all k > ko.
J [ |ovy, | T2 4

j=1

Then for k > ko and for p = a+1ib € §2;,, we have |p| > a > o), — 7 >y > 79,
and hence, by (8.83), the definition of the integer kg, and (8.85):

9e(p)] < 5 < mo < [Fu(p). (8.56)

Also, for k > ko and for p = a +ib € {2}, we have o), > 3w, so o), — 7 > T,
and hence, a > o) — 7 > 7 and
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lag| = af, < a+7 < 2a=2]al <2|p|.

From (8.84) and (8.86) we conclude that

lapllp[P mo mo|ay|
A0(p)| > il 7o o,
|kolleg | 2™ 2|pol(270)
or o]
mo|ap
1A0(p)| = 57— ns P17 >0 (8.87)
2|pol(270)
for k > ko and for p € £2;. Introducing the punctured logarithmic strip

2= 2,

k=ko

we see that 2, consists of all points p = a + ib € 2y with a > y|, which do
not lie inside any of the circles I, for k > ko, and from the above

|Ao(p)| > moldy)

>———|p|?>0 8.88
= Fual) (5:55)

forall p=a+1ib e 2.

Now consider one of the circles I}, for k > k. The inequality (8.86) is valid
for each point p on I, and hence, by Rouché’s Theorem Aj and fj + gi have
the same number of zeros as f inside ). But the only zero of f, inside the
circle I}, occurs at the center pj, with u) being a zero of order 1. It follows
that the characteristic determinant Ag has a unique zero pj, inside I}, and p),
is a zero of order 1 for k > kq. If we set

;ﬁ:(p;)n7 k:k(),ko—i-l,...,
then the A}, are eigenvalues of L with algebraic multiplicities and ascents

v(Xp) = m(\) = 1, k=koko+1,.... (8.89)

To establish asymptotic formulas, set ¢, = —gx(p},) for k = ko, ko + 1,.
Then e'(Px—He) =1 4 ¢, and

pr — 1y, = —iLog [1 + (i (8.90)
for k = ko, ko +1,..., where

< o *Z(no)[w M:” [”;ﬂ‘

j=1

Now for each k > ko, o}, > 2mk—n >k, 3, < no In[|uo|*/™ (27k+7)] < v2 Ink,
and
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0%l = ikl = ot — 1kl = af, =0 2 6k =5 > k,
which gives |¢}.| < y3Ink/k and

Ink
|p;€—ugc|g7k . k=koko+1,.... (8.91)

The calculation of the zeros of Ay in the logarithmic strip {2, is similar to
the above. Indeed, setting 7 := 1 + ng/ay, for each point p = a +1ib € 27 we
have |b| < ng In[|a|/a1] and

p| < lal +non[lal/a1] < |a| + (no/a1)|al = nlal. (8.92)
Relative to £2; we can express A; in the form
Av(p) = alp?{e™ — p1p™ (1 + hai(p)]} (8.93)

for p € G1, where h; is the analytic function given by

me) =~ m1(p) + du0lp)

for p € G1. Note that for each point p = a + ib € £2; with |p| > r4, we have

e | e 1 |la|™o 1
pp™ | fpllpl™e = fpallpl™e (o)™ = |paf(aa)me
and hence, from (8.74)
,y/
lhi(p)| < |T;1| (8.94)

for all p=a+1ib € 21 with |p| > r5.
Let ¢ be defined as above, so 0 < § < 7/4 and 0 < § < (In2)/(1+ng). For
k=1,2,... set

af = —(2rk + Arg uq + mng), By = ng In[—|p [V a],
Wy = oy + 16y,

and then form the circles
Iy ={peC|lp—py| =}

Select an integer k1 > 2 with 3} := o) +m < —rj. Clearly ajj+7 < —r5 < -
and |ag/| > 37 for k = ki, k1+1,. . .. Also, let us form the logarithmic rectangles

R} = {p =a+ibe C | ap—m < a < aj+m, noln[—a/B1] < b < ng ln[—a/al]}

for kK = k1,k1 +1,.... We can assume that this new index k; is identical to
the k; introduced earlier, and that k; is sufficiently large to guarantee that
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each R} is contained in the sector Sj. Consequently, for k = kqi,k1 +1,...
the point i} lies in the interior of the logarithmic rectangle R}, and R} is a
subset of the logarithmic strip £2;.

Take any index k& > k; and any point p = a +ib € C with |p — p}/| < 0.
Then |a — off| <6 < 7 and |b — ng In[—|u1|*/™af]| < §, and hence,

|b— no In[—[p1[V/™a]| < [b—no In[—|pm [/ af]]
+ [no In[—|p |/ a] = ng In[—|ps [/ 0}
<5+ mnola—ai] <51 +np) <In2.

Thus, ng In[—(|u1]/2)/™a) < b < ngIn[—(2|p1])/™a], and from the defini-
tions of oy and B; we conclude that ngln[—a/f1] < b < ngln[—a/a;]. This
shows that the point p lies in the interior of R}. It is immediate that the circle
I/ lies in the interior of the logarithmic rectangle R}. For k = ki,ki +1,...
let £2/ be the punctured logarithmic rectangle formed from R} by removing
all the points inside 7.

Next, let us calculate the growth rate of A; on each of the regions (2;.
From the definition of y} it follows that

.y 1
elﬂk:W fOrk:kl,k1+1,-~-~
AN

Let Fy, k = k1,k1 +1,..., and Gg, k = ki,k1 + 1,..., be the sequences of
analytic functions defined by

Fr(p) :=e#e=P) — 1 for p € C,

UL 1 ig! J
Gup) = ~mn) =Y (") p o= )+ 2| Tr mip)] for € G
= k k

Then (8.93) can be used to express A; in its final form:

/ no —ip _ipl _ [P
Ailp) = gty {e e — [ ] T+ hu()])
sl

n i — ]_ 1 no
= (af) 0 { W0 — [ (p— ) + Tk + 1] "L+ m(p)]}
k k

A1(p) = agpr ()" p?[Fi(p) + Gi(p)] (8.95)

for all p € Gy and for k = k1, k1 + 1,.... We will use (8.95) to calculate the
growth rate of A; on the region (2.
In terms of the constant dy introduced earlier, we clearly have

noInf2/(|p V™ an)] < do, o 2]p|V™Bi] < do,

and § < dy. As above we can form the punctured rectangle
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R.={p=a+ibeC|—-n<a<m —dy<b<dy, and |p| > d},

and determine the constant mg = min{ |e”” — 1] | p € R.} > 0.

Take any index k > ki, and take any point p = a + ib € (2}/. Then the
point . — p satisfies the following conditions: —m < o} —a <7, w/|a}| < 1/2
because |aj/| > 3,

—a —ozk—|—7r_1+ L —a —ag—w_l_ T 1
—a = —a! - |O// — —a! = —a! - |O// = 27
k k k k k k

1= b < noln[—|m["™a}] — ngIn[—a/B]

= —noIn[—a /(| "™ Bi(=af)))] < —no In[1/ (2] |V/™81)] < do,
o)) = ng In[—a/ai]
= —ngIn[—a/(|m [ a1 (=a}))] = —no W2/ (|m [/ a1)] > —do.

i — b > noIn[—|m

Thus, the point p) — p belongs to the punctured rectangle R, with |u) — p| <
7 + dg. We conclude that

[ Fis(p)| = mo (8.96)
for k > kq and for p € £2}.
Clearly limy,_, o l/ozk = limg_.o0 By /o)) = 0. Choose an integer ko > ki
such that ,
|%| < % for all p € C with |p| > —yy,

where yy := aj) + 7 < —73, and such that

no 11173 ’
no\[mtdo BTl ] oo p s ke
)Tl Tl )=

j=1

(]

Then for k > ko and for p = a +ib € 2}/, we have |p| > |a| > —a) — 7 >
—yi > rh, and by (8.94), the definitions of Gy, and ko, and (8.96):

Gulp)] < 5 < mo < |Filp)] (8.97)

Also, since |o)/| > 3w, we have —a > —aj) — 7 > 27, —a/2 > 7, and
ol = —afl > —a— > —a/2 = lal/2 > |pl/(2n).
From (8.95) we conclude that

molag |41

>
T~ 2(2p)ne

lol”

)

n mo
181(0)] = lallmlla]™ ol - 22
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or ,
molag||p|

|A1(p)] > W lpl” >0 (8.98)

for k > ko and for p € £2/. If we introduce the punctured logarithmic strip

U
o= 2

k=ko

then 2/ consists of all points p = a +ib € 2 with a < y{ and with p not
inside any of the circles I for k > ko, and from (8.98)

molag||p|

|A1(p)] > 3(2n)™

lp|P >0 (8.99)
for all p € £2/.

Let us examine one of the circles I} for k > ko. Since (8.97) is valid for
each point p on F,é’, by Rouché’s Theorem A; and Fj + G must have the
same number of zeros as F}, inside I Clearly i} is the only zero of Fj, inside
I, u}l being a zero of order 1. Therefore, A; has a unique zero p} of order 1
inside the circle I3} for k > ko. Corresponding to these zeros, the complex
numbers

g:(pg)n, k:ko,k0+1,...,

are eigenvalues of L with algebraic multiplicities and ascents
v =m\) =1, k=koko+1,.... (8.100)

For the asymptotic formulas, set ;) = —Gi(p}) for k = ko, ko + 1,....
Then we know that e (?¢=#¥) = 1 4 ¢/ and

P — i = iLog 1+ (] (8.101)

for k = ko, ko + 1,..., where

Sl 713
<t Flag] o
Also, we have |} | > 2rk—m >k, |8)| = B} < noln[|u |/ (2nk+7+7n0)] <

YoInk, and |p}| > |py| — 1o} —Mk|>|a | — &6 > 6k —5 > k for each k > ko,
which leads to the estimates |(}/| < v41Ink/k and

In k
ol — |_7; . k=koko+1,.... (8.102)

Finally, we assert that L has only a finite number of eigenvalues other than
the AL, AL, k = ko, ko + 1,.... Indeed, suppose )¢ is a nonzero eigenvalue of
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L which is distinct from the A}, A}. Then A¢ can be expressed in the form
Ao = (po)™, where the point py = ag + iby belongs to either the sector Sy or
to the sector S7. We look at these two cases separately.

First, consider the case when pg belongs to Sy. We know that either pg
lies in the disk |p| < r2, or |pg| > 72. In case |pg| < 72, only a finite number
of such pg are possible because the spectrum o (L) is a countable set having
no limit points in C. Assume that |pg| > r2. Then by Theorem 8.5 we must
have Ap(pp) = 0 and po must lie in the interior of the logarithmic strip
Q0. If ap > yj, then either py € 2, or py lies inside one of the circles I,
k > ko. But these two possibilities can not occur because of (8.88) and the
fact that pg must be distinct from the p), k > ko. Thus, o < a¢ < y, and
0 < by < nglnly)/a]. Since these py come from a bounded region in the p
plane, only a finite number of such py are possible.

Second, assume that po belongs to Sy. If |pg| < 72, then only a finite
number of such pg are possible. Assume that |pg| > r2. Again by Theorem 8.5
we must have A;(pg) = 0 and py must lie in the interior of the logarithmic
strip §21. It is impossible to have ag < y{ because of (8.99) and the fact that
po must be distinct from the p}, k > ko. Therefore, yj < ap < —a; and
0 < by < ngln[—y{/ai1]. Again only a finite number of such py are possible.

We conclude that the A}, X/, k = ko, ko+1,. .., account for all but a finite
number of the eigenvalues of L.

The results for this logarithmic case are summarized below in a theorem.

Theorem 8.6. Let the differential operator L belong to Case 3, a logarithmic
case, where the integers p and q satisfy the conditions —oo < ¢ < p < pg, and
let o = p— 4, to = —ay/b, # 0, and j = —bJal) # 0 (s0 || = |puo| and

arg py = arg po + 2w (nov — p)/n ). Then the elements of the spectrum o(L)
can be listed as two sequences
A;c:(p;s)n7 k:ko,k0+1,..., Z:(pg)n7 k:ko,k0+1,...,

plus a finite number of additional points, where

Pl = 2k — Arg o) + ing In[|uo| /" 27k — Arg po)] + €,

k=koko+1,....
pil = —(27k + Arg pi1 + mng) + ing In[|uo|"/ ™ (21k + Arg iy + 7n0)] + €,
k=koko+1,...,

with |e},| < yIlnk/k and |e}| < ylnk/k for k = ko, ko +1,.... In addition, the
corresponding algebraic multiplicities and ascents are

l/(/\%):m()\;f)zl, k:k(),k'o—i-l,...,

u()\%):m()\g)zl, k:]{io,k0+17....






9

Completeness of the Generalized
Eigenfunctions

To demonstrate the completeness of the generalized eigenfunctions of L, we
will determine the growth rates of the Green’s function G(t, s; A) and the resol-
vent Ry (L) along various rays in the A plane, and then appeal to Theorem 6.2
in Chapter 2 of [34].

From the results of Chapters 7 and 8, we know that the resolvent set p(L) is
nonempty, and hence, the differential operator L is a Hilbert-Schmidt discrete
linear operator in L2[0,1]. The spectrum o (L) is a countable set having no
finite limit points in C, and in Chapters 7 and 8 we have given a detailed
description of o(L). Let

o(L) ={Ai}iZ
be any enumeration of o(L), let m; (0 < m; < o0) denote the ascent of
the operator \;I — L for ¢ = 1,2,..., and let P;, i = 1,2,..., denote the
projection of L?[0,1] onto the generalized eigenspace N'((A\;1 — L)™i) along
the range R((\;I — L)™).

Let sp(L) denote the subspace of L?[0, 1] spanned by the generalized eigen-
functions of L, and let us introduce the subspaces

Seo(L) := {u e 12[0,1] ‘ u= iau}

i=1
and
My (L) := {u € L?0,1] | Pu=0for i =1,2,...}.
Clearly M (L) is closed, sp(L) is a subset of Se (L), and it is easy to check
that sp(L) = Sso(L). Our goal in this chapter is to prove that

sp(L) = Soo(L) = L*[0,1] and M, (L) = {0}.

9.1 Completeness for n Even

Assume that n is even, n = 2v > 2. In the representations of the characteristic
determinants Ag and Ay, the functions 7;, ¢ = 0, 1, 2, are given by the formulas
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P q P
mp) = Y awp” mp) = Y bt mlp)= Y, et
k=—(m—po—1) k=—(m—po—1) k=—(m—po—1)

for p # 0 in C. See equation (7.1). In these expressions the integers p and ¢
have been determined with —oo < p < g < pg, and the leading coefficients
satisfy ap # 0 and ¢, # 0. The integer m has been fixed with m > n, m > po,
and —(m —pp — 1) < p < pg. In Theorems 7.2, 7.3, and 7.5 the eigenvalues of
L are characterized asymptotically in terms of the constants a,, by, and c,.

For the Green’s function G(t, s; \) of the differential operator AI — L, we
have established growth rates for it in equations (6.37) and (6.77). First, in
terms of the sector Sy we have

2 el
G(t,s; \)| <
(G ot T g
for t # sin [0, 1], where (9.1) is valid for A = p™ in C with p € Sy and |p| > Ry
and with Ag(p) # 0. Second, in terms of the sector S; we have the analogous
result

(9.1)

vlp|P°
< 9.2
S T T A )] ©-2)

for t # s in [0,1], where (9.2) is now valid for A = p™ in C with p € S; and
|p| > Ry and with Aj(p) # 0. These growth rates depend on the sectors Sy
and S7, but they are independent of whether L belongs to Case 1, Case 2, or
Case 3. On the other hand, growth rates for the characteristic determinants
Ag and A, are case dependent. Specifically, assume that L belongs to Case 1
or Case 2 where p = ¢ < pg. From equation (7.9) we have

G(t,5;A)

1
[4o(p)l 2 5 lapllpl” > 0 (9-3)
for p=a+ib € Gy with |p| > r1 and b > d, and from (7.10) we have
1
[41(p) = 5 lap[lpl” >0 (9-4)

for p = a+1ib € G1 with |p| > 1 and b < —d. Recall that the constant r; was
chosen in Chapter 7 such that r; > Ry > Ry. Combining (9.1) with (9.3), we
obtain the estimate

|G (t,s;\)| < ~y|p|Po—P=H = 7‘)\|(p07pfn+1)/n (9.5)

for t # s in [0, 1] and for A = p™ in C with p = a +1b € Sp and with |p| >
and b > d. Similarly, combining (9.2) with (9.4), we get

|G(t,s;0)] < fy|p|170—p—n+1 _ ,y‘)\|(:ﬂo—p—n+1)/n (9.6)

for t # s in [0,1] and for A = p™ in C with p = a +ib € Sy and with |p| >
and b < —d. Note that it is implicit in (9.5) and (9.6) that the point A = p™
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belongs to the resolvent set p(L), which is a consequence of (9.3) and (9.4).
Thus, in Case 1 and Case 2 the resolvent satisfies the growth rate

IRA(L)]| < 7ylp[Po P = || (pompmrt )/ (97)

for A = p™ in C with p = a+ib € Sy, |p| > r1, and b > d, or with p = a+ib € Sy,
|p| > r1, and b < —d.

Next, assume that L belongs to Case 3 where p < ¢ < pg, the logarithmic
case. Then from equation (7.31)

1
[A0(p)] 2 7 lap|lpl” >0 (9-8)
for all p = a+ib € 290 With |p| > ra, and from equation (7.36)
1
141(p)] = 7 lapllp” >0 (9-9)

for all p = a4+ ib € 1 with |p| > ro. The constant ro was selected in
Chapter 7 such that ro > 1 > R; > Ry. Note that if p = a + 1b € 2y, with
|p| > 72, then p € Sy and a < ae®/™0, (9.8) applies, and (9.1) is valid at the
point A = p". Similarly, if p = a + b € 214, with |p| > 72, then p € Sy and
a < ae~b/™0(9.9) applies, and (9.2) is valid at the point A = p™. Combining
(9.1) and (9.2) with (9.8) and (9.9), we obtain the estimates

(G(t,5: V)] < AlplPo? =1 = |7 Po =t/ (9.10)

for t # s in [0,1] and for A = p" in C with p = a + ib € 2y and |p| > ra,
and
(G155 N)| < 4lplPa+t = | Po=p-ntD/m (9.11)

for t # sin [0,1] and for A = p™ in C with p = a +1ib € 215 and |p| > ro.
Therefore, the resolvent in Case 3 satisfies the growth rate

IRAL)] < o741 = gfffro-p=rt )/ (012)

for A = p™ in C with p € 200 U 150 and |p| > ra.

With our estimates (9.7) and (9.12) for the resolvent in place, we are
now ready to prove the completeness of the generalized eigenfunctions of the
differential operator L. Let IV be a positive integer that satisfies the condition

N> (po—p—n+1)/n.

Fix any real number 6y with either o9 < 6y < 7 or —7 < 6y < —0y, and let
us consider the ray

Roo: A=A, 0< |\ <oc.

Assume initially that o9 < 0y < 7. For each A € Ry, we can form the nth
root
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p= W — |)\|1/nei6’o/n7

with o¢/n < 6p/n < 7/n and with p € Sy. Note that 0 < 6y/n < 7/2 and
sin(fp/n) > 0, and for A € Ry, and p = V/\:

p=a+ib = |p|cos(fo/n) +i|p| sin(bo/n),
a = |p|cos(By/n) >0, b= |p|sin(dy/n) > 0.

The geometry is slightly different for Case 1 and Case 2 where p = ¢ < pg
and for Case 3 where p < ¢ < pg. First, assume that p = ¢ (Case 1 and
Case 2). Set

r(6p) := max{ry,d/sin(6p/n)}.

If A\ € Ry, with |\| > ()", then the point p = VA = a + ib belongs
to the sector Sy with |p| > r(60) > 71, |p| > r(6o) > d/sin(fy/n), and
b = |p|sin(fy/n) > d. Thus, by (9.7)

IRA(L)|| < A[AFPompmmt D/ < AN (9.13)

for A € Ry, with |A] > r(69)™.
Second, assume that p < ¢ (Case 3, the logarithmic case). Set
7(6p) := max{ry, (2n3/a) cot(fy/n)/sin(0y/n)}.

Take any point A\ € Ry, with |A| > 7(6p)™. Then the point p = VX = a + ib
belongs to Sy, and |p| > 7(6p) > r2 and b = |p|sin(by/n) > 0. Also,

b= |p|sin(fy/n) > (2n3 /) cot(6y /n),
b b
b/no >h — > —
e > 2o cot(bp/n),

and
a = |p|cos(By/n) = beot(By/n) < aed/™,

and hence, p = a +1b € 29, with |p| > ro. It follows from (9.12) that
[RA(L)|| < y|A|Popndl/m <y NN (9.14)

for A\ € Ry, with |A| > r(69)™.

To complete the discussion, assume that —m < 6y < —o¢ for the ray Rg,.
We repeat the above argument with simple modifications. For each A € Ry,
we now form the nth root

p= W — |)\|1/nei00/n7

with —7/n < 6y/n < —og/n and with p € S;. Note that we have —7/2 <
0o/n < 0 and sin(fy/n) < 0, cos(fp/n) > 0, and for A € Ry, and p = /A
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p=a+1ib = |p|cos(bp/n) +i|p|sin(fy/n),
a = |p|cos(By/n) >0, b= |p|sin(dy/n) < 0.

First, assume that p = ¢ (Case 1 and Case 2). Set
r(6p) := max{ry,d/|sin(fy/n)|}.

If A\ € Ry, with |\| > ()", then the point p = YA = a + ib belongs
to the sector Sy with |p| > r(6y) > 71, |p| > 7(60) > d/|sin(6y/n)|, and
b = |p|sin(fy/n) < —d. Hence, by (9.7)

IRA(L)[| < y|A|Fompmmt b/ < 4 x| (9.15)
for A € Ry, with |A] > r(60)™.
Second, assume that p < g (Case 3, the logarithmic case). Set
7(0) := max{ra, (2nZ/a)|cot (o /n)|/| sin(fo/n)|}.
Take any point A\ € Rg, with [A\| > r(6)™. Then the point p = VA = a +ib
belongs to the sector S1, and |p| > r(6y) > 72 and b = |p|sin(fy/n) < 0. Also,

—b = [b] = |pl|sin(fo/n)| = (2n§/a)|cot(fo/n)],
b/m -b _ —b
e~/ > (=b) - 2 > — |cot(Bo/n)];
and
a = |p| cos(fy/n) = beot(y/n) = —b|cot(fy/n)| < ae™b/m0,
and hence, p = a +1ib € 21 with |p| > ro. It follows from (9.12) that

IRA(L)[| < A A Pompmn D/ <y AN (9.16)

for A € Ry, with |A] > r(69)™.

Recall that the constant o was selected in Chapter 5 with 0 < o¢ < 7/10.
The rays Ry,, with either oy < 0y < m or — < 6y < —0y, clearly cover the
sector

o: all A = |/\|ei9 € C with 09 <0 <27 — 0y

in the X\ plane. Note that the five equally spaced rays

Ry: arg/\:01:2§:36°,
T 2m 37 o
RQI argA:02:g+€:€:108,
2
Rs: argA:032:3§+€:ﬂ:18007
2
Ra: arg)\:04::7r+g:7§:252°,
2
Rs: arg)\:Og,::7—7r—|——7T:9—7r:324Q

) 5 5
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all lie in Xy, and the angle between adjacent rays is 27/5 = 72° < 7/2. From
(9.13)—(9.16) we have the growth rate

IRA(L)|| = O(JAIY) as A — oo along each ray R;,

j=1,...,5, valid for all three cases, Case 1, Case 2, Case 3. Applying the
completeness theorem, Theorem 6.2 in Chapter 2 of [34], we conclude that

sp(L) = Sx(L) = L2[0,1] (9.17)

and
M (L) = {0}. (9.18)

We summarize the above results for the even order case in the following
theorem.

Theorem 9.1. Let the differential operator L be of even order n = 2v, and
let L be either regular or simply irreqular according to Definition 3.2. Then
the spectrum o (L) is an infinite countable subset of C having no limit points
in C, and if o(L) = {\:}2, is any enumeration of o(L) and if Se(L) and
Moo (L) are the corresponding subspaces, then

sp(L) = Soo(L) = L?[0,1] and M. (L) = {0}.

9.2 Completeness for n Odd

Assume that n is odd, n = 2v — 1 > 3. The functions 71, mp and 7, 7}, that
appear as terms in the characteristic determinants Ay and A; are given by

mp)= > aw®  wlp)= Y. bup"

k=—(m—po—1) k=—(m—po—1)
and

q p
)= Y awt mlp)= D bt
k=—(m—po—1) w=—(m—po—1)

for p # 0in C. See equations (8.1) and (8.2). In these expressions the integers p
and g have been determined with —oo < p, ¢ < pg, and the leading coefficients
satisfy a, # 0, by # 0 and a;, # 0, b}, # 0. The integer m has been fixed with
m > n, m > pg, and —(m —py — 1) < p,q < pg. In Theorems 8.2, 8.4, and
8.6 the eigenvalues of L are characterized asymptotically in terms of the four
constants ay, by, ay, b,

For the Green’s function G(t,s; \) of the differential operator A\I — L, we
have established growth rates for it in equations (6.118) and (6.148) relative
to the sector Sp and in equations (6.189) and (6.219) relative to the sector 5.
Specifically, in terms of the sector Sy, we have
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4 vlp|P°
G(t,s; 0| < + 9.19
R P e A P VW A] (9-19)

for t # s in [0, 1], valid for A = p™ in C with p = a 4+ ib € Sy, with |p| > Ry
and b > 0, and with Ag(p) # 0; and

<2 el
= ot nlplm e[ Ao (p)]

G(t, 55 \) (9.20)

for t # s in [0, 1], valid for A = p™ in C with p = a +1b € Sy, with |p| > R;
and b < 0, and with Ag(p) # 0. In terms of the sector S; we have

4 vlp|P°
G(t,s; V)| < +
G s M S P T e A )

for t # s in [0, 1], valid for A = p™ in C with p = a 4+ ib € Sy, with |p| > Ry
and b < 0, and with Ay (p) # 0; and

(9.21)

. 4 lp|P
G o e A
for t # s in [0, 1], valid for A = p™ in C with p = a +1b € Sy, with |p| > R;
and b > 0, and with A;(p) # 0. These growth rates depend on the sectors S
and S7, but they are independent of whether L belongs to Case 1, Case 2, or
Case 3.

On the other hand, growth rates for the characteristic determinants Ay
and A; are case dependent. Specifically, assume that L belongs to Case 1
where p = ¢q. From equation (8.6) we have

(9.22)

1
[A0(p)] 2 5 [byllpl” > 0 (9.23)
for p=a+1b € Sy with |p| > r1 and b > d, and from equation (8.7) we have
1 _
[Q0(p)| = 5 e layllpf” >0 (9.24)
for p=a+1ib € Sy with |p| > 1 and b < —d. Similarly, from equation (8.9)
1
[Ai(p)] = 5 [, [1pl” >0 (9.25)
for p=a+1ib € S; with |[p| > r; and b < —d, and from equation (8.10)
1
[A1(p)| = 5 lay|lpl” >0 (9.26)
for p=a+1ib € Sy with |p| > r1 and b > d. Recall that the constant r; was

chosen in Chapter 8 such that r; > Ry > Ry.
Combining (9.19) and (9.23), we obtain the estimate
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|G(t, 55 )| < Alp[Po—Pmm (9.27)

for t # s in [0,1] and for A = p™ in C with p = a +ib € Sy and with |p| > rq
and b > d; and combining (9.20) and (9.24), we obtain the estimate

G(t,5: V)] < Alplpor ! (9.28)

for t # s in [0,1] and for A = p™ in C with p = a +ib € Sy and with |p| > r;
and b < —d. Similarly, combining (9.21) with (9.25), we get

|G (¢, 53 0)| < AlplPo 7P (9.29)

for ¢t # s in [0,1] and for A = p™ in C with p = a +ib € Sy and with |p| > r;
and b < —d; and combining (9.22) with (9.26), we get

|G (t, 53 M| < AlplPoP7 (9.30)

fort # sin [0, 1] and for A = p™ in C with p = a+ib € S; and with |p| > r; and
b > d. It is implicit in equations (9.27)-(9.30) that the point A = p™ belongs
to the resolvent set p(L), which is a direct consequence of (9.23)—(9.26). Thus,
in Case 1 the resolvent satisfies the growth rate

[RA(L)[| < Alp|Po7P77 1 = || (Pompmna )/ (9.31)
for A = p™ in C with p = a+ib € Sy and |p| > r; and |b| > d, or with
p=a+1ib € Sy and |p| > r1 and |b] > d.

Next, assume that L belongs to Case 2 where p < ¢, a logarithmic case.
Then from equation (8.31)

1
[Ao(p)l = 7 [bgllpl* >0 (9-32)
for p=a+ib € Sy with |p| > 71 and b > 0, and from equation (8.34)
1 _
[Q0(p)| > 7 layllpPe™ >0 (9.33)

for p = a+1ib € 290 with |p| > 72. Recall that if p = a + ib € {2y, then
p € Sp and b < 0. Also, from equation (8.39)

1
M) = T layllple” > 0 (9.34)
for p=a+ib € Sy with |p| > 7] and b > 0, and from equation (8.42)
1
[Ai(p)] = 7 [, [1pl” >0 (9.35)
for p = a+ib € 15 with |p| > r}. For p = a+1ib € 1., we have p € S

and b < 0. The constants 71, rq9, 7}, 75 were selected in Chapter 8 such that
ro >1r1 > Ry > Ry, b >r} > Ry > Ry, and ry = 7).
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Combining (9.19) and (9.32), (9.20) and (9.33), (9.21) and (9.35), and
(9.22) and (9.34), we obtain the following estimates:

|G(t, s )] < AlplPoma7 (9.36)

for t # s in [0,1] and for A = p™ in C with p = a +ib € Sy and with |p| >
and b > 0;
Gt 55 0)| < Alplopnt (9.37)

for t # s in [0,1] and for A = p" in C with p = a +1b € 2y and |p| > ro;
|G (¢, 83 0)| < Al P7H (9-38)

for t # sin [0,1] and for A = p" in C with p = a +1b € 215 and |p| > 75;
and
G155 \)| < Alplro-a-nH (9.39)

for t # s in [0,1] and for A = p™ in C with p = a +ib € Sy and with |p| > 7|
and b > 0. Therefore, the resolvent in Case 2 satisfies the growth rate

IRA(L)|| < AlpfPeP =" = 5| A Pompmna/n (9.40)
for A = p" in C with p = a+1ib € Sy and |p| > r1 and b > 0, or with
p=a+ib € 2y and |p| > ro, or with p = a+1ib € 21 and |p| > 7}, or with
p=a+ibe Sy and |p| > r} and b > 0.

Finally, assume that L belongs to Case 3 where p > ¢, another logarithmic
case. Then from equation (8.68)

1 —
[B0(p)| =  lapllpl"e™ >0 (9.41)
for p=a+ib € Sy with |p| > 71 and b < 0, and from equation (8.71)
1
[A0(p)] = 7 lbgllp]* >0 (9.42)

for p = a+1ib € Qoo with |p| > ro. Recall that if p = a 4+ ib € 2y, then
p € Sp and b > 0. Also, from equation (8.76)

1
[A1(p) = 7 By llel” > 0 (9.43)
for p=a+ib € S; with |p| > r] and b < 0, and from equation (8.79)
1
[A1(p)| > lagllp|?e” > 0 (9.44)
for p = a+ib € 1o with |p| > r}. For p = a+1ib € 1., we have p € S

and b > 0. The constants 71, rq9, 7}, 75 were selected in Chapter 8 such that
ro > 11 > Ry > Ry, b >r) > Ry > Ry, and ry = 7).
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Combining (9.19) and (9.42), (9.20) and (9.41), (9.21) and (9.43), and
(9.22) and (9.44), we obtain the following estimates:

G155 \)| < Alplro-a-nt (9.45)
for t # s in [0,1] and for A = p" in C with p =a +1b € 2y and |p| > ro;
Gt 55 0)| < Alplop=nH (9.46)

for t # s in [0,1] and for A = p™ in C with p = a +1b € Sy and with |p| >
and b < 0;
Gt 55 0)| < Alplop=nt (9.47)

for t # s in [0,1] and for A = p™ in C with p = a +1b € Sy and with |p| > 7]
and b < 0; and
G(t, 5 )] < Alplro-a—m+1 (9.48)

for t # s in [0,1] and for A = p" in C with p = a + ib € 21 and |p| > rh.
Therefore, the resolvent in Case 3 satisfies the growth rate

IBA(L)]| < ylplPo7"Ft = || @omamntt)/n (9.49)

for A = p™ in C with p = a +1b € 2y and |p| > 72, or with p=a +1ib € S
and |p| > r; and b < 0, or with p = a +ib € Sy and |p| > 7} and b < 0, or
with p=a +1ib € 21 and |p| > 75.

With our estimates (9.31), (9.40), and (9.49) for the resolvent in place,
we are now ready to prove the completeness of the generalized eigenfunctions
of the differential operator L. Let N be a positive integer that satisfies the
conditions

N>{po—p—n+1)/n and N >(po—q—n+1)/n.

Fix any real number 0y satisfying one of the following four conditions: o
O < 7/2, —/2 < 0y < —0p, nm+ 09 < by < nw+7/2, or nw —7/2 < b
nm — 0g. Consider the ray

IAIA

Roo: A=A, 0< |\ < oo,

in the A plane. We assert that for A on Ry, with |A| sufficiently large, the
resolvent R (L) exists and satisfies the growth rate || Rx(L)|| = O(|A\[Y).
Assume that o¢ < 6y < 7/2. For each A € Ry, we can form the nth root
p= {L/X — |)\|1/nei90/n7
with gg/n < 6g/n < 7/2n and with p € Sy. Note that 0 < 6y/n < 7/2 and
sin(fp/n) > 0, and for A € Ry, and p = V/\:

p=a+1ib = |p|cos(bp/n) +i|p|sin(fy/n),
a = |p|cos(By/n) >0, b= |p|sin(6y/n) > 0.
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The geometry is slightly different for Case 1, Case 2, and Case 3. First,
assume that L belongs to Case 1 where p = q. Set

r(6p) := max{ry,d/sin(6p/n)}.

If A\ € Ry, with |A\| > ()", then the point p = VA = a + ib belongs
to the sector Sy with |p| > r(6g) > r1, |p| > r(6y) > d/sin(6p/n), and
b = |p|sin(fy/n) > d. Thus, by (9.31)

[RA(L)| < y|A[PoP=nt D/ <y AN (9.50)

for A € Ry, with |A| > r(69)™.

Second, assume that L belongs to Case 2 where p < ¢. Set () := 71, and
take any point A € Ry, with || > 7(6p)™. Then the point p = VX = a +ib
belongs to Sp, |p| > r1, and b > 0. It follows from (9.40) that

IRA(L)| < [N PomP=mt D/ < 4 XY (9.51)

for A € Ry, with |A] > r(69)™.
Third, assume that L belongs to Case 3 where p > ¢. Set

7(6p) := max{ry, (2n3/a) cot(fy/n)/sin(6/n)}.

Take any point A € Ry, with |[X\| > r(6)™. Then the point p = VX = a +ib
belongs to Sy, and |p| > 7(6p) > r2 and b = |p|sin(bp/n) > 0. Also,

b= |p|sin(fp/n) > (2n2/a) cot(fy/n),

b b
b/n
e/UZb-T'n(Q)ZaCOt(GO/n)7

and
a = |p|cos(By/n) = beot(By/n) < aed/™,

and hence, p = a +1b € 2y with |p| > ro. It follows from (9.49) that
IRA(L)| < y|A|Pomammt D/ < AN (9.52)

for A € Ry, with |A] > r(69)™.
Next, assume that —7/2 < 0y < —op. Again for each A € Ry, we can form

the nth root .
p= W — |)\|1/nel€0/n7

with —7/2n < y/n < —og/n and p € Sy. Note that —7/2 < fp/n < 0 and
sin(fp/n) < 0, and for A € Ry, and p = V/\:

p=a-+ib=|p|cos(By/n) +i|p|sin(fy/n),
a = |p|cos(Bg/n) >0, b= |p|sin(6y/n) < 0.
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Now consider the three possible cases for L. First, assume that L belongs
to Case 1 where p = q. Set

r(00) := max{ry,d/|sin(6y/n)|}.

If A\ € Ry, with |\| > ()", then the point p = YA = a + ib belongs
to the sector Sy with |p| > r(6y) > m1, |p| > 7(60) > d/|sin(6y/n)|, and
b= |p|sin(fy/n) < —d. Thus, by (9.31)

IRA(L)]| < y[A|PomPmm D/ < 4 XY (9.53)

for A € Ry, with [A| > r(6p)™.
Second, assume that L belongs to Case 2 where p < ¢q. Set
7(0p) := max{ry, (2n3/a)| cot(8/n)|/| sin(fo/n)|}.
Take any point A € Ry, with |[A\| > r(6)™. Then the point p = VX = a +ib
belongs to Sy, and |p| > r(6p) > 2 and b = |p|sin(bp/n) < 0. Also,
(bl = |pl|sin(6o/n)| > (2n5 /)| cot(Bo/n),

ol/mo 5 gy . 105 1o
«

3z g |00/

and
a = |p| cos(By/n) = |b]| cot(Bp/n)| < ael®l/mo = qeb/m0,

and hence, p = a +1b € 2y with |p| > ro. It follows from (9.40) that
IRA(L)[| < A A|Pompmm D/ < oy AN (9.54)

for A\ € Ry, with |A| > r(69)™.

Third, assume that L belongs to Case 3 where p > ¢. Set r(6y) := r1, and
take any point A € Ry, with |A| > 7(6p)™. Then the point p = VA = a + ib
belongs to Sp, |p| > r1, and b < 0. It follows from (9.49) that

IRA(L)|| < A A|Pomammt D/ <y AN (9.55)

for A € Ry, with |A] > r(69)™.
Continuing our discussion, assume that nm+0¢ < 6y < nm+7/2. For each
A € Ry, we can form the nth root

p= W _ |)\|1/neieo/n7

with m+0¢/n < 0g/n < 74+m/2n and with p € S;. Note that 7 < p/n < 37/2
and sin(fy/n) < 0, and for A\ € Ry, and p = V/\:

p=a+1ib = |p|cos(bp/n) +i|p|sin(fy/n),
a = |p|cos(fy/n) <0, b= |p|sin(6p/n) < 0.
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First, assume that L belongs to Case 1 where p = g. Set
r(6p) := max{ry,d/|sin(fy/n)|}.
If A\ € Ry, with |\| > ()", then the point p = VA = a + ib belongs
to the sector S1 with |p| > r(0y) > r1, |p| > r(6p) > d/|sin(fy/n)|, and
b = |p|sin(fy/n) < —d. Thus, by (9.31)
IRA(L)[| < [N PomPmmt D/ < 4 XY (9.56)

for A € Ry, with |A] > r(69)™.
Second, assume that L belongs to Case 2 where p < gq. Set

7(6p) := max{rh, (2n3/a1) cot(fo/n) /| sin(fo/n)|}.

Take any point A\ € Ry, with |A| > 7(6p)™. Then the point p = VX = a +ib
belongs to Sy, and |p| > r(6p) > 75 and b = |p|sin(bp/n) < 0. Also,

bl = Ipl|sin(Bo/n)| > (2n5/a1) cot(Bo /),

o _ [l
[6]/no > |p| - | > (0
¢ = [?] M2~ o cot(6o/n),
and
a = |p| cos(fp/n) = —|b| cot(Bp/n) > —ayel?l/m0 = —q /M0,

and hence, p = a +1b € 21, with |p| > 75. It follows from (9.40) that
IRA(L)[| < A A|Pompmmt D/ <y AN (9.57)

for A € Ry, with |A| > r(69)™.

Third, assume that L belongs to Case 3 where p > ¢. Set r(6p) := r{, and
take any point A € Ry, with [\ > r(6)™. Then the point p = VX = a + ib
belongs to S1, |p| > |, and b < 0. From (9.49) it follows that

IRA(L)|| < y|A|Femammt i < 5 AN (9.58)

for A € Ry, with |A| > r(60)™.
Finally, assume that nm — /2 < 6y < nm — 0g. For each A € Ry, we can

form the nth root ‘
p= {'/X _ |)\|1/nel€0/n7

with 7 —7/2n < 6y/n < m—o0o/n and with p € S;. Note that 7/2 < 6p/n < 7
and sin(fy/n) > 0, and for A\ € Ry, and p = V/\:

p=a+ib = |p|cos(fo/n) +i|p| sin(fo/n),
a = |p|cos(By/n) <0, b= |p|sin(dy/n) > 0.
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First, assume that L belongs to Case 1 where p = g. Set
r(6p) := max{ry,d/sin(p/n)}.
If A\ € Ry, with |\| > r(6)", then the point p = VA = a + ib belongs
to the sector S1 with |p| > r(6y) > 71, |p| > r(6o) > d/sin(fy/n), and
b = |p|sin(fy/n) > d. Thus, by (9.31)
IRA(L)|| < A[A[FPompmmt D/ < AN (9.59)

for A € Ry, with |A] > r(60)™.

Second, assume that L belongs to Case 2 where p < ¢. Set r(0p) := 7}, and
take any point A € Ry, with |\ > r(6)™. Then the point p = VA = a + ib
belongs to S, |p| > 71, and b > 0. From (9.40) it follows that

IRA(L)|| < APt D/ < AN (9.60)

for A € Ry, with |A] > r(69)™.
Third, assume that L belongs to Case 3 where p > ¢. Set

7(6p) := max{rh, (2n3/a1)| cot(6y/n)|/ sin(fy/n)}.
Take any point A\ € Ry, with |A| > 7(6p)™. Then the point p = VX = a + ib
belongs to Sy, and |p| > r(6p) > 75 and b = |p|sin(bp/n) > 0. Also,
b= |plsin(0o/n) > (2n§/a1)| cot(6o/n)l,

b b
b/n
eb/mo Zb.Tng > a—1|cot(90/n)|,

and
a = |p|cos(by/n) = beot(y/n) = —b| cot(By/n)| > —aze?/ ™,

and hence, p = a +1ib € 21 with |p| > r}. It follows from (9.49) that
IRA(L)|| < A A|Pomam /e <y AN (9.61)

for A\ € Ry, with |A| > r(69)™.

Recall that the constant o was selected in Chapter 5 with 0 < o¢ < 7/10.
The family of rays Ry,, with either g < 6y < 7/2, or —7/2 < 0y < —0yp, or
nm+ o9 < b0y < nm+7/2, or nm — /2 < 0y < nw — 0y, clearly covers the
union of the two sectors

Yo: all A = |\el? € C with oy <0 < 7 — 0y,
Y1 all A= |\ € C with —7+09 <0< —0y

in the A plane. Note that the five equally spaced rays
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7T o
Ri: arg)\:91::1—02187
T 2T 7 o
Ro: arg)\—Hg.—E—i—?_g_go7
R'ar)\—H'—z—i—Qi—g—ﬂ—lGQO
T T T
9t 27 137
Ru: A=04:= — + — = — =234°
A== gt s =g ’
137 2w 177
Rs: A=05:= — + — = — = 306°
N TR TV

all lie in Xy U Xy, and the angle between adjacent rays is 27/5 = 72° < 7/2.
From the estimates (9.50)—(9.61) we have the growth rate

IRA(L)|| = O(|A|Y) as A — oo along each ray R,

j=1,...,5, valid for all three cases, Case 1, Case 2, Case 3. Applying the
completeness theorem, Theorem 6.2 in Chapter 2 of [34], we conclude that

sp(L) = S (L) = L]0, 1] (9.62)

and
M (L) = {0}. (9.63)

We summarize the above results for the odd order case in the following
theorem.

Theorem 9.2. Let the differential operator L be of odd order n = 2v—1, and
let L be either regular or simply irreqular according to Definition 3.3. Then
the spectrum o (L) is an infinite countable subset of C having no limit points
in C, and if o(L) = {\:}2, is any enumeration of o(L) and if Se(L) and
Moo (L) are the corresponding subspaces, then

sp(L) = S (L) = L?[0,1] and My (L) = {0}.

Remark 9.3. In view of the remarks in Section 3.4, if the differential operator
L is regular, then Theorems 4.1, 5.1, and 6.1 from Chapter 6 of [34] are
applicable. These three theorems give stronger versions of Theorem 9.1 and
Theorem 9.2 for the special case of regularity. In the stronger versions we
actually have

Seo(L) = L?[0,1] and M (L) = {0}, (9.64)

which gives a complete solution to the L?-expansion problem.






10

Special Case L = T and Degenerate Irregular
Differential Operators

In the previous chapters we have developed the spectral theory of the differ-
ential operator L for the cases in which L is either reqular or simply irregular.
In particular, we have characterized the spectrum o(L) in Theorems 7.2, 7.3,
and 7.5 for the case n even and in Theorems 8.2, 8.4, and 8.6 for the case n
odd, and have shown that the generalized eigenfunctions of L are complete
in L2[0,1] in Theorem 9.1 for n even and in Theorem 9.2 for n odd. The dif-
ferential operators L that are neither regular nor simply irregular have been
grouped together in the degenerate irreqular class, for lack of a better name.
This degenerate irregular class contains many strange differential operators,
and has never been studied. In the future when this class is better under-
stood, we envision it being subdivided into various subclasses, and having
better names assigned to these subclasses.

10.1 The Special Case L =T

To illustrate some of the unusual features of the degenerate irregular differen-
tial operators, we present in this chapter some examples for the special case
when the differential operator L is equal to its principal part T'. Assume that
{=7and c =0,s0 L =T and

D(L) = D(T) = {u € H"[0,1] | Bi(u) =0, i =1,....n},

Lu="Tu=1i"u™.

This important special case has been studied previously in Chapter 4 of [34]
under the assumption that L is either regular or simply irregular, but there has
been no discussion of the degenerate irregular case. Let us begin by observing
some of the important simplifications that occur in Chapters 2-5 when L = T..

Fix any integer m with m > n and m > pg. Consider the approximate
solutions and the approximate characteristic determinant defined in Chapter 2
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and Chapter 3. First, from Example 2.4 the mth order Birkhoff approximate
solutions are given by

2 (t, p) = PRt k=0,1,...,n—1,

for 0 <t <1 and for p # 0 in C. These approximate solutions are actual
solutions of the differential equation (2.1),

pru(t) — i "™ (t) = 0,

and are independent of the integer m. The associated mth order residual
functions are simply

nk(t, p) = e Pt (p"T — )z (t, p) = 0, k=0,1,....,n—1,

for 0 <t <1 and for p # 0 in C. Second, the modified Birkhoff approximate
solutions are given by

yk(tap)zzk(tap):eipu)ktv k:071,...71/71,

yk(t,p) = e Pzt p) = PRI D 0 p=p L n—1,

for 0 <t <1 and for p # 0 in C. These functions are also actual solutions of
the differential equation (2.1).
In terms of the boundary values By, ..., By, we introduce the polynomials

R(p) = Zaippp7 Ql(p) = Zﬁipppa 1= 17 sy e
p=0 p=0
Then fort=1,...,nand k=0,1,...,v — 1 we have

Biun(-,0) = 3 aupipwn)? + 3 Bip ipuog Pl

p=0 p=0

. . - 10.1
= P;(ipwr) + Q:(ipwy e (10.1)
= Pi(p) + Qir(p)e's
for p#£0in C, whilefori=1,...,nand k=v,...,n—1
Bi(yr(-,p)) = Y cuiplipwr)Pe ™%+~ By (ipwy)?
p=0 p=0
(10.2)

= Qi(ipwi) + P;(ipwy)e P

= Pi(p) + Qun(p)e™ 7

for p # 0 in C. Thus, the functions ﬁik(p), @ik(p) defined in equations (3.1),
(3.2) are polynomials in p that are independent of the integer m, and they
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are identical to the polynomials P, (p), Qix(p) introduced in [34, pp. 99-100].
Equations (3.7) and (3.9) now simplify to

131‘ (p) = Pix(p) = Zpiksps, @ik(ﬂ) = Qir(p) = Z%’ksﬁs (10.3)
s=0 s=0

for p#£0in C and for i =1,...,nand £k =0,1,...,n — 1. In terms of these
polynomials, the approximate characteristic determinant is given by

A(p) = det(B(ws( - p))
0<k<v-1 v<k<n-1
= det( Py(ipwr) + Qulipwn)e™* Quipwr) + Plipwe)e™ ) (10.4)
0<k<v-1 vr<k<n-1
= det( Pu(p) + Que(p)e™* Pus(p) + Quulp)e 7 )

for p # 0 in C. This shows that the approximate characteristic determinant

A(p) is independent of the integer m, and it is identical to the characteristic

determinant A(p) defined for the differential operator L = T in [34, p. 100].
We can also construct the (approximate) characteristic determinant using

the functions zg(t,p), k =0,1,...,n— 1. Indeed, these functions form a basis
for the solution space of the differential equation (2.1), and for ¢ = 1,...,n
and k=0,1,...,n—1

Bi(zk(+,p)) = Pi(ipwr) + Qi(ipwy )e'** (10.5)

for p # 0 in C. An alternate characteristic determinant for the differential
operator L = T is defined by

Au(p) = det(Bi(zi(-,p))) = det(Py(ipwr) + Qulipwn)e*)
for p # 0 in C. These characteristic determinants are related by the relation
A(p) = Alp) = €A, (p) (10.6)

for p # 0 in C, where the constant 7 is defined by 1 1= —w, —wy41—+ - —Wp_1.
Later in this chapter it will be convenient to utilize A, (p) in place of A(p).

Assume n is even: n = 2v > 2. From equation (10.3) it follows that the
functions 7;(p), ¢ = 0,1, 2, introduced in Chapter 3, are polynomials of degree
< po that are identical to the earlier polynomials ;(p), i = 0, 1,2, defined
in [34, pp. 114-115 ]. Also, from (3.24), (3.27), and (3.28) these polynomials
have the representations

Po Po Po
To(p) =D awp®,  Filp) =D bep®  Folp) =) cup”
k=0 k=0 k=0
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for p £20in C, with a,, = bx = ¢, =0 for k = —1,-2,...,—(m —pg — 1).
Clearly these polynomials are independent of the integer m. Since m can be
chosen arbitrarily large, we conclude that

ay =b,=c¢c., =0 fork=-1,-2,.... (10.7)

It is immediate that the functions m;(p), ¢ = 0,1, 2, introduced in Chapter 3
are polynomials that coincide with the polynomials 7;(p), i = 0,1, 2:

ma(p) = Falp) = Y anp”,
xk=0

m(p) =F1lp) = Y bwp", (10.8)
k=0

To(p) = Folp) = 3 cup”
k=0

for p # 0 in C, and hence, the polynomials 7;(p), i = 0, 1,2, are independent
of the integer m and are also identical to the polynomials m;(p), ¢ = 0,1, 2,
defined in [34, pp. 114-115 |.

Assume n is odd: n = 2v — 1 > 3. Again from (10.3) we see that the func-
tions 7;(p), i = 0,1, and the functions 7;(p), ¢ = 0, 1, introduced in Chapter 3,
are polynomials of degree < py which are identical and are independent of the
integer m:

m(p) =71(p) = Y anp®  mo(p) =7Fo(p) = Y _ bep® (10.9)
k=0 k=0

for p # 0 in C. In this case the coefficients satisfy the conditions
a, =b, =0 forx=-1,-2,..., (10.10)

and the polynomials m;(p), i = 0,1, are identical to the polynomials ;(p),
i =0,1, defined in [34, pp. 123 ].

These results for the special case L = T show that the classification scheme
defined in our current work (see Definition 3.2 and Definition 3.3) is consistent
with the classification scheme defined in the monograph [34] (see Definition 5.1
and Definition 6.1 in Chapter 4 of [34]): regular = regular, simply irregular =
irregular, and degenerate irregular = degenerate.

In Chapter 4 we developed asymptotic expansions for solutions of the
differential equation (2.1). Let us examine the form of these expansions in
the special case L = T. Indeed, fix any integer m with m > n and m > po,
and take any integer k£ with 0 < &k < n — 1 and any point p # 0 in C.
Then the integral equations (4.9) and (4.43) reduce to the trivial equation
¥ (t) = 0, which has the unique solution (¢, p) = 0. Applying (4.15) and
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(4.48), we obtain the function vk (t, p) = zk(t, p), which is a solution of the
differential equation (2.1). The construction of the solution v (-, p) does not
require restricting p to any of the sectors Ty or T1. Theorem 4.3, Theorem 4.4
and Theorem 4.6, Theorem 4.7 simplify to the statement that the functions

Uk(tvp):'zk(tap):eip‘Ukta k:()v]-?"'vn_]-v

are n linearly independent solutions of the differential equation (2.1) for all
p#0in C.

Finally, in Chapter 5 the solutions vg(-,p), k =0,1,...,n—1, are used to
form the characteristic determinant of L = T'. Note that the modified solutions
ug(+,p), k=0,1,...,n—1, are the same as the modified Birkhoff approximate
solutions yx (-, p), k =0,1,...,n—1, and hence, the characteristic determinant
A(p) of L defined in Chapter 5 is identical to the approximate characteristic

determinant z(p) formed above in equation (10.4):

~

A(p) = det(By(ux( -, p))) = Alp) (10.11)

for p # 0 in C. We conclude that the characteristic determinant A(p) appear-
ing in (10.11) is identical to the characteristic determinant A(p) defined for
the differential operator L = T in [34, p. 100].

10.2 Two Degenerate Irregular Examples

With the above results for the special case L = T as a foundation, we next
look at some examples of the degenerate irregular case.

Ezample 10.1. Consider the differential operator L = T' determined by initial
value conditions at the endpoint ¢ = 0:

Bi(u) =u™9(0), i=1,...,n.
For this model the integer pg is given by
p():(n—1)+(n—2)+~-~+1+0:%(n—l).
In equations (10.1) and (10.2), for ¢ = 1,...,n the functions are given by
Bi(yr(-,p)) = (ipwr)" ", k=0,1,...,v—1,
Bi(yr(-, p)) = (ipwy)"te 1Pwr, k=v,....n—1,
and hence, fort=1,...,n
k(p) = (ipwr)™ ™, Qirlp) =0, E=0,1,...,v—1,
ik(p) =0, @ik(ﬂ) = (ipw)" 4, k=v,...,n—1.

y o
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Setting 7 := —w, — wy41 — -+ — wp_1, it follows from equation (10.4) that

0<k<vr—1 v<k<n-—1

Wy Wy W;f—_ll
n—2 n—2 n—2
w w w,
_ (Ip)%(n—l)eipn det 0 1 n—1 ,
11 1
or N )
A(p) = A(p) = (ip)? Vel for p#0in C, (10.13)

where the constant « is the displayed Vandermonde determinant. Therefore,
A(p) # 0 for all p # 0 in C, which shows that the differential operator L has
no nonzero eigenvalues. Using the basis 1,¢,¢%,...,t" ! for the solution space
of the differential equation —(i)~"u(™(t) = 0, it is easy to check that A = 0
is not an eigenvalue of L. We conclude that

o(L)=0 and p(L)=C. (10.14)

Of course, this result follows directly from the Existence-Uniqueness Theorem
for initial value problems.

Assume that n is even: n = 2v > 2. Using the definitions of the functions
mi(p), i = 0,1,2, given in Chapter 3 together with equation (10.12), we see
that

Ta(p) =m2(p) =0, o(p) = mo(p) =0, (10.15)
and
(ipwo) "t -+ (ipwy—1) " (ipwy) ™™t 0+ 0
N (ipwo) ™2 -+ (ipwy—1) "2 (ipw,) "2 0 -+ 0

_J2ip forn=2,
o forn=4,6.8,....
(10.16)
Thus, for n = 2 we have pyp = 1 and
ax =cx =0 for k =1,0,—-1,...,
(10.17)

by =2i, b.=0 fork=0,-1,...,

and for n = 4,6,8, ... we have pg = %(n— 1) and
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ax =bx=c¢, =0 fork =pg,...,1,0,—1,.... (10.18)

According to Definition 3.2, the differential operator L is degenerate irregular.
For n = 2 the boundary coefficient matrix is

1000
A= ,
(0010)

so A13 = 1 and Ao = Ay = Asz = Ay = Azy = 0. Consequently, the
above results for the constants a,, by, ¢ agree with the earlier results for the
constants given in Case 5 of Chapter 5.

Assume that n is odd: n = 2v — 1 > 3. Using the definitions of the
functions 71 (p) and 7o (p) given in Chapter 3 together with equation (10.12),
we see immediately that

Ti(p) =m(p) =0,  7o(p) = mo(p) =0, (10.19)

and hence,
a,=b,=0 fork=pg,...,1,0,—1,... (10.20)

where pg = (n/2)(n — 1). By Definition 3.3 the differential operator L is
degenerate irregular.
This example illustrates the fact that the principal exponentials:

e?? ¢e? 1 for n even, e, 1 for n odd,

may not appear in the characteristic determinant A(p). In this situation other
exponentials become the principal terms. For example, in equation (10.13) the
exponential

eipn _ efip(warW,,JrlJr"'ern—l)
is the principal exponential appearing in A(p), and in fact, it is the only
exponential that appears.
Ezxample 10.2. For n even, n = 2v > 2, let L =T be the differential operator
determined by the boundary values

B;(u) = u"9(0) + (=) u9(1),  i=1,...,n.

Again we have py = (n/2)(n — 1), and for i = 1,...,n equations (10.1) and
(10.2) become

Bi(yi(-,p) = (ipwr)" ™" + (=1)" (ipwy)" "%, k=0,1,...,v—1,

Bi(yr(-,p)) = (ipwp)" e s 4 (=) (ipwp)" ™", k=v,...,n— 1.

Hence, fori=1,...,n
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Pir(p) = (ipwr)" ™", Qirlp) = (=1)F(ipwr)" ™", k=0,1,...,v—1,

Pi(p) = (=1)"F(ipwr)™™,  Qu(p) = (ipwr)" ™%, k=w,...,n— 1.
(10.22)

Observe that in (10.21), for i = 1,...,n and k = 0 we have wg = 1 and
Bi(yo(+,p)) = (ip)"~'[L + (1) 1e],
while for i = 1,...,n and k = v we have w,, = —1 and
Bi(yu (-, p)) = (=ip)" [ + (=1)""]
= (=) (1p)" ' I(-1)"F e + 1] = = Bi(wo( -, p))-
It follows from (10.4) that
A(p) =A(p) =0 for p#0in C. (10.23)
Thus, each A = p™ # 0 in C is an eigenvalue of L, and a corresponding
eigenfunction is

1 . . 1 . .
o(t,p) =cosp(t —1/2) = 5 eTiP/2 gt 4 3 eTiP/2 . omip(t1)

For A = 0 we use the basis 1,¢,¢2,...,t" !, showing that A = 0 is also an
eigenvalue of L with eigenfunctions ¢;(t) = (t—1/2)%,j=0,1,...,v—1. We
conclude that

o(L)=C and p(L)=0. (10.24)
In equation (10.22) we have Q;(p) = (—1)"*(ip)"~% for i = 1,...,n and
Qi(p) = (—1p)" " = =(=1)'" (ip)" " = —Quo(p) (10.25)
fori=1,...,n, and ﬁio(p) = (ip)" "t fori=1,...,n and
Pou(p) = (1) (=ip)" ™" = —(ip)" ™ = —Pao(p) (10.26)
for i = 1,...,n. Therefore, from the definitions of the functions 72(p) and
7o(p) given in Chapter 3, it follows that
Ta(p) = m2(p) =0, Tolp) =mo(p) =0, (10.27)
and hence,
ax =¢c =0 for k=pg,...,1,0,—1,.... (10.28)

In the definition of the function 7 (p), if we substitute (10.25) and (10.26) into
the vth columns of the two determinants appearing there, then 7 (p) becomes
the sum of two determinants that are the negatives of each other, and hence,

#1(p) = m(p) = 0 (10.29)

and
bk =0 for k =pg,...,1,0,—1,.... (10.30)

According to Definition 3.2, the differential operator L is degenerate irregular.
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The differential operators L appearing in Example 10.1 and Example 10.2
are certainly degenerate, but for very different reasons. In the first example,
the spectrum o (L) is empty, there are no eigenvalues nor any eigenfunctions,
and the resolvent Ry (L) exists on all of C; in the second, the spectrum o (L) is
equal to all of C, there are uncountably many eigenvalues and eigenfunctions,
and the resolvent Ry (L) fails to exist at any point of C. What kind of spectral
theory can one develop in these extreme cases?

10.3 The Special Case n =4, L =T

Next, we give some additional examples for the special case n =4 and L =T.
The integer n = 4 is small enough that calculations can still be made with
pencil and paper, while it is large enough to exhibit some of the more subtle
features of these fourth order differential operators. In this special case the
boundary values have the form

3 3
B;(u) :Zaipu(p)(O)—&-Zﬁipu(p)(l), i=1,...,4,
p=0 p=0

and the associated boundary coefficient matrix becomes

a1z Bz ai2 Bz a1 B ao Po
Qo3 (o3 g Poz ao1 Ba1 ang Boo
ass (33 32 P32 asi P31 aszo P30

oz Baz ouz Baz a1 Ba aso Pao

A:

Recall that we are assuming that A is in reduced row echelon form with rank
4. Note that the integer pg = Z?Zl m; satisfies the inequalities 2 < py < 10.
Here the fourth roots of unity are simply wg = 1, w1 =1, wo = —1, w3 = —i;
the Birkhoff (approximate) solutions are given by

20(t,p) =P zi(t,p) =e P z(t,p) =e P z3(t,p) = et
and the modified Birkhoff (approximate) solutions are
yo(t,p) =€, yi(t,p) =e ", ya(t,p) =e PN ys(t,p) = P,
The characteristic determinant becomes
Alp) = Alp) = det(Bi(yx( - p)))

Pr(ip)+Q1(ip)e” Pi(—p)+Q1 P1(~ip)e'’ +Q1

Je (=p)e™” (=ip) Pi(p)e”"+Q1(p)

_ det Pa(ip)+Q2(ip)e™ P2(—p)+Q2(—p)e™” Pa(—ip)e+Q2(—ip) P2(p)e”"+Q2(p)
P3(ip)+Qs(ip)e’” P3(—p)+Qs(—ple” " Ps(—ip)e”+Qs(—ip) Ps(p)e”"+Qs(p)
Py(ip)+Qua(ip)e'” Pa(—p)+Qa(—p)e " Pa(—ip)e'’+Qa(—ip) Pi(p)e™"+Qa(p)

(10.31)



276 10 Special Case L = T and Degenerate Irregular Differential Operators

for p # 0 in C, while the alternate characteristic determinant is

Ay (p) = det(B;(zr(-, p)))

Pi(ip)+Q1(ip)e'” Pi(—p)+Qi(—p)e™” Pi(—ip)+Q1(—ip)e™"* Pi(p)+Q1(p)e”
Py (ip)+Q2(ip)e™ Pa(—p)+Q2(—p)e™” Pa(—ip)+Q2(—ip)e™ ™ Pa(p)+Q2(p)e”
Ps(ip)+Qs(ip)e” P3(—p)+Qs(—p)e™? Ps(—ip)+Qa(—ip)e * P3(p)+Qs(p)e”
Py(ip)+Qa(ip)e'® Pi(—p)+Qa(—p)e™" Pi(—ip)+Qa(—ip)e " Pi(p)+Qa(p)e”
(10.32)

= det

for p # 0 in C. The two characteristic determinants are related by the relation
Alp) = e P AL(p) (10.33)

for p # 0 in C. Observe that
Ai(ip) = —=Aulp),  Au(=p) =Au(p),  Au(—ip) =-A(p) (10.34)

for p#0in C.

Suppose we expand A, (p) using linearity in all four columns: A, (p) be-
comes the sum of sixteen terms; each term is the product of a polynomial
times an exponential, where the polynomial is the determinant of a 4 x 4 ma-
trix with polynomial entries. The sixteen exponentials that appear are listed
below:

e =1,
e? =eP, e P=eP e W=e e =¢,
elfef = eipe*p, elPe~ 1P = 1, elPel = eipep,
e Pe P =PI TP =1, e Pef = e PP,

e Pe™P =P, ePeTPe’ =€, el =ef, e Pe e’ =e7'P,

e'Pe Pe el = 1.

We note that there are only nine distinct exponentials in this list. The expo-
nentials e "Pe?, elPe? eiPe™P e PeP each occurs once in the list; the expo-
nentials e”, e'?, e7?, e71” each occurs twice in the list; and the exponential
e% = 1 occurs four times in the list. Thus, upon expansion A, (p) has the
form

Au(p) = Po(p)e e + By (p)eiPer + By (p)eiPe P + By(p)e e
+Qo(p)e” + Qi (p)e” + Q2(p)e™" + Qs(p)e™” + D(p)

for p # 0 in C, where the polynomials P;(p) are each 4 x 4 determinants,
the polynomials Q;(p) are each the sum of two 4 x 4 determinants, and the
polynomial D(p) is the sum of four 4 x 4 determinants.

Specifically, the polynomials Py (p), Qo(p), and D(p) are given by the equa-
tions

(10.35)
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and

From the definitions of the various polynomials we can show that
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P1(p) = —Po(ip), Pa(p) = Po(—p), P3(p) = —Po(—ip),  (10.39)
Qi(p) = —Qo(ip),  Qa(p) =Qo(—p),  Q3(p) = —Qo(—ip).  (10.40)

Indeed, to prove that P (p) = —Py(ip), we see from (10.35) that Py (p) is the
coefficient of the exponential e'?e”, and hence,

Q1(ip) Pi(—p) Pi(=ip) Qi(p)
Py(p) = det Qz(?P) Py(—p) Pz(—?/)) Q2(p)
Qs(ip) P3(—p) P3(—ip) Qs(p)
Qa(ip) Pi(—p) Pa(—ip) Qa(p)
But from (10.36)
Pi(=p) Pi(=ip) Qi(p) Q1(ip)
Byip) = — det Py(—p) P2(—?,0) Q2(p) Qz(%/)) ’
P3(—p) P3(—ip) Qs(p) Qs(ip)
Py(=p) Ps(=ip) Qa(p) Qa(ip)

and the result is now clear. In view of (10.39) and (10.40), to calculate the
polynomial coefficients in equation (10.35), it is sufficient to calculate the
polynomials Py (p), Qo(p), and D(p). This can be accomplished using (10.36),
(10.37), and (10.38). Let us proceed with this calculation.

For the 4 x 8 boundary coefficient matrix A, denote the eight columns of
A by az, B3, as, B2, a1, b1, o, PBo, and let (a,b, ¢,d) denote the determinant
of the 4 x 4 submatrix of A formed by using columns a, b, ¢, d, e.g.,

arz Bz aio B2
Qg2 B2z o P22
asz (33 azo Os2
g2 Baz a0 a2

<052aﬁ370‘05ﬂ2> = det
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Then using a straight forward but lengthy calculation, we get

Po(p) = 2i(as, Bs, aa, Ba)p'”

— (2 —2i)[{as, B3, az, f1) + (@3, B3, B2, 01)]p°

+ 2[—(as, B3, a2, Bo) + (as, B3, B2, o) + 2(as, B3, a1, Br)

+ (o3, @z, B2, B1) — (B3, 2, Ba, 1) p°

+ (2 + 2i)[{as, B3, a1, Bo) + (a3, B3, B1, ao) + (a3, az, B2, Bo)
+ (a3, B, 01, B1) + (B3, a2, B2, o) + (B3, az, o1, Bu)]p”

+ 2i[—({as, B3, 20, Bo) + {(as, a2, 51, Bo) + 2(as, Be, a1, Bo)

+ {as, B2, B1, o) + (B3, aa, a1, o) + 2(B3, vz, B, o)

+ (B3, B2, a1, a0) — (a2, B2, v, B1)]p°

+ (2 = 2i)[(as, B2, @0, Bo) + (a3, a1, B1, Bo) + (85, a2, 0, Bo)
+ (B3, a1, Br, o) + (a2, B, a1, Bo) + (a2, B2, B1, )] p°

+ 2[(as, B1, a0, Bo) — (B3, a1, 0, Bo) — 2{a2, B2, @0, Bo)

— (a2, 01, B1, Bo) + (B2, 1, B, o)) p*

— (24 2i) [{a2, B1, 0, Bo) + (B2, a1, o, Bo)]p

+ 2i(a1, B1, 0, Bo)p°,
(10.41)

Qolp) = 4i[(as, Bs, a2, a1) + (s, B3, Ba, B1)]p°

and

— 4i[{as, B3, a2, ag) — (a3, B3, B2, Bo)

+ {as, a2, B2, 1) — (B3, a2, B2, B1)]p°

+ 4i[(as, B3, a1, ) + (a3, B3, B1, fo) + (a3, oz, Ba, ap)
+ (as, 2, a1, B1) + (B3, a2, B2, Bo) + (B3, B2, a1, B1)]p”
+ 4i[(as, ag, a1, Bo) + (a3, a2, B1, o) + (s, B2, a1, )
+ (s, B2, B1, Bo) + (B3, a2, a1, o) + (B3, az, B1, Bo) (10.42)
+ (Bs, B2, a1, Bo) + (B3, B2, B1, o) p°

—4i[{as, az, a0, Bo) + (B3, B2, 20, Bo) + {as, a1, b1, a0)
+ (B3, a1, B, Bo) + (aa, Ba, a1, a0) + (a2, B2, B1, Bo)]p°
+ 4i[{as, a1, a0, Bo) — (B3, 1, o, Bo)

+ (az, a1, B1, a0) — (B2, a1, B, Bo)) p*

— 4i[{a, a1, 0, Bo) + (B2, B1, w0, Bo)p®
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D(p) = — 8i(as, fs, as, fa2)p"°
+ 8if{as, B3, ag, Bo) + 2(as, a2, a1, ag) + {(as, az, b1, Ho)
+ (as, B2, B1, o) + (B3, g, a1, Bo) + (B3, B2, a1, o) (10.43)
+2(B3, B2, B1, o) + (az, B2, a1, B1)]p°
— 8i{au, B1, o, Bo)p’.

From equations (10.33) and (10.35) we see that
Ap) = ee " Au(p)
Po(p) + P1(p)e” + Pa(p)e® e + Py(p)e~2"
+ Qo(p)e” + Qi (p)e®e” + Qa(p)ee™? + Qs(p)e” + D(p)ee ",

or

A(p) = P1(p)e*” + Qo(p)e’” + Po(p)
+ [Pa(p)e™ 2 + Qi (p)e "™
+[Qa(p)e™" + D(p)e e
+ [Ps(p)e™? + Qs(p)e”]

for p # 0 in C. This is equation (3.32) or equation (5.31) for the special case
n =4 and L =T with

(10.44)

ma(p) =P1(p) = —Po(ip),  m(p) =Qolp),  mol(p) =Polp) (10.45)

for p # 0 in C. Cf. equation (3.18).

We know that a nonzero complex number A = p* is an eigenvalue of L if
and only if A(p) = 0, or equivalently, if and only if A.(p) = 0. To determine if
A = 0 is an eigenvalue for L, we use the basis ¢o(t) = 1, ¢1(t) = t, ¢2(t) = 12,
$3(t) = t3 for the solution space of the differential equation —u(*(t) = 0.
Clearly

Bi(¢o(-)) = aio + Bio,
Bi(¢1(+)) = a1 + Bio + Bit,
Bi(¢2(+)) = 20tz + Bio + 28i1 + 2042,
Bi(¢3(-)) = 60z + Bio + 30i1 + 6832 + 603
for i =1,...,4. In terms of these quantities we form the determinant

A = det(B;(ér(-)))-

Then A = 0 is an eigenvalue for L if and only if Ay = 0. Upon expansion, we
obtain the following expression for the constant Ag:
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Ag = 12[(a3, ag, a1, ) + (a3, az, a1, Bo) + (a3, a2, B1, ap)
+ (s, B2, a1, ag) + (B3, az, a1, ag) + (a3, az, B, Bo)
+ (s, B2, a1, Bo) + (a3, B2, B1, o) + (B3, a2, a1, Bo)
+ (B3, az, B1, o) + (B3, B2, a1, ao) + (s, B2, B1, Bo)
+ (B3, a2, B1, Bo) + (B3, B2, a1, Bo) + (B3, B2, B, o)
+ (B3, B2, B1, Bo)]

— 12[(as, az, ag, Bo) + (as, a1, B1, ao) + (a2, B2, a1, ao)
+ (a3, o1, B, Bo) + (as, B2, a0, Bo) + {2, B2, a1, Bo)

(B3, a2, ap, Bo) + (a2, B2, B1, ao) + (B3, a1, B1, o)
+ (a2, B2, B1, Bo) + (B3, a1, B1, o) + (B3, B2, 0, fo)]
+ 6[{as, a1, o, Bo) + (@2, a1, B, a0) — (as, B1, 20, o)
(o, a1, B1, Bo) + 2(az, B2, 0, Bo) + (B3, a1, ao, Bo)
— (B2, 1, B1, a0) — (B2, a1, B1, Bo) — (B3, B1, 0, Bo)]
—2[{a2, 1, 0, o) — 2{a2, B1, o, Bo)
— 2(f2, a1, a0, Bo) + (B2, 1, o, Bo)]
— (a1, B1, 0, Bo)-

(10.46)

+

_|_

Ezxample 10.3. Consider the 4th order differential operator L = T determined
by the boundary values

Bi(u) = u"(0) + 6u(0), Ba(u) =u"(0), Bs(u)=1u'(0), Ba(u)=mu(l),
so the boundary coefficient matrix is

10000060
00100000
00001000
00000001

Clearly py = 6, and (as, a9, a1, 5p) = 1 and {(ag, a1, ag, By) = 6, with all the
other determinants (a, b, ¢, d) equal to 0. Thus, from equations (10.41)—(10.43)
we have

Po(p) =0, Qo(p) = 4ip® — 24ip®>,  D(p) =0,

and then equations (10.44) and (10.39), (10.40) produce the characteristic
determinant

Alp) = (4ip6 - 24ip3)eip + (4ip6 + 24p3)efpezip
+ (4ip® + 24ip®)e~ el + (4ipS — 24p%)e ™"
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for p # 0 in C. Since m(p) = —Py(ip) = 0 and 7me(p) = Po(p) = 0, the
differential operator L belongs to the degenerate irregular class. Later in this
chapter we will study this differential operator as a model for a more general
class (Case II below), showing that it has a countably infinite spectrum that
lies near the negative real axis. This is the first time that we have encountered
a differential operator L of even order n = 2v with its spectrum lying near
the negative real axis.

Next, we reexamine our classification scheme of Chapter 3 by exploiting
the explicit forms of the polynomials Py(p), Qo(p), and D(p). From equations
(10.41)—(10.43) we see immediately that

2 < degree Py(p) <10 or Py(p)

3 < degree Qo(p) <9 or Qo(p)
2 < degree Dy(p) <10 or Dy(p)

0,
0,
0.

Consider the following cases.

Case I. n = 4, Py(p) # 0. From the relations (10.45) we see that the
polynomials m(p) = Py(p) and ma(p) = —Py(ip) are both of degree p with
2 < p < 10. Tt follows from equation (10.8) and Definition 3.2 that the fourth
order differential operator L = T is either regular or simply irregular. This
case has been studied extensively in the previous chapters.

Case II. n =4, Py(p) =0, Qo(p) # 0. For this case the polynomials my(p) =
Po(p) and ma(p) = —Py(ip) are identically zero, and hence, by Definition 3.2
the differential operator L = T is degenerate irregular. Example 10.3 provides
a model for this case. We are going to show that the differential operators
belonging to Case II have some very unusual properties.

From equation (10.44) the characteristic determinant now takes the form

A(p) = Qo(p)e” + Qi(p)ePe?
+[Qa(p)e™” + D(p)e"le”” + Qs(p)e”

for p #£ 0 in C. Let ¢ denote the degree of the polynomial Qg(p), so 3 < ¢ <9
and

Qo(p) =mi(p) =Y bep®, by #0.
k=3

We know that Q1(p) = —Qo(ip), Q2(p) = Qo(—p), and Q3(p) = —Qo(—ip).
Also, from (10.41) we have (as, 83, a2, 02) = 0 and (aq, (1, ag, o) = 0, and
hence, setting

Yo = (a3, B3, a0, Bo) + 2(as, a2, a1, o) + (g, aa, B, Fo)
+ (g, B2, P1, o) + (B3, a2, o, Bo) + (B3, B2, a1, ) (10.47)
+ 2(B33, B2, B1, Bo) + (a2, B2, a1, B1),
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we see that D(p) = 8ivp®. Fix a real number oy with 0 < og < 7/10.
First, we introduce the sector
: . s (o)) ™ go
Yo: all p=ple? € Cwith — =~ + 2 << - — 22

o all p=|ple” € Cwith —§+ P <0< T2,
and then proceed to show that A(p) has no zeros in the sector Xy for |p|
sufficiently large. To study the behavior of A(p) on the sector Xy, we first
rewrite it in the alternate form

Alp) = pqei”{w + Qi) o—p v
" “ (10.48)
%(kﬂﬂ>ezp+ﬂwp>ep%(&xp)epem}
pq pq pq

for p # 0in C. Set « := sin(n/4+00/4) > 0 and 3 := sin(n/4—0¢/4) > 0, and
take any point p = a+ib = |p|e!? # 0in C with —7/4+00/4 < 0 < 7/d—0¢ /4.
Clearly

a = la] = pl cos8 > |p] cos(r/4 — on/4) = |p|sin(r/4 + 00/4) = alpl,

[b] = [pllsin 0] < |p|sin(m/4 — a0/4) = Blp].

For the exponentials appearing in (10.48), we have the estimates

|e*PeiP| — e*aefb < e*(a*ﬁ)|p|’ |672p| _ ef2a < ef2a|p| < ef(afﬁ)\p\’
le™?|=e < ool < e—(a—ﬂ)lpl, |e—pe—ip| —e b < o~ (a=B)lol
Thus,

- Y _l(q—
MWZp%ﬂ%p—mﬁwmﬂ
P (10.49)

b
> Pl et 0

for all p in the sector Xy with |p| sufficiently large.
Second, we introduce the sector

: . s (o) s ago
S allp=|ple’ e Cwith — — = <0< —+ .
10 all p=[ple” € C wi 4 4 = =4 + 4
We claim that A(p) has an infinite sequence of zeros in the sector Xp. In
treating the sector X7, we express A(p) in the form

A(p) = e *{Qo(p)e”e™” + Qs(p)

g v . (10.50)
+ Qi (p)e”” + Qa(p)e™ e + D(p)e”}

for p # 0 in C. Take any point p = a + ib = |p|e! # 0 in the sector X, so
/4 —00/4 <0 <w/4+ 0¢/4. Then



284 10 Special Case L = T and Degenerate Irregular Differential Operators
a = la| = |p|cost = |p| cos(m/4 + 00/4) = |p|sin(m/4 — 00/4) = Blpl,
b= |b| = |p|sin6 > |p|sin(m/4 — o0 /4) = Blpl,

and the exponentials in (10.50) satisfy the conditions

| = %, o] = 1,
|62iﬂ| —e 2 < e~ 28lpl < e—ﬂ\ﬂ\7 |e_”ei”| —e %t < e~ 26l < e—/ﬁ’lpl7
|eip| —e? < e~ Blel

On the ray arg p = 7/4 the exponentials e”e'” and e’” = 1 have modulus 1.
Next, we introduce the sector

e all z = |z|e" € C with f%ggbg%.

Set w := (1 +1)/2, and let us make the change of variable

2]

p=wz, |pl=—7F.

S

Clearly p € X if and only if z € Xg. Now

L
(1—|—i)p_(1+i)<;rl>z—iz, Op =0z =0,

141 1+i
2ip:2i< ;l)z:(—l—i—i)z, (—1+i)p:(—1+i)< _2H>z:—z,
1+i 1
o Ll
ip 1( 5 )z 2( +1i)z,

so the above exponentials transform to

eiz’ |eiz| _ eflmz’ eOz _ 17 |60Z‘ _ 17
—z iz —z iz - B —z —z -Z ||
e %e?, le7%e?| <e V2", e %, le7F| <e V2Tl

; L, i _8
e"2%e2% |eT2%ei| <e Vs 2l

the estimates being valid for all z in the sector Xg.
At this point we introduce a modified form of the characteristic determi-
nant based on the representation (10.50):

Ag(2) = A(wz)
= efwz{(@o(wz)eiz + Q3(wz) (10.51)
+ Qi (wz)e ?e!* + Qq(wz)e™* + ]D)(wz)eféze%z}

for z # 0 in C. In this last equation we have
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q q
Qo(wz) = D bew"2", Qa(wz) = —Qo(—iwz) = = Y be(—i)"w"z",
K=3 k=3
Set 50 = (7i)q,
f(z) = bqwqeiz — bg(—1)%w? = byw? [eiz — 50]

for z € C, and

q—1 q—1 .
bew" . b (—1)Fw”
9(z) == E Sa—r e - E ik
k=3 k=3

i

+ Z—lq (Q (wz)e %e® + Qy(wz)e ™ + D(wz)e_%zeﬁz}

for z # 0 in C. Then equation (10.51) can be rewritten in the simpler form

Ag(z) = 29 %[ f(2) + g(2)] (10.52)
for z # 0 in C, where
|e—zeiz| < e—% |Z|7 |e—2| < e_% |Z|, |e—%ze%2| < e_% Il (1053)

for z in the sector Xg. Clearly the zeros of f(z) are given by the sequence
e =21k + Argéy,  k=0,+£1,£2,.... (10.54)

Each puy is a zero of order 1 of f, and all of these zeros are real.

Proceeding as in Chapter 8, Case 1, or as in [34, pp. 146-152], it follows
that Ag(z) has a sequence of zeros zy, k = ko, ko+1, ..., in the sector Xg with
each zj being a zero of order 1 of Ag(z). These zeros satisfy the asymptotic
formulas
7
k )
and are approaching the positive real axis as k — oco. It is immediate that the
characteristic determinant A(p) has a sequence of zeros

‘Zk—p,k| < k=ko,ko+1,..., (10.55)

Pk = W2k, k=koko+1,...,

in the sector X7, each pi being a zero of order 1 of A(p), with the pi ap-
proaching the ray argp = w/4 as k — oo. The sequence

Ak:(pk)47 k:k07k0+1a"'7

is a sequence of eigenvalues for the differential operator L = T, with the Ay
approaching the negative real axis as k — oo. These eigenvalues account for
all but a finite number of the eigenvalues of L. The corresponding algebraic
multiplicities and ascents are
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v(Ag) = m(A) =1, k=koko+1,....

Here in Case II we have found only one sequence of eigenvalues, with these
eigenvalues approaching in the limit the negative real axis. This behavior is
very different from our previous work where L is either regular or simply
irregular. Cf. Theorems 7.2, 7.3, and 7.5.

Case III. n =4, Py(p) = 0, Qo(p) = 0. For this case equation (10.44) for
the characteristic determinant simplifies dramatically to

A(p) = D(p)e e = Siygp’e~ e (10.56)

for p # 0 in C, where the constant 7y is defined as in Case II by equation
(10.47). Thus, the nonzero part of the spectrum o (L) is determined by the
constant 7g. Again by Definition 3.2 the differential operator L = T is degen-
erate irregular.

Now in our previous work we have shown that A = 0 is an eigenvalue for
L if and only if Ay = 0, where the constant Aq is given by equation (10.46).
We assert that Ag = 679, and hence, A = 0 is an eigenvalue for L if and only
if 79 = 0. First, we already know that

(a1, B, a0, Bo) = 0. (10.57)
Second, in (10.41) and (10.42) the p3 coefficient must vanish:

<a27/817 a0750> + <627a17 a0750> = 07 <a27 a17060,ﬂ0> + </827517 040750> - 07
and it follows that

<C¥2, aq, &, BO> - 2<0‘23 /617 Qo, 60> - 2<627 a1, @, ﬁ0> + </627 ﬂla o, ﬂ0> =0.
(10.58)
Third, the vanishing of the p* terms in (10.41) and (10.42) yields the equations

(as, B1, a0, Bo) — (B3, a1, o, o) — 2(ca, B2, g, Po)
—(a2, o1, 1, Bo) + (B2, a1, B1, ) = 0,
(as, a1, ao, Bo) — (B3, B1, a0, Bo) + (@2, a1, B, a0) — (B2, a1, B, Bo) = 0,

and hence,

(a3, a1, a0, Bo) + (a2, a1, B, ag) — (as, b1, o, Bo)
+(ag, a1, B1, Bo) + 2(aa, B2, g, Bo) + (B3, a1, o, Bo) (10.59)
—(B2, a1, B1, a0) — (B2, a1, B1, Bo) — (B3, B, o, Bo) = 0.

Fourth, the vanishing of the p® terms in (10.41) and (10.42) implies that
(s, Ba, g, Bo) + (az, a1, B1, Bo) + (B3, a2, 0, Bo)
+<ﬁ37 aq, ﬁla a0> + <042, 525 aq, BO> + <0427 ﬁQa ﬁla O[0> = 07

(as, ag, g, Bo) + (B3, B2, o, Bo) + (a3, a1, B, ag)
+(B3, a1, b1, Po) + (a2, B2, a1, ) + (a2, B2, 1, fo) = 0,
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and it follows that

(as, ag, g, Bo) + (a3, a1, B1, ag) + (az, B2, a1, ag)
+as, a1, B, Bo) + (a3, B2, a0, Bo) + (2, B2, a1, Bo)
+(B3, a2, g, Bo) + (2, B2, B1, o) + (B3, a1, B, ag)
+(a2, B2, B1, Bo) + (Bs, a1, B1, Bo) + (B3, B2, o, Bo) = 0.

Fifth, the vanishing of the p® terms in (10.42) and (10.41) gives

(10.60)

(as, gz, a1, Bo) + (a3, az, B1, ap) + (as, B2, a1, ag)
+<a37ﬂ2a/817ﬂ0> + <637a2a CM17O(()> + <637a2a61750> (1061)
+(B3, B2, a1, Bo) + (B3, B2, B1,a0) = 0

and

2(as, 2,01, Bo) + 2(0s, a2, B1, ap)
= (a3, B3, a0, Bo) — (as, az, b1, Bo) — (a3, B2, B1, 20) (10.62)
— (B3, a2, a1, Bo) — (B3, Ba, a1, ag) + (a2, B2, a1, ).

If we now substitute (10.57)—(10.61) into the expression (10.46) for the con-
stant Ag, then it simplifies to give
Ag = 6[2(as, az, a1, a0) + 2{as, az, B, o) + 2(as, B2, a1, Bo)
+ 2(as, B2, B1, ao) + 2(B3, g, a1, Bo) + 2(Bs, a2, B1,0)  (10.63)
+ 2(083, B2, a1, ao) + 2(Bs, B2, 1, Bo)];

and if we finally substitute (10.62) into (10.63), then we arrive at the result
Ag = 6[2(as, az, a1, ag) + {as, a2, B1, o) + {(as, Bs, ao, Bo)

+ (a2, B2, a1, B1) + (a3, B2, B1, o) + (B3, a2, a1, Bo) (10.64)
+ (B3, B2, a1, 0) + 2(Bs, B2, 51, Bo)] = 670.

This establishes the assertion.
In view of the above, we conclude that if vy # 0, then

o(L)=0 and p(L)=C, (10.65)

while if 49 = 0, then
o(L)=C and p(L)=0. (10.66)

Example 10.1 and Example 10.2 with n = 4 are models for these two extremely
degenerate irregular cases.
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10.4 Some Results for the Special Case n =2v, L =T

Some of the above results for the case n = 4 can be generalized to higher
order n. We will only sketch the generalizations here. Assume that n = 2v > 6
and L = T. From equation (10.4) the characteristic determinant is given by

A(p) = det(Bi(yr( -, p)))
0<k<v-1 v<k<n-1

Py (ipwr) + Q1 (ipwr)e? s Q1 (ipwr) + Pi(ipwy, e <k
= det

Pr(ipwi) + Qn(ipwy ) Qn(ipwr) + Po(ipwy)e

for p # 0 in C, where e'?¥0 = e71P¥v = ¢l? and elP@r-1 = e~iP¥n—1, Suppose we
expand the determinant for A(p) using linearity in the Oth column, (v — 1)st
column, vth column, and (n — 1)st column. This expansion expresses A(p)
as a sum of sixteen terms: each term consists of an exponential formed from
el and e'?*»-1 multiplied by a determinant that is independent of €* and
elrvv-1_ The sixteen exponentials that appear are as follows:

e =1,
elP — elp’ elPwr—1 — elpwu—17 elP — elp’ elPwr—1 — elpw,,,l,
elPelPwr—1 = glpglpwn—1  oipgip — g2 glpglpwn—1 — gipgipwy—1
elPwr—1lp — eipeiprl’ elPwr—1glpwr—1 e2ipwu71’ elPelpwr—1 — eipeipwufl,
elPelpwr—1pip — e2lpelpwu71’ elPeiPwu—1gipwr—1 _ ,3113621/%47
elPelPelpwr—1 — tepelpw,,,l, elPwr—1glppirwy—1 elp621pw,,,1,
elPelPwr—1gipgipwr—1 _ o2ip2ipwy—1
There are nine distinct exponentials appearing in this list: the exponentials
elr = 1, e2lr e2ire2ipwv—1 2ipwv—1 each occurs once in the list; the exponen-
tials elP, eZirelPwv—1  elpe2ipwyv—1  elpwi—1 each occurs twice in the list; and the
exponential e'’e'?“v~1 occurs four times in the list. Therefore, upon expansion
A(p) takes the form
_ 2i 2ip 2ipw, _ 2ipw,
A(p) = D1o(p) + D11(p)e”” + Dia(p)e™ e~ 4 Dyz(p)e”
i 2ip Lipw, ip 2ipw, ipw, _
+ Dag(p)e'” 4 Doy (p)e?Pel?v=1 4 Doy (p)elPe?Pr—1 4+ Dys(p)el#er—1
+ Dyo(p)elPelrr—1
(10.67)

for p # 0 in C, where the function D;;(p) is an entire function that is the sum
of 7 determinants.

Next, in the representation of D;;(p) as a sum of determinants, we proceed
to expand each determinant using linearity in columns 1 through v — 2 and
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v+ 1 through n — 2. This is the same expansion used earlier in Chapter 3 and
Chapter 5; it expresses each D;;(p) in the form

Dij(p) = Pij(p) + Qij(p),

where P;;(p) is a polynomial of degree < py that has a well-defined form and
structure, and where the entire function Q;;(p) is a sum of terms each being
the product of a polynomial of degree < py times a product of some of the
exponentials e?“* k =1,...,v—2 ore W k=v4+1,...,n—2 (at least
one of these exponentials appears in each such product). Upon substituting
these forms into equation (10.67), we arrive at our principal representation of
the characteristic determinant:

Alp) = [Po(p) + Oo(p)] + [P1(p) + O1(p)]e™” + [Pa(p) + Oa(p)]e®FePov—
+ [Ps(p) + O3(p)]e* = + [Qo(p) + Po(p)]e”
£ [Q1(p) + B (D]H71 + [Qalp) + Ba(p)] e
+[Qs(p) + Ws(p)]e™ = + [D(p) + T(p)]e'reir =
(10.68)

for p # 0in C, where the functions P;(p), Q;(p), D(p) are polynomials of degree
< po that have a well-defined form and structure, and where the functions
Oi(p), ¥i(p), T(p) are entire functions that go to 0 very rapidly as |p| — oo
on various sectors (to be specified below). In (10.68) the polynomials satisfy
the relations

Pi(p) = =Po(ip),  Ps(p) = =Po(—ip),  Qs(p) = —Qo(-ip). (10.69)

P5(p) is not related to Py(p), nor are Q1 (p) and Q2(p) related to Qp(p), as in
the case n = 4. Again we have

ma(p) =Pi(p) = —Po(ip),  m(p) =Qo(p),  mo(p) =Po(p) (10.70)

for p#£0in C.

The representation (10.68) of the characteristic determinant A(p) gener-
alizes the previous representations (3.32) and (5.31), and the representation
(10.44) for the case n = 4. It displays not only the primary terms

m2(p)e?? = Pi(p)e®” = —Po(ip)e®, mi(p)e” = Qu(p)e”, mo(p) = Po(p),

but also some of the secondary terms which come into play in the degenerate
irregular case. In particular, we will show below the important role played by
the term

QS (p)eipwu_l — _QO(_ip)eipwy_l )

Let us now consider some cases which are higher order analogues of the
previous cases for n = 4.
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Case I. n = 2v > 6, Pyo(p) # 0. For this case the two polynomials
mo(p) = Po(p) and ma(p) = —Py(ip) are both of degree p with 0 < p < po,
and hence, the differential operator L = T is either regular or simply irreg-
ular. The spectrum of L is characterized in Theorems 7.2, 7.3, and 7.5, and
the generalized eigenfunctions of L are shown to be complete in L2[0,1] in
Theorem 9.1.

Case II. n = 2v > 6, Py(p) = 0, Qo(p) # 0. Since the polymonials
mo(p) = Po(p) and ma(p) = —Py(ip) are both identically zero, the differential
operator L = T is degenerate irregular. From equation (10.68) the character-
istic determinant now takes the simpler form

A(p) = [Qol(p) +%(p )]eip + [Qs(p) + W3 (p)]elrer—
+Pa(p) + Oa(pe™ ™1 1[Gy () + I ()]s
+[Q2(p) + a(p)]ePe® v =1 + [D(p) 4 T(p)]elreirwr—1
+ Oo(p) + O1(p)e®” + O3(p)e?irwr—1

(10.71)

for p # 0 in C. Let ¢ denote the degree of the polynomial Qq(p) = 71(p), so
0 <q<poand Qy(p) = D7 _;bup™ with by # 0. Fix a real number oq with
0<og < 7T/10

First, let us study the behavior of A(p) on the sector

Yo: all p=|p|el? E(CW1th——+—<9§ %

13
\

Let h(p) be the analytic function defined by

q—

-y b

2 T
T a0+ xR 4 @u) Bl

+ [QQ(P) + Q’z(p)]emp“’”*l + []D(p) ( )] ipwy—1

+ Oy(p)e# 4+ O1(p)e'” + Qg(p)e—lpempqu}

S {00 + [0 + B

for p # 0 in C. Then equation (10.71) can be rewritten in the compact form
Alp) = ple’? [by + h(p)] (10.72)

for p # 0 in C. This is the form best-suited for treating the characteristic
determinant on the sector Y.

Let « := sin(mw/n + go/n) > 0 and 8 := sin(r/n — o¢/n) > 0, and then
choose a constant £ such that f < € < « and set n := £ — 3 > 0. For the
exponentials appearing in (10.71) and (10.72) either explicitly or implicitly,
we have the estimates

|elPwr| < emelel k=1,...
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and .
|eﬂp‘*’*"|§e*“‘p‘7 k=v+1,...,n—1,

for p € Xy, which leads to the estimates
10i(p)] < 0e™ P 1Wi(p)] < e, [T (p)] < et

for p € Xy and for i = 0, 1,2, 3. The exponentials e and e~ are not bounded
on the sector Xy, but they do satisfy the growth rates

le'?| < SAlel and le7i?| < oAlel

for p € Xy.
Choose a constant y; > 0 such that
IPs(p)|e™ (=) < ype™ Pl |Qi(p)]e™ @) < ype Pl
|D(p)|ef(afﬁ) < e el

for all p € C and for i = 0,1, 2, 3. In terms of these constants we have

|Qs(p)e™PelPor—1] <y Pl |Py(p)elPeirwr—1| < ype Pl
|Q1(p)eipeipwu71| < 716—77\9\7 |@2(p)62ipwu,1| < %e_mp‘7
ID(p)er=1] < yre ]

for p € Xy, and

[P (p)] < yoe Pl |W3(p)ePelrev—1] < yoe e,
‘@2(p>ei062ipwu71| < Voe—n\p\’ Wl(p)eipeip%,ll < 706‘_""",
W (p)e®iPer=1| < qpe Pl T (p)elPr—1| < ype Pl
[Go(pe ™| < y0e I, [O1(p)el?| < ype M,
|O3(p)e ™ Peirwr—1| < oIl
for p € Xp.

From the above it is immediate that |h(p)| < ~2/|p| for all p € Xy with
|p| > 1, which implies that

by
Alp)| > |plte=?d |, | — 12 >Lq 17t 5 0 10.73
|A(p)] = [p|Te {Iql |p|}_ 2Iple > ( )

for all p in Xy with |p| sufficiently large. We conclude that the characteristic
determinant A(p) has no zeros in the sector Xy when |p| is sufficiently large.
Where does A(p) have its zeros?
Second, we introduce the sector
Xy allp:|p|e19€(CWithz—@§9§§+@,
non non
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and proceed to look for zeros in the sector X';. We begin by rewriting equation
(10.71) in the form

Alp) = =+ {[Qo(p) + To(p)le ™~ + [Qs(p) + ¥ (p)]

[
+ [P2(p) + O2(p)]e—1e** + [Q1(p) + 1 (p))e*”
+ [Qa(p) + Ta(p)e** 1" + [D(p) + T(p)]e*
+ O(p)e 4 O (pe e+ By(p)e |

(10.74)

for p # 0 in C. Note that 7/n + o¢/n < 37/n — o¢/n < 7/2 because n > 6.

Let aq := sin(3n/n — oo/n) > «, and choose constants & and 7; such that
a<& <apand 0<m < B andn <& — a. Then we obtain the estimates
|eip‘*”“|§e*°‘1|p|, k=1,...,v—2,
lemirwor| <emlel E=p 41, n-2,

for p € X4, and
10i(p)] < eV |@i(p)] < el T (p)] < yze 17

for p € ¥, and for i = 0,1,2, 3. For the exponentials e/’ and e/?“»~1, we find
that
el <jeir) < e AlPl and el < |elrwr-1] < e~ Flrl

for p € X;. Thus, these two exponentials are going to 0 on X as |p| — oo,
but at a slower rate than the other exponentials. On the ray argp = w/n we

actually have

ipw, 1 —|p|sinw/n
)

] = e |=e

so the two exponentials are decaying at exactly the same rate on this ray.
Also, on the ray argp = 7/n the exponentials e~#*“»~1e!” and e’” = 1 both
have modulus 1.

Choose a constant y4 > 0 such that

Upi(p”e—ﬁ\p\ < 746—711\9\7 |@Z_(p)|e—mp| < 74e—n1|p|’ |]D)(p)\e_ﬁ|”| < 74e—mlp|

for all p € C and for i = 0, 1,2, 3. Combining the above estimates, we get
|P2(p)eipwufle2ip| < 74efmlp|’ |Q1(p)e2ip| < 74efmlp|’
|@2(p)eipwu_1eip| < Me—mlpl7 |]D)(p)eip| < 746—771\9\

for p € X, and

|¥70(p)e—ipwu,1eip‘ < ,ySe—m\P\’ 3 (p)| < 73e—m|p|’
|05 (p)elrr—1e2iP| < yge~mlel 7 (p)e??| < ge—mlol
Ba(p)eiret o] < qe I, [7(p)el?] < g,
|O(p)e™ Pt | < yzem Il O (p)eT 1P| < ygem A,

‘@3(p)eipoju_1| < Wge—mlpl
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for p € X1. Let ®(p) be the entire function defined by

B(p) := Wo(p)e P=1e'? + Wy (p)
+ [P2(p) + O2(p)]e 16 + [Qu(p) + ¥1(p)]e*”
+[Qa(p) + Ta(p)]e*r 1 + [D(p) + T(p)]e”
FBu(p)e 4 + O (p)e e 1 Oy ()

for p € C. Then the representation (10.74) of the characteristic determinant
can be rewritten as

A(p) = =1 {Qo(p)e "~ 1e — Qo(—ip) + (p)} (10.75)

for p # 0 in C, where Qy(p) is a polynomial of degree ¢ with 0 < ¢ < py and
where @(p) is an entire function with

1B(p)| < vse ™Il for p e Xy, (10.76)
Finally, we introduce the sector
70

e all z = |z]el € C with —22 < ¢ <
n n

Set w := €™/ /(2cos /n), and make the change of variable

_ _ __ I
p=ws ol = lwllzl = 2cosm/n’

Clearly p € X if and only if z € Xg. Note that

2t .. 27
—wy_1+1=cos— —isin— +1
n n
= (QCOSQE — 1) —i(2sinzcosz) +1
n n n

™ ™ T T .
= (2 cos 7) (cos — —isin —) = (2 cos 7)e—1ﬂ'/n7
n n n n

ip(—wy—1 +1) =iz

and hence,

Next, we introduce a modified form of the characteristic determinant:
Ag(2) == Alwz) = el@?@r—1 {Qo(wz)eiz — Qo(—iwz) + P(wz)} (10.77)

for z # 0 in C. Define the constant &y by & := (—i)?, the entire function f(z)
by
f(2) := bywie' — by(—i)1w? = byw? [eiz — &)

for z € C, and the analytic function g(z) by
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2 bw” (i)W 1
g(z) == ZO e ol _ ZO G + = ®(wz)

for z # 0 in C. In terms of these quantities equation (10.77) becomes
Ag(z) = 29971 [f(2) + g(2)] (10.78)

for z # 0 in C. From equation (10.76) it follows that |g(z)| < ~e/|#| for all
z € Xg with |z] > 1.

The rest of the discussion is identical to the case n = 4. First, the zeros of
the function f(z) are given by the sequence

i = 2wk 4+ Arg &, k=0,£1,4£2,....

Each of these zeros is a zero of order 1, and all are real-valued. Second, the
function Ag(z) has a sequence of zeros zy, k = ko, ko + 1,..., in the sector
Ye, with each a zero of order 1. The z; satisfy the asymptotic formulas

\zk—uk|§%, k=koko+1,...,

and are approaching the positive real axis as k — co. They account for all but
a finite number of the zeros of Ag/(z) in the sector Yg. Third, the sequence

Pk = WZk, k:k07k0+17"'7

is a sequence of zeros for the characteristic determinant A(p) in the sector
X1. Each py, is a zero of order 1, with the pj approaching the ray argp = 7/n
as k — oo. Fourth, the sequence

)\k:(pk)na k:k07k0+1a"'7

is a sequence of eigenvalues for the differential operator L = T, with the Ay
approaching the negative real axis as k — oo. These eigenvalues account for
all but a finite number of the eigenvalues of L. The corresponding algebraic
multiplicities and ascents are

V()\k;):m(Ak):l, k:ko,ko—f—l,....
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Unsolved Problems

In the previous chapters we have established important results in the spectral
theory of two-point differential operators L that are either regular or simply
irregular. For these two cases there still remain many unsolved problems,
while for the degenerate irregular differential operators the spectral theory
is completely wide open. It seems only appropriate to list here some of the
important unsolved problems.

Problem 1. Do the formal solutions

Zk(tap):eipwktzzkj(t>p7j7 k:()vla"'vn*17
j=0

introduced in Chapter 2 converge to actual solutions of the differential equa-
tion (2.1)?

Problem 2. Can the characteristic determinants Ag(p) and A (p) of Chapter
5 be obtained as limits of the approximate characteristic determinant A(p, m)
of Chapter 3 as m — 00?

Problem 3. For the characteristic determinants in Theorems 5.1 and 5.2,
is it true that A;(p) = e~ 2 Ag(p) on the horizontal strip To N Ty ? Can the
characteristic determinant Ag(p) be continued to the region consisting of all
points p € C with |p| > Ro?

Problem 4. If the differential operator L is simply irregular, is it true that
Soo(L) # Soo(L) ? Are the associated projections P; unbounded? This is true
in certain situations for the case n = 2, as shown in the two series [25, 26] and
30, 31, 32, 33].

Problem 5. If the differential operator L is degenerate irregular and the spec-
trum o(L) is a countably infinite set, can it be shown that So. (L) = L?[0,1]?




296 11 Unsolved Problems

Models for this type of problem are given in Case I of Chapter 10.

Problem 6. What is the subspace S (L) when the differential operator L is
simply irregular or degenerate irregular? What is Soo(L) whenn =2, L =T,
and L is simply irregular? In general, is the domain D(L) a subset of So(L)?

Problem 7. Is there a natural subdivision of the degenerate irregular case
into disjoint subcases having different spectral properties? The cases where
the spectrum o(L) is countably infinite, or is empty, or is equal to all of C,
should go into different subcases. Is there a spectral theory available for any
of these subcases?

Problem 8. For the case n = 2v even, it is easy to verify that Dirichlet
and Neumann boundary conditions determine a differential operator L that
is regular. This is also true for periodic boundary conditons and boundary
conditons of Sturm Type [36, pp. 60-63]. Are all self-adjoint differential op-
erators regular? In [25, 26] we have shown this to be true for the case n = 2
and L = T, because in the irregular cases either the associated projections
are unbounded (Case IX and Case XI) or the spectrum is either empty (Case
XII) or is equal to all of C (Case XIII). See [25, p. 556].

Problem 9. For n = 2v even, are there examples of differential operators L
belonging to Case 2 that are simply irregular, i.e., where the integers p and ¢
satisfy the conditions p = ¢ < po?

Problem 10. In general, can the spectrum o(L) be a nonempty finite set?
This is impossible in the special case n = 2, L = T (see [25, p. 556]) and in
the special case n =4, L =T (see Cases I, I, IIT in the previous chapter).

Problem 11. In Example 10.2 we gave a model of an even order differential
operator L = T with o(L) = C and p(L) = 0. Can we find an analogous
model of an odd order differential operator L = T'7 Are there more general
models with o(L) = C and p(L) = () where L has variable coefficients?

Problem 12. The rows of the n x 2n boundary coefficient matrix A,

(ainflaﬁinfh ain7276in727 ey aiOu/BiO)v 1= ]-7 ey Ny,
span an (n — 1)-dimensional linear space L in the projective space P21,
Let the columns of A be denoted by ~1,...,72,, and for integers ji,...,jn

with 1 < j; < -+ < jn < 2n, let (vj,,...,7;,) denote the determinant of
the n x n submatrix of A formed by using the columns vj,, ..., v;,. Then
the (2:) determinants (v;,,...,7;,) are the Pliicker coordinates of the linear

space L. For the special case n = 4, L = T, the 70 Pliicker coordinates appear
very prominently in equations (10.41), (10.42), and (10.43) for the polynomial
coefficients Py (p), Qo(p), and D(p) that determine the characteristic determi-
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nant A(p). For the general case L = T, can we use the Pliicker coordinates
associated with the boundary coefficient matrix A to effectively construct the
characteristic determinant?

Problem 13. The spectral theory for the case n = 1 and ¢ = (1/i)(d/dt)+q(t)
has never been developed. It would be instructive to have this elementary case
included in the overall picture; it might shed some light on some of the other
problems.

Problem 14. For the special case L = T, in forming the alternate charac-
teristic determinant A, (p) = det(B;(zx(-,p))) the exponentials

elP(Bowotdiwi+-+dn_10wn-1)

appear, where the constants §; are either 0 or 1. How many distinct exponen-
tials are formed from these 2™ exponentials? We know the following results:

n=2: 4 exponentials, 2 distinct exponentials,
n=3: 8 exponentials, 7 distinct exponentials,
n==4%: 16 exponentials, 9 distinct exponentials,
n==~6: 64 exponentials, 19 distinct exponentials,
n=_§8: 256 exponentials, 81 distinct exponentials.

Is there a practical way to construct the distinct exponentials so that they can
be ordered according to their moduli relative to the sector Sy? Can we calcu-
late the polynomial coefficient of each distinct exponential? The case n = 4
has been treated in detail in Chapter 10.

Problem 15. For the special case n = 8, L = T, we have done some prelim-
inary work with help from Maple. When the characteristic determinant A(p)
is expanded using linearity in all eight columns, the 256 exponentials that are
produced reduce down to 81 distinct exponentials. First, there are the three
primary exponentials e®? = 1, e, €2, Second, there are the six secondary
exponentials

A e e e N e 2
O R L N N S a1

And third, there are 72 additional exponentials of lower order. The ordering
of these 81 exponentials is according to their moduli relative to the sector Sp.
In terms of these exponentials the characteristic determinant takes the form

A(p) =Po(p) + Qo(p)e” + P1(p)e™ + Q1(p)
+Ro(p)el™ e 7

(-2 =gl

a

FAHAP)e 1§ (p)elF HE e Ty (p)el—F TPl

4 Rl(p)e[f§+(1+§)ﬂp 4 Qz(p)e[—§+(2+§)i]p b
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for p # 0 in C, where the functions Py(p), ..., Q2(p),... are polynomials of
degree < 44. For the special case Py(p) = 0 and Qg (p) = 0, this representation
simplifies to

Ap) = RO(P)Q[igJF(lig)i]p + So(p)e[*§ +%2i]p
+ To(p)el=F =P | R, (p)el—F+A+R)e 4 ..

vz V3 i
— e[—%+(1—72)1]p{R0(p) + So(p)e(_““@l”
+To(p)e” + Ry(p)e¥# + -+ }

for p # 0 in C. Clearly the differential operator L = T becomes degenerate
irregular. How does one calculate the zeros of A(p) in this special case? See
the paper by Langer [27]. Are the generalized eigenfunctions of L complete in
L?[0,1]? Is it possible that there may be more than two sequences of eigen-
values? Could there be algebraic multiplicities greater than 27 Can we give a
specific example that falls within this special case?
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Appendix

The appendix contains two lemmas which are used to develop the regularity
properties for our solutions of the differential equation (2.1). These lemmas
generalize well-known results from classical analysis. The first is a complex
version of Leibniz’s rule from advanced calculus. See [7, p. 68 and p. 73].

Lemma 12.1. Let A, and As be the triangles in R? consisting of all points
(t,s) satisfying the inequalities 0 < s <t <1 and 0 <t < s < 1, respectively,
and let G be an open set in the complex p plane; let ¢1: Ay x G — C and
Po2: Ay x G — C be continuous functions, and let ¢ be the function defined by
¢(t78,,’)) = ¢1(t787p) fOT‘ 0<s<t<l, pEe G: and ¢(t787p) = ¢2(ta Sap) fO’f‘
0<t<s<1,peG;andletu:[0,1] x G — C be the function defined by

1
u(t, p) :z/qﬁ(ts,p)ds for0<t<1,peq.
0

Then u is continuous on [0,1] x G. Moreover, if 0¢1/0p exists and is con-
tinuous on Ay X G and if O¢o/0p exists and is continuous on Ay x G, then
Ou/0p exists and is continuous on [0,1] x G with

du L og
— s <t < .
st = [ Gltspds pro<isiped

Note: we do not make any assumptions about the values of ¢4 (¢, s, p) and
¢2(t, s, p) when t = s, so we can have a jump across the diagonal t = s.

Proof. First, fix points tg € [0,1] and py € G, and let us show that u is
continuous at the point (¢g, pg). Take any € > 0. Choose ¢ > 0 such that the
closed disk Dy: |p — po| < 7o lies in G. Then ¢ and ¢o are continuous on the
compact sets Ay x Dy and As x Dy, respectively. Select a constant M > 0 such
that |¢1(t, s, p)| < M for (¢,s,p) € A1 x Dy and such that |p2(t,s,p)] < M
for (t,s,p) € Az X Dy. Choose § > 0 such that § < rg, § < ¢e/(6M), and such
that
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|¢1(t/a$,7p/) - ¢1(t757p)| < 6/3
for (t/asl7p/)7 (t,S,p) € Al x Do with ‘t/ - t|2 + |S/ - 5|2 + |pl - p|2 < 527 and
such that
|¢2(t/18,7pl) - ¢2(t7s,p)| S 6/3
for (t/,s',p), (t,s,p) € Ay x Do with [t/ —t|> +|s' — 5|2 + |p' — p|* < 6%
Now take t € [0,1] and p € G with to < t and [t — to|> + |p — pol® < 6%
Clearly |p — po| < § < rg, so p € Dy. Then

ult, p) — ulto, po) = / [6(t, 5. ) — Blto, 5, po)] ds
- / "[b1(t,5,p) — bu(to, 5, po)] ds

+/ [¢1(tasap)_¢2(t07svp0)] ds

tol
+/ [¢2(t78’p) _¢2(t0asap0)] dS,
t

and hence, |u(t,p) — u(to, po)| < €¢/3 +2M - (¢/6M) + €/3 = €. The same
estimate is also valid for the case ¢ < ty. This establishes the continuity of u
at (to, po)-

Second, assume that d¢;/0p exists and is continuous on A; x G and that
O¢o/0p exists and is continuous on Ay x G. Fix tg € [0,1] and py € G, and
let us show that u(tg, p) is a differentiable function of p at the point p = po.
Take any € > 0. As above choose 9 > 0 such that the disk Dy: |p — po| < 79
lies in G. Set

P1(s,p) == a;;l(to,s,p) for 0 < s <tg, p €G,
a(s,) = 2 t0,5p) forta <5< LpcG

and then set

0
U(s.p) = t2(5,9) = Go(ta,5p) for 0< s <to, pe G

0
P(s,p) :=1a(s,p) = 6—25(150,8,,0) fortg<s<1,pedG.
Choose § > 0 such that § < rg, such that
|¢1(8/7p/) - ¢1(3»P)| <e
for all (s',p'), (s, p) € [0,t0] X Do with |s" — s]? + |p’ — p|?> < 42, and such that

|w2(3/7p/) - '(/J2(Sap)| <e
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for all (s, p'), (s, p) € [to, 1] x Do with |s' — s|> + |p' — p|? < 6%

Take any point p € G with 0 < |p — po| < §. Clearly p € Dy, and the
trace of the oriented interval v = [pg, p] lies in Dy. Now for any fixed s with
0 < s < to, the function @1 (p) := ¢1(to, s, p) — p¥1(s, po) is an anti-derivative
for the function 1 (s, p) — ©¥1(s, po) (as functions of the p variable), while for
fixed s with tg < s < 1 the function P2(p) := ¢a(to, s, p) — p12(s, po) is an
anti-derivative for the function ¥ (s, p) —1a(s, po). Thus, for s with 0 < s < tg
we have

¢1(t0a 5,/)) - ¢1(t07 57P0) - (p - PO)¢1(3aPO)
= ¢1(to, s, p) — pi(s, po) — d1(to, s, po) + potb1(s, po)

— B1(p) — Br(po) = / (5, €) — (s, po)] de,

and hence,

61(00,5.9) ~ 100,5,90) = (0~ (o, 00| < | I (5,8) = s o)
<¢lp—pol-
In the case for s with typ < s <1 the same argument shows that
|p2(to, s, p) — d2(to, 5, p0) — (P — po)¥2(s, po)| < €|p — pol.

Combining all the above pieces, we have

u(th p) - u(t07p0) _ !
P — po /Ow(SaPO) ds

to
< ﬁ / (61(t0, 5, 0) — d1(tos 5, p0) — (9 — po)tha (s, po)| ds

1
+ V)_—lp‘ / (Ga(to, 5 p) — ba(tes 5, p0) — (p — po)a(s, po)| ds

1
< elo—polto+ ——— - elp— pol(1 — to) = ¢
[p = pol lp = pol
for p € G with 0 < |p — pg| < 6. We conclude that the function u(tg, p) is
indeed differentiable at p = pg. The continuity of du/dp on [0,1] x G follows
from the first part of the proof. O

The second lemma generalizes a well-known result on the analyticity of
the limit of a sequence of analytic functions. See [37, p. 256].

Lemma 12.2. Let G be an open set in the p plane, let ui: [0,1] x G — C,
k=1,2,..., be a sequence of functions, and let u: [0,1]x G — C be a function,
where for each compact subset K of G, it is assumed that the ui converge
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uniformly on [0,1] x K to u. Assume that each uy, is continuous on [0,1] x G
and that Ouy, /Op exists and is continuous on [0, 1] X G. Then u is continuous on
[0,1] X G, du/dp exists and is continuous on [0,1] x G, and for each compact
subset K of G, the functions Ouy/0p converge uniformly on [0,1] x K to
ou/0p.

Proof. First, fix tg € [0,1] and pg € G. To show that u is continuous at (g, po),
take any € > 0. Choose 1o > 0 such that the closed disk Dg: |p — po| < 7o lies
in G. Appealing to the uniform convergence on [0, 1] x Dy, choose a positive
integer k such that

luk(t, p) —u(t, p)| <e/3 forall (t,p) € [0,1] x Dy.

Using the continuity of uy at (to, po), select § > 0 such that 6 < g and such
that

|Uk(t,p) - Uk(thPON < 6/3
for all (t, p) € [0,1] x G with |[t—t9|?>+|p—po|? < 6%. Then for (¢,p) € [0,1]x G
with [t — to]? + |p — po|? < 62, we have |p — po| < 6 < 1o, p € Dy, and

|u(ta ,0) - u(thp0)| < ‘u(t7p) - uk(t7p)| + |uk(t7p) - Uk(to,p0)|
+ |ug (to, po) — u(tos po)|

We conclude that u is continuous at (o, pp), and hence, u is continuous on
[0,1] x G.

Second, fix any point pg € G. Choose rg > 0 such that the closed disk
Dy: |p — po|] < 1o lies in G. In terms of the open disk Ag: |p — po| < 1o, We
will show that du/0p exists on [0, 1] x Ag. Because pg is an arbitrary point of
G, it then follows that du/dp exists on [0, 1] x G.

Form the circle v(7) = po + 10e!”, 0 < 7 < 2, which lies in the disk Dy
and in G. Clearly the u converge uniformly on [0, 1] x Dy and on [0, 1] x {v}
to u. Now for t € [0,1] and p € Ag Cauchy’s integral formula gives

1 Uk (tv f) auk 1 U (t7 5)
ug(t, p) = 5= d§ and ——(t,p)=5= [ 7——=5d¢
0) = 3 5 E=p ap( )= o 5 (E—=p)?
for k=1,2,.... Letting K — oo and appealing to the uniform convergence on

[0,1] x {7}, we obtain the result

Comi ), E—p
From the classical theory it follows that du/0p exists at each point (¢, p) in

[0,1] x Ag with
ou 1 u(t, &)
—_— = —_— —_— d .
dp 0) =55 L (€ —p)? ¢

u(t, p) = / UG8 ge for (£ p) € [0,1] x Ao,
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Next, introduce the closed disk Dy: |p — po| < r0/2, and let us show that
the Quy, /0p converge uniformly on [0, 1] x D; to Ou/dp. Indeed, take any € > 0.
Choose a positive integer N such that

€To

|U]<;(t,§) - u(t>§)| < 4

for all k > N, t € [0,1], and € € {v}. Then for £ > N and (¢, p) € [0,1] x Dy,
from the above we have

duy, du ‘ 1 /Iuk(t,f)—U(t,ﬁ)l

—(t,p) — =—(t, < — d

ap( p) ap( Pl 5 : e |d¢|
< L e 1 - 2mrg = €.

o 4 (Lo )2
2
This establishes the desired uniform convergence on [0, 1] x D;.
If K is a compact subset of G, then K can be covered by a finite number
of closed disks such as Dy, and it follows that the functions duy/0p converge
uniformly on [0,1] x K to du/0p. Applying the first part of the proof to the

sequence Ouy/dp, k =1,2,..., and to the function du/dp, we see that Ou/dp
is continuous on [0,1] x G. O
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Aop, integral operator
n even, 74
n odd, 89
A1,, integral operator
n even, 83
n odd, 92
ax, bi, ¢k, constants
n even, 10, 48, 49, 103, 185, 252
L=T,270
ax, bi, constants
n odd, 11, 54, 55, 124, 209, 256
L=T,270
al,, bl., constants
n odd, 12, 59, 130, 256
Algebraic multiplicity, 2, 7
n even, Case 1, 191
n even, Case 2, 194
n even, Case 3, 204, 207
n odd, Case 1, 215, 218
n odd, Case 2, 229, 233
n odd, Case 3, 244, 248
Appendix, 299-303
Approximate characteristic determinant
A, 7,9-11, 16, 18, 42
L=T,23
limit of, 295
n even, 43, 45, 52
n odd, 43, 52, 53, 61, 62
Approximate characteristic determinant
A, 12, 18
n odd, 57, 58, 61, 62

Approximate solution zx(-,p), 4, 7, 8,
14, 25, 29, 37, 42, 51, 61, 67, 69,
71, 77, 81, 88, 95, 103, 119, 124
algorithm for calculating, 26
{=r,23, 32
n =2, 33
n=2,m=3, 33, 112
recursion equation, 28, 32
relation to zo(t, p), 30
Apriori estimates, see Eigenvalues,
n even, Cases 1-3 and Eigenvalues,
n odd, Cases 1-3
Ascent, 2, 251
n even, Case 1, 191
n even, Case 2, 194
n even, Case 3, 204, 207
n odd, Case 1, 215, 218
n odd, Case 2, 229, 233
n odd, Case 3, 244, 248
Asymptotic expansion of solutions, 7,
14, 15
n even, 67, 80, 85
asymptotic formulas, 77, 85
differential equation, 71, 82
integral equation, 73, 74, 82
integro-differential equation, 72, 82
linear independence, 77-78, 85
Yok (-, p), solution, 75
P1k(+, p), solution, 83
regularity properties, 78-80, 85, 299
vok( -, p), solution, 69, 75, 95, 133
vik( -, p), solution, 83, 95, 105, 144
n odd, 86, 91, 93
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asymptotic formulas, 91
differential equation, 88
integral equation, 88
integro-differential equation, 88
linear independence, 91

Yok (-, p), solution, 89

Y1x( -, p), solution, 92
regularity properties, 91, 299
vok( -, p), solution, 90, 119, 154
vik( -, p), solution, 92, 119, 126, 169

Boap, integral operator
n even, 76
n odd, 90
Biap, integral operator
n even, 84
Benzinger, H. E.; 5
Birkhoff approximate solution, see
Approximate solution zx( -, p)
Birkhoff, G. D., 4, 5, 25
Boundary coefficient matrix, 4, 296
n=2, 112
Boundary conditions
Dirichlet, 296
irregular, 5, 6
Neumann, 296
periodic, 296
regular, 4-6
Stone regular, 5
strongly irregular, 5
Sturm type, 296
Boundary values, 1
irregular, 6, 7
n=2,112
normalization, 4
regular, 6

Cauchy’s integral formula, 302
Characteristic determinant Ao, 7, 295
n even, 16, 100, 104, 139, 185
growth rates, 22, 188, 191, 198, 204,
252, 253
n=2,111-118
n = 2, Cases 1-5, 114-117
n = 2, Case 5 example, 117-118
representation, 100-102, 104, 185,
186, 196, 198, 201, 202, 251
n odd, 17, 18, 121, 125, 209

growth rates, 22, 211, 215, 221, 222,
228, 229, 236-238, 244, 257259
representation, 122, 124, 125, 210,
220-222, 226, 227, 235-237, 241,
242, 256
Characteristic determinant Ag
n odd, 155, 164
Characteristic determinant Ay, 7, 295
n even, 16, 108, 111, 148, 185
growth rates, 22, 188, 199, 200, 207,
252, 253
n=2,111-118
n = 2, Cases 1-5, 114-117
n = 2, Case 5 example, 117-118
representation, 108-111, 186, 196,
205, 206, 251
n odd, 17, 18, 128, 131, 209
growth rates, 22, 213, 217, 223, 225,
233, 238, 240, 248, 257259
representation, 128-130, 212,
222-225, 230, 231, 238240, 245,
246, 256
Characteristic determinant Aj
n odd, 170, 180
Classification
L =T, consistency, 270
n even, 43, 50
n odd, 52, 55
n = 2, Cases 1-5, 114-117
Coddington, E. A.; and N. Levinson, 5,
15
Completeness of generalized eigenfunc-
tions, 7, 20, 22, 251, 267
degenerate irregular cases, 295
n even, 256
n odd, 265
n=8, L=T, 298
Cramer’s rule, 141, 175

Dy;i(p), analytic function
n even, 101, 102
n odd, 123
D1;(p), analytic function
n even, 109, 110
n odd, 129, 130
Degenerate irregular differential
operator, 7, 10, 13, 267, 295, 296
L =T, 23, 267-294
n even, 50



n odd, 55
n=38, L=T, 298
Degenerate irregular examples
Example 10.1 o(L) = 0, 271-273
Example 10.2 o(L) = C, 273-274
Example 10.3 one sequence of
eigenvalues, 281-282
ﬁi(p), analytic function
n even, 43, 44
n odd, 52, 53
Di(p), analytic function
n odd, 57
Differential operator, 1, 6
asymptotic expansion of solutions, see
Asymptotic expansion of solutions
characteristic determinant, see
Characteristic determinant Ay,
Aq, Af, AT
classification, see Classification
completeness, see Completeness of
generalized eigenfunctions
degenerate irregular, see Degenerate
irregular differential operator
eigenvalues, see Eigenvalues
expansions in generalized eigen-
functions, see L>- expansion
problem
Green’s function, see Green’s function
L = T, see Differential operator
L=T
Moo (L), see Moo (L)
n = 2v, L = T, see Differential
operator, n =2v, L =T
n = 4, L = T, see Differential
operator, n =4, L =T
projections, see P;, projection
regular, see Regular differential
operator
resolvent, see Resolvent
simply irregular, see Simply irregular
differential operator
Soo (L), see Seo(L)
spectral theory, see Spectral theory
spectrum, see Spectrum
Differential operator L =T, 23, 267-271
approximate characteristic determi-
nant /A\, 269
approximate solution zx( -, p), 268
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asymptotic expansion of solutions,
ve( -, p) = zk(-,p), 270-271
characteristic determinant A = /A\,
269, 271
characteristic determinant A, 269
modified approximate solutions, 268
modified solutions, 271
ﬁik(p), polynomial, 268
mi(p), polynomial, 269, 270
7i(p), polynomial, 269, 270
Qik (p), polynomial, 268
residual function, 268
Differential operator, n = 2v, L = T,
24, 288-294
Case I, regular or simply irregular,
290
Case II, degenerate irregular, 290-294
one sequence of eigenvalues, 294
spectrum, 294
characteristic determinant A = Z,
288-290, 292, 293
growth rates, 291
characteristic determinant Ag, 293,
294
D(p), polynomial, 289
Po(p), polynomial, 289
Pi(p), polynomial, 289
relation to Po(p), 289
mi(p), polynomial, 289
¥;(p), entire function, 289
Qo(p), polynomial, 289
Q:i(p), polynomial, 289
relation to Qo(p), 289
2o, sector, 290
Yg, sector, 293
X1, sector, 291
Oi(p), entire function, 289
Y (p), entire function, 289
Differential operator, n =4, L =T, 23,
275287
approximate solution zx( -, p), 275
Case [, regular or simply irregular,
282
Case 11, degenerate irregular, 282286
model, 282
one sequence of eigenvalues, 286
spectrum, 285
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Case III, degenerate irregular, %, A, eigenvalues, 215, 218
286287 Wy, Wi, zeros, 213, 216
models, 287 Pk, P, zeros, 215, 218
o(Ly=0oro(L)=C, 287 n odd, Case 2, 21, 219-235
characteristic determinant A = A, apriori estimates, 225
275, 280, 282, 283, 286 asymptotic formulas, 229, 233-234
growth rates, 283 A, A\, eigenvalues, 229, 233
characteristic determinant A., 269, W, M, zeros, 226, 230
276, 297 P, i, zeros, 229, 233
characteristic determinant Ag, 284, n odd, Case 3, 22, 235—-249
285 apriori estimates, 240
D(p), polynomial, 276, 277, 280, 296 asymptotic formulas, 244-245, 248
Ao, constant, 280, 281 Moy Mi, eigenvalues, 244, 248
modified approximate solutions, 275 Wy, [, Z€Tos, 241, 245
Po(p), polynomial, 276, 277, 279, 296 Pks Ph, zeros, 244, 248
P;(p), polynomial, 276 7o, constant, 189, 191, 193, 212
relation to Po(p), 278 nok( -, p), function
mi(p), polynomial, 280 n even, 134, 135
Pliicker coordinates, 296 n odd, 155, 156
Qo(p), polynomial, 276, 277, 279, 296  m&( -, p), function
Q:(p), polynomial, 276 n even, 145
relation to Qo(p), 278 n odd, 170, 171
Yo, sector, 283
Yg, sector, 284 fo(p), entire function
Y1, sector, 283 n even, 186
Dunford, N., and J. T. Schwartz, 5 n odd, 210
f1(p), entire function
Eigenvalues, 2, 7, 19, 185, 209 n even, 186
n even, Case 1, 20, 191-193 n odd, 212
apriori estimates, 188 Fi(p), entire function
asymptotic formulas, 192-193 n even, 206
Moy Mo, eigenvalues, 191 n odd, 231, 246
Wy, [, zeros, 189 fr(p), entire function
P> P, zeros, 191 n even, 202
n even, Case 2, 20, 193—195 n odd, 227, 242
apriori estimates, 188 Formal differential operator, 1
asymptotic formulas, 194-195 n =1, 297
Ny i, eigenvalues, 193 n=2 111
Ik, zeros, 189 Formal solutions, 25, 34, 295
Pk, Py, zeros, 193 recursion equation, 35
n even, Case 3, 20, 195—-208 relation to approximate solutions, 35
apriori estimates, 200 Fredholm operator, 2

asymptotic formulas, 204, 207208 Fredholm operator of index 0, 2
Moy My, eigenvalues, 204, 207

Wy, Wy, zeros, 201, 205 G, open set
Pk, P, zeros, 204, 207 n even, 78, 97

n odd, Case 1, 21, 210-219 n odd, 91, 120
apriori estimates, 213 go(p), analytic function

asymptotic formulas, 215-216, 218 n even, 186



n odd, 210
G'1, open set
n even, 85, 106
n odd, 93, 126
g1(p), analytic function
n even, 186
n odd, 212
Generalized eigenfunctions, 7
Generalized eigenspace, 2, 251
G (p), analytic function
n even, 206
n odd, 231, 246
gx(p), analytic function
n even, 202
n odd, 227, 242
Green’s function, 2, 7, 18, 133
n even, 134, 138, 148
growth rates, 19, 22, 143, 153,
251-253
representation, 141, 151
n odd, 164
growth rates, 19, 22, 162, 169, 177,
184, 251, 256260
representation, 160, 167, 175, 182
Green’s function for Lo, 18, 134, 136,
144-146, 155, 156, 162, 170, 171,
178

ho(p), analytic function

n even, 201

n odd, 226, 241
hi(p), analytic function

n even, 205

n odd, 230, 245
Hilbert-Schmidt discrete operator, 3,

251

Hilbert-Schmidt operator, 3
H"™-Sobolev structure, 4
H"-structure, 4
H™[0, 1], Sobelev space, 1
Hopkins, J. W., 5
Horizontal strip I, 11, 51, 187, 189
Horizontal strip I, 13, 60, 213
Horizontal strip I, 13, 60, 216

Index of differential operator, 2

Kop, integral operator
n even, 70
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n odd, 87
Ko,, integral operator
n even, 137, 138
n odd, 157, 158
K, integral operator
n odd, 163, 164
K1p, integral operator
n even, 81
n odd, 92
Ki,, integral operator
n even, 146, 148
n odd, 172, 173
K7,, integral operator
n odd, 178, 179

L, differential operator, see
Differential operator

L =T, see Differential operator L =T

Lo, differential operator, 18, 134, 155,
170

L?- expansion problem, 5, 6, 265

Lang, P., and J. Locker, 6

Langer, R. E., 298

Leibniz’s rule, 299

Levinson, N., see Coddington, E. A.,
and N. Levinson

£y, formal differential operator, 31

Locker, J., 5

Locker, J., see also Lang, P., and
J. Locker

Logarithmic case, see Eigenvalues,
n even, Case 3 and Eigenvalues,
n odd, Case 2 and Case 3

44, formal differential operator, 31

m, integer, 7

n even, 51, 103, 185, 252
_nodd, 61, 124, 209, 256
Mok (p), cofactor

n even, 140, 142, 143
_nodd, 159, 161, 162
M (p), cofactor
__nodd, 166, 168
Mi;x(p), cofactor

n even, 150, 152, 153
__nodd, 175, 176, 177
M1 (p), cofactor

n odd, 181, 183
Moo (L), 22, 251, 256, 265



314 Index

Modified approximate solutions, 9, 12,
37, 51, 56, 61, 103, 124
n=2 m=3,112
Modified solutions
n even, 16, 96, 105, 134, 139, 144
n odd, 17, 119, 126, 154, 169
Lo, constant
n even, 197
n odd, 220, 236
1, constant
n even, 205
n odd, 223, 238

N, positive integer
n even, 253
n odd, 260
n even, n = 2v, 8
nodd,n=2r—1, 8
n = 2v, L = T, see Differential
operator, n =2v, L =T
n =4, L =T, see Differential operator,
n=4,L=T
no, positive integer
n even, 196
n odd, 220, 235
Naimark, M. A.; 5, 15
nth roots of unity, 8, 67, 86

p, integer
n even, 11, 50, 103, 185, 252
n odd, 13, 60, 124, 209, 256
Do, integer, 4
Ij-, projection, 251, 295
P;i(p), analytic function, 38, 41, 42, 57,
99, 107, 108, 121, 128, 129
73 (p), analytic function
n even, 50, 52, 103, 111, 185, 251
n=2 m=3,113
n odd, 55, 61, 124, 209, 256
mi(p), mi(p) relation, 131
7i(p), analytic function
n even, 44, 45, 48-50, 101-103, 110
n=2m=3,113, 114
m2(p), To(p) relation, 45-46
n odd, 53, 54, 55, 123, 124
7i(p), mi(p) relation, 60
m; (p), analytic function
n odd, 59, 61, 130, 209, 256
7i(p), analytic function

n odd, 57, 58, 59, 130
Piks, constant, 39, 40, 42
Pliicker coordinates, 296
Principal part, 3, 17, 23

q, integer
n even, 11, 50, 103, 185, 252
n odd, 13, 60, 124, 209, 256
@ik(p), analytic function, 38, 41, 42,
57, 99, 107, 108, 121, 128, 129
Qiks, constant, 39, 40, 42

R;j, ray in A plane, 23, 255, 265
Re,, ray in X plane, 253, 260
Regular differential operator, 7, 10, 11,
13, 267, 295
n even, 50
n odd, 55
Regularity properties, see Asymptotic
expansion of solutions, n even
and Asymptotic expansion of
solutions, n odd
Regularity tests, 62
n even, 63—-65
n odd, 65-66
Residual function, 14, 29, 71, 81, 88
Resolvent, 2, 7, 18, 133
n even, 138, 148
growth rates, 7, 23, 251, 253-256
representation, 141, 150
n odd, 164
growth rates, 7, 23, 251, 258-265
representation, 160, 166, 175, 182
Resolvent set, 2, 251
Rouché’s Theorem, 191, 193, 204, 207,
215, 217, 229, 233, 244

S, differential operator, 3
So, S1, sectors, 7
n even, 9, 51, 67, 95, 133
n odd, 11, 55, 86, 118, 153
Schultze, B., 5
Schwartz, J. T., see Dunford, N., and J.
T. Schwartz
Self-adjoint differential operator, 296
00, constant, 97, 120, 253, 255, 260, 264
Simply irregular differential operator, 7,
10, 11, 13, 267, 295
n even, 50
n odd, 55



Se (L), 6, 22, 251, 256, 265, 295, 296
n=2,L=T, 296
Sobolev space, see H"[0,1], Sobolev
space
Solutions, see Asymptotic expansion of
solutions
sp(L), 22, 251, 256, 265
Spectral theory, 6, 7, 17, 267, 295, 296
n=1,297
Spectrum, 2, 251, 267
finite set, 296
n even, Case 1, 189, 193
n even, Case 2, 189, 195
n even, Case 3, 200, 208
n odd, Case 1, 213, 219
n odd, Case 2, 225, 235
n odd, Case 3, 240, 249
n=2,17
Stone, M. H., 5

T, differential operator, see Principal
part
Tv, T1, translated sectors, 7
n even, 11, 51, 69, 95, 103, 133, 185
n odd, 13, 60, 118, 124, 153, 209, 220
Toir(p), analytic function
n even, 140, 142
n odd, 159, 160
Toir(p), analytic function
n odd, 165, 167
T1ik(p), analytic function
n even, 149, 151
n odd, 174, 176
T (p), analytic function
n odd, 181, 182
Tamarkin, J., 5
0o, constant
n even, 253
n odd, 260
Two-point differential operator, see
Differential operator

Uok( -, p), function
n even, 140, 142
n odd, 159, 161

Usw(+, p), function
n odd, 166, 167

Uir(-,p), function
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n even, 150, 151
n odd, 174, 176
Uin(-,p), function
n odd, 181, 182
Unsolved problems, 24, 295-298
approximate characteristic determi-
nant A, limit of, 295
characteristic determinant A,
Pliicker coordinates, 297
characteristic determinant A,
L =T, characterize, 297
completeness of generalized eigen-
functions, 295
Ap continuation, 295
Ao, A relationship, 295
D(L) subset of Seo (L), 296
formal solutions, convergence, 295
models with o(L) = C, 296
n=2v,p=q<po, 296
n=38, L=T,297-298
characteristic determinant A,
297-298
completeness of generalized
eigenfunctions, 298
eigenvalues, 298
projections P; unbounded, 295
self-adjoint differential operator,
regular, 296
Soo (L) closed, 295
Soc (L), characterize, 296
n=2L=T, 296
spectral theory, 296
n =1, 297
spectrum, finite set, 296
subdivision of degenerate irregular
case, 296

Vandermonde determinant, 272
Vandermonde matrix, 78, 135, 136

Ward, L. E., 5
Wronskian, 78, 85

&o, constant, 189, 191, 193, 210

Yakubov, S., 6
Yakubov, Y., 6



