Repository logo
 

The study and real-time implementation of attenuation correction for X-band dual-polarization weather radars

dc.contributor.authorLiu, Yuxiang, author
dc.contributor.authorBringi, V. N., advisor
dc.contributor.authorChandrasekar, V., advisor
dc.date.accessioned2024-03-13T20:12:23Z
dc.date.available2024-03-13T20:12:23Z
dc.date.issued2008
dc.description.abstractAttenuation of electromagnetic radiation due to rain or other wet hydrometeors along the propagation path has been studied extensively in the radar meteorology community. Recently, use of short range dual-polarization X-band radar systems has gained momentum due to lower system cost compared with the much more expensive S-band systems. Advances in dual-polarization radar research have shown that the specific attenuation and differential attenuation between horizontal and vertical polarized waves caused by oblate, highly oriented raindrops can be estimated using the specific differential phase. This advance leads to correction of the measured reflectivity (Zh) and the differential reflectivity (Zdr) due to path attenuation. This thesis addresses via theory, simulations and data analyses the accuracy and optimal estimation of attenuation-correction procedures at X-band frequency. Real-time implementation of the correction algorithm was developed for the first generation of X-band dual-polarized Doppler radar network (Integration Project 1, IP1) operated by the NSF Center for Collaborate Adaptive Sensing of the Atmosphere (CASA). We evaluate the algorithm for correcting the Zh, and the Zdr for rain attenuation using simulations and X-band radar data under ideal and noisy situations. Our algorithm is able to adjust the parameters according to the changes in temperature, drop shapes, and a certain class of drop size distributions (DSD) with very fast convergence. The X-band radar data were obtained from the National Institute of Earth Science and Disaster Prevention (NIED), Japan, and from CASA IP1. The algorithm accurately corrects NIED's data when compared with ground truth calculated from in situ disdrometer-based DSD measurements for a Typhoon event. We have implemented, in real-time, the algorithm in all the CASA IP1 radar nodes. We also evaluate our preliminary method that separately estimates rain and wet ice attenuation using microphysical outputs from a previous supercell simulation using the CSU-RAMS (Regional Atmospheric Modeling System). The retrieved rain and wet ice specific attenuation fields were found to be in close correspondence to the 'true' fields calculated from the simulation. The concept to correct rain and wet ice attenuation separately can be also applied to the CASA IP1 network with additional constraint information possibly provided by the WSR-88D network.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierETDF_Liu_2008_3321294.pdf
dc.identifier.urihttps://hdl.handle.net/10217/237850
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.rights.licensePer the terms of a contractual agreement, all use of this item is limited to the non-commercial use of Colorado State University and its authorized users.
dc.subjectattenuation correction
dc.subjectCASA ip1
dc.subjectdual polarization
dc.subjectradar meteorology
dc.subjectradar remote sensing
dc.subjectweather radars
dc.subjectX-band weather radar
dc.subjectelectrical engineering
dc.subjectatmospheric sciences
dc.subjectremote sensing
dc.titleThe study and real-time implementation of attenuation correction for X-band dual-polarization weather radars
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineElectrical and Computer Engineering
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ETDF_Liu_2008_3321294.pdf
Size:
2.54 MB
Format:
Adobe Portable Document Format