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ABSTRACT OF DISSERTATION 

THE STUDY AND REAL-TIME IMPLEMENTATION OF ATTENUATION 

CORRECTION FOR X-BAND DUAL-POLARIZATION WEATHER RADARS 

Attenuation of electromagnetic radiation due to rain or other wet hydrometeors along the 

propagation path is a well-recognized phenomenon that has been studied extensively in 

both the radar meteorology community as well as the satellite/terrestrial radio wave 

propagation community. Recently, there has been a tremendous interest in the use of 

short range dual-polarization X-band radar systems for hydrology due to lower system 

cost compared with the much more expensive S-band (~ 3 GHz) systems (WSR-88D) 

operated by the US National Weather Service. This interest has been due to advances in 

dual-polarization radar research which show that the specific attenuation (A},) and 

differential attenuation {Adp) between horizontal (h) and vertical polarized waves (v) 

caused by oblate, highly oriented raindrops can be estimated using the specific 

differential phase measurement (KdP). This advance leads to correction of the radar 

measured reflectivity (Z/,) and the differential reflectivity (Zdr) due to path attenuation. 

This thesis addresses via theory, simulations and data analyses the accuracy and optimal 

estimation of attenuation-correction procedures at X-band ( - 1 0 GHz) frequency. A 

primary driving force has been the real-time implementation of the procedures developed 

herein to the first generation of X-band dual-polarized Doppler radar network 



(Integration Project 1, IP1) operated by the NSF Center for Collaborate Adaptive Sensing 

of the Atmosphere (CASA). 

The attenuation problem can be formulated within an estimation framework. For the rain 

attenuation estimation, we first formulate a parametric model based on the At,-Kdp and Af,-

Zf, relationships. The parameters in the two relationships are not set a priori but rather 

estimated based on the consistency between the K^p and Zh in rain medium. This 

consistency is achieved by minimizing the model output and the measured differential 

propagation phase (@dP) in a least-squares sense. By estimating the parameters based on 

the consistency, one can reduce the uncertainties inherent in the Ah-Kdp and Ah-Zh 

relationships due to changes in temperature, rain drop shapes, and to a lesser extent, large 

variations in the drop size distribution (DSD) along the propagation path. Secondly, we 

extend the consistency principle to vertically polarized radar variables and an estimation 

model of the path-integrated differential attenuation is subsequently derived. With the 

estimated parameters, the path-integrated attenuation and differential attenuation can be 

used to correct the Zh and Zdr, respectively. Finally, we provide a preliminary method to 

address the mixed-phase (rain co-existing with wet ice) attenuation problem by which 

one can separately estimate the attenuation caused by rain and wet ice particles along the 

propagation path. 

We evaluate our improved method for correcting the Zh and the Zdr for rain attenuation 

using simulations and X-band radar data. In the simulations, we apply the method to 

radar variables generated from constant DSD profiles and variable DSD profiles. We also 
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evaluate the performance under ideal and noisy situations. It is shown that our method is 

able to adjust the parameters according to the changes in temperature, drop shapes, and a 

certain class of DSD with very fast convergence. Both Z/, and Z& are corrected to a very 

good degree of accuracy by comparing the corrected values with the simulation input 

values. The X-band radar data are obtained from the National Institute of Earth Science 

and Disaster Prevention (NEED), Japan, and from CAS A IP1. The improved method 

accurately corrects NIED's data when compared with ground truth calculated from in situ 

disdrometer-based DSD measurements for a Typhoon event. We have implemented, in 

real-time, the improved method in all the CASA IP1 radar nodes. The corrected Zh PPI 

scan from the CASA IP1 network radars shows good agreement with the nearly-

coincident Zh PPI scan measured by a nearby un-attenuated WSR-88D S-band radar 

system. One additional advantage is that the estimation of the specific attenuation at the 

horizontal polarization {Ah) and the specific differential attenuation (Ajp) is independent 

of any systematic offsets in the h- or v-channels of the radar. 

We also evaluate our preliminary method that separately estimates rain and wet ice 

attenuation using microphysical outputs from a previous supercell simulation using the 

CSU-RAMS (Regional Atmospheric Modeling System). The retrieved rain and wet ice 

specific attenuation fields were found to be in close correspondence to the 'true' fields 

calculated from the simulation. The wet ice attenuation field is useful in studying the A-Z 

relationship for wet ice, which can help improve the profiling algorithms used in Tropical 

Rainfall Measuring Mission (TRMM) or being proposed for the Global Precipitation 

Measurement (GPM) mission. The concept to correct rain and wet ice attenuation 
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separately can be also applied to the CASA IP1 network with additional constraint 

information possibly provided by the WSR-88D network. 

Yuxiang Liu 
Department of Electrical and Computer Engineering 

Colorado State University 
Fort Collins, CO 80523 

Spring 2008 
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1 INTRODUCTION 

1.1 Overview 

Since post-World War II, there has been a proliferation of radar technologies for various 

civilian applications. The invaluable capability to detect and profile distributed targets at 

long range makes radars ideal tools for weather surveillance. Doppler, polarimetric, dual-

wavelength and other principles are employed and advanced technologies (e.g., phased 

array antenna, pulse compression) have been or are being actively pursued for weather 

applications (Doviak and Zrnic (1993), Bringi and Chandrasekar (2001)). The established 

WSR-88D national radar networks (Crum and Alberty (1993)) in the United States, the 

recent Tropical Rainfall Measuring Mission (TRMM) as a joint-effort between the 

Japanese and the U.S. space agencies (Kummerow et al. (2000)), and the first space-

borne cloud radar, CloudSat led by the science team in the Colorado State University 

(Stephens et al. (2002)) are all considered milestones in the development of radar 

technologies on earth or in space. 

A distinct feature of the aforementioned platforms of radar remote sensing technologies is 

that they are all capable of very large scale (national or global) observation. However, on 

the Earth's surface, because of the curvature of the Earth, a long-range (typically 300 km) 

radar (e.g., WSR-88D) is constantly under-sampling the atmosphere below about 2 km in 

a big portion of its planned scans. From space, the vertical sampling is greatly improved 

because of the advantage of the vertical look angle, but the horizontal sampling is 
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degraded (e.g., TRMM has a 4 km by 4 km horizontal footprint at nadir) due to the cost 

and size constraint of the antenna. The information in the lower troposphere is deemed 

very important for the study and prediction of local hazardous weather events, such as 

flush floods and tornadoes. 

As an effort to address the poor spatial resolution of the lower troposphere using 

traditional long-range ground radar techniques, the Center for Collaborative and Adaptive 

Sensing of the Atmosphere (CASA) was launched in 2003 by the National Science 

Foundation and its four partner universities (McLaughlin et al. (2005)). The CASA 

approach to improve the spatial resolution of the lower troposphere over its coverage area 

is to employ low-cost, end-user-driven, and dense radar networks formed by short range 

(typically < 40 km) X-band radar systems, called Distributed Collaborative and Adaptive 

Sensing nodes (DCAS). The first generation of the DCAS system (called, IP1) is 

deployed in Oklahoma and has been operational as of April 2007. 

It is recognized that there are underlying fundamental challenges for taking the CASA 

approach (Chandrasekar et al. (2004)), such as the range-velocity ambiguity 

C'(PRT} X 

(unambiguous range = ; Nyquist velocity = — ; where c is velocity of light and 

PRT is pulse repetition time) and the increased attenuation caused by precipitation 

particles due to the use of higher frequencies (X-band). Bharadwaj and Chandrasekar 

(2006) discussed and resolved the range-velocity ambiguity problem. Lim et al. (2004) 

derived a technique to correct radar reflectivity for attenuation using combined 

measurement of radar networks. Liu et al. (2006) derived an improved algorithm to 



correct reflectivity and differential reflectivity for rain attenuation. 

In this dissertation, we focus on the study and real-time implementation of attenuation 

correction for X-band dual-polarization weather radars. This work is primarily developed 

and evaluated during the course of the CASA IP1 but the data from other radar systems 

(e.g., the MP-X radar) operated by NIED, Japan are also studied. 

1.2 Organization of this dissertation 

We organize this dissertation into six chapters and three appendices. 

Chapter 1: The overview and the organization of the dissertation are given in this chapter. 

The instruments that this work uses are also introduced (in the next section). 

Chapter 2: The theoretical background of electromagnetic radiation and interaction with 

the precipitating particles is presented, especially as it relates to estimating (correcting) 

attenuation. The historical work on correcting the attenuation caused by rain and other 

precipitating particles is also summarized. 

Chapter 3: A general mathematical framework to estimate the specific attenuation at 

horizontal polarization based on the consistency between the reflectivity and the specific 

differential propagation phase is presented. Then a more explicit form is derived based on 

previous work by Hitschefeld and Bordan (1954) and the constraint from the differential 
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propagation phase. The problem can be viewed as a parameter estimation problem in a 

parametric model. Various optimization schemes are discussed. The results obtained by 

using simulations, the MP-X radar data, and the CAS A IP 1 data are presented. 

Chapter 4: The methodology presented in chapter 3 is extended to estimate the specific 

differential attenuation and to correct the differential reflectivity for rain attenuation. The 

results obtained by using simulations, the MP-X radar data, and the CAS A IP1 data are 

also presented. 

Chapter 5: Chapters 3 and 4 describe techniques for the attenuation and differential 

attenuation correction for the rain medium only. In chapter 5, we study attenuation due to 

the mix-phase region defined herein as rain mixed with wet ice particles. We use the 

microphysical outputs (rain and hail) from a prior supercell simulation using the CSU-

RAMS model to study two proposed approaches to the mixed-phase attenuation problem 

which involves separately estimating the attenuation due to rain and the wet ice. The two 

proposed mixed-phase attenuation correction methods are applicable to the (e.g. CP-2) 

dual-wavelength radar configuration or the CASAIP1/WSR-88D configuration. 

Chapter 6: In the last chapter of the dissertation, we summarize our work and suggest 

possible methods to further the work completed in this dissertation. 

In the appendices, we give supplemental derivations of some of the formulations 

presented in the dissertation and other related materials. In appendix A, we give the 
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derivation of the Hitschfeld and Bordan (1954) method. In appendix B, we give an 

independent and simple derivation of the Testud et al. (2000) method. In appendix C, we 

summarize the drop shape models used in the simulation study in chapters 3 and 4. 

1.3 Instruments and testbeds 

1.3.1 CASAIP1 

The CAS A IP1 radars are designed and built completely within CAS A. All four partner 

universities, namely, the University of Massachusetts in Amherst; Colorado State 

University; the University of Oklahoma; and the University of Puerto Rico all took part 

in the preliminary and critical design phases. The lead university, the University of 

Massachusetts in Amherst built the hardware and the control network components. One 

of the partner universities, Colorado State University, developed most of the radar signal 

processing algorithms. The CAS AIP1 radars are now installed in four cities in Oklahoma, 

namely, Chickasha, Cyril, Lawton, and Rush Springs. It has been fully operational as of 

April 2007. The day-to-day operation is organized by the University of Oklahoma jointly 

with the other three partner universities. 

Each of the four radars has the identical design and operates in the same configuration 

(X-band frequency). They all have the Doppler and dual-polarization capability. Table 

(1.1) lists the main characteristics of the radars. 
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Fig. 1.1 shows the prototype IP1 radar next to the CSU-CHILL S-band radar facility in 

Greeley, Colorado. The foreground is the CSU-CHILL radar's radome which is about 17 

meters in height, while that of the CAS A IP1 prototype located a few meters behind is 

only about 2.4 meters in height. The main factor in this large difference in size is the 

antenna. 

Fig. 1.2 shows one of the four radar nodes of IP1 being installed at the site in Cyril, OK 

in Summer 2006. Fig. 1.3 shows the network topology of the four radar nodes with each 

node operating with a maximum range of 30 km (however it has been extended to 40 km 

as of June, 2007). 
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Table 1.1 System Characteristic of the CASA IP1 radar node (Source: IP1 System Requirements 
Documents, Revision 3, March 2005.) 
Frequency 
Peak Power 
Pulse Repetition Frequency 
Pulse Length 
Polarization 
Minimum Detectable Signal 
Receiver Dynamic Range 
Transmitter Tube 
Antenna diameter 
Beam Width 
Antenna Gain 

9.41 GHz 
25 kW 
< 3.33 kHz 
0.6-1.5 us 
Horizontal and Vertical 
-107 dBm 
70 dB 
Magnetron 
1.5 m 
2deg 
38 dB 

Figure 1.1 Photograph of the prototype CASA IP1 radar seated next to the CSU-CHILL S-band radar 
during the calibration and test in the Summer of 2005. 
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Figure 1.2 One of the four CASAIP1 radars being installed at the Cyril, Oklahoma site. 
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Figure 1.3 Schematic showing locations of the four nodes of the CASAIP1 network and its coverage near 
four cities in Oklahoma, namely Chickasha, Cyril, Lawton, and Rush Springs. 



1.3.2 MP-X radar 

The MP-X radar is a Doppler, dual-polarization X-band radar operated by the National 

Institute of Earth Science and Disaster Prevention (NIED), Japan. Table (1.2) lists its 

main characteristics. Fig. 1.4 shows the MP-X radar installed on a mobile transportable 

platform. The radar was installed near the Tsukuba area for a validation experiment 

during 2001. There are also other ground instruments like rain gauges and disdrometers 

in the nearby area which provide ground truth measurements of rainfall rate and particle 

size information. 

Table 1.2 System characteristics of the MP-X radar (Courtesy M. Maki of NIED) 
Frequency 
Antenna Type 
Antenna Diameter 
Antenna Gain 
Beam Width 
Receiver Dynamic Range 
Transmitter Tube 
Peak Power 
Pulse Length 
Pulse Repetition Frequency 
Polarization 
Minimum Detectable Signal 
Observation Range 

9.375 GHz 
Circular Parabola 
2.1m 
41.6 dB 
1.3 deg 
83 dB 
Magnetron 
50 kW 
0.5 us 
< 1800 Hz 
Horizontal and Vertical 
-110 dBm 
80 km 
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Figure 1.4 The MP-X mobile transportable radar (Courtesy of M. Maki of NIED) 

1.3.3 CP-2 radar 

The CP-2 radar is a dual-wavelength (S, X-band) radar with full dual-polarization 

capability at S-band. As yet we do not have data from this radar but our dual-wavelength 

radar simulations using the RAMS simulated supercell provides a basis for our proposed 

method of separately estimating the rain and wet ice attenuation in the mixed phase 

region. We provide some details of the radar here in anticipation of using our 

methodology in the near future (Nov 2007-March 2008). The radar is installed near 

Brisbane, Australia and is operated by the Bureau of Meteorology Research Centre 

(BMRC), Australia. Table (1.3) lists the main characteristics of the CP-2 radar. Fig. 1.5 

shows a photograph taken when the radar was being installed early 2007. Fig. 1.6 shows 

the topology of the surrounding near the radar site. 
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Figure 1.5 CP-2 radar being installed near Brisbane.The X-band system is yet to be installed (Courtesy of 
Tom Keenan of BMRC). 
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Figure 1.6 Topography surrounding Brisbane with areas (hatched) under flooding threat. The CP-2 radar 
site will be near Ipswich, about 30 km south west of Brisbane (Courtesy of Tom Keenan of BMRC). 
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Table 1.3 System characteristics of the CP-2 radar (Courtesy Tom Keenan of BMRC) 
Characteristic 

Wavelength (cm) 
Peak Power (kW) 
Pulse length(ms) 
PRF (s1) 
Antenna Type 
Feed Type 
Beamwidth (degrees) 
Az coverage (degrees) 
El Coverage (degrees) 
Polarisations radiated 
Simultaneous 2 channel reception 
Polarisation Received 
Max Sidelobe level (dB) 
Max Antenna Linear X-POL lobes (dB) 
Polarisation Control Method 
Polarisation Control rate 
Channel to Channel Isolation (db) ex 
Antenna 
Doppler Capability 
Number of Range Gates 
Range Resolution (m) 
Polarisation Quantities measured 

CP2 S-Band 

10.7 
1000 
0.17-1.0 
<1700 
Centre feed paraboloid 
Potter horn 
0.93 
360 
90 
LINH,LINV 
N 
Copolar to TX 
-21 
-21 
Ferrite Switch 
Pulse by pulse 
>30 

Y 
1024 
> 30 typically 150 
Z, Zj,., <Ddp, p H V 

CP2 X-band 

3.2 
200 
1.0 
<1000 
Two cassegrain paraboloids 
Rectangular Waveguide 
0.94 
360 
90 
LINH 
Y 
LEST H & LIN V 
—30 
-36 
NA 
NA 
>30 

N 
1024 
> 30 typically 150 
Z, LDR, 

12 



2 THEORETICAL BACKGROUND AND RELATED WORK 

Doppler radars are considered indispensable tools for remote sensing of the atmosphere, 

detecting and tracking of commercial or military objects, and so on. The theory and 

techniques of Doppler weather radars can be found in Doviak and Zrnic (1993). In 

addition to the Doppler techniques, radar polarimetry (e.g., linear or circular polarization) 

is considered an invaluable tool that provides much desired additional information, 

particularly the shape and orientation information of the precipitating particles. The 

advantages can be largely attributed to the abilities to classify hydrometeor types and to 

improve rainfall rate estimation. The theory and techniques of polarimetric radars can be 

found in Bringi and Chandrasekar (2001). For meteorological applications using radar 

systems at attenuating frequencies, the invaluable shape information of the raindrops 

provided by the polarimetric techniques is the key to many rain attenuation-correction 

algorithms applied to C band dual-polarized radars (Testud et al. (2000), Bringi et al. 

(2001)) and X band dual-polarized radars (Matrosov et al. (2005), Park et al. (2005)). 

This chapter is intended to survey the background and theoretical basis of attenuation-

correction (estimation) techniques. Beginning with the scattering matrix, the wave 

equation is described for the scattering of a particle in free space. For scattering over a 

homogenous precipitating path containing uniformly distributed oblate raindrops, the 

transmission matrix will be used to characterize the propagation effects along the path, 

including the attenuation, the differential attenuation and the differential propagation 

phase between the h and v-polarization states. Then the radar range equation is provided. 
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In the end different techniques to correct (estimate) the attenuation and the differential 

attenuation will be briefly presented in a chronological order so that a historical review is 

provided.. 

2.1 Scattering matrix 

The electromagnetic field radiated by an antenna is a spherical wave described by: 

Ei(r) = E°-1r^ (2.1) 
i -r 

where ko is the wave number of free space, r is the range vector (e.g., r = (r,6,(/)) in a 

spherical coordinate system), i is the incident direction (unit vector) which is orthogonal 

to both the electric and the magnetic field, the superscript / (e.g., as in E') denotes 

'incident', and the superscript 0 (e.g., as in E°) denotes origin. Note that we use the 

arrow to denote vectors and the hat to denote unit vectors. 

Now consider a spherical coordinate system specified by the triplet (r, 0, </>). The unit 

vectors in the spherical coordinate system satisfy the orthogonal relations as follows: 

P = 3x0 (2.2a) 

0 = ?x§ (2.2b) 

<9 = ̂ xP (2.2c) 
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where ' x ' denotes the conventional vector cross product. 

For linearly polarized waves, the unit linear polarization vector ef that defines the 

direction of the incident electric field, can be decomposed into two orthogonal 

components at the horizontal (h) direction and the vertical (v), respectively, as: 

E° E° * =-£*> +-dk* (2-3) 

where E'h and E'v are the horizontal and vertical components, respectively and are both 

real here. However, in general they can be complex, resulting in circular polarization or 

elliptical polarization (Chapter 3, Bringi and Chandrasekar (2001)). EQ is the real amplitude 

o f £ ° . 

Conventionally, in the forward scatting direction, the horizontal and vertical unit vectors 

are same as the unit vectors ^ and 9 in the spherical coordinate system, respectively. 

Thus we define: 

h = 0 (2.4a) 

v = 0 (2.4b) 

In other words, the horizontal and vertical directions depends on <f) and 6, respectively. 

Note that the two directions can be different than the literal meanings of the words 
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'horizontal' (i.e., parallel to the ground) and 'vertical' (i.e., perpendicular to the ground). 

With above definitions, the incident wave direction can be described in the spherical 

coordinate system as: 

i =v. xhj -6i xfa (2.5) 

where the subscript / denotes given values for the incident wave's direction. 

Assume the wave interacts with a dielectric particle in free space. In the far-field, the 

scattered wave from a dielectric particle can be expressed as: 

E'(r) = f(S,i)— (2-6) 

r 

where f(s,i) is the complex vector scattering amplitude of the particle (Chapter 1, 

Bringi and Chandrasekar (2001)), the vector f locates a position in the far-field and 

r = \r |. Also, s and / are unit vectors along the direction of scattering and incidence, 

respectively. The superscript V (e.g., as in Es) denotes 'scattering'. 

Combining eqs. (2.1), (2.3), and (2.6), in the back-scattering direction (i.e., s = -i) the 

back-scattered wave can be described by the complex scattering matrix SBSA, where the 

subscript BSA denotes 'back scattering alignment', as: 

(2.7) Er(r) 
-iKr 

-[El E'V]S BSA 

h 
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where r is the distance from the particle along the back-scattering direction and the 

superscript V (e.g., as in Er) denotes back-scattering. Note that we use bold type to 

denote matrices. 

The complex scattering matrix SBSA fully characterizes the response of the dielectric 

particle excited by the incident wave and is defined as: 

^BSA (2.8) 

where the double subscript denotes 'receiving-transmitting' polarization, e.g., hv denotes 

receiving at horizontal polarization after transmitting at vertical polarization. 

2.2 Transmission matrix and propagation effects 

The scattering matrix in eq. (2.7) described the relationship of the back-scattered electric 

field and the incident electric field for a particle in free space. When the propagation path 

is filled with distributed dielectric particles, propagation effects should be considered. 

The propagation effects can be described using the transmission matrix which replaces 

the spherical wave phase term e~jk"r by : 

Er{r) = -[E'h £ ; ] S ^ T 
r 

where T is the 2x2 transmission matrix defined as: 

(2.9) 
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T = 
T T 

T T 
vh w. 

(2.10) 

For detailed expressions of the elements of T refer to section 4.2 of Bringi and 

Chandrasekar (2001). Eq. (2.9) describes the one-way propagation effects when the wave 

is back-scattered by the particle. The incident field radiated from the source, whose 

horizontal and vertical components are E'h and E\, are also under the propagation effects. 

Therefore the spherical wave phase term in eq. (2.1) should be also replaced. Replacing 

the term in eq. (2.1) and substituting it into eq. (2.9) give the back-scattered wave electric 

field with the two-way propagation effects as follows: 

2 
r 

Er{r) = —[El £V°]TSBS,T 
h 

(2.11) 

where now r is the distance between the receiver (collocated with the source) and the 

particle. Note that all terms in the above equation are complex except r, h, and v. 

It is worth noting that the scattering matrix SBSA is the property of the dielectric particle, 

while the transmission matrix T is the property of the propagation path (forward direction) 

which is filled with dielectric particles. 

For simplicity, consider a propagation path which is filled with uniformly distributed 

spheroids whose symmetric axis are parallel with h or v(i.e., canting angle is 0). Under 
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such conditions, the solution of the transmission matrix is very simple as follows 

(Chapter 4, Bringi and Chandrasekar (2001)): 

T = 
0 

0 

71 

-AV 0 (2.12) 

where ke£ is the effective complex wave number of the medium that fills the path for h 

or v polarization. It is given as: 

KB =K+-r-h-/(*>*) (2.13a) 

2m „ - - ~ 
keff =k0+—V-f0>J) 

K0 

(2.13b) 

where n is the number of spheroids per cubic meters and / is the complex vector 

scattering amplitude (see eq. (2.6)). 

Now, we can define the specific attenuation, the differential attenuation, and the specific 

differential propagation phase as: 

Im{/K 
A=201og10(e *"*')• 10 

8.686 xl03-Im{A:^} 

»3 2#W 
= 8.686 xlO3 lm{h • / ( / , / )} 

(2.14a) 

(2.14b) 

(2.14c) 
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^ V =8 .686x l0 3 - Im{^} (2.15a) 

3 27m 
= 8.686x10' Im{v •/( / , / )} (2.15b) 

^dp=Ah-^v (2.16a) 

= 8.686 x l O ' - I m ^ - A : ^ } (2.16b) 

3 2mt 
= 8.686x10' Im{h-f(i,i)-v-f(i,i)} (2.16c) 

^ = 1 0 J - R e { ^ - ^ } (2.17a) 

3 27m 
10' . .Re{h-f(i,i)-v-f(i,i)} (2.17b) 

«0 

-3 In eqs. (2.14)-(2.17), ko is in m" , / in m, n in m" . Then 4̂/,, Jv, and A^ are in dB km" , 

Kdp in rad km"1. 

It is clear that at a given time, Kdp contributes to the phase difference between the two 

characteristic waves (h, v) due to the medium in the propagation path while Ah and Av 

contributes to the loss in power in the two characteristic waves, respectively. 

2.3 Radar range equation 

For an ideal antenna the (received) voltage equation due to the back-scattered electric 

field Er can be written as (Sinclair (1950)): 
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V^-^=h-Er (2.18) 

where Zo is the impedance of free space and h is the effective antenna length defined as: 

h(0J) = -jLejG(0,t) (2.19) 

where X is the wavelength, G(0,<f>) is the antenna gain function, and e is the unit 

polarization vector. 

It is clear that the received voltage depends on the polarization of the antenna and the 

polarization of the back-scattered electric field. For linear polarization we assume the two 

polarizations are matched and the received voltages at the h and v ports of the antenna 

can be expressed as: 

v„ 
W) T S T 

4nr2 BSA M.. 
(2.20) 

where Mt, and Mv are the input plane wave complex amplitudes whose magnitudes are 

proportional to yP^' and yPv' , respectively. Here, Pf,' and Pv' are the 'pulse' powers 

transmitted by the antenna. 

Given the propagation conditions described earlier for eq. (2.12), the transmission matrix 

T and the scattering matrix are diagonal. Eq. (2.20) can be simplified as follows: 
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(2.21a) 

(2.21b) 

(2.21c) 

The co-polar received power then can be simplified and calculated as: 

pco _y*y _ * G(64) . ,4, ,2 , 

(4^) V 
(2.22a) 

,*2G(^)2P»' 

( 4 T T ) V 

-;*> (Ms J ) (2.22b) 

2 D ' A2G(e,</>yph 

(4*)V 
-j(Re{k^}+jhn{k^))r 

' hh (2.22c) 

A G{0,</)) Pi 4hn{k^))r 
,A \ 3 4 g

 °"MI 

(4;r) r 

(2.22d) 

^ G ( 0 , ^ i > 2 >v 2P/A 
* . 1 n io 

3 4 
(4^)V 

•10 'Mi (2.22e) 

where ahh is the back-scattered radar cross section (in m ) at h polarization of the particle, 

PIAh is the one-way path-integrated attenuation (in dB) at h polarization. The ahh is 

defined as: 

<jhh =47i\Shh\ (2.23) 
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For the homogenous path assumption, PIAh is defined as: 

PIAh(r) = Ahr (2.24) 

where Ah is the specific attenuation (in dB km"1) at h polarization defined in eq. (2.14). 

The two-way differential total phase is defined as: 

Vdp{r) = Kg(Vl{r)Vv{r)) (2.25a) 

= a r g ( r ; X ; r , X ) (2.25b) 

= ng(emk°«-kl»)r) + a r g ( O w ) (2.25c) 

= *+(r) + Seo(r) (2.25d) 

= 2Kdpr + Sm(r) (2.25e) 

where Od/) is the two-way differential propagation phase, 8C0 is the differential back-

scattered phase. 

Although eq. (2.22) is deduced assuming a homogenous path with spheroids aligned at 

zero canting angle, it can be extended for an inhomogeneous path (i.e., a path with 

particles with different sizes and shapes) and for non-zero canting angles. In such 

conditions, the transmission T is no longer diagonal and it varies along the range. 

However, it is acceptable to approximate the inhomogeneous path using 'piece-wise' 

homogeneous sections. This would result in a more general representation of eq. (2.20) as: 
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- 2 1 2 ' ' ' X « - l lnaBSA Vn 1 » - 1 " ' * 2 *1 

4w 
(2.26) 

where Ti, T2, ... , T„_i, Tn, are the transmission matrices of the n homogeneous sections. 

The spatial variability of the precipitation occurs at all scales, but the radar resolution 

volume is typically non-uniformly filled with precipitation, (non-uniform beam filling 

especially at long ranges > 60 km for a 1 deg beam). Typical convective scales for 

precipitation are on the order of 500 - 1000 m whereas radar gates are typically spaced 

150 m apart. Hence, the high 'frequency' gate-to-gate variability is due to random 

fluctuations and should be filtered with, for example, a FIR (finite impulse response) 

range filter with 6-dB bandwidth roughly equal to 1 km. 

In general, eq. (2.26) is very hard to solve and approximations are usually made for 

different situations to obtain analytical results in terms of the state variables (e.g., mean 

canting angle, spheroid shape model, etc., see Bringi and Chandrasekar (2001)). 

Therefore, in general the transmission T from the net-effect of all n sections is non-

diagonal. Nonetheless, in similar fashion as shown in the previous simplified conditions 

in eq. (2.21), we can still write the radar range equation as eq. (2.22) but the attenuation 

term must be modified as: 

PIAh(r) = ]TAh(i)Ar (2.27a) 
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= [Ah(r)dr (2.27b) 

where now Ah is a function of range. 

Similarly, the differential propagation phase in eq. (2.25) should be modified as: 

®dp(r) = 2fjKdp(i)Ar (2.28a) 

= 2[Kdp{r)dr (2.28b) 

So far we have defined the radar equation for a single particle. Now consider a pulsed 

radar with the pulse width T. At any given time the received voltage (complex) is the sum 

of the return of all the particles illuminated by the transmitted energy in the resolution 

volume. The resolution volume is defined as the volume enclosed by the antenna pattern 

and the distance that the leading edge of the pulse travels in T/2. The radar equation for 

the distributed particles in the resolution volume is given here as (Bringi and 

Chandrasekar(2001)): 

Pr(r) = -±^.^1 m. L ^ . _ . Z ( > ) . i o io (2.29a) 
(4tf)3 

1 

cT 7i6b<j)b n \K\ 

2 81n2 A2 

2PIA(r) 

1 2PlA(r) 

• — •Z(r)-\0 10 

r 

= C--r-Z{r)-\Q w (2.29b) 
r 
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In eq. (2.29), the antenna pattern function G(0,f) is approximated by a Gaussian 

function and its 3-dB beam widths at two orthogonal directions are 6b and </>b , 

respectively. K is the dielectric factor of the particle (usually assumed to be water), c is 

speed of light in free space, C is a constant termed 'radar constant', and Z{f) is the radar 

reflectivity factor at range r defined as: 

Z(r)=^D6N(D,r)dD (2.30) 

where D is the spherical particle diameter (in mm), N(D) is the drop size distribution 

(DSD). N(D) has the unit of m" mm" and N(D) dD is the number of spherical particles 

per unit volume having diameters [D, D+ dD]). 

Note that in going from eq. (2.22) to eq. (2.29) the Rayleigh scattering is also assumed 

under which we have: 

A 

where ai is the back-scattered radar cross section for z'th particle in the resolution volume 

and Dj is the diameter of the z'th particle. 

Eq. (2.29) is given for single polarization (usually assumend to be horizontal), and 

reflectivity and back-scattered radar cross section in eqs. (2.30) and (2.31) are defined as 

quantities independent of polarization. However, note that spherical shape was assumed 

but the shape of actual precipitating particles can differ from spherical. In such case the 
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reflectivity and back-scatter radar cross section will be different between h and v 

polarizations. The differential reflectivity is defined as: 

Zdr = I*. (2.32) 

2.4 Related work on rain attenuation correction techniques 

It is clear that the reflectivity (Z) as defined in eq. (2.30) has statistical information of the 

precipitation, in particular the 6 moment of the DSD. This quantity can be measured by 

the radar. However, as evident in eq. (2.29b), the received power at the antenna is a 

function of the reflectivity (Z), the path-integrated attenuation (PIA), and the range (r) 

(the radar constant C can be calculated and adjusted by various radar calibration 

techniques). It is easy to calculate r with a pulsed radar because the timing can be 

accurately determined and the sampling time will readily give the range as r=ct/2. It is the 

combination of the propagation effects due to the path and the back-scattered reflectivity 

at a given resolution volume that makes it difficult to separate and estimate Z and PIA, 

since they are both mixed together in the received power. The PIA is a quantity to be 

resolved before we can make any physical interpretation of Z at a given range. For 

example, Z is often used to infer rainfall rate directly with a power-law equation (e.g., Z = 

aRh). 

Estimation and correction of attenuation has been an active research area in radar 

meteorology since the inception of meteorological radars because there is a great need to 
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separate the propagation effects over the path and the back-scattered reflectivity from the 

volume target of interest. The framework of the estimation techniques can be expressed 

by the following basic equations: 

Pr2 

Z m ( r ) = 1 r (2-33) 

2PIA(r) 

Ze(r) = Zm(r)lO 10 (2.34a) 

= Zm(r)e J» (2.34b) 

where Zm is the 'measured' reflectivity directly converted from the received power, and 

Ze is the 'intrinsic' or 'true' reflectivity, A is the specific attenuation (> 0 dB km"1) 

defined in eq. (2.14) (or eq. (2.15) for v polarization). The polarization subscript is 

dropped here for the ease of notation but it should be kept in mind that the respective 

quantities are in a certain polarization (either h or v states) 

Hitschfeld and Bordan (1954) first proposed and developed a technique to estimate 

specific attenuation at each range gate. Their technique assumes that A-Ze has a power-

law relationship as: 

A(r) = aZb
e(r) (2.35) 

Substituting this equation into eq. (2.34b), it can be solved (as an ordinary differential 

equation (ODE), e.g., see appendix A) to obtain the intrinsic reflectivity as a function of 
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the measured reflectivity and the range only. Using our notation, Hitschfeld and Bordan's 

original solution can be re-expressed as: 

Ze(r) = Zm(r)(l - 0A6ab[zb
m(s)dsy (2.36) 

It was pointed out that eq. (2.36) is unstable and contains potentially large errors 

(Hitschfeld and Bordan (1954)). The error arises from two sources: the parameter error 

(in a and b) and the calibration error (in C when Zm is calculated from eq. (2.33)). Both 

errors can propagate with range. Hitschfeld and Bordan (1954) suggested that eq. (2.36) 

be calibrated (constrained) with rain gauge measurements. 

Hitschfeld and Bordan's method was limited by the single-polarized radar in use at the 

time it was developed. However, it has become a building-block for many other new 

attenuation estimation techniques using additional information that a dual-polarization 

radar provides. The specific differential propagation phase (Kdp) defined in eq. (2.17) is 

deemed to be an important quantity that can be related to attenuation directly under 

certain conditions. 

Bringi et al. (1990) showed that in the rain medium the specific differential propagation 

phase (Kjp, in deg/km) is related to the specific attenuation at h polarization (kf,, in 

dB/deg) for frequencies below 20 GHz as: 

Ah(r) = aK'Jr) (2.37) 
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where s lies in the range 0.97 to 1.02 for 5.5 to 19.35 GHz (see Table (7.1) in Bringi and 

Chandra (2001) taken from Jameson (1992)). Only at 3.0 GHz is the exponent close to 

0.85. At X band the exponent is approximately unity, resulting a linear relationship 

between Af, and K^. 

Using the relationship (s = 1) and recalling that Odp is the range integral of Kjp (see: eq. 

(2.28)), the intrinsic reflectivity can be calculated as: 

Ze(r) = Zm(r)e°-23a(^{r)-^m (2.38) 

In theory it is simple to retrieve Ah and correct Ze for attenuation using eqs. (2.37) and 

(2.38). But in practice O . is calculated from ^F^ in which there is another component 

8C0 (see eq. (2.25)). In addition, the measurement uncertainty contributes random 

fluctuation in ^ . Therefore, before applying the above attenuation estimation technique, 

one should filter T ^ first and remove 8C0 (Hubbert and Bringi (1995)). The difficulty in 

retrieval of Kdp should be also noted here for the same reasons since Kdp is retrieved by 

differentiating ^F^ with respect to range. 

As mentioned earlier, Hitschfeld and Bordan's method can be made stable using the 

constraint from an independent measurement of PIA. In fact, this technique has been 

extended for single-polarized space-borne Ku-band radar on a satellite (TRMM; Iguchi et 

al. (2000)). For TRMM, the PIA can be inferred from the surface reference technique 

30 



(Iguchi et al. (2000)) or from the microwave radiometer technique (Kummerow and 

Giglio (1994)). Based on the same principle, Testud et al. (2000) proposed a method to 

estimate Af, for C-band dual-polarized radars, where the PIA is now given by «A<DdP. 

Their solution is given as (Testud et al. (2000); see also, appendix B): 

Z>)(gft23otA*» -1) 
Ahir)~ 0.23a&AO,,„ ^T, . ( 2 . 3 9 ) 

where, n is the range of the leading edge of the rain cell, r2 is the range of the far end of 

the rain cell, A<Z\$, is the increment of the differential propagation phase across the rain 

cell (i.e., @dp(r2) - Od/fcrj)), and I(ri,ri) is a quantity defined as: 

Kn ,r2) = J2 0A6bZb
m (s)ds (2.40) 

One advantage of using Testud et al's method is the avoidance of filtering *Prf and 

retrieving Kdp since only the difference of Odp at both end of the rain cell is needed (but 

keep in mind that the A^-Kdp relationship in eq. (2.37) is still implied). It is also arguably 

better to retrieve Ah in the sense of improving the spatial resolution since Kdp is not 

directly used but Zm. However, in term of the error characteristic for a given range profile, 

Testud et al's method gives similar performance as the direct Odp method (Gorgucci and 

Chandrasekar (2005)). It is clear that the A(r) retrieved using both methods is immune to 

the calibration error, i.e., independent of the radar constant C. This is an advantage to be 

noted since it eliminates one source of error from the original Hitschfeld and Bordan's 

method. 
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Unfortunately, the parameterization error is still not removed. In the direct ®rfp method 

this error is in the linear coefficient a in eq. (2.37). In Testud's method the error is in 

both a and the exponent b in eq. (2.35) (note that the coefficient a in eq. (2.35) is 

canceled out by assuming the drop concentration parameter (Nw) in the gamma DSD is 

constant along the path). 

In order to mitigate this problem, Bringi et al. (2001) proposed an extension of Testud et 

al's method that reduces the uncertainty in the linear coefficient a in eq. (2.37). They 

proposed to use the 'self-consistency' between the derived (reconstructed) Od and the 

measured Odp to minimize a cost function defined as, 

Error(a) = X\K'(rj)-0*><-rJ>ai (2-41) 
7=0 

where <3?fp (r.) is the filtered version of the measured <DdP profile (Hubbert and Bringi 

(1995)) at range gate rj, and Qc
dp(rj,a) is the reconstructed <Ddp profile defined as: 

®c
dp(r,a) = 2 r ^ i ^ U ; ^ <r<r2 (2.42) 

This method provides a means to exploit the correlation between Ze and Kdp in the rain 

medium. The optimal a is retrieved in a sense that it minimizes the sum of the absolute 

error between the reconstructed <t>dp and the filtered &dp. This method has been evaluated 
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for the BMRC C-pol radar (Bringi et al. (2001)) and later been modified for the MPX X-

band polarimetric radar (Park et al. (2005)). 

In addition to the methods summarized above, there are also other reported methods to 

estimate and correct attenuation. Hogan (2007) reported a method based on variational 

scheme to retrieve the coefficient of a reflectivity-rain rate (Z-R) relationship and 

incorporate very moderate S-band attenuation in his formulation. But he did not show the 

case where the attenuation is much more severe (e.g., at X-band). L'Ecuyer and Stephens 

(2002) reported an estimation-based precipitation retrieval method for CloudSat 

millimeter wave space-borne radar (94 GHz). Because the size-over-wavelength factor is 

large in such high frequency for the precipitating particle, the Rayleigh approximation no 

longer applies to the Z-R relationship. Their work addressed the non-directly-invertible 

problem of the Z-R relationship at 94 GHz using an optimal approach and considering 

constraints as well. 

2.5 Related work on rain differential attenuation correction techniques 

The differential reflectivity defined in eq. (2.32) is measured by the radar by taking the 

ratio of the measured Z/, vs. the measured Zv. In general, it is affected by the differential 

attenuation over the propagation path as: 

-—(2P£4j(r)-2P/4,(r)) 

Z*„(r) = Z*AryW" (2.43a 
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— Ado (s)ds 

= Zdre(r)-lO^ (2.43b) 

-0.46 fV(*)<fe 

= Zdr,e(r)-e J o* ( > (2.43c) 

where Zdr,m is the measured differential reflectivity, ZdTte is the 'intrinsic' or 'true' 

differential reflectivity, and Ajp is the specific differential attenuation defined in eq. 

(2.16). 

Therefore, we have a similar problem as discussed in section 2.4 when we invert eq. 

(2.43) to separate the true differential reflectivity from the differential attenuation. The 

differential attenuation should be estimated and corrected before the true Z& can be used. 

For example, Zdr is used to improve the rainfall rate estimation (Seliga and Bringi (1976)) 

and classify hydrometeor types (Zrnic et al (1993), Liu and Chandrasekar (2000)). 

Ryzhkov and Zrnic (1995) proposed to correct the measured Zdr for rain medium using: 

AZdr(r) = Zdr,m(r)-Zdre(r) (2.44a) 

= -P{®dp(r)-<bdpm (2.44b) 

where AZdr, Zdrjn, and Zdre are in dB, (5 is in dB/deg. 

The assumption in using eq. (2.44) is that the rain medium is uniform such that the 

decreasing trend in the measured Zdr can be attributed to the differential attenuation only. 

Then /? can be estimated by fitting a straight line into the measured Zdr - Odp pairs. 

After /? is estimated Z^ (in dB) can be corrected as: 
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z* , to = z*,» to + £ ( * * to - ® * (°» (2-45) 

where the notation ' ' denotes the estimated quantities. 

Smyth and Illingworth (1998) proposed that the true Zdr at the edge of the rain cell is 0 

dB because the shape of the raindrops is spherical there in light drizzle conditions. Based 

on this assumption, they proposed to estimate /? as: 

AZdr(rJ = Zdr,m(rJ- Z^e(rJ (2.46a) 

= Zd,,m(rJ-0 (2.46b) 

= -/?(**(';)-<">*(0)) (2.46c) 

_ _ / (r \ 
p = ar^^jnl ( 2 4 6 d ) 

**(O-**(0) 

However, there is no guarantee that such region exists in a radar range profile for the 0 

dB assumption to be valid. In such case that this 0 dB assumption cannot be established, 

the true Zdr should be estimated by other means. Bringi et al. (2001) proposed to estimate 

the true Zdr using a linear Z^-Zdr (linear when Zh is in dBZ and Z r̂ in dB) relationship with 

the true Zh estimated first with the self-consistent method discussed in section 2.4. After 

the true Zdr is estimated in this way, the j3 can be estimated as: 

7> dr,e dr,m{ m) ,r\ A^I\ 
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where ZdTf is the estimated true Z& by using the linear Zt,-Zdr relationship. 

They also proposed to retrieve a 'high-resolution' version of Adp (as opposed to filtering 

the <t>dp and get Kdp which is smoothed along the range) as: 

Adp(r) = Mdp(
r) (2.48a) 

~ 'A (r\ 
= P-^r1 (2.48b) 

a 

where /? is estimated from eq. (2.47), a and Ah are estimated from the self-consistent 

method discussed in section 2.4. 

2.6 Related work on attenuation correction for mixed-phase region 

The previous sections 2.4 and 2.5 describe primarily the existing techniques for 

correction of the Z/, and Zdr for the Ah and Adp, respectively, in the rain medium. It is 

common that other precipitating particles than rain drops, such as graupel or hail can 

coexist with rain, especially in a deep convective storms. These particles will also cause 

attenuation on the electromagnetic radiation by the radar. In such event, because the 

particles are in different thermodynamic phases, sometimes even in the transition 

between the solid phase to the liquid (mixed-phase), the attenuation is more difficult to 

estimate. The attenuation due mixed-phase particles can be significant. Bringi et al. (1984) 

used a differential reflectivity radar to detect hails. There are attempts to avoid the region 

where the attenuation may be a problem using a polarization diversity and dual-
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wavelength radar (Barge and Humphries (1980)) and to correct for the total attenuation 

using a dual-wavelength radar (Turtle and Rinehart (1983)). However, there have been 

less attempts to separately estimate the rain and the wet-ice attenuation. Such separation 

can resolve the mixed-phase zone in deep convection. 
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3 OPTIMAL ESTIMATION OF RAIN ATTENUATION AND 
CORRECTION OF REFLECTIVITY 

We have reviewed several correction (estimation) techniques for attenuation at h-

polarization in rain in section 2.4. In this chapter, we primarily consider the aspects that 

can improve the accuracy of the Ah estimation and its computational efficiency. A general 

mathematical framework for the improved technique will be presented. The 

implementation of the improved technique has been tested on simulated data and real 

data collected by the MPX dual-polarized Doppler radar. The implementation of this 

technique has been running in real time in the CASA DPI dual-polarized Doppler radar 

network. Both the simulation results and the results using radar data will be presented 

here. 

3.1 Mathematical considerations for modeling the attenuation 

In section 2.4 it was shown that the attenuation can be formulated as functions of radar 

measurables, such as the measured reflectivity and the differential propagation phase in 

addition to parameterized relations in eqs. (2.35) and (2.37). Therefore, the accuracy of 

the estimation of attenuation mainly depends on three factors: the accuracy of the form of 

the function in representing the attenuation, the accuracy of parameters in the function, 

and the accuracy and precision of the measurement data. 

Recall from chapter 2 that there are basically two forms to estimate the attenuation: the 

power law form as a function of the true reflectivity (eq. (2.35)) and the linear form as a 
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function of the specific differential phase (eq. (2.37)). The underlying physics in using 

the power law form is that (a) the extinction cross section which is responsible for the 

attenuation, and the back-scatter cross section which is responsible for the reflectivity can 

both be approximated as power law functions of the drop diameter under the Rayleigh 

scattering approximation (Bringi and Chandrasekar (2001)); (b) the DSD can be 

approximated with an exponential distribution or a gamma distribution so that the power 

law form is retained when both the extinction cross section and the back-scatter cross 

section are summed over all the particles inside the radar resolution cell (Ulbrich (1983)). 

The above two approximations are applicable to the rain medium for frequencies at and 

below X-band. 

The underlying physics in using the linear form is that (a) the specific differential 

propagation phase is a function of the rainwater content and the mass-weighted mean 

diameter of the rain drops (Bringi et al. (2001)); (b) the extinction cross section is 

approximately the same DSD moment (4th moment) as the specific differential 

propagation phase (Bringi and Chandrasekar (2001)). 

Although the physical justifications of using the power law and the linear functions are 

valid, the actual values of the parameters (in particular, a and a ) used in the 

corresponding functions are not constant but sensitive to many factors such as the DSD, 

the drop shape, the operating frequency of the radar, and the drop temperature (dielectric 

constant). It is important to estimate them accurately for the platform and conditions in 

which they are used. In addition, the ability to cope with noise in the measurement data is 
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also an important factor to be considered. 

3.2 Parameter estimation 

For our discussion, the power law function (eq. (2.35)) and the linear function (eq. (2.37)) 

are given here again as: 

Ah(r) = aZb
he(r) (3.1) 

Ah(r) = aKdp(r) (3 .2) 

If the radar variables Af,, Zf,,e, and Kdp are known, the parameters a, b, and a can be 

computed directly (i.e., for a and b in eq. (3.1) we need two linearly independent pairs 

of (Af,, Zh,e) and for a in eq. (3.2) we need only one pair of (Ah, Kdp)). This is considered 

one-point estimation in which large error can exist because its ability to cope with noise 

and natural variance in the data is poor. 

From scattering theory, we can compute all the radar variables (e.g., Ah, Zh,e, Kdp, and Zdr, 

etc.) if the state variables of the radar and the precipitation are known. In particular, the 

operating frequency of the radar, the type of the precipitation, the DSD, the shape, the 

canting angle distribution, and the temperature are sufficient to determine values of the 

radar variables. With the state variables given we can compute the values of the radar 

variables using T-matrix technique (Barber and Hill (1990)). 
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For a given operating frequency and a given precipitation type, the DSD, the drop shape, 

and the temperature are the state variables that are most likely to change. In order to cope 

with the natural variation in the state variables, it is necessary to vary them for the 

applicable platform and conditions and generate sufficiently many of Ah, Zy,,e, and Kdp 

values for the parameter estimation. With sufficiently many realizations of the three radar 

variables, eq. (3.1) and eq. (3.2) become over-determined. In this case, we can use linear 

least-squares fitting on each of the equations (for eq. (3.1) we can take log on both sides 

first) to estimate the parameters. Note that the estimation is obtained only for given sets 

of state variables, which are subsets of all possible combinations of the state variables. 

However in reality we seldom know a priori the specific subset of state variables for the 

current conditions. Therefore, it is desirable to seek and formulate an instantaneous 

estimation scheme based on the actual measurement data instead of the a priori 

computation based on given values of the state variables. Notice that by equating the 

right side of eq. (3.1) and eq. (3.2) we have: 

Kdp(r) = -Zb
he(r) (3 .3a) 

a 

= < » (3.3b) 

where K is the coefficient in the K^p-Z^e relationship. 

We state that eq. (3.3) is the consistency between the Kdp and Zh,e in the rain medium in 

which they result in the same amount of specific attenuation. Therefore, it is clear that the 

task of the instantaneous estimation is to estimate Ah from which the Zh,e is corrected and 
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is consistent with the Kdp as in eq. (3.3). 

3.2.1 Basic form 

Consider vectors of measurement data of Z/,m, Kdp (strictly speaking Kdp is a 'derived' 

quantity from measurement of Q>dp). We have Zh,m e K " and KdpeRN, where N is the 

maximum gate number. At the radar receiver, discrete digital voltage is sampled from the 

continuous received voltage after a pulse is transmitted and processed into Zf,,m, ^>dp •>
 an<^ 

K^ data at each resolution cell along the range. The range resolution is given as Ar. Here, 

we allow the parameters associated with eq. (3.1), eq. (3.2) and eq. (3.3) to vary with 

range and generalize them to vectors, i.e., now aeRN, b eRN, a e l " , and ic eRN. 

These vectors form the parameter space (a,b,d,/c) . Note that the dimension of 

parameter space is only 3 x N (instead of 4 x N) because K - —. 
a 

Without loss of generality, we assume that the rain cell is encountered at gate 1 and ends 

at gate N. Initially, we have (for our discussion the h polarization subscript will be 

dropped here but is kept in mind): 

(3 .4a) 

(3 .4b) 

(3 .4c) 
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A[l] = a[l]Ze[l]bm 

A[\] 
KAl] = 

«[1] 



=^--lmm (3.4d> 

= 4 1 R [ l f 1 ] (3.4e) 

P7A[l] = A[l]Ar (3 .4f) 

®dp[l] = Kdp[l]-Ar (3 .4g) 

where the notation ' ' denotes the modeled (or estimated) values. 

With the initialization using eq (3.4), the rest of the sequence (/ G TL and / G [2, N]) of the 

modeled radar observables can be generated in the following order: 

Ze[i) = Zm[i]-l002pTA[i-1] (3.5a) 

A[i] = a[i]Ze[ifli] (3.5 b) 

Kdp[i] = >c[i]Zelif'
] (3.5c) 

PIA[i\ = P?A[i -1] + A[i] -Ar ( 3.5 d ) 

% W = % [ i - l ] + ̂ [ i ] - A r (3.5e) 

It can be seen that if we know all the parameters precisely then each modeled radar 

observable can be derived. However, a priori information of the parameters is hard to 

obtain very precisely. By coupling the modeled Kap and Ze based on the consistency 

discussed in the previous chapter, we derived the modeled <bdp (as in eq. (3.5e)) which 

can be matched to the measured (£>dp. Hence, we here define a vector function f(a,b,a) 
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i>3N _ . m>N as the difference between the measured <Drf ( O , [/']) and the modeled 

(estimated) ®dp (<&dp[i]).The i element of f(a,b,a) is described by: 

/M = **m-<Mfl (3-6) 

where ^>dp[i] is estimated from eq. (3.4g) and eq. (3.5e). Note that the parameters 

(a,b,a,fc) are implicit in the expressions. 

In principle, the estimation of the parameters in the parameter space (a,b,a,ic) can be 

obtained by minimizing f(a,b,a) in a least-squares sense using a cost function defined 

as follows: 

z ,=1 z z 

where FERN ^R. 

The estimation is the solution in the parameter space such that the following equation is 

satisfied: 

(a,b,a,/c) = argmm(F) (3.8) 
(a,b ,CC,K) 
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3.2.2 Form using constraint on the Hitschfeld and Bordan method 

A particular form of the true reflectivity estimation is given in eq. (2.36), which is the 

Hitschfeld and Bordan method. As discussed in section 2.4, a constraint on the total PIA 

can be used to make the method stable. Consider if the PIA at the end of the radar beam is 

known from some other source, we have from eq. (2.37) (also, see appendix A): 

_ i 

Ze (rN ) = Zm (rN XI - 0A6ab (" Zb
m (s)ds)~b (3.9a) 

= Zm(rN)lO°-2plA(r») (3.9b) 

where rj is the range at which the rain cell is encountered and rN is the range at which the 

rain cell ends. Note that without loss of generality, the lower limit of the integral is 

changed from 0 to rj because any previous PIA caused by any rain cells before r} can be 

separated from eq. (3.9a) (see appendix A). 

Solving eq. (3.9) for the parameter a we have (by equating eq. (3.9a) and eq. (3.9b)): 

a = ̂ — (3.10) 
0.466 J* Z* (s)ds 

The PIA(rN) can be determined from several sources depending on the platform: (a) from 

a rain gauge by converting ground rain rate to the true reflectivity (Hitschfeld and Bordan 

(1954)) for a singly-polarized radar; (b) from the surface reference by taking difference 

between the back-scattered cross section of the earth surface in rain and no-rain region 
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for a space-borne radar (Iguchi et al. 2000); (c) from Odp by converting Odp to PIA 

(Bringi et al. (1990)) for a dual-polarized radar. 

In case (c) , the PIA(rN) can be converted by (recall eq. (3.2), eq (2.27) and eq. (2.28)): 

plAM^a*^-*-^ (3.11) 

Substitute eq. (3.11) into eq. (3.10) we have an estimate of the parameter a as: 

~ 1-10" ,~ 10^ 
a = : (3.12) 0.466^ Zb

m(s)ds 

Substitute eq. (3.12) into eq. (3.9a), the true reflectivity at range [ri...rN] is estimated as: 

Ze (r,) = Zm (r, )(1 - 0.462* [zh
m (s)dSy (3.13a) 

['Zb
m(s)ds i 

= Zm(ri)(l-Ji— ( ^ O - O I M O ^ W ^ * ( 3 1 3 b ) 

J*Zb
m(s)ds 

From eq. (3.13b), the PIA at range [>;...r^v] is estimated as: 
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5 £zb
m(s)ds 

•0.1Aa(*<,,(r f l r)-<I><4,(r1)), 
PIA(rt) = --log10{l-^ (1-10—'" ̂ »>-^»)} (3.14) 

b [NZb
m(s)d 

Finally, using eq. (3.1) the specific attenuation at range [r/...rjv] is estimated as: 

A{rt) = aZb
e{ri) (3.15a) 

•Zh
e(rt) (3.15b) 

l_lQ-0lba(Q>dl,{rN)-®<lp(n)) 

0.466 J" Zb
m(s)ds 

Zi(r fXl-10" 

0.46* j * Z^)<fc - (1 - I O ^ W * ^ * ^ ) • 0.466lzb
m(s)ds 

(3.15c) 

It shall be noted that although the solution (eq. (3.15c)) for the specific attenuation is the 

same as the solution of Testud et al (2000) (eq. (2.39) and eq. (2.40)), the derivation here 

is from a completely different angle. Eq. (3.15c) is given here only for completeness and 

is not needed in computing the specific attenuation. It is obvious that before reaching eq. 

(3.15c), the specific attenuation can already be retrieved from eq. (3.15a) with the 

estimated a (from eq. (3.12)), b (given as a constant) and the estimated Ze (from eq. 

(3.13b)). Also to be noted that for the purpose of solely estimating Ze (i.e., attenuation 

correction), eq. (3.13b) is sufficient. 

It is clear that the parametric model as in eq. (3.14) of the path-integrated attenuation is 

independent of the potential system offset in the measured reflectivity as the offset is 
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cancelled out in the calculation. This feature is also applicable to the specific attenuation 

estimated by eq. (3.15). Such feature is desirable because the attenuation-correction 

procedure can be made independent of the system calibration procedure. 

3.2.3 Trade-off studies and our finalized form 

In section 3.2.1 and section 3.2.2 we presented two frameworks for estimation of 

attenuation and correction for the reflectivity, without explicitly knowing the DSD at 

each radar resolution volume (or, equivalently, range gate). 

In the basic form presented in section 3.2.1, we give the most freedom to the 

parameterization because we allow each parameter to vary with range (similar to 

estimating the DSD at each range gate). This however, should be considered again more 

carefully in terms of two issues: under-determined and computational stability. 

We will address the computational stability later in section 3.2.5. Here we will discuss the 

under-determined issue. This can be seen easily because there are not enough constraints 

to give a unique solution for eq. (3.8). In fact, we have TV equations from eq. (3.6) but we 

need to solve them for at least 3/V unknowns (recall eq. (3.5)). The solutions are under-

determined. Moreover, it is not realistic to retrieve the parameters independently for each 

gate because noise is inevitably in the measurement data. The under-determined solution 

tends to over-fit the measured <Dap and follows the undesired trend of the noise in our 

simulation (not shown here). After all, only the solution that results valid attenuation 
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estimation (one that at least does not contradicts with physical observations, e.g., 

attenuation should never be negative) should be used to correct the reflectivity for 

attenuation. Therefore, the dimensions of the parameter space should be reduced to 

resolve the under-determined issue. Hogan (2007) proposed a technique to lower the 

dimensions of the parameter space by resolution (in range) inter-conversion between the 

lower dimensional parameter space and the higher dimensional data space. 

In addition to lower the dimension of each parameter, reducing the number of the 

parameters should be also considered. As discussed in section 3.1, the parameters can be 

derived if actual DSD, drop shape and temperature are known. Using scattering 

simulations the parameter b at X-band has been shown to be 0.78 by Park et al. (2005) 

for the gamma DSD. Moreover, Testud et al. (2000) have shown that the exponent b is 

independent of u (the shape parameter of the gamma DSD). It has been also reported that 

there is only very moderate variation in b for a given frequency and temperature (Tuttle 

and Rinehart (1983)). Therefore, we can specify b as a known constant and remove it 

from the parameterization. 

Having taken an opposite approach to estimating parameters at every gate, in section 

3.2.2 we derived eqs. (3.13), (3.14), and (3.15) with the parameter space significantly 

reduced. The parameter b is given (e.g., 0.78), the parameter a is assumed to be an 

unknown constant at every gate and is tied to the parameter a through eq. (3.12). The 

parameter a is the only parameter that remains to be estimated using the least squares 

minimization. With these assumptions the form of the estimation is greatly simplified, by 
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which we gain insights into the dependency of the parameters on one and another in the 

estimators for the true reflectivity, the PIA, and the specific attenuation (see eqs. (3.13), 

(3.14), and (3.15)). 

To estimate the parameter a using the measurement data, we should also invoke the 

consistency between the Kdp and Z/,,e in the rain medium defined in eq. (3.3). Since a is 

already estimated through eq. (3.12), which is a function of the parameter a, the 

estimation problem is further reduced to only one-dimensional problem. It is amazing 

that the parameter space can be simplified from (a,b,a,tc) to a for the rain medium 

with the PIA{VN) converted from Q>dp and other constraints based on scattering 

simulations. Here we select the parameterization form introduced in section 3.2.2 as our 

finalized parameterization form. The relationships of the parameters are summarized here 

for completeness as: 

J_lQ-0-lM<V'Ar)-(V>i)) 
a = g(a) = 

0.46b^ Zb
m(s)ds 

6 = 0.78 

a _g(a) 
a a 

Therefore, the objective of the estimation of a is to compute the optimal value of K 

such that the consistency is satisfied at every range gate. It is obvious that in the presence 

of the measurement noise the consistency can be satisfied in a least squares sense (or 

(3.16a) 

(3.16b) 

(3.16c) 
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other metric such as the absolute norm, see eq. (2.41), Bringi et al. (2001)). The least-

squares solution can be obtained by minimizing the cost function defined in eq. (3.7). 

However, now the vector function / in eq. (3.7) can be expressed explicitly without the 

induction procedure shown in eqs. (3.4) and (3.5) because the estimated ®dp[i] is directly 

calculable by eq. (3.14) as: 

a 

10 2XMAT 
= - l o g 1 0 { ( l - ^ (1 - 10-°Ma^[N]-**[1])))->} + ^ [ 1 ] (3.17b) 

2XMAr 
s=l 

Note that the variables now are presented in vector forms. 

For completeness, the cost function is given here again as: 

F = \JL<<m)2=\fT-f = \\ft 0.18a) 

where 

/[ '1 = * * W - ® * M (3-lSb) 

where Odp[i] is defined in eq. (3.17) and O^D] is the measurement data of differential 

propagation phase. Note that the parameter a is implicit in 3>rf [/] and hence / . Also 

note that although we are using the same ®dp[i], f, and F notations, they are different 

functions (constructed differently) than the ones defined by eqs. (3.5), (3.6) and (3.7). 
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The estimation of a is given here as: 

a=argmin(F) (3.19) 
a 

As we can see, the minimization is reduced to only estimate one scalar parameter, namely, 

the a. 

Using the estimated a, the corrected reflectivity (Ze) at every range gate can be readily 

calculated from eq. (3.13b). The specific attenuation (A) follows immediately using eq. 

(3.15a) with the estimated a and Ze. 

3.2.4 Minimization scheme 

There are many techniques available to solve the least-squares minimization problem 

described by eq. (3.7) or eq. (3.18) (e.g., Chong and Zak (2001)). In particular, the steepest 

decent, Newton's method, the Gauss-Newton method, and the Levenberg-Marquardt 

method (Levenberg (1944), Marquardt (1963)) are popular techniques for the problem. In 

this section, we will briefly review some of the aforementioned minimization techniques, 

in particular, the Newton's method, the Gauss-Newton method, and the Levenberg-

Marquardt method. The intent here is to describe a general methodology for least-squares 

minimization without particularly referring to the model of estimating the attenuation. 

This linkage will be described later at the end of this section. 
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In general, we are interested in a real functionJ[xj, X2, —, *AQ which is parameterized with 

M unknown real parameters, i.e., *;, X2, ..., XM- This function maps the M-dimensional 

parameter space onto the real line. The mapping describes a relationship between the 

known input (implicit \r\J{-)) and the known outcome (also implicit inj{-)). If we have 

more than one input-outcome pair, we will have N real functions, i.e.,/;,./?, ...,/N (e.g., as 

in eq. (3.18b)) that all use xi, X2, ..., xM as parameters. We define the M-dimensional 

parameter vector as: 

x = 

x, 

VM 

where x 6 R , and the N-dimensional vector function as: 

/ ( * ) 

/ 1 ( ^ i >X2,'", XM ) 

J2 V-^l i X2 5 ' ' ' 1 XM ) 

J N \^l 5 X2 5 • ' • , XM ) 

7i(*)' 
/ 2 ( * ) 

fN(x) 

where f(x) £ pM _ . m>JV Note that the arrow on top of a notation denotes a column 

vector. 

We further define a cost (also known as 'objective') function as: 
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F(x) = ±\\f(xf 

where ||-|| denotes the 2-norm of a vector. 

The objective of the least-squares minimization is to derive a parameter vector x (from 

all the possible x in the M-dimensional parameter space) such that the cost function 

F(x) is minimized. This can be described as: 

F(xr) = mmF(x), xE EM (3.20) 

where x is the desired parameter vector that minimize f(x) in a least-squares sense 

(thus the name of the least-squares minimization). 

In general, the least-squares minimization is difficult. Here we are interested in finding x 

over a local region of 3c which leads to solving a less difficult problem. If the desired 

parameter vector x is an interior point in the local region, we have the necessary 

condition for x to be the solution of eq. (3.20) as: 

F ^ ) = ^ X f ) i 0 ( 3 2 1 ) 

V ' dx lx=x 

Note that the gradient, F'(x) is a vector having same dimensions as x and 0 is a vector 

with all elements having 0 value. 

To reach the minimum point x from an arbitrary initial point x, we need to find the 
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feasible direction and the distance to x . This is equivalent to finding a vector h such 

that when x is updated with h , we reach x as : 

F(x + h) = F(x) (3.22) 

To find h , we will use eq. (3.21). Expand F(x + h) at x by Taylor expansion we have: 

F\x) = F'(x + h) 

F'(x) + ¥"(x)h + 0(\\h\\ ) 

(3.23a) 

(3.23b) 

where O(-) denotes the 'order of. Note that the bold typed notation denotes a matrix. 

Since F'(x) = 0, by omitting the higher order terms we have: 

F'(x) + F"(x)h = 0 

F"(x)h = -F'(x) 

(3.24a) 

(3.24b) 

The gradient F\x) can be derived as: 

F'(x) = 
dF(x) 

dx 
(3.25a) 
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~dF(x)~ 
dxx 

dF(x) 
dx2 

dF(x) 
_ dxM _ 

= 

• ^ 1 = 1 

dxr 

^ 1=1 

dx. 

3x„ 

1=1 0X\ 

i=l OX 2 

i/,w-*(i) 
dx M 

(3.25b) 

d/jQ) dfiix) 
dx1 dx1 

Qfiix) df2(x) 

dx. dx-. 

^ i W d/2(x) 
ox A/t ox** 

8fN(x) 
dxx 

dfN(x) 
dx2 

¥N(x) 
dxM 

~Ux)~ 
f2(x) 

_/N(X)_ 

(3.25c) 

= J(* ) ' / ( * ) (3.25d) 

where J(x) is the Jacobian of f(x) defined as: 

J(x) = ^-=r(x): 
ax 

d/jOO df2(x) 
dxx dxx 

Qfi(x) dfi(x) 
8xn dx. 

dx M dx M 

dfN(x) 
dxx 

Of six) 

dx. 

df^x) df2(x) dfN(x) 
dx M 

(3.26) 
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The matrix F"(x) in eq. (3.24) is the Hessian of F(x) defined as: 

F"(*) = 
dF'jx) 

dx 
(3.27a) 

~dF{x)~ 

dxx 

8F(x) 

dx2 

8F(x) 

_ dxM _ 

1 dx = 

d2F(x) 8zF(x) d'F(x) 

82F(x) 

axj2 dx^ 

82F{x) 82F(x) 

5Xj5x2 dx. C/A- -j LJJL w 

8zF(x) 8zF(x) 8zF(x) 
dx,dxM dx2dxM '" dxM

2 

(3.27b) 

From eq. (3.25b) we can express the elements in the Hessian as: 

v^,^A(*) 
82F(x) 

dxfix • 
k 

N 

=1 

dxj 

8xt 

8xt 

dfk(x) 
dxj + £/*(*) 8xi8xj 

(3.28a) 

(3.28b) 

Therefore, the Hessian can also be expressed as: 
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(F'(x))„ = 

Qfi(x) dfi(x) dfN(xj 
dxx 

dfN(x) 
dx1 dx1 

df,{x) df2(x) 

dx. dx. 

dfx(x) df2(x) 

dx M dx M 

W'̂  
k=\ dX;dX; 

dXn 

dfN(x) 
dx„ 

dxl dxx 

Qfi(x) d/2(T) 
dx-, dxn 

Qfi(x) dfi(x) 
dx, dx M 

= (j(x)TJ(x)\+Yjfk(x) ^2fk{x) 

k=l dxtdXj 

dfN(xY 
dx1 

dfN(x) 
dx2 

dfN(x) 
dXM _ 

T \ 

J 

+ 

(3.29a) 

(3.29b) 

It is clear that if we know the Jacobian and Hessian, we are ready to solve the step h 

using eq. (3.24b). Solving the step this way is well known as Newton's method. 

The second partial derivatives in the Hessian (see eq. (3.29)) can be omitted if we make a 

further approximation of f(x + h) using Taylor expansion as: 

f(x + h) = f(x) + ff(x)h + 0(lh ) 

ts (h) = f(x) + f'(x)h « f{x + h) 

(3.30a) 

(3.30b) 

We define a function Tx{h) to approximate F(x + h) as: 
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T-M-\\Uh) 1,1 f(x + h)f = F(x + h) (3.31) 

Substitute eq. (3.30b) into eq. (3.31), we have: 

T,(h) = -fx(h) 

1 
UhfUh) 

^(f(x) + f'(x)h)T(f(x) + f'(x)h) 

= -(f(x)rf(x) + f(x)rf'(x)h + hrf'(x)rf(x) + hTf'(x)TfXx)h) 

(3.32a) 

(3.32b) 

(3.32c) 

(3.32d) 

Differentiating with respect to h on both sides of eq. (3.32d) we have: 

f!(h) = 
dh 

U2f'(x)Tf(x) + 2f'(x)Tf'(x)h) 

= j(xy f(x) + j(xyj(x)h 

(3.33a) 

(3.33b) 

(3.33c) 

Differentiating with respect to h on both sides of eq. (3.31), we have: 

f!(h)*F'(x + h) = 0 (3.34) 
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Combining eqs. (3.33c) and (3.34), the h can be calculated using: 

J(x)Tf(x) + J(xfJ(x)h = 0 (3.35 a) 

J(x)T J(x)h = -J(x)T f(x) (3.35b) 

The above method is well known as the Gauss-Newton method. Comparing to Newton's 

method, it is clear that the Hessian on the left side of eq. (3.24b) is reduced to J(x)T J(x) 

by approximation. The Gauss-Newton method converges slower (having quadratic or 

linear convergence) than Newton's method (having always quadratic convergence) but it 

does eliminate the calculation of the second partial derivative terms in the Hessian (as in 

eq. (3.29b)). 

The final method we are going to review here is the Levenberg-Marquardt method. This 

method can be considered as a 'damped' Gauss-Newton method with the following 

modification to the matrix on the left side of eq (3.35b): 

(J(x)TJ(x) + juI)h = -J(x)Tf(x) (3.36) 

where ju is a non-negative scalar, and I is the identity matrix. 

The advantage of using the Levenberg-Marquardt is that it can be tuned from the steepest 

descent method (not reviewed here, see Chong and Zak (2001)) by using a large ju in the 

beginning gradually to the Gauss-Newton method by using a small ju in the end. This 

feature makes the minimization more robust and efficient, i.e., it begins with a slower but 
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more accurate minimization method initially and then switches to a faster one when it is 

approaching the desired parameter vector (x ). The Levenberg-Marquardt method is the 

method of our choice when we minimize our finalized cost function as described in the 

previous section. 

We now derive the Jacobian for our particular estimation problem which reduces to a 1-

dimensional problem with x = [a]. For our finalized formulation in eq. (3.18b), we give 

the expression of the elements in the Jacobian as: 

1 0 Z^m[s]Ar 
3 - l o g 1 0 { ( l ~ f 

a 
• (1 - io"^16a(**[JV]"**[1]))) *} 

da 

2 » ] A r 
s=l 

da 
(3.37a) 

19. 
a2 

i,Zb
m[sW 

« d - ^ (1-10 -O.lbai^lNhV^lDyT 

2X,M^ 
InlO 

s=l 

1 /1 s=l (—(l--2= (1-10 
-o.iba(i>dpiN]-<s>dl,ii])--j- j=i 

' )) 

I X M A r itzb
m[s]Ar 

s=l 

10 •o.iM*^[/fh*#[i]) lnl0-(-0.1b(Odp[N]~Odp[l]))~ 

ilZb
m[s]Ar 

logl0{(l - - f (1 - 1 0 - ° • ^ ^ - ' M 1 V * 

Zz*tsy* 
s=l 

(3.37b) 
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3.2.5 Stability of the algorithm 

We addressed the under-determined issue in the discussion in section 3.2.3. We also 

pointed out the computational stability issue which we are going to discuss here. 

In principle, the minimization scheme presented in section 3.2.4 can also be applied to 

the basic form described by the induction procedure in eqs. (3.4) and (3.5). For example, 

if we assume that parameters a and b are known constants (e.g., a = 0.25 , b = 0.78 

based on calculation from a subset of state variables for X-band frequencies and rain), 

and the parameter a does not vary along the range, we can retrieve the parameter a 

using the similar minimization scheme (but the Jacobian will be different). This is a 

totally forward-directional procedure. Although the procedure will match theoretically the 

estimated <&dp to the measured <£>dp, the numerical solutions of the estimated Odp in the 

intermediate steps run into the risk of exceeding the floating point range (double 

precision) of a general purpose computer. As inherited in the original Hitschfeld and 

Bordan's method, even small error in the parameter a will cause the algorithm to fail 

totally. This can be further illustrated by the following equation: 

PIAW = - f log10{l-0.46aZ> ('Zb
m(s)ds} (3.3 8) 

b Ji 

It is evident that the stability of the PIA depends on, (a) the parameter a; (b) length of the 

rain cell. These two factors could result in the integral exceeding unity and thus invalidate 

the retrieval of PIA. Based on our example, we were able to estimate the parameter a 
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consistently if the PIA is less than 10 dB. Otherwise, the calculation of the estimated Q>dp 

tends to go beyond the range of floating point numbers (infinite), which fails the 

minimization process 

Using the finalized form, the stability problem is resolved by constraining the final PIA 

first. As we can see in eq. (3.14), the value inside the logarithm will not become negative 

because it is guaranteed that the difference of Q?dp is non-negative in rain. This ensures 

that in estimating the parameter a we will stay in the range of floating numbers. 

3.3 Simulation results 

It is an impossible task to simulate all possible occurrences of what a radar measures over 

its propagation path. Our goal of the simulation is to assess the validity of our estimation 

model discussed in section 3.2.3 and the performance of the minimization scheme 

discussed in section 3.2.4. The validity of the estimation model will be evaluated by the 

ability to estimate the 'true' values (simulation input) under the conditions and 

assumptions that the algorithm is developed. The performance of the minimization 

scheme will be evaluated by the convergence speed. The estimation model and the 

minimization scheme together are referred to 'the improved algorithm' (or simply 'the 

algorithm') from now on. Our simulation here is mainly to test the algorithm and answer 

the following research questions: 

1) What is the effect of the assumption of the coefficient ('a') in the A-Z relationship 
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being constant over the propagation path (or equivalently, Nw being constant)? 

2) Based on the consistency of Kjp-Z defined in eq. (3.3), how well does our model 

do at estimating the coefficient (a) in the A-Kdp relationship when the shape of 

raindrops, the DSD, or the temperature changes? 

3) How well does our model do in an ideal condition without any noise and in a more 

'realistic' condition with simulated noise? 

In order to answer above questions, we organize our simulations into two main categories: 

constant DSD profiles and variable DSD profiles. For each category, we further simulate 

situations where the shape of the raindrops or temperature changes. We also add 

simulated noise to our input observables. 

The simulation is carried out under common state variables as follows: 

a) An operating frequency of 9.3 GHz (X-band); 

b) Range resolution of 100 meters; 

c) A 40 km propagation path filled with rain; 

d) A fixed environmental temperature of 20 °C unless specified otherwise; 

e) A Gaussian canting angle distribution with mean canting angle equal to 0° and 

standard deviation equal to 5°; 

f) Exponential DSD model (equivalently gamma DSD model with shape parameter (ju) 

equal to 0. 
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With the common state variables, and the specified DSD profile and drop shape for each 

case of the simulation, we generate simulation input which are regarded as 'true' values 

for the following radar observables: the intrinsic reflectivity (Zh,e) at h polarization, the 

specific differential propagation phase (Kdp), the specific attenuation (Ah), the differential 

phase ( <bdp, by integrating Kap along the path), the PIA (by integrating Ah along the path), 

and the measured reflectivity (Zh,m) at h polarization (by subtracting the PIA from the 

intrinsic Zh,e)- The algorithm operates on the measured Z/,m and <0>dp only and estimate 

the intrinsic Z^e, the Ah, and the Kdp. They are considered as the output of the algorithm 

and therefore will be compared with the simulation input for evaluation. 

3.3.1 Constant DSD case 

The parameters of the exponential DSD are set to constants (JV„,=7409 mm^mm"3, Dtf= 

1.55 mm) over the propagation path. This represents uniform rain for the full path. First 

we test the algorithm with the drop shape model of Pruppacher and Beard (1970) and 

then extend the analysis to cover more drop shape models that exist in the literature. 

For the specified drop shape model, first we evaluate the algorithm in the ideal situation 

where there are absolutely no measurement errors in any radar variables. Fig. 3.1 shows 

the range profile of the intrinsic Z/,, the measured (attenuated) Z/,, and the corrected Zt, 

(output by the algorithm). Fig. 3.2 shows the intrinsic Ah and estimated Ah. Because the 

DSD parameters are constant and there are no measurement errors, the range profiles of 

above intrinsic values appear to be straight lines parallel to the range axis, indicating 
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uniform rain medium. Also as shown in Fig. 3.3 &dp range profile appears to be a slant 

line with constant slope, indicating constant Kdp along the path. Shown in Fig. 3.1, the 

attenuated Z/, is decreasing along range at a constant slope because of the accumulating 

attenuation over the path (PIA). The output of the algorithm, the corrected Zh profile 

matches the simulation input, the intrinsic Zh well, with a small difference at the end of 

the beam (about 0.2 dB). The difference is the result of slightly under-estimated Ah profile 

shown in Fig. 3.2. The difference, however, only account for 0.5% of the intrinsic Zh, 

which is small considering the signal propagates over a path of 40 km long. 

Fig. 3.3 illustrates the minimization process discussed in section 3.2.4. The minimization 

achieves convergence after just a few iterations (typically 4 iterations). The reconstructed 

(estimated) &dp profile calculated from the coefficient a/, when converged matches the 

intrinsic Odp profile very well. The optimized parameter ah (0.19283 dB/deg) that the 

algorithm estimated as a result of the minimization, is used sequentially to obtain the 

output shown earlier, i.e., the corrected Zh (in Fig. 3.1) and the estimated Ah (in Fig. 3.2). 

We go on and test the algorithm with some other drop shape models available in the 

literature, in order to evaluate if the algorithm indeed is able to follow and adapt to the 

change of the drop shape. The test results are presented using metrics of merit such as 

mean error and RMSE, and listed in Table (3.1). For the drop shape models we used, the 

coefficient a/, retrieved by the algorithm ranges from 0.16583 to 0.36707 dB/deg. The 

range agrees with the calculation based on the simulation input well (not shown here). 

Such wide range of variation indeed indicates that the possibility of large bias error 
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introduced by using a priori fixed a/,. Table (3.1) shows that the algorithm is indeed able 

to adjust the coefficient to the change of drop shape based on the measured data only. As 

we can see in Table (3.1), the mean error and RMSE values show good performance for 

coefficient retrieval results for all drop shape models studied here. Over the 40 km path, 

the mean error shows acceptable underestimation about 0.07 dB of Zf,. The RMSE show 

values that are much smaller than typical measurement errors on Zf, (e.g., 0.8 dBZ). 

We consider measurement errors in the next run of the simulation. We assume the 

attenuated Zf, is now measured by a 'real' radar which is subject to noise. To simulate the 

noisy measured Zf,, we first attenuate the intrinsic Zf, and then add independent white 

Gaussian noise to each gate. The measured <£>dp is assumed to have additive independent 

white Gaussian (phase) noise also. The mean of noises for the two measurements are 

assumed to be all 0. The standard deviation of the noise added to Zf, is assumed to be 0.8 

dB, while that for the Odp is 3 deg. The parameters of the Gaussian noise model are 

representative for a typical operational radar. 

Following similar analytical steps in earlier analysis, Fig 3.4 and Fig. 3.5 show retrieval 

results under the specified noisy environment. The same Pruppacher and Beard (1970) 

drop shape model is used. As we can see with the presence of noise in the measured Zf,, 

the corrected Zf, and the estimated At, are also noisy. Nonetheless, the retrievals appear to 

be free of biases despite the noisy measurements. Also, it is noticeable in Fig. 3.6 that the 

estimated Odp does follow the trend of the true Odp in a least-squares sense. This 

indicates that the parameter at, can be estimated reliably under the Gaussian noise 

67 



condition. 

Again, similar metrics of merit are computed and organized in Table (3.2). Compared 

with Table (3.1) which obtained in the ideal condition without noise, the close values of 

retrievals of parameter ah indeed show the algorithm is stable under the simulated noisy 

condition. The mean error chart shows small but acceptable biases. The RMSE chart does 

show degrade in performance because of noise. However, recalling the standard 

deviations of measurement noise of Z/, (0.8 dB), the RMSE chart show that the algorithm 

will not further degrade the precision of the measurements. 
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Figure 3.1 Range profiles of the intrinsic Zh, the attenuated Zh, and the corrected Zh. The profiles are based 
on a constant exponential DSD profile and the Pruppacher and Beard (1970) drop shape model. 

0.22 

0.218 

0.216 

0.214 

0.212 

m 0.21 

<t? 0.208 

0.206 

0.204 

0.202 

0.2 

intrinsic A j , 

estimated Ah 

10 15 20 25 
Range (km) 

30 35 40 

Figure 3.2 Range profiles of the intrinsic Ah and the retrieved Ah. The profiles are based on a constant 
exponential DSD profile and the Pruppacher and Beard (1970) drop shape model. 
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Figure 3.3 (a) Range profiles of the intrinsic Odp and the reconstructed Odp. The intrinsic <J>dp is calculated 
by taking range integration of the intrinsic Kdp generated from a constant DSD profile and the Pruppacher 
and Beard 1970 drop shape model. The reconstructed <J>dp is calculated by evaluating the non-linear model 
at each iteration of aj,. (b) Enlarged intrinsic <J>dp and reconstructed Odp profiles in the dashed square in the 
upper figure panel. 
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Figure 3.4 Range profiles of the intrinsic Zh, the attenuated Zh, and the corrected Zh. The profiles are based 
on a constant exponential DSD profile and the Pruppacher and Beard (1970) drop shape model. 
Measurement noise is added to the attenuated Zh. 
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Figure 3.5 Range profiles of the intrinsic Ah and the retrieved Ah. The profiles are based on a constant 
exponential DSD profile and the Pruppacher and Beard (1970) drop shape model. Estimated Ah is retrieved 
from the noisy measurements of Zh and <J>dp. 
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Figure 3.6 (a) Range profiles of the measured Odp and the reconstructed <J>dp. The intrinsic <t>dP is calculated 
by taking range integration of the intrinsic Kdp generated from a constant DSD profile and the Pruppacher 
and Beard (1970) drop shape model. Then Gaussian noise is added to the intrinsic Odp to form the measured 
<t>dP. The reconstructed Odp is calculated by evaluating the non-linear model at each iteration of ah. (b) 
Enlarged measured Odp and reconstructed <Ddp profiles in the dashed square in the upper figure panel. 
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Table 3.1 Estimated Oh, mean error (intrinsic - retrieved), and RMSE evaluated with several drop shape 
models in the literature. Constant DSD. No measurement errors. 

DROP SHAPE MODELS 

Pruppacher and Beard 1970 

Beard and Chuang 1987 

Andsager et al. 1999 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.040mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.060mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.070mm"1 

ESTIMATED 
PARAMETER 

a,, (dB/deg) 

0.19283 

0.24511 

0.29094 

0.36707 

0.20121 

0.16583 

MEAN ERROR 

zh 
(dBZ) 

0.0733 

0.0726 

0.0715 

0.0697 

0.0729 

0.0748 

Ah 

(dB/km) 

0.00285 

0.00282 

0.00277 

0.00268 

0.00284 

0.00293 

RMSE 

zh 
(dBZ) 

0.0957 

0.0947 

0.0932 

0.0908 

0.0952 

0.0978 

Ah 

(dB/km) 

0.00342 

0.00337 

0.00330 

0.00319 

0.00340 

0.00352 

Table 3.2 Estimated Oh, mean error (intrinsic - retrieved), and RMSE evaluated with several drop shape 
models in the literature. Constant DSD. Gaussian noises with zero means are added to the measurements. 
on(Zh)=0.8 dBZ, gn(<Edp)=3 deg. 

DROP SHAPE MODELS 

Pruppacher and Beard 1970 

Beard and Chuang 1987 

Andsager et al. 1999 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.040mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.060mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.070mm"1 

ESTIMATED 
PARAMETER 

a,, (dB/deg) 

0.19093 

0.24563 

0.29512 

0.36638 

0.20167 

0.16346 

MEAN ERROR 

zh 
(dBZ) 

0.0800 

0.0383 

0.0209 

0.0086 

0.0946 

0.1537 

Ah 

(dB/km) 

0.00496 

0.00240 

0.00018 

0.03064 

0.00237 

0.00601 

RMSE 

zh 
(dBZ) 

0.7908 

0.81268 

0.81847 

0.8203 

0.8094 

0.8204 

Ah 

(dB/km) 

0.03081 

0.03159 

0.03151 

0.03064 

0.03149 

0.03223 
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3.3.2 Variable DSD case 

The previous constant DSD simulation is representative of the situation when the 

assumption of constant Nw along the path is met stringently, usually in highly uniform 

rain event. In this section, we extend the evaluation of the algorithm to more realistic 

variable DSD parameters along the propagation path. It should be noted again that in 

deriving our finalized estimation form discussed in sections 3.2.2 and 3.2.3, we assume 

the parameter a an unknown constant along the path so that it makes the form very 

simple. With the variable DSD simulation, we are going to evaluate the sensitivity of the 

algorithm under this assumption in spite of the DSD variation which would result non-

constant parameter a's over the path. 

The variable DSD profile is generated by a mechanism described in Berne and Uijlenhoet 

(2005). Based on the mechanism, the parameters (Nw and Do) of a exponential DSD are 

assumed to be a bivariate lognormal distribution. The means and standard deviations 

were obtained from DSD data from an intense storm that lasted about 45 minutes. After 

the initial generation of the Nw and Do parameters (at the first range gate), the DSD 

parameters along the path are assumed to follow a stationary vector auto-regressive 

process of order one. Based on this mechanism, a generated DSD profile is selected in 

our simulation. The Nw and Do profiles used here are plotted in Fig. 3.7 and Fig. 3.8, 

respectively. The radar variables are then calculated and the algorithm is run following 

similar procedure as described in the previous section. 

We first evaluate the algorithm in the ideal situation without measurement errors. Fig. 3.9 
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and Fig. 3.10 show the retrievals under this condition for the Pruppacher and Beard (1970) 

drop shape model. Please note that the variation of the intrinsic Zh and Ah is because of 

the DSD variation along the path. The corrected Zf, as well as the estimated At, almost 

overlap visually with the intrinsic profiles, respectively, despite the Nw parameter is 

varying along the range. This indicates that the Nw constant approximation in the 

algorithm is fairly good for the purpose of attenuation correction. This statement is 

further strengthened by metrics of merit in Table (3.3). Both the mean error and RMSE 

are quiet acceptable for all the drop shape models studied. 

The minimization process is also illustrated here as shown in Fig. 3.11. The Odp profile 

is no longer a straight line because the K<ip is changing along the path. This change is a 

result of variable DSD along the path. The optimization converges quickly after 4 

iterations, similar to the constant DSD case. 

Next we evaluate the algorithm under noisy measurement condition similarly applied to 

the constant DSD profiles. Independent Gaussian noises are added to measured Zh and 

Odp. Instead of plotting both the simulation input and the algorithm output together in 

previous figures, we plot the difference between them here. As we can see in Fig. 3.12, 

the difference between the intrinsic Zf, and the corrected Zh appears to be a random 

variable with mean equal to zero. The mean error and RMSE are available in Table (3.4). 

The mean error and RMSE are both increased because of noise, compared with the ideal 

situation. However they are relatively small considering the magnitude of the attenuation 

correction (about 16 dB PIA at 40 km). As Fig. 3.13 shows, the estimated Ah is sometimes 
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over-estimated or under-estimated (spikes) over a very short range (about a few hundred 

meters) otherwise they appear to be stable over the path. 

The minimization once again shows insensitivity to the Gaussian measurement noises as 

the estimated (reconstructed) $>dp appears to only follow the global trend instead of the 

noise details in the measured $>dp profile, as Fig. 3.14 shows. Table (3.4) shows retrievals 

of ah and metrics of merits for the estimated variables. This table shows that although 

noise is present, the algorithm still performs very well in agreement with previous 

observations in the previous section. Comparing Tables (3.3) and (3.4) with Tables (3.1) 

and (3.2) which obtained from constant DSD case, it shows that the Nw constant 

assumption does not affect the estimation of At, and correction of Zf, in our simulation. 

3.3.3 Sensitivity of the parameter ah on temperature 

We evaluate here the sensitivity of the parameter «* due to the change of the environment 

temperature. Table (3.5) shows the estimated parameter at, at different environmental 

temperatures for the Pruppacher and Beard (1970) drop shape model in an ideal condition. 

Four different environmental temperatures are used here, e.g., 0°C, 10°C, 20°C and 30°C, 

respectively. According to Table (3.5), the parameter is slightly sensitive to the change of 

the temperature but not as much sensitive as to the change of drop shape. This 

temperature insensitivity at X-band agrees with Jameson (1992). The metrics of merit for 

the estimated At, and the corrected Z/, are shown in Table (3.5) for each temperature. 
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3.3.4 Error introduced by using fixed ah 

In the end of this simulation study we show the effect of using a fixed parameter «/,, 

estimated a priori and potentially in error. In this case, the optimization is not performed. 

We assume the fixed value deviates from the 'true' value by ± 0.05 dB/deg (about 20% 

error). The corrected Zh is plotted for the constant DSD and the Pruppacher and Beard 

(1970) drop shape model in an ideal condition and shown in Fig. 3.15. It appears that the 

corrected Zh is biased quiet severely over the path. Therefore, we do not recommend 

using a priori fixed at, to correct rain attenuation for X-band, unless it is known very 

accurately. 
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Figure 3.7 Nw profile used in the variable DSD case study. 
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Figure 3.8 D0 profile used in the variable DSD case study. 
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Figure 3.9 Range profiles of the intrinsic Zh, the attenuated Zh, and the corrected Zh. The profiles are based 
on a variable DSD range profile and the Pruppacher and Beard (1970) drop shape model. 
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Figure 3.10 Range profiles of the intrinsic Ah and the retrieved Ah. The profiles are based on a variable 
DSD range profile and the Pruppacher and Beard (1970) drop shape model. 

79 



(a) 
90 

80 

70 

60 

£ 50 a> 

*40 

30 

20 

10 

0 

-

-

-

- jfy 

- ' — I • • - • ! • • | | | | 

iterations of reconstructed <3>. , 

\ / 

^ ' \ * ^ y -

yp 
f^r-'"''' 

intrinsic <5>. (solid line) 

'' reconstructed <D. with initial guess of OL (0.25 dB/deg) _ 

5 10 15 20 25 30 35 40 
Range (km) 

(b) 

55 

45 

40 
22 

last (4 ) iteration of reconstructed O . 
(optimized ah=0.19713 dB/deg) 

intrinsic <I>. (solid line) 

reconstructed d>d with initial guess of ah (0.25 dB/deg) 

22.5 23 
Range (km) 

23.5 24 

Figure 3.11 (a) Range profiles of the intrinsic <Ddp and the reconstructed <&dp. The intrinsic Odp is calculated 
by taking range integration of the intrinsic K,ip generated from a variable DSD profile and the Pruppacher 
and Beard (1970) drop shape model. The reconstructed <I>dp is calculated by evaluating the non-linear model 
at each iteration of ah. (b) Enlarged intrinsic <Pdp and reconstructed Odp profiles in the dashed square in the 
upper figure panel. 
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Figure 3.12 Profile of difference of the intrinsic Zh - the corrected Zh. The profile is based on a variable 
DSD range profile and the Pruppacher and Beard (1970) drop shape model. The corrected Zh is obtained by 
correcting the noisy measured Zh for attenuation. 

Figure 3.13 Profile of difference of the intrinsic Ah - the estimated Ah. The profile is based on a variable 
DSD range profile and the Pruppacher and Beard (1970) drop shape model. The estimated Ah is computed 
by the non-linear model at the converged Oh under condition of noisy measurements. 
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Figure 3.14 (a) Range profiles of the measured Odp and the reconstructed <I>dp. The intrinsic Odp is calculated 
by taking range integration of the intrinsic Kdp generated from a variable DSD profile and the Pruppacher 
and Beard (1970) drop shape model. Then Gaussian noise is added to the intrinsic <I>dp to form the measured 
<J>dp. The reconstructed <Ddp is calculated by evaluating the non-linear model at each iteration of ah. (b) 
Enlarged measured Odp and reconstructed Odp profiles in the dashed square in the upper figure panel. 
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Figure 3.15 Corrected Zh with a priori fixed ah value in error. 
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Table 3.3 Estimated ĉ ,, mean error (intrinsic - retrieved), and RMSE evaluated with several drop shape 
models in the literature. Variable DSD. No measurement errors. 

DROP SHAPE MODELS 

Pruppacher and Beard 1970 

Beard and Chuang 1987 

Andsager et al. 1999 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.040mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.060mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.070mm"1 

ESTIMATED 
PARAMETER 

ok (dB/deg) 

0.19713 

0.24887 

0.29531 

0.37739 

0.20579 

0.16933 

MEAN ERROR 

zh 
(dBZ) 

0.0803 

0.0850 

0.0842 

0.0810 

0.0796 

0.0829 

Ah 

(dB/km) 

0.00293 

0.00314 

0.00315 

0.00300 

0.00290 

0.00303 

RMSE 

zh 
(dBZ) 

0.1040 

0.1100 

0.1099 

0.1036 

0.1031 

0.1078 

Ah 

(dB/km) 

0.02159 

0.02185 

0.02200 

0.01908 

0.02135 

0.02270 

Table 3.4 Estimated o ,̂ mean error (intrinsic - retrieved), and RMSE evaluated with several drop shape 
models in the literature. Variable DSD. Gaussian noises with zero means are added to the measurements. 
cn(Zh)=0.8 dBZ, an(Odp)=3 deg. 

DROP SHAPE MODELS 

Pruppacher and Beard 1970 

Beard and Chuang 1987 

Andsager et al. 1999 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.040mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.060mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.070mm"1 

ESTIMATED 
PARAMETER 

Oh (dB/deg) 

0.19467 

0.24677 

0.29042 

0.37461 

0.20013 

0.16842 

MEAN ERROR 

zh 
(dBZ) 

0.2437 

0.1292 

0.2003 

0.1156 

0.2519 

0.1647 

Ah 

(dB/km) 

0.00541 

0.00483 

0.00636 

0.00439 

0.00831 

0.00413 

RMSE 

z h 
(dBZ) 

0.8354 

0.8180 

0.8226 

0.7849 

0.8325 

0.8415 

Ah 

(dB/km) 

0.04053 

0.04767 

0.03798 

0.03859 

0.03895 

0.04625 
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Table 3.5 Estimated c^, mean error (intrinsic - retrieved), and RMSE evaluated with the Pruppacher and 
Beard (1970) drop shape model at environmental temperature of 0°C, 10°C, 20°C, and 30°C, respectively. 
Variable DSD. No measurement errors. 

DROP SHAPE MODEL AND 
TEMPERATURE 

Pruppacher and Beard 1970, 0°C 

Pruppacher and Beard 1970, 10°C 

Pruppacher and Beard 1970, 20°C 

Pruppacher and Beard 1970, 30°C 

ESTIMATED 
PARAMETER 

a,, (dB/deg) 

0.20245 

0.20186 

0.19713 

0.18790 

MEAN ERROR 

zh 
(dBZ) 

0.0878 

0.0855 

0.0802 

0.0722 

Ah 

(dB/km) 

0.00320 

0.00312 

0.00293 

0.00262 

RMSE 

zh 
(dBZ) 

0.1201 

0.1136 

0.1040 

0.0914 

Ah 

(dB/km) 

0.02866 

0.02546 

0.02159 

0.01731 
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3.4 Results using radar measurements 

3.4.1 A typhoon case study using the MP-X radar data 

We have briefly introduced the MP-X (X-band) dual-polarized Doppler radar operated by 

NIED, Japan in chapter 1. In this section, we present results obtained from the improved 

method applied to a storm event collected by the MP-X radar. The storm event is a 

Typhoon that passed through the Tsukuba area, Japan on Sep 11, 2001 where the MP-X 

radar was located. The Typhoon also passed through the area where three Joss impact-

based disdrometers were located. The in situ measurements of the DSD from the three 

disdrometers provided us a means to independently validate the algorithm. The three 

disdrometers were placed on a straight line from the radar along the azimuth angle of 294 

deg with respect to the radar, at 14.7, 21.5 and 27.5 km range, respectively (Park et al. 

(2005)). The radar ray at this azimuth angle and the locations of the disdrometers are 

indicated in the following radar images (Fig. 3.16). 

Fig. 3.16(a) shows a plan position indicator (PPI) scan image of the measured Zh at 

elevation angle 2.5 deg to avoid the ground clutter caused by the nearby hills. As seen in 

the figure, the intensive rain cell surrounding the area to the west of the radar is very 

likely to cause significant amount of attenuation. This is evident as we examine the 

corrected Zh for the same scan, shown in Fig. 3.16(b). After the attenuation-correction, 

the corrected Zh reveals the second intensive core beyond around 20 km to the north-west 

of the radar. 
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In order to validate the attenuation correction, we first calculate the intrinsic Z/, (by T-

matrix method) from the 1-minute rain drop size spectra (histogram of the diameters) 

measured by the three disdrometers. The result is shown in Fig. 3.17. The calculated 

intrinsic Z/, values are shown in the figure asterisks, placed at the appropriate ranges 

where the disdrometers were located. Also shown in the figure is the result obtained from 

Park et al. (2005)'s method, as a comparison. The method described in Park et al. (2005) 

is basically an extension of Bringi et al. (2001) to the X-band radar (see also chapter 2). It 

appears that the corrected Z/, output by the improved method and the Park et al.'s method 

both agree with the disdrometer calculation very well in this case. Small difference in the 

correct Z/, between the two methods is observed. The difference results from very close ay, 

values estimated independent by the two methods. The value estimated by the improved 

method converges to 0.24294 dB/km, while the value estimated by Park et al.'s method is 

0.25 dB/km. However, the numbers of iterations used to achieve the converged values are 

significantly different. As discussed in chapter 2, a 'brute force' minimization scheme is 

used for the Bringi et al.'s method because the cost function defined in eq. (2.41) is an 

absolute function. In Park et al's X-band extension to this method, the brute force 

minimization was perform in the intervals of [0.025 0.575] with a 0.025 step for this case. 

It takes all the 23 iterations to find the value that minimizes the absolute cost function. 

The improved method is based on the model defined by the least-squares error in section 

3.2.3 and the minimization scheme discussed in section 3.2.4, which is carried out and 

implemented very efficiently. The numbers of iterations for the improved method to 

converge, as shown in the previous simulation sections, rarely exceeds four. In this case it 

took 4 iterations. Furthermore, it is worth noting that with a 0.025 step, the average error 
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in the estimated coefficient is ±0.0125 with the brute force search which can lead to a 

relative error about 5% (assuming mean «/,=0.25) in the estimation of the specific 

attenuation. It is important to minimize this kind of bias error. The error is avoided by the 

improved method since it searches for the minimizer over the continuous error curve (as 

opposed to searching only at some discrete intervals) in a least squares sense. 

Fig. 3.18 shows the histogram of a/, obtained from the improved method. The histogram 

is obtained from radar rays spanning azimuth angles from 280° to 310°, where the 

attenuation is significant. The range and distribution of a/, is reasonable comparing the 

result obtained from the previous simulation. Fig. 3.19 shows K^p-Zf, intensity plot after 

the attenuation correction by the improved method for the selected rays. The empirical 

curve for the Kdp-Zh calculated independently from the in situ disdrometer data is also 

plotted. The close agreement between the radar data after the attenuation correction and 

the empirical curve is noted here. 
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Figure 3.16 A PPI scan of (a) the measured Zh and (b) the corrected Zh, observed at the elevation angle of 
2.5 deg, at 01:59:54 LST, September 11 2001. The black line is the radar ray at azimuth angle of 294 deg. 
The three squares indicate the locations of the three in situ disdrometers, respectively. 
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Figure 3.17 Range profiles of the measured Zh, the corrected Zh using Park et al. (2005) method, and the 
corrected Zh using the improved method along the azimuth angle of 294° for the Typhoon event at 01:59:54 
LST September 11 2001. The asterisks (*) denote the mean values calculated from DSD data collected with 
the three in situ disdrometers, respectively. 

1 4 

1 2 

1 0 

ja 

0.1 0.15 0.2 0.25 
cxh (dB/deg) 

0.3 0.35 0.4 

Figure 3.18 Histogram of the optimized coefficient <xh for radar rays spanning azimuth angles from 280° to 
310° for the Typhoon event at 01:59:54 LST September 11 2001. 
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Figure 3.19 Intensity scatterpot of KdP vs. Zh after attenuation correction. The black line is the empirical 
Kjp-Zh relationship based on T-matrix calculation using the in situ disdrometer DSD data. 
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3.4.2 Implementing the improved algorithm for the CASAIP1 

The previous sections about the simulation study and the MP-X radar case study 

primarily focus on validating the improved algorithm in a post-analysis sense. It is 

desirable to investigate the algorithm more carefully when it is to be implemented for 

operational radar systems. In an operational environment, the real-time processing and 

robustness are considered two very important factors. Our motivation here is to make the 

improved algorithm run in real-time and robustly for the CAS A IP1 so that any down

stream algorithms that require the attenuation-corrected data will run seamlessly. 

It has been noted that in the simulation study and the MP-X case study the improved 

algorithm performed well in terms of convergence speed. However, the data quality 

requirements for the algorithm to run successfully were only briefly investigated. 

Moreover, the connection of the algorithm to a real system was not mentioned. Here, we 

pay more attention to the CAS A IP1 systems aspect in order to implement the algorithm 

efficiently and robustly. As a result of fine-tuning the implementation, we show our logic 

for the data quality control, the flow of the data, and other details of implementation in 

the flowcharts shown in Fig. 3.20. Note that the estimation of the differential specific 

attenuation {Adp) and the correction for the differential reflectivity (Z^r) is postponed to 

the next chapter but the functionality is still shown here in the flowchart as a complete 

system. 
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Start I 

1.Accept book-keeping data (radar constant, 
minimum detectable power, etc) 

2. Accept range vectors of radar 
measurables (Z., Z^, p„.„ O^) 

3. Quality control based on dual-
polarimetric measurements and SNR 

Next ray 6. Unfold/phase-adjust 0^ 

7. Parameter estimation for PlA,, and PIA^ 
(non-linear least-squares solver) 

Figure 3.20 Flowchart of the CASAIP1 dual-polarization attenuation-correction algorithm. 
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We summarize briefly the descriptions for the numbered blocks in the above flowchart as 

follows: 

1. The book-keeping data concerning the dual-polarization attenuation-correction are 

input from the lower level radar control system. Particularly, the start range and the 

range resolution of the data vectors is used to identify the first range gate, while the 

radar constant and the minimum detectable power are used to calculate the SNR at 

each range gate. 

2. The radar measurables concerning the dual-polarization attenuation-correction are 

input from the lower level radar data management system. Particularly, the measured 

reflectivity at /z-polarization (Z/,) and the measured differential reflectivity between 

the h- and v-polarizations (Z^) are the two quantities that need the attenuation-

correction. The measured differential propagation phase (®dp) 1S used in the objective 

function for the non-linear least squares solver (shown in block no. 7 later). The co-

polar correlation coefficient (phv), the normalized coherent power (NCP), and the ®ap 

together provide dual-polarization information for block no.3. 

3. The phv, the NCP, the O^,, and the SNR together provide dual-polarization-based data 

quality control on a ray-by-ray basis. Based on these variables, an elaborate scheme is 

used to identify 'meteorological segments', which is defined here as a segment of 

range that has continuous precipitation. 

4. For the definition of 'meteorological segments' please see block no.3. 

5. If any meteorological segments are found, the first one will be used as a reference to 

check if the <J>dP needs to be adjusted for prevention of phase-wrapping. It is desired to 
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adjust the system offset of the <Ddp so that over the full range it is a continuous 

function in [-n, JI]. After the system offset is adjusted, it is unusual that the <DaP needs 

unfolding but the mechanism to unfold is still there just in case. 

6. Please see block no.5. 

7. The parameter estimation for the parametric model of the path-integrated attenuation 

at h-polarization (PIAh) and at v-polarization (PIAV) is conducted in a least-squares 

sense by the solver. The solver is designed and coded very efficiently and is real-time. 

8. An elaborated scheme is used to monitor the convergence of the solver and check the 

validity of the estimated parameters. 

9. If the solution of the parameter estimation converged and valid, the estimated 

parameters will be used in the parametric model to compute the PIAh and the PIAV. 

10. There is a possibility that the solution does not converge. In this case, a priori 

seasonally averaged parameters will be used (the seasonal average values are to be 

calculated and studied in the later section 3.4.4). 

11. The measured Z/, and the measured Zv are corrected using the estimated PIAh and the 

estimated PIAV, respectively. The measured Zdr is then corrected using the corrected 

Zh and the corrected Zv. 

12. Upon completion, the output is converted to netCDF format and the resources 

allocated at the start of the algorithm will be released. 

Here in end of this section we verify that our implementation of the algorithm performs 

in real time. As we monitor the execution time of the software installed in the CAS AIP1 

radar nodes, the average time to complete processing a full PPI scan (about 360 beams) is 
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1-2 seconds, including the disk I/O, data quality control and other miscellaneous features 

described in the flowchart. At maximum, the average time to process a single ray is about 

5 ms, which is only about 5% of the dwell time. 

3.4.3 Case study for the CASA IP1: comparison with nearby WSR-88D radar 
measurement 

The WSR-88D (S-band) radar networks provide national coverage for weather 

surveillance applications. The base production S-band reflectivity provides at least base

line references for the storm intensity and structure, with which we can compare the 

attenuation- corrected reflectivity of the CASA IP 1. 

In order to do a point-to-point comparison despite the fundamental differences in the 

configurations of the two radar networks, we derived a scheme to grid and merge the 

networked data from each individual node into a composite dataset on a geo-referenced 

frame. This scheme is termed 'mosaic of radar data' and more detailed is available in Liu 

et al. (2007). 

Here, we present the mosaic images of a severe storm measured by the WSR-88D and the 

CASA IP1 coincidently. The WSR-88D data are from the KTLX node in Oklahoma City, 

OK, which is some 100 km away from the CASA IP1. 

Fig. 3.21 shows a storm over the center of IP1 testbed at around 07:37:31 May 8 2007 

UTC. Fig. 3.21(a) shows the composite reflectivity from the four IP1 radars before 
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attenuation-correction. Fig. 3.21(b) shows the composite reflectivity after attenuation-

correction. Fig. 3.21(b) is to be compared visually with Fig. 3.21(c) which shows the 

WSR-88D reflectivity at almost the same time from the KTLX radar. As Fig. 3.21(b) and 

Fig. 3.21(c) show, the two reflectivity maps show very similar storm intensity and 

structure although they are from two completely different systems operating at two 

different frequencies (~3 GHz and -9.4 GHz). The improved spatial resolution of CASA 

data is also to be noted here. 
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Composite Reflectivity (Measured) 
2007/05/08 07'37:31 

^ P^I \f \ - K f f S ^ 

Longitude (deg) 

Figure 3.21 IP1 Reflectivity maps at 07:37:31 May 8 2007 and WSR-88D reflectivity map at 07:37:24 May 
8 2007. (a) IP1 reflectivity before attenuation correction (b) IP1 reflectivity after attenuation correction (c) 
WSR-88D (KTLX) reflectivity. 
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3.4.4 Seasonal results from the CASA IP1 testbed: Spring, Summer, and Autumn 
2007 

The CASA IP1 testbed has collected and archived terabytes of radar data for a number of 

major storm events passing through the network as of April 2007, including a tornado. In 

this section, we analyze the statistics of the estimated parameter ah and the estimated 

total path-integrated attenuation for a number of storms that occurred in the testbed in 

Spring, Summer, and Autumn, 2007, respectively. 

We summarize information of the storm events analyzed for the statistics study in Table 

(3.6). The table lists the start date, start time, end date, end time approximately when each 

storm entered and exited the CASA IP1 coverage area. The type of each storm is also 

given. If there were more than one type of storm from the start time and end time, we also 

indicate this in the 'type' column. 

As expected in Oklahoma, the storms are mostly convective. Hail particles, either dry or 

wet, are possible in strong convective events. The study of wet hail attenuation will be 

presented later in chapter 5. 

First we present the statistics of the parameter ah for each storm in order to understand 

the range of the variation of the parameter estimation, both physical and statistical in real 

storm events. As discussed in the simulation section, the physical variation is due to the 

natural variation in the DSD and the shape of raindrops and other environmental 

variables like temperature. The statistical variation is introduced due to the noise in the 
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system. It is hard to separate these two factors in the real data. However, the intrinsic 

distribution of the parameter for the instrument (the CAS A IP1) and the governing 

process of the storm should be revealed by sufficient time-averaged histograms. 

Fig. 3.22 shows the histograms of the estimated parameter ah for each storm from the 

start time to the end time listed in the Table (3.6). In the figure, histograms from a given 

event are plotted in the same column, with each row showing the histogram from a 

particular radar node. It is clear that the distributions of the parameter ah vary from 

event to event and from radar to radar. The variation is expected because, (a) each storm 

is different; (b) even in the same storm, the DSD and drop shape can vary spatially within 

the coverage area. For our purpose of attenuation-correction, it is important that the 

variation along the radar propagation path is compensated by estimating the parameter 

ah through the self-consistent principle discussed earlier, in a least-squares sense. 

Fig. 3.23 shows the mean values of the parameter ah obtained from the histograms 

shown in Fig. 3.22. For each radar, the mean values and the standard deviations are 

plotted with the date as the x-axis (not uniformly spaced) to illustrate the trend of the 

mean values from event to event. 

Next we show in Fig. 3.24 the cumulative distribution function of the total PIA for all the 

events listed in Table (3.6). It shows that the total PIA is less than 10.39 dB about 80% of 

time and is less than 17.76 dB about 90% of the time. The total PIA here is defined as the 

PIA at the last range gate containing precipitation on the propagation path, up to the 
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maximum unambiguous range of the radar. At X-band, it is possible that the radar 

radiated power is completely attenuated after some distance before reaching the 

maximum unambiguous range when the propagation path traverses a very intensive storm. 

In this case, the total PIA is defined here as the P1A up to the last range gate identified as 

'good quality' data (see section 3.4.2), which can be smaller than that if the signal were 

not attenuated completely. Therefore, in such situation the statistics shown in Fig. 3.24 

are not fully representative of the storm in the coverage area. When this happens, we 

observe that part of the storm is missed by one of the radars in the network. However, the 

other radars could observe the missing part of the storm provided that the storm is inside 

the overlapping region of the network and the paths from other radars are oriented such 

that they intercept the less intensive part of the storm complex (e.g., see the topology of 

the CASAIP1 in Fig. 1.3). This network approach is considered a core component of the 

CASA approach of sensing the atmosphere. 
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Table 3.6 The CASAIP1 case studies start date/time, end date/time (all UTC) and storm type information. 

State Date 

2007/04/10 
2007/04/11 

2007/04/24 

2007/04/27 

2007/05/07 

2007/05/08 

2007/05/08 

2007/05/10 
2007/06/10 
2007/06/14 
2007/06/20 
2007/06/21 
2007/10/03 
2007/10/15 

Start Time 

22:46 
00:00 

16:10 

17:42 

04:38 

07:02 

23:00 

22:02 
20:02 
06:00 
04:00 
03:00 
00:00 
00:00 

End Date 

2007/04/10 
2007/04/11 

2007/04/24 

2007/04/27 

2007/05/07 

2007/05/08 

2007/05/09 

2007/05/10 
2007/06/10 
2007/06/14 
2007/06/20 
2007/06/21 
2007/10/03 
2007/10/15 

End Time 

23:59 
01:24 

19:00 

19:12 

17:58 

10:58 

04:40 

23:59 
23:58 
14:59 
12:59 
21:00 
07:00 
06:00 

Type(s) of Storm 

Isolated cells, convective 
Isolated cells, convective 

Squall line 

Isolated cells, convective 

Isolated cells(more intense), 
convective 
Isolated cells(more severe), 
convective 
Tornado at KLWE around 
00:32:58, strong convective 
storm later 
Isolated cells, convective 
Isolated cells, convective 
Strong convective 
Strong Squall line 
Isolated cells, convective 
Isolated cells, convective 
Squall line 

Operating Node(s) 

All 
All 

KSAO, KCYR, 
KLWE 

KSAO, KCYR, 
KLWE 

All 

All 

All 

All 
All 
All 
All 
All 

KLWE, KRSP 
KCYR, KLWE 
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20070410_chfckasha 20070411 chlckasha 

0.1 0.2 0.3 0.4 0.5 

20070410_cyril 2007041l_cyr« 

0.1 0.2 0.3 0.4 0.5 

20070410 lawton 

No severe attenuation experienced for Lawton node. 

Statistics not available. 

20070410_rushsprings 20070411_rushsprlngs 

0.1 0.2 0.3 0.4 0.6 

Figure 3.22 Histograms of the estimated parameter a^ for the events listed in Table (3.6). 
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20070424 chlckasha 20070427 chlckasha 

o 300-

o 
S 
| 200-

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 

20070424_cyrll 20070427_cyril 

0 0.1 0.2 0.3 0.4 0.5 

20070424 lawton 

No severe attenuation experienced for Lawton node. 

Statistics not available. 

0 0.1 0.2 0.3 0.4 0.5 

Rush Springs node not operating for this case. Rush Springs node not operating for this case. 

Figure 3.22 (continued). Histograms of the estimated parameter Oh for the events listed in Table (3.6). 
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Figure 3.23 The mean values and standard deviations of the estimated parameter Oh plotted along the date 
of the events. 
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KLWE.a mean trend and std 

^ ,</ ,<^ ^ ,c# ,<# J? ^ ^ ^ <& ^ <& ^ / / # ^ ^ iP # ^ # / / / / / 
Date 

KRSP,a mean trend and std 

Date 

Figure 3.23 (continued) The mean values and standard deviations of the estimated parameter ĉ , plotted 
along the date of the events. 
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10 20 30 40 
Path Integrated Attenuation (dB) 

60 

Figure 3.24 Cumulative distribution of path-integrated attenuation for the cases in Table (3.6) from rays 
below 6 deg elevation angle. 
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4 OPTIMAL ESTIMATION OF RAIN DIFFERENTIAL ATTENUATION 
AND CORRECTION OF DIFFERENTIAL REFLECTIVITY 

In section 2.5 we reviewed several techniques for the estimation of the specific 

differential attenuation (A^p) and the attenuation-correction for the differential reflectivity 

(Zdr) for the rain medium. In this chapter, we are going to present a different approach for 

this problem. Following similar organization as chapter 3, first we present the 

mathematical framework. Based on this framework, we find that the principle of the 

minimization presented in chapter 3 can be reused here. We further test our 

implementation with simulation and the MPX dual-polarized Doppler radar. The 

implementation has been running in real time in the CAS A IP1 dual-polarized Doppler 

radar network. Both the simulation results and the results using radar measurements will 

be presented here. 

4.1 Rethinking the estimation of the Aap and correction of Z^r 

Previously, the specific differential attenuation has been treated as a continuum, 

estimated either by the scaling of the estimated specific attenuation (see eq. (2.48b), 

Bringi et al. (2001)) or by the scaling of the differential propagation phase directly (see 

eqs. (2.44)-(2.47), Ryzhkov and Zrnic (1995), Smyth and Illingworth (1998)). However, 

this continuum can be broken down into two basic components, the specific attenuation at 

h polarization (A/,) and the specific attenuation at v polarization (Av), resulting an 

alternative means to solving the differential attenuation correction problem. Similar to the 

differential reflectivity (Z^r) which is measured by taking ratio of the reflectivity at h 
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polarization (Z/, measured through the /z-port of the antenna) over the reflectivity at v 

polarization (Zv measured through the v-port of the antenna), the A<jp fundamentally is the 

difference between the Af, and the Av. (see eq. (2.16)). We have demonstrated the optimal 

estimation of Ah in the previous chapter. In this chapter, we are going to demonstrate an 

alternative approach to estimate the Adp and correct the Z& by estimating the Ah and the Av 

separately. 

A large part of our motivation for taking this approach is to overcome some limitations 

caused by making assumptions about the 'true' Zjr at the end of a rain cell. As we recall 

the discussion in section 2.5, to satisfy the assumptions about 'true' Zdr one of the 

following two conditions must hold: (a) the rain drops are spherical at the end of the rain 

cell so that the 'true' Zdr is 0 dB; (b) if such region can not be identified, the 'true' Zjr can 

be predicted through a Zh-Z^r relationship, hi the first case, the Zjr has to be calibrated 

accurately, while in the second both the Zh and the Z^. Otherwise, the resulting path-

integrated differential attenuation (PIDA) will not be correct and thus the accuracy of the 

differential attenuation correction will degrade. 

There are several techniques to calibrate Zh and Zdr (Gorgucci et al. (1999)). However, it 

is not common that they are calibrated on a day-to-day basis. The advantage to have the 

estimated PIA and the estimated PIDA independent of the calibration error is obvious; the 

calibration error can be adjusted as a constant after the attenuation and differential 

attenuation correction. Because it is not necessary to rerun the attenuation and differential 

attenuation correction again on the data if the calibration error is to be corrected, it can 
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save a lot of post-processing time. Moreover, the retrieval of PIDA and Adp free of 

distortion caused by the calibration error is also highly desired. 

We already know from chapter 3 the improved technique on the Ay, (or PI A) estimation is 

independent of the Z/, calibration error. Based on above discussions, we are motivated to 

rethink the Adp estimation and consider the Ah and the Av approach. If we have the Av also 

independent of the Zv calibration error, it is easy to see that the Adp (or the PIDA) will be 

independent of the Zdr calibration error as well. 

4.2 The Ah-Av approach for estimation of A(ipand correction of Zdr 

In rain medium, the Av is well-correlated with Ah and the relationship is linear based on 

T-matrix calculations. Fig. 4.1 shows the scatter plot of the At, vs. the Av for several drop 

shape models with a DSD subset of about 8000 measured DSD samples from 

disdrometers. It is evident that the cross-correlation coefficient is very high (0.9997) and 

the relationship is linear. 

Similar to the Ah-Kjp relationship, the Av is also well-correlated with the Kdp in rain 

medium (not shown here) and is linear with Kdp as: 

Av=avKdp (4.1) 

Note that in general the parameter av is less than ah (termed a in previous chapters). 
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Ah vs. Av Relationships for Various Drop Shape Models 
2.5 

1.c=1.1265, r=1-0.040D (D >1.75) & Brandes et al. 2002 (D <1.75) 
eq eq v eq ' 

-2. c=1.1714, Andsageretal. 1999 

3. c=1.2013, Beard and Chuang 1987 

- 4. c=1.2258, Pruppacherand Beard 1970 

^ 1.5 
E 

Av (dB/km) 

Figure 4.1 Ah vs. Av relationships at X-band derived based on four different drop shape models in the 
literature. Black solid lines are the least squares fit to Ah and Av values calculated from approximated 8000 
measured DSDs for each drop shape model. Sample points are shown as black dots for the Pruppacher and 
Beard (1970) linear model. The cross-correlation coefficient between Ah and Av is 0.9997. 
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Based on Hitschfeld and Bordan (1954), we assume the Av is a power law function of the 

true Zv as: 

Av=avZv
K (4.2) 

Note that in general the parameters av and bv are different from the parameter ah and 

bh (termed a and b in previous chapters) in the Ah-Zh relationship. 

Based on eqs (4.1) and (4.2), following the exactly same derivation in section 3.2.2 we 

express the estimated parameter av as (see also eq. (3.12)): 

1 _ 1 n-°- l f tvav(®*('»)-**('i)) 

ffv=i_^ (4.3) 
0A6bv I" Zb

v:m(s)ds 

The estimated Zve is expressed as (see also eq. (3.13b)): 

[zl:m{s)ds 

I" zl:m(s)ds z^^z^xm--: fl.io^w**^^))))* (4A) 
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The estimated PIAV at v polarization is expressed as (see also eq. (3.14)): 

, (Zb/m(s)ds 
PIAv(ri) = --\og10{l-^- ( 1 _ 1 0 ^ W * * ( * H W ) } ( 4 < 5 ) 

\NZtXs)ds 

The estimated Av is expressed as (see also eq. (3.15)): 

Av{ri) = aX>i) (4.6a) 

= V " ' ( ' X ^ (4.6b) 
0-466v f Zb

v:m(s)ds - (1 -10-+W+1*•*+<*»). 0.466v f Zj.(*)<& 

Based on the estimated PIAV, we construct the estimated ®dpv as (the subscript v 

denotes that the estimation is from PIAV; see also eq. (3.17)): 

S*f,[i] = - ^ ^ + < ^ [ l ] (4.7a) 

10 Z^iMAr _± 
= - log 1 0{( l - ^ (1 - l O " 0 1 ^ ^ ^ ™ ) ) ** } + O ^ l ] (4.7b) 

a ZzUs^Ar 

1=1 

Note that the variables now are presented in vector forms. 

Therefore, this results in exactly the same minimization form (but with different 

parameters and measurement) as eqs. (3.18) and (3.19) as: 
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/vW = **W-**.,W (4.8a) 

K =^Z(/vW)2 =-j: -l =\\fX (4.8b) 

where ®dpv[i] is estimated from eq. (4.7). 

The estimation of av is given here as: 

av =argmin(JFv) (4.9) 

After the minimization converges (using the technique discussed in section 3.2.4), the 

estimation of Zve , PIAv, and Av can be calculated by eqs. (4.4), (4.5) and (4.6), 

respectively. 

Finally together with previously estimated Zh e, PIAh, and Ah (estimated using the 

improved technique described in chapter 3), the estimated Zdr e, the estimated PI DA , 

and the estimated Ad are given as follows, respectively: 

Z*Ar,) = ^ p l (4.10a) 

PIDA^) = PlAh(rt)- PIA^) (4.10b) 

\(ri) = Ah(ri)-Av(ri) (4.10c) 
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4.3 Stability of the algorithm 

It is well known that Zdr is a function of the median volume diameter (D0) of the DSD 

and can be directly inverted to retrieved D0 at non-attenuating frequencies using the 

Rayleigh - Gans theory for the rain medium (Seliga and Bringi (1976)). It should be 

noted again here that the deviation of rain drop shape from sphere to oblate spheroid is 

the key observation that results in that the Z<jr, although estimated from dividing (or 

differentiating in logarithmic scale) two large numbers (Zh and Zv), is a meaningful 

measurement of the Do. Because of the oblate shape of the rain drops, Zy, and Zv are 

correlated (through the geometry factor as a function of the drop shape; Seliga and Bringi 

(1976)). At attenuating frequencies when the differential attenuation is not negligible, it is 

important to maintain this correlation when we correct the measured Zjr for the 

differential attenuation. 

Using previously developed algorithms (e.g., Ryzhkov and Zrnic (1995), Smyth and 

Illingworth (1998), Bringi et al. (2001)), the correlation is maintained by using the 

measured Zdr directly in the attenuation-correction algorithms. Here in our algorithm, we 

first calculate the measured Zv from the measured Zh and the measured Z</r (i.e., Zv=Zh-Zdr 

ft "K 

if Zh and Zv in dBz and Zdr in dB, or Zv=ZhlZdr if Zh and Zv in mm m" and Zdr without 

units). Then we run the core algorithm twice, first with the measured Zh and then with the 

measured Zv, so that the minimization of the cost functions and the attenuation 

corrections are performed independently. We will show next when we use eq. (4.10a) to 

estimate the intrinsic Zdr, the high intrinsic correlation is still maintained. 
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1 

(4.11b) 

Here we investigate the correlation of Z/, and Zv after attenuation-correction using the Ah-

Av estimation algorithm. By expanding eq. (4.10a), we have: 

Z*,(r,) = f ^ (4.11a) 

('Zh (s)ds JL 
Z (r.Yl ' hm n _ jQ-°1*/.«A(^('V)-«>*('i))\N h 

fzh;m{s)ds _J_ 

fzti^ds 

= Zdnm(rt) ± (4.11c) 
\Zb;m{s)ds _L 

/-i _ -h fl — 1 o_0'16"a"(®*(''A')_a>*(r| w \ \ *v 

= ^ ( ^ ) - ^ (4.1 Id) 

Since both aA and av are allowed to change and are related to ah and av respectively, 

the estimated Zdr e are not very sensitive to bh and bv. We assign them to the same value 

that found in Part et al. (2005) (e.g., bh = bv =6=0.78). 

It is evident that in eq. (4.1 Id) that using eq. (4.10a) to correct the differential attenuation 

for Z^ does not alter the correlation in the measured Zdr- Eq. (4.1 Id) shows that 
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fundamentally the measured Z^ is implicit in the correction equation (eq. (4.10a)). The 

factor in eq. (4.1 Id) is the path-integrated differential attenuation factor (i.e., a 

ratio) converted from the PIDA, which decides the amount of the differential attenuation. 

Hence, it is important that we make sure that eq. (4.1 Id) results in a valid candidate of the 

PIDA. Based on the microphysical properties of rain, a valid candidate of the PIDA must 

have PIDA>=0 dB and be a monotonically increasing function along the range. Here, we 

are going to prove that the functions ph(r^) and pv(rt) are both monotonically increasing 

functions of the range first, although this is quite self-evident. For the function ph(r^) we 

know: 

b = 0.7S>0; 

ah>0; 

Zh,Jr)>0V rc[rvrN]. 

Therefore, we have: 

(1 - io~ai**aft(<I>*(''A')"(I'*('i)h > 0 • 

qh (rt) = —-! is a monotonically increasing function of r,; 
[NZt{s)ds 
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h(r,) = \-qh(rl)-(\-\o^1*'8^**^"y^"M)) is amonotonically decreasing function of rt. 

Therefore ph(r() = lh(rt) * is a monotonically increasing function of r,. (same for pv(rf) 

following the similar proof). It is also easy to verify that ph (rt) > 1 V r e \rx, rN ] . The 

monotonically increasing trend and the greater than or equal to unity are two necessary 

conditions for any functions that are candidates to correct the attenuation for the 

measured Z/, (and the measured Zv) of the rain medium. This is based on the physics that 

the specific attenuation is greater than or equal to zero (absorption of the electromagnetic 

energy by rain drop) and hence results in a monotonically increasing PIA greater than or 

equal to 0 dB. 

Now we are going to deduce the necessary conditions for a candidate function to be a 

valid function for correcting the measured Zdr of the rain medium. Because of the oblate 

rain drop shape, the energy is absorbed more at the h polarization aligned with the major 

axis of the rain drop spheroid than at the v polarization aligned with the minor axis of the 

rain drop spheroid. Hence after correcting for the differential attenuation we must have: 

2 * , (1) 2 ^ ( 1 ) (4.12) 

This is equivalent to: 

Pv(ri) 
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Since we know: 

;?>,)> I 

-b<0 

If we ensure: 

pSW^p^fr) (4.14) 

we will satisfy the inequality (4.13). Substitute ph(r^) and pv(rt) into inequality (4.14), 

we have: 

('Zb
m(s)ds f'Zb

vm(s)ds 

[NZlM)ds iNZb
vm(s)ds 

('Zb
hm(s)ds fzb

m(s)ds 

f ^ , m ( ^ f ^ , M ( ^ 
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Therefore, inequality (4.15) is a necessary condition that h ' can be used to correct 

the measured Zdr using eq. (4.1 Id). 

It can be seen that to satisfy inequality (4.15), the parameters ah and av should be 

carefully chosen. Because the quantities Zhm and Zv m are already determined after the 

radar finishes collecting data for a given range profile, the satisfaction of inequality (4.15) 

totally depends on the parameters ah and av . In the minimization, there is no 

mechanism yet to ensure inequality (4.15) will be always satisfied (but empirically from 

our simulation and data analysis, it is often the case that the estimations of ah and av 

satisfy the inequality). Therefore, it is important to test the estimated ah and av to 

ensure that inequality (4.15) is satisfied. However, there is a quicker but less stringent 

criterion to test that solution eq. (4.1 Id) is valid than testing inequality (4.15). Recall that 

the specify attenuation at h and v polarization, respectively is related to the specific 

propagation phase as: 

Ah=ahKdp (4.16) 

A=<*,Kdp (4.17) 

If we enforce that ah >av, we will have: 

Adp =Ah-Av= {ah - av)Kdp > 0 (4.18) 
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If we also enforce that Kdp > 0 , eq. (4.18) will satisfy the requirement for the specific 

differential attenuation for the rain medium and hence the requirement for PIDA. Since 

our solution of eq. (4.1 Id) is derived from the two fundamental equations (i.e., eqs (4.1) 

and (4.2)), enforcing ah > av would increase greatly the possibility that inequality (4.15) 

is satisfied. 

4.4 Simulation results 

In the section we extend the same simulation setup used in section 3.3 to evaluate the Af,-

Av algorithm on simulated radar measurement profiles. Following the same procedure, the 

intrinsic Z^ and the intrinsic Adp are generated by the T-Matrix method for the constant 

DSD case and the variable DSD case. The measured Zdr is then calculated from the above 

two variables along the range. Next the measured Zjr, the measured Z/,, and the measured 

<£>dp are ingested into the Ah-Av algorithm where the estimated A aP and the estimated 

intrinsic Z</r are outputted. The estimation results are then compared with the simulation 

input and the performance of the Af,-Av algorithm is evaluated through the mean error and 

the root squared mean error between the input and output for the whole range profile. 

4.4.1 Constant DSD case 

The constant DSD profile used here is the same as that in section 3.3.1. The organization 

of this section is similar to that of section 3.3.1. First, we evaluate the Af,-Av algorithm for 

the Pruppacher and Beard (1970) drop shape model. The ideal situation with no 
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measurement errors will be evaluated first and later the more realistic situation with 

simulated Gaussian noise. Then the study is extended to include more drop shape models 

available in the literature and the metrics of merit such as mean error and RMSE are 

presented using tables. 

Fig. 4.2 shows the intrinsic Zdr, the measured (attenuated) Zjr, and the corrected 

(estimated) Zdr. As expected, the measured Zdr appears decreasing along the path because 

of the monotonically increasing PIDA. The PIDA is approximately 3 dB at 40 km. The 

estimated Zdr (the algorithm output using eq. (4.10a)) appears to be a very good match 

when compared with the intrinsic Zdr (the simulation input). Fig. 4.3 shows the intrinsic 

Adp (the simulation input) and the estimated Adp (the algorithm output). Note that the Adp 

is estimated by eq. (4.10c) by separately estimate Ah and Av first. The estimated Ajp is 

close to the intrinsic Adp but slightly underestimated. However, the estimation remains 

valid (>=0) across the whole range. Using the minimization scheme, the parameter aY is 

estimated to be 0.16363, which is smaller than the estimated ah (0.19713) previously 

shown in section 3.3.1. This satisfies the requirement discussed earlier in the previous 

section, hence it results the valid estimation of Adp. 

The estimated Odp by using Zv and av as in eq. (4.7) is not shown here because of the 

similarity to estimated Odp by using Zh and ah as in eq. (3.17) (see Fig. 3.3). Both eqs. 

(3.17) and (4.7) estimate the Q?dp very well. This indicates that the minimization is 

indeed exploiting the consistency in the Zf,-Kdp discussed in chapter 3 and the consistency 

principle is also applicable to the Zv-Kdp relationship. It is the consistency that enables the 
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parameter av to be retrieved consistently, satisfying the requirement discussed in the 

previous section. We will continue to see this observation as we progress with more 

simulation results. 

It is expected as we alter the drop shape model the estimation will be able to adapt to 

such change. This is shown in Table (4.1). It is evident that the estimated parameter av 

changes with the drop shape model and it adapts to the measured <3> • in a least-squares 

sense. Such adaptation results the mean error and RMSE to remain consistently good 

across all the drop shape models tested here. The estimated parameter ah from the 

previous result is also shown here next to the column of the estimated parameter av. It 

can be seen that these two estimated parameters are well apart from each other and meet 

the requirement discussed in the previous section. 

Next we evaluate the Ay,-Av algorithm under some noisy environment. In addition to the 

Gaussian noise added to the measured Z/, and the measured Orfpthat are described in 

section 3.3.1, we add Gaussian noise with 0 mean and a standard deviation of 0.2 dB to 

the measured Zdr- This is shown in Fig. 4.4. The Ah-Av algorithm performs quite well in 

this noisy situation, as the estimated (corrected) Z& shown also in Fig. 4.4 appears to 

align with the intrinsic Zdr very well. The estimated Adp for this case is shown with the 

intrinsic Adp in Fig. 4.5. As expected the estimated Adp is fluctuating around the intrinsic 

value along the range because of the noises both in the Zf, and Zdr measurements. 

Nevertheless, the estimated Adp appears to be unbiased which is very important for the 

corrected Zdr to be used in estimating parameter Do of the DSD. 
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The parameter av for this case is estimated to be 0.15814 which is slightly lower than 

that for the case without noise. This is expected within the error. It is more important that 

the parameter ah and the parameter av satisfy the requirement discussed in the previous 

section. They indeed satisfy the requirement as the parameter ah is estimated to be 

significantly larger than the parameter av (see Table (4.2)). 

Extending the analysis for other drop shape model, we list the mean error and RMSE for 

the algorithm output compared with the simulation input in the Table (4.2). Once again, 

the Aj,-Av algorithm appears to perform very well even under the noisy environment. 
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based on a constant exponential DSD profile and the Pruppacher and Beard (1970) drop shape model. 
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Figure 4.3 Range profiles of the intrinsic Adp and the retrieved Adp. The profiles are based on a constant 
exponential DSD profile and the Pruppacher and Beard (1970) drop shape model. 
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Figure 4.5 Range profiles of the intrinsic Adp and the retrieved Adp. Profiles are based on a constant 
exponential DSD profile and the Pruppacher and Beard (1970) drop shape model. The estimated Adp is 
retrieved from the noisy measurements of Zh, Zdr and <Ddp. 
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Table 4.1 Estimated c^ and a„ mean error(intrinsic - retrieved), and RMSE evaluated with several drop 
shape models in the literature. Constant DSD. No measurement errors. 

DROP SHAPE MODELS 

Pruppacher and Beard 1970 

Beard and Chuang 1987 

Andsager et al. 1999 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.040mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.060mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.070mm"1 

ESTIMATED 
PARAMETERS 

Oh 

(dB/deg) 

0.19283 

0.24511 

0.29094 

0.36707 

0.20121 

0.16583 

Ctv 

(dB/deg) 

0.16001 

0.20841 

0.25354 

0.33269 

0.16840 

0.13289 

MEAN ERROR 

Zdr 

(dB) 

0.0127 

0.0111 

0.0093 

0.0066 

0.0121 

0.0152 

Adp 

(dB/km) 

0.00058 

0.00050 

0.00042 

0.00029 

0.00055 

0.00070 

RMSE 

Zdr(dB) 

0.0174 

0.0151 

0.0127 

0.0089 

0.0166 

0.0208 

Adp 

(dB/km) 

0.00077 

0.00067 

0.00055 

0.00037 

0.00073 

0.00093 

Table 4.2 Estimated Oh and <Xv, mean error (intrinsic - retrieved), and RMSE evaluated with several drop 
shape models in the literature. Constant DSD. Gaussian noises with zero means are added to the 
measurements. gn(Zh)=0.8 dBZ, an(Zdr)=0.2 dB, pn(<I>dp)=3 deg. 

DROP SHAPE MODELS 

Pruppacher and Beard 1970 

Beard and Chuang 1987 

Andsager et al. 1999 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.040mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.060mm"' 
Mixed model (linear for large drops, 

Brandes et al. 2002 for small 
drops),linear slope=0.070mm"1 

ESTIMATED 
PARAMETERS 

Oh 

(dB/deg) 

0.19093 

0.24563 

0.29512 

0.36638 

0.20167 

0.16346 

(dB/deg) 

0.15814 

0.20920 

0.25825 

0.33138 

0.16893 

0.13079 

MEAN ERROR 

Zdr 

(dB) 

0.0218 

0.0151 

0.0381 

0.1911 

-0.0020 

0.0272 

Adp 

(dB/km) 

0.00062 

0.00074 

0.00080 

0.00701 

0.00063 

0.00104 

RMSE 

Zdr 
(dB) 

0.1969 

0.1952 

0.2002 

0.1911 

0.1971 

0.2029 

Adp 
(dB/km) 

0.00788 

0.00816 

0.00751 

0.00701 

0.00790 

0.00829 
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4.4.2 Variable DSD case 

It is well known that Zdr is a function of the median volume diameter (Do) of the DSD 

(Seliga and Bringi (1976)). In principle, the intrinsic Zdr should not be affected by the Nw 

parameter of the DSD of the exponential form because it is cancelled out during the 

calculation. But since the Nw constant is fundamentally inherent by specifying a constant 

parameter a over the path and both Zf, and Zv are corrected individually, it is necessary 

here again to revisit this problem for correcting Zdr. In this section, similar to the section 

3.3.2, we use the same variable DSD range profile to generate Zdr and Adp values in 

addition to the already available Zh, Ah, and Kdp values obtained in section 3.3.2. 

The Pruppacher and Beard (1970) drop shape is assumed first under ideal conditions. Fig. 

4.6 shows the intrinsic Zdr, the measured Zdr, the estimated (corrected) Zdr. Note that both 

the intrinsic Z^ and the measured Zdr are obtained from the simulation input, while the 

estimated (corrected) Zdr is obtained by the Ah-Av algorithm output. It is amazing that the 

estimated Zdr follows the intrinsic Zdr so closely that they cannot be distinguished visually. 

The good estimation of Zdr results from the good estimation of the Adp, which is shown in 

Fig. 4.7. Indeed, the Adp estimated by taking the difference ofAf,-Av does follow very well 

the trend of the simulated intrinsic Adp. It also stays positive along the whole range hence 

satisfies the requirement discussed in section 4.3. 

Table (4.3) shows the mean error and RMSE when the algorithm is applied to several 

other drop shape models. The change both in the parameters ah and av is as expected. 

More importantly, they change consistently and satisfy the requirement for using the Af,-
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Av algorithm. The mean error and RMSE remain very good across all the drop shape 

models tested here. 

Similarly, the Gaussian noise (see previous section) is added next. Fig. 4.8 shows the 

difference of the intrinsic Zdr minus the estimated (corrected) Z^. The standard deviation 

of the difference is estimated to be 0.2 dB, which is the same as the Gaussian noise added 

to the measured Z^. The estimated Zdr appears to be unbiased since the mean of the 

difference is approximately 0 dB. Fig. 4.9 shows the difference of the intrinsic Adp - the 

estimated (corrected) Adp. The noisy appearance is noticed here and it is directly 

transferred from the noisy measured Zy, and the noisy measured Zdr. Although it is not 

shown here, the estimated Adp stays positive along the whole range hence satisfies the 

requirement discussed in section 4.3. The standard deviation of the difference is 

estimated to be about 0.01 dB/km. 

The estimated parameters, the mean error and the RMSE of the Zdr and Adp are shown in 

the Table (4.4) for this case and other drop shape models. The mean error and the RMSE 

are slight degraded because of the noise but it is more important that the parameters are 

estimated consistently following the change of the drop shape model. 

4.4.3 Sensitivity of the parameter av on temperature 

We evaluate the sensitivity of the parameter av due to the change of the environment 

temperature here. Table (4.5) shows the estimated parameter av at different environmental 
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temperatures for the Pruppacher and Beard (1970) drop shape model in an ideal condition. 

Four different environmental temperatures are used here, e.g., 0°C, 10°C, 20°C and 30°C, 

respectively. As expected, the parameter av is slightly sensitive to the temperature 

similarly to that shown for at, in section 3.3.3. However the range of the change is much 

less compared with that due to the change of the drop shape. The metrics of merit for the 

estimated Adp and the corrected Z& are shown in Table (3.5) for each temperature. 

4.4.4 Error introduced by using fixed ah and av 

In the end of this simulation study we show the effect of using fixed «/, and av, estimated 

a priori and potentially in error. In this case, the optimization is not performed. We 

assume the fixed values deviate from the 'true' values by + 0.05 dB/deg (about 20% 

error). The corrected Z& is plotted for the constant DSD and the Pruppacher and Beard 

(1970) drop shape model in an ideal condition and shown in Fig. 4.10. The corrected Z& 

appears to be biased quite severely over the path. Therefore, we do not recommend using 

a priori fixed «/, and av to correct rain differential attenuation at X-band, unless it is 

known very accurately. 
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Figure 4.6 Range profiles of the intrinsic Zdr, the attenuated Zdr, and the corrected Zdr. The profiles are 
based on a variable DSD range profile and the Pruppacher and Beard (1970) drop shape model. 
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Figure 4.8 Profile of difference of the intrinsic Z& - the corrected Z^. The profile is based on a variable 
DSD range profile and the Pruppacher and Beard (1970) drop shape model. The corrected Z& is obtained 
by correcting the noisy measured Z& for attenuation. 
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Figure 4.9 Profile of difference of the intrinsic A^ - the estimated Adp. The profile is based on a variable 
DSD range profile and the Pruppacher and Beard (1970) drop shape model. The estimated Adp is computed 
by the non-linear model with the converged c^ and ĉ , under condition of noisy measurements. 
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Table 4.3 Estimated c^ and Oy, mean error (intrinsic - retrieved), and RMSE evaluated with several drop 
shape models in the literature. Variable DSD. No measurement errors. 

DROP SHAPE MODELS 

Pruppacher and Beard 1970 

Beard and Chuang 1987 

Andsager et al. 1999 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.040mm_1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.060mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.070mm"1 

ESTIMATED 
PARAMETERS 

Oh 

(dB/deg) 

0.19713 

0.24887 

0.29531 

0.37739 

0.20579 

0.16933 

Ov 

(dB/deg) 

0.16363 

0.21121 

0.25667 

0.34206 

0.17227 

0.13575 

MEAN ERROR 

(dB) 

0.0198 

0.0159 

0.0120 

0.0093 

0.0189 

0.0242 

Adp 
(dB/km) 

0.00077 

0.00064 

0.00050 

0.00037 

0.00074 

0.00094 

RMSE 

Zdr 
(dB) 

0.0283 

0.0269 

0.0250 

0.0112 

0.0266 

0.0359 

Adp 

(dB/km) 

0.00745 

0.00890 

0.00959 

0.00201 

0.00681 

0.01005 

Table 4.4 Estimated at, and a„ mean error (intrinsic - retrieved), and RMSE evaluated with several drop 
shape models in the literature. Variable DSD. Gaussian noises with zero means are added to the 
measurements. qn(Zh)=0.8 dBZ, GnjZ&yO.l dB, qn(a>dp)=3 deg. 

DROP SHAPE MODELS 

Pruppacher and Beard 1970 

Beard and Chuang 1987 

Andsager et al. 1999 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.040mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.060mm"1 

Mixed model (linear for large drops, 
Brandes et al. 2002 for small 

drops),linear slope=0.070mm"1 

ESTIMATED 
PARAMETERS 

Oh 

(dB/deg) 

0.19467 

0.24677 

0.29042 

0.37461 

0.20013 

0.16842 

Ov 

(dB/deg) 

0.16143 

0.20927 

0.25221 

0.33863 

0.16681 

0.13445 

MEAN ERROR 

Zdr 
(dB) 

0.0325 

0.0325 

0.0132 

-0.0193 

0.0355 

0.0152 

Adp 
(dB/km) 

0.00103 

0.00078 

0.00078 

0.00003 

0.00093 

0.00047 

RMSE 

Zdr 
(dB) 

0.2041 

0.2060 

0.1991 

0.2041 

0.2065 

0.2110 

Adp 
(dB/km) 

0.01204 

0.01424 

0.01339 

0.00915 

0.01330 

0.01376 
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Table 4.5 Estimated c^ and a„ mean error (intrinsic - retrieved), and RMSE evaluated with the Pruppacher 
and Beard (1970) drop shape model at environmental temperature of 0°C, 10°C, 20°C, and 30°C, 
respectively. Variable DSD. No measurement errors. 

DROP SHAPE MODEL AND 
TEMPERATURE 

Pruppacher and Beard 1970, 0°C 

Pruppacher and Beard 1970, 10°C 

Pruppacher and Beard 1970,20°C 

Pruppacher and Beard 1970, 30°C 

OPTIMIZED 
COEFFICIENTS 

Oh 

(dB/deg) 

0.20245 

0.20186 

0.19713 

0.18790 

Ov 

(dB/deg) 

0.17015 

0.16901 

0.16363 

0.15401 

MEAN ERROR 

Zdr 
(dB) 

0.0194 

0.0195 

0.0198 

0.0204 

Adp 

(dB/km) 

0.00075 

0.00076 

0.00077 

0.00078 

RMSE 

Zdr 
(dB) 

0.0291 

0.0289 

0.0283 

0.0276 

Adp 

(dB/km) 

0.00913 

0.00853 

0.00745 

0.00606 
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4.5 Results using radar measurements 

4.5.1 A Typhoon case study using MP-X radar data 

The same Typhoon case studied in the previous chapter for validating the improvement 

of the Ah estimation and correction for Zy, is studied here again for the similar validation 

purpose but for the A dp estimation and correction for Zdr. 

Fig. 4.11(a) shows a plan position indicator (PPI) scan image of the measured Zdr at 

elevation angle 2.5 deg, which is the same scan as the one shown for Zh in Fig. 3.16. The 

measured Zdr becomes negative in the region where the strong Ah is estimated for Zh 

(compared with Fig. 3.16). This agrees with our analysis of the Adp characteristics in the 

previous sections that Zh is attenuated more than Zv in rain. Fig. 4.11(b) shows the 

corrected Zdr by the Ay-Av method. As expected, the corrected Zdr reveals the second 

intensive core beyond around 20 km to the north-west of the radar consistent with the 

corrected Zh shown in Fig. 3.16(b). 

Fig. 4.12 shows the measured Zdr, the corrected Zdr using Park et al. (2005) method, and 

the corrected Zdr using the Ah-Av method plotted along the range at the same azimuth 

angle, 294 deg as the Zh plotted in Fig. 3.17. The calculated values of the intrinsic Zdr 

from DSD data collected by the three distrometers are also shown as three asterisks at the 

respective ranges where the distrometers were situated. The calculated intrinsic Zdr values 

provide ground truth to validate and compare the two algorithms evaluated here. It is 

clear that Park et al. (2005) method and the Ah-Av method both agree with the intrinsic Zdr 
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values well, except that for the second nearest disdrometer there is about 0.45 dB 

discrepancy between the disdrometer and the corrected Zdr by Park et al. (2005) method, 

while there is about 0.25 dB discrepancy between the disdrometer and the corrected Z& 

by the Ah-Av method. Given the statistical variations in both the MP-X radar 

(a(Zdr) « 0.2 dB) and the Joss disdrometers, both discrepancies are acceptable. However, 

the advantage of correcting the Zdr without the use of a Z^-Zdr empirical relationship (see 

section 4.1) is certainly welcome here, especially as there could be also potential Z/, or Zdr 

calibration errors that needs to be corrected for (the data shown here were already 

calibrated:Park et al. (2005)). Perhaps, the 0.2 dB improvement by the Ay,-Av method over 

Park et al. (2005) method is the result of removing the potential error caused by using a 

Zh-Zdr empirical relationship. In fact, Park et al ( 2005 Part II) show the expected error in 

correcting Zdr in their approach. 

Fig. 4.13 shows the histogram of av obtained from the improved method. The histogram 

is obtained from radar rays spanning azimuth angles from 280° to 310°, the same region 

used for plotting Fig. 3.18. The range and distribution of av is reasonable comparing the 

result obtained from the previous simulation. Comparing to the Fig. 3.18, it is clear that 

the estimated av is smaller than the estimated at,, which satisfies our requirement for the 

using the A/,-Av method as discussed earlier in this chapter. To complete this Typhoon 

case study, the Zdr vs. Z/, scatter plot is shown in Fig. 4.14 before and after the attenuation 

correction by the improved method for the selected rays. It is clear that after the 

correction, the scatter plot displays the expected relationship between the Zdr and Z/, in 

rain very well. 
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Figure 4.11 A PPI scan of (a) the measured Zdr (b) the corrected Zdr observed at the elevation angle of 2.5 
deg, at 01:59:54 LST, September 11 2001. The black line is the radar ray at azimuth angle of 294 deg. The 
three squares indicate the locations of the three in situ disdrometers, respectively. 
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Figure 4.12 Range profiles of the measured Zdr, the corrected Zdr using Park et al. (2005) method, and the 
corrected Zdr using the Ah-Av method along the azimuth angle of 294° for the Typhoon event at 01:59:54 
LST September 11 2001. The asterisks (*) denote the mean values calculated from DSD data collected with 
the three in situ disdrometers, respectively. 
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Figure 4.13 Histogram of the optimized coefficient av for radar rays spanning azimuth angles from 280° to 
310° for the Typhoon event at01:59:54 LST September 11 2001. 
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Figure 4.14 Scatter plot of Zdr vs. Zh before (grey dots) and after attenuation correction (black dots). 
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4.5.2 Seasonal results from the CASA IP1 testbed: Spring, Summer, and Autumn 
2007 

In section 3.4.4 we presented the statistical analysis for the estimated parameter ah and 

the estimated total PI A for storm data collected by the CASA IP1 during the Spring, 

Summer and Autumn 2007. The Z& data were actually processed at the same time with 

the Z/, data but the analysis is postponed until the methodology is introduced in this 

chapter. Here, we present the similar statistical analysis for the estimated parameter av 

and the relationship between the estimated parameters ah and av. 

The storms studied here are the same as in section 3.4.4, the information of which is 

listed in Table (3.6). Fig. 4.15 shows the histograms of the estimated parameter av, 

organized similarly as Fig. 3.22 with the each column representing one event and each 

row representing one radar. Comparing the parameter av histograms to that of the ah 

shown in Fig. 3.22, it is clear that they are similar that the parameter av histogram of a 

given radar in a given event appears a replica of that of the parameter ah, except the 

range is shifted to the smaller side. To illustrate this effect more clearly, we plot the 2-D 

histograms of ah vs. av in Fig. 4.16. The colors in the figure represent numbers of 

samples fall within small intervals and can be read from the colorbar. The linear 

regression for the parameters ah vs. av is also shown in each scatter plot. The cross-

correlation coefficients are calculated for each radar in each event and printed in each 
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figure panel. It is clear that the estimated parameters ah and av exhibit very strong 

linear relation. 

The strong linear relationship is supported by the fact that Ay, and Av are highly correlated 

(see Fig. 4.1) and an observation by Matrosov et al. (2002). In their paper, they used a 

fixed Adp - Odp linear relationship (see also section 2.5) to correct the Zdr and showed that 

the coefficient (/?) of this linear relationship changed very little from their simulation in 

rain. In fact, it is easy to see that the coefficient /? is related to ah and av by 

P = ah-av. Because J3 is relatively stable, the difference of the estimated ah minus 

estimated av should remain also relatively stable. This is shown by the strong linear 

relationship between ah and av in the scatter plots. Furthermore, if the slope of the 

linear regression to a scatter plot of ah vs. av is 1, it is clear that the intercept gives the 

estimated /? directly. However, in our findings there is no significant proof that the 

coefficient (5 should be a constant. 

Fig. 4.17 shows the mean values of the parameter av obtained from the histograms 

shown in Fig. 4.15. To compare with the mean trend of ah shown in Fig. 3.23 in the 

previous chapter, both trends are shown in the same figure. For each radar, the mean 

values and the standard deviations are plotted with the date as the x-axis (not uniformly 

spaced) to illustrate the trend of the mean values from event to event. As expected, the 

mean values of ah and av have strong correlation. 
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Figure 4.15 Histograms of the estimated parameter c^ for the events listed in Table (3.6). 
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Figure 4.15 (continued) Histograms of the estimated parameter c^ for the events listed in Table (3.6). 
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No severe attenuation experienced for Lawton node. 
Statistics not available. 

20070411 Rushsprings 

Figure 4.16 2-D histograms of the estimated parameters <xh vs. <xv for the events listed in 
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No severe attenuation experienced for Lawton node. 
Statistics not available. 

Rush Springs node not operating for this case. Rush Springs node not operating for this case. 

Figure 4.16 (continued) 2-D histograms of the estimated parameters ah vs. av for the events listed in Table 
(3.6). 
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Figure 4.16 
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(continued) 2-D histograms of the estimated parameters 04, vs. av for the events listed in Table 
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Figure 4.16 (continued) 2-D histograms of the estimated parameters <xh vs. av for the events listed in Table 
(3.6). 
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Figure 4.16 (continued) 2-D histograms of the estimated parameters a„ vs. av for the events listed in Table 
(3.6). 
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Figure 4.16 (continued) 2-D histograms of the estimated parameters at, vs. av for the events listed in Table 
(3.6). 
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Figure 4.17 The mean values and standard deviations of the estimated parameter ah and av plotted along the 
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Figure 4.17 (continued) The mean values and standard deviations of the estimated parameter ah and av 

plotted along the date of the events. 
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5 SEPARATELY ESTIMATE A„ DUE TO RAIN AND WET ICE: A PRIOR 
SUPERCELL SIMULATION USING THE CSU-RAMS MODEL 

The last two chapters focused on the study and improvement of the estimation of the 

specific attenuation (Ah) and the specific differential attenuation (Adp), respectively, for 

the rain medium. With the estimated Ah and the estimated A$» the reflectivity (Z/,) and the 

differential reflectivity (Zdr) can be corrected. In this chapter, we extend the methodology 

to include the effect of the mixed-phase region, particular the attenuation effect caused by 

rain mixed with the wet ice particles (e.g., wet hail). This chapter focuses on methods to 

separately estimate the attenuation due to the rain and wet ice components. The 

methodology for estimating specific differential attenuation in the mixed-phase region 

will be suggested but has not been studied extensively here. 

5.1 Estimating wet ice and rain attenuation separately 

Previously developed attenuation estimation methods based on Kdp are well suited for the 

rain medium because the oblate spheroid shape model is maintained (in equilibrium) by 

the balance between gravitational, surface tension and aerodynamic forces (ref). In such a 

case, the difference of the real parts of the effective propagation constants between the 

two characteristic polarizations (Kdp, see chapter 2) appears to be positive along the range 

and results in monotonically increasing <bd which is measurable by a dual-polarized 

radar. Because of the relatively stable spheroid shape during the fall, the Kdp is correlated 

with the imaginary part of the effective propagation constant which is responsible for the 

attenuation. Such a property is, in general, not valid in the mixed-phase region, where the 
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rain and other wet-ice particles (e.g., wet hail) coexist. The solid particles (or solid 

particles coated with water) do not exhibit the oblate spheroid shape or align their 

symmetric axis with one of the polarization states when they fall; instead, they can 

tumble and their shapes appear to be random in a given radar resolution volume. 

Therefore, the water-coated wet-ice particles contribute little to the Kdp due to their 

isotropic scattering (Bringi and Chandrasekar (2001)). However, they do contribute 

significantly to the attenuation. In such case, the A^-based attenuation correction 

methods will not be able to account for the attenuation by the wet-ice particles. 

Here, we propose two methods to separately estimate the rain attenuation and the wet-ice 

attenuation for X-band dual-polarization radars. The principle of both methods is that the 

wet-ice attenuation is estimated by some other means than the Kdp. The first method 

assumes that a dual-wavelength radar (e.g. CP-2 S/X-band) is available with capability to 

transmit and receive dual-polarized waves at one frequency at least. In this case, the dual-

wavelength ratio {DWR, defined next) at a far range gate (reference gate) will give the 

cumulative attenuation due to all particles up to that gate. Then the attenuation due to rain 

(Ar) can be estimated using the Kdp technique introduced earlier. If there is significant 

wet-ice attenuation, the path-integrated attenuation estimated by the Kdp method will be 

less than that estimated from the DWR. We attribute the difference to the wet-ice 

attenuation assuming that the Mie-scattering effect (e.g., hail-signal) has been avoided at 

the referenced gate. Since the range derivative of DWR at range r is equal to 2 times the 

specific total attenuation (At(r)) at range r (defined here as the sum of the specific 

attenuation due to rain and that due to the wet ice), the wet ice attenuation is retrieved by 
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simply taking the difference At-Ar. The DWR is defined as the ratio between the 

reflectivity from the longer wavelength (S-band here) to that from the shorter wavelength 

(X-band here): 

DWR=^ (5.1) 
7 

where Zs is the measured reflectivity at S-band, Zx is the measured reflectivity at X-band. 

The second method does not require the DWR at every range gate. Rather, the total path-

integrated attenuation is retrieved from the reference gate and then is apportioned 

backward to the previous gates using the constrained Hitschfeld and Bordan method (see 

chapter 3). This quantity can be obtained by the DWR at the reference gate with the above 

radar system setup. Alternatively, it can also be obtained by at least one independent 

measurement of the un-attenuated reflectivity (e.g. at S-band) from a radar which does 

not necessarily have to be co-located with the X-band radar. The difference of the S-band 

reflectivity and X-band reflectivity after rain attenuation-correction at a matched 

resolution cell ( AZ = lO\og10(Zs(r)/ZXr(r)) ), is used as a constraint to correct the 

reflectivity for attenuation due to wet ice, similar to the method discussed in section 3.2.2. 

The above two proposed methods are for estimation of the specific attenuation at one 

given polarization. For the estimation of the specific differential attenuation between the 

two characteristic polarizations in the mixed phase, one can first identify the wet ice 

region by looking for the relatively flat appearance of the measured differential 

reflectivity profile. Because of the isotropic scattering of the wet-ice particles, the 
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reflectivity at horizontal polarization and vertical polarization should be the same and 

also should be attenuated by the same amount, resulting in the above observation. After 

such a region is identified, one can initially know the path-integrated differential 

attenuation by negating the measured differential reflectivity at that region, assuming that 

the differential calibration of the radar is correct. However, this is our initial suggestion 

and the estimation of the differential specific attenuation due to the mixed-phase region 

has not been studied extensively here. 

5.2 Formulation of the mixed-phase attenuation estimation algorithm 

The first proposed method has been described in the previous section. Here we focus on 

the formulation for the second proposed method. 

In the mixed-phase region where rain is mixed with ice, the back-scattered signal is 

attenuated by both types of particles in the propagation path. Consider an X-band 

radanthe measured reflectivity at horizontal polarization is related to the intrinsic 

reflectivity attenuated by both particel types as follows (for our discussion the subscript 

'/?' for horizontal polarization is dropped for convenience): 

7 (r\ = il!2 f5 7} 
i Q0.2(7'/4.„/„(r)+/'/4,.„(f-))

 V " ' 

where PIArain(r) is the one-way path-integrated attenuation due to rain and PIAice(r) is the 

one-way path-integrated attenuation due to wet ice. 
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We define the attenuated reflectivity (Zayice) by only the wet-ice attenuation as: 

Note that if we further attenuate Za>ice by the rain attenuation (PIArain) we will get the 

measured reflectivity Zm in the mixed-phase region as eq. (5.2). 

With X^,-based methods, the measured reflectivity can be corrected for rain attenuation. 

In other word, the PIArai„ can be estimated (e.g., using previously developed method in 

chapter 3); thus it is a known quantity in eq. (5.2). Therefore, Zaiice can be estimated by: 

Za,lce(r) = Zm(r)-lQ02P1A^r) (5.4) 

To estimate the wet-ice attenuation, we assume that the ice specific attenuation can be 

related to the reflectivity contributed by wet ice only as a power-law relationship as: 

Ace(r) = aiceZ^(r) (5.5a) 

= arcXf(r)Ze(r))K° (5.5b) 

= aicef
b>"Zb

r{r) (5.5c) 

= gZl"'(r) (5.5d) 
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In going from eq. (5.5a) to eq. (5.5b), we use the fraction of ice which is defined as the 

ratio between the intrinsic reflectivity of all particles and the intrinsic reflectivity of only 

the wet ice particles inside a radar resolution volume. In going from eq. (5.5b) to eq. 

(5.5c) we assume that the fraction of ice is a constant along the mix-phased region. 

From eqs. (5.4) and (5.5d), the estimated intrinsic reflectivity (due to all particles) and the 

estimated path-integrated attenuation of wet ice (PIAice) can be derived similarly as that 

derived for rain in chapter 3. The estimated intrinsic reflectivity solution is given here as, 

\-0A6biceg[zl%e(s)ds 

We have already discussed in previous chapters that one uncertainty in using forms like 

(5.5d) is the coefficient g. For the wet ice particles, the large variability of DSD and 

water coat thickness will give rises to large family of Aice-Zice relationships. In addition, 

the fraction of ice is not known. However, this can be remedied if an independent 

measurement of the 'true' reflectivity is known at range rN. As discussed in the previous 

section, this independent measurement can be potentially obtained by the S-band 

reflectivity from a dual-wavelength radar system or from an S-band radar where the 

measurement of reflectivity can be matched in close space and time to some range gates 

of the X-band radar. After this quantity is established, we can constrain the solution of 

PIAice at range rN as, 

(5.6a) 

(5.6b) 

166 



P^ceM = AZ (5.7) 

where the AZ is defined as the difference (in dBZ) between the Zatice and the S-band 

reflectivity at the matched volume (assuming that the range gate, rN, can be matched): 

AZ = 101og10Zs(^)-101og10Z f l,ce(^) (5.8) 

With the AZ, the coefficient g in eq. (5.5d) can be directly estimated as (also see section 

3.2.2): 

g= 7 ( 5 - 9 ) 
0A6bice [N Zb

a%e(s)ds 

Now the estimated intrinsic reflectivity can be calculated with eqs (5.9) and (5.6b). The 

specific attenuation due to wet ice only can be calculated using eqs. (5.9) and (5.5d). 

5.3 Simulation results 

A previous supercell storm simulated using the CSU-RAMS model is used here to 

demonstrate our methodology (van den Heever, S.C. and W.R. Cotton (2004), see also: 

Huang et al. (2005)). The microphysical outputs from the single-moment RAMS 

supercell simulation used herein are the rain and hail mixing ratios. A vertical section of 

data was obtained from the RAMS simulation at the peak time of hail formation aloft. For 
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this cross-section, we derive using our own assumptions the exponential raindrop size 

distribution (assuming #0=8000 mm"1 m"3) and the types of the precipitation species (e.g., 

rain, dry hail, wet hail) at every spatial grid point. For rain, the Do parameter of the 

exponential DSD with the constant N0 is derived from the rain mixing ratio and the mass 

of water. For hail we use the mass diameter output of the RAMS model and assume an 

exponential drop size distribution and then obtain No from the hail mixing ratio and the 

mass of water. The hail is assumed wet if the grid point is below the 0 deg isotherm (set 

at about 6 km) or rain mixing ratio is non-zero. It is assumed dry if the grid point is above 

the 0 deg isotherm and the rain mixing ratio is zero. From this information, radar 

variables at X-band and S-band frequencies are calculated using the T-Matrix method for 

every grid point assuming shape, orientation and dielectric constant models. Radar 

measurement profiles are then simulated by placing an 'imaginary' radar at the corner of 

the grid which 'measures' the simulated storm with a Gaussian antenna beam function (3-

dB beam width is 1 deg at both frequencise to mimic the CP2 radar beam).. The 

'measured' Zf, profiles at various elevation angles are calculated by attenuating the 

intrinsic Zf, with rain and wet ice attenuation. The 'measured' Zf,, DWR, and <P<ip are then 

input into the two proposed mixed-phase attenuation algorithms. The output variables, 

e.g., the corrected Zh, the retrieved (estimated) rain specific attenuation (Arai„), the 

retrieved (estimated) wet ice attenuation (Aice) are then compared with the intrinsic 

variables (the simulation input), respectively. 

The intrinsic attenuation contours due to rain and wet ice in the cross-section are 

illustrated in Fig. 5.1. In the figure, the intrinsic reflectivity field at X-band is also plotted 
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in the background just to illustrate the intensity of the storm. The wet-ice attenuation 

contour shows that in the simulated supercell storm, the ice particles mainly exist at 2 km 

or higher, with the core at about 6 km. There is a large patch of overlapping area of rain 

and ice mixture region (mixed-phase) between 2 and 7 km. The 'imaginary' radar is 

placed at the corner at the (0, 0) coordinates. The radar is assumed to be dual-wavelength 

(S, X-band) and dual-polarized at S-band. Again, this is to simulate the NCAR CP-2 

radar (Bringi and Hendry (1990)) which has already been installed and is currently 

operational in Brisbane, Australia. 

Fig. 5.2 shows the path-integrated attenuation due to rain and wet ice along the slant 

range at 25° elevation angle, which passes through the cores of the rain and the wet ice. 

Over this path, the rain and wet ice each contributes almost the same amount of 

attenuation. Fig. 5.3 shows two radar reflectivity profiles, one measured at the same 

elevation angle and the other a much lower elevation angle (0.5°). At the higher elevation 

angle where the rain and wet ice particles coexist, the measured Z/, at S-band exceeds the 

rain attenuation corrected Z/, at X-band by AZ (about 25 dBZ) at the end of the beam. 

This is expected because we know the ^,-based attenuation correction method is not 

able to account for the wet ice attenuation (see section 5.1). 

Based on this supercell simulation the two proposed mixed-phase attenuation correction 

algorithms are evaluated. Here we present the result for the dual-wavelength (DWR) ratio 

method first. Fig. 5.4 shows the retrieved rain attenuation field and the 'true' rain 

attenuation field. For the simulation, we assume there is no dual-polarized capability at 
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X-band. Therefore, we convert simply the Kdp at S-band to the rain specific attenuation at 

X-band using a linear relationship (Araintx=aKcip:s). The value of the coefficient, a=0.95 

dB/deg, is calculated carefully for this event, therefore, there is no bias in the estimated 

coefficient. The Kdp is estimated from the filtered &dP (Hubbert and Bringi (1995)). The 

estimated rain attenuation contour appears less sharp then the 'true' one. This is expected 

because there will be some smoothing effect on the estimated Kdp due to the filtering. 

Nonetheless, the difference is within ± 0.5 dB/km which is the expected error of the 

retrieval. Fig. 5.5 shows the retrieved contour of the wet ice attenuation compared with 

the 'true' one. Although there are some smoothing effects due to the filtering technique to 

overcome the noise, Figs. 5.4 and 5.5 show the close correspondence of the estimated 

specific attenuation contours as compared with the 'true' contours. 

Next we evaluate the second method which uses the independent measurement of the un-

attenuated reflectivity at the end of the radar beam. Fig. 5.6 shows the slant range profile 

at the same 25° elevation angle. The AZ used in the constrained method is assumed to be 

known from the DWR at the end of the beam in this case (but the intermediate DWR at 

other gates are not used). Following the procedure described in section 5.3, Fig. 5.6 

shows that the corrected (estimated) Z^x matches the intrinsic Zh,x very well. Fig. 5.7 

shows the retrieved wet-ice specific attenuation contour and the true wet-ice specific 

attenuation contour. Similar to the first method, the vertical structure of the retrieved 

contour closely corresponds to the true one. It is noticeable that the retrieved wet-ice 

contour in Fig. 5.7 has more details compared with the result obtained from the first 

method (Fig. 5.5) since there is no filtering involved in this case. 
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Figure 5.1 Vertical cross-section of contours of specific attenuation (Ah) of rain and hail at X-band. Dash 
line is the hail Ah contour. Solid line is the rain Ah contour. The intrinsic X-band Zh (in dBZ) is plotted as 
background. 

60 

50 

40 

g 30 

< 
E 20 

10 

-10 

True total PIA (R+H) 
Est. total PIA (DWR) 

pTff 

10 15 20 
Range; km 

25 30 

Figure 5.2 Range profiles of the DWR along the slant path at 25° elevation angle, the 'true' total PIA, the 
'true' rain PIA, and the estimated rain PIA. 
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Figure 5.3 Range profiles of the Zh(S), the attenuated (or 'measured') Zh(X), and the Zh(X) corrected for 
rain only attenuation (a) at 25 deg elevation angle (b) at 0.5 deg elevation angle. 
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Figure 5.4 Contours of specific attenuation of rain in the vertical section, (a) the 'true' values from the 
RAMS microphysical output, (b) the retrieved values. 

0 2 4 6 81012141618 
W-E Range (km) 

0 2 4 6 81012141618 
W-E Range (km) 

Figure 5.5 Contours of specific attenuation of the wet hail in the vertical section, (a) the 'true' values from 
the RAMS microphysical output, (b) the retrieved values calculated from the first proposed method. 
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Figure 5.6 Profiles of the attenuated (or 'measured') Zh(X), the Zh(X) after correction for rain attenuation, 
the Zh(X) after correction for both rain and wet hail attenuation, and the 'intrinsic' Zh(X). 
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Figure 5.7 Contours of specific attenuation of the wet hail in the vertical section, (a) the 'true' values from 
the RAMS microphysical output, (b) the retrieved values calculated from the second proposed method. 
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6 SUMMARY AND SUGGESTIONS FOR FUTURE WORK 

6.1 Summary 

The objective of this dissertation is to improve the accuracy and efficiency of attenuation-

correction procedure for dual-polarization radar systems operated at X-band. The 

attenuation due to raindrops and wet hail that occurs in heavy convective storms has been 

studied. For raindrops, we have presented a framework to estimate and correct the 

attenuation and the differential attenuation accurately based on the consistency between 

Zh,v and Kdp, without knowing a priori the coefficients in the Af,yV-Zf,,v and Ay,v-Kdp 

relationships. For wet hail, we have presented a framework to estimate and correct the 

attenuation separately from the rain attenuation component, provided that constraint 

information can be obtained through dual-wavelength technique (S, X-band) with 

matched 3-dB beamwidth antennas or other non-attenuating radar system (e.g., WSR-

88D) nearby from which coincident resolution cells can be matched. 

Beginning with the introduction chapter, the primary driving force of this work, the 

CASA IP1 Doppler, dual-polarization X-band radar network has been introduced along 

with other similar X-band radar systems that have also been studied or simulated herein, 

i.e., the Doppler, dual-polarization MPX (X-band) radar operated by NIED, Japan and the 

dual-wavelength (S, X-band) dual-polarization (only at S-band) CP-2 radar operated by 

BMRC, Australia. Following the introduction, the theoretical background and related 

work on attenuation estimation and correction have been reviewed systematically. 
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In chapter 3, we have presented first a simple scheme to construct the path-integrated 

attenuation in a gate-by-gate manner. It has been found, via simulation, that this scheme 

has numerical stability difficulty if the total path attenuation exceeds about 10 dB. The 

simple scheme has been extended to include a constraint from the total differential 

propagation phase by which the numerical solution becomes stable. A path-integrated 

attenuation model is constructed using the Hitschfeld and Bordan (1954) method with the 

constraint. Then a minimization scheme has been used to minimize the cost function 

constructed with the modeled OdP and the measured ®dP at every gate in the segment that 

has been identified as rain along a propagation path. It has been shown via simulation, 

that the consistency between Z/, v and Kdp has been maintained. The method formulated 

herein has shown the ability to adapt to changes in the temperature, raindrop shapes, and 

to certain classes of DSD studied in the simulation. We have validated the method for a 

Typhoon event using radar data from the MP-X radar operated by NIED where the 

correction of Zh for attenuation agreed, within instrumental errors, with the ground truth 

value calculated from the measured DSD by three in situ Joss disdrometers. We have 

implemented the method, in real time, for the CASAIP1 network. We have compared the 

corrected PPI scan of a convective storm with that of the nearby un-attenuated WSR-88D 

radar and found that the two scans match well. The statistics of the retrieved coefficient 

ah in the Ah-K^p relationship and the resulted total path attenuation for several storms 

that occurred over the testbed in Spring, Summer, and Autumn, 2007 have also been 

shown. An additional value of the method is that it is independent of the systematic offset 

that may exist in the measured Z/, of a radar system (i.e., absolute calibration of the Ji

ll 6 



channel of the radar). 

In chapter 4, the consistency principle studied in chapter 3 has been extended to the 

vertically polarized variable Zv and sequentially a path-integrated differential attenuation 

model has been constructed. The validity of such model has been discussed and it has 

been shown that if the coefficient ah in the A^-Kdp relationship is greater than the 

coefficient av in the Av-Kdp relationship, then the model is valid for rain. A more strict 

condition is also discussed but not used in the actual implementation. The conditions for 

validity of the model have been met in our simulations. The simulations have also shown 

that the method has the same ability to adapt changes in the temperature, drop shapes, 

and certain classes of DSD. We have validated using the same radar data for the Typhoon 

storm that the corrected Z^r agreed, within instrumental errors, with the ground truth value 

calculated from DSD data from the didrometers. We have also implemented the method, 

in real time, for the CAS AIP1 network. The statistics of the retrieved coefficient av for 

the same storms studied in chapter 3 have also been shown. It has been shown that the 

coefficients ah and av are highly correlated and linearly related. An additional value of 

the method is that it is independent of the systematic offset that may exist in the measured 

Zdr of a dual-polarization radar system (i.e., relative calibration between the h and v-

channels). 

In Chapter 5, the wet hail attenuation has been discussed and two preliminary methods to 

estimate and correct it have been presented. The methods are both based on dual-

polarization configuration such that the wet hail can be distinguished from rain and the 
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estimation of attenuation can be improved. The first method assumes a dual-wavelength 

dual-polarization configuration which is available with the CP-2 radar. The second 

method assumes a CASAIP1/WSR-88D configuration where the resolution cells of both 

systems can potentially be matched to provide constraint information. We have evaluated 

both methods using a previous supercell event simulated from the microphysical outputs 

of the CSU-RAMS model. The radar-based retrieved wet hail attenuation field in a 

vertical cross section of the supercell at the time of maximum reflectivity aloft has been 

shown to closely correspond to the 'exact' input attenuation field from the RAMS model. 

6.2 Suggestions for future work 

While the work presented here has been focusing on exploring the dual-polarization radar 

techniques using simulations and radar measurements for a limited selection of storm 

regimes, a larger goal of attenuation estimation and correction is to achieve systematic 

and consistent results for a much larger set of storm regimes using available in situ 

instruments. The concept of the consistency between the observations presented here has 

been constructed using the dual-polarization techniques but can be extended to include 

other type of instruments. The minimization technique can also be reused after a desired 

model (cost function) has been obtained. 

The method presented here for the rain attenuation estimation and correction has been 

studied extensively via theory, simulations, and radar data. However, we have just begun 

the work for the mixed-phase (rain mixed with wet ice) attenuation estimation and 
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correction methods therefore only preliminary simulation results have been shown. It is 

important and invaluable to obtain and make available a priori information from natural 

storms, especially while designing a precipitation sensing system with a cost constraint 

either on construction cost or launching cost (e.g., for wide-area ground deployment or 

for space-borne applications). The two preliminary methods developed here for mixed-

phase attenuation estimation are our starting point to study the microphysical processes in 

heavy convective storms for understanding and measuring large families of A-Z 

relationship for wet hail from radar data to obtain the aforementioned a priori 

information. 

First, we recommend further studies of the relationship between the wet hail specific 

attenuation and the reflectivity using the CP-2 radar installed near Brisbane, Australia, 

over a period of several years so as to obtain statistics from a variety of storm regimes. 

These results can be analyzed statically over a large region or in vertical cross section to 

provide insight into the temporal evolution of the vertical attenuation profile in 

convective storms. This information will be useful to construct a more precise a priori 

range profiling model used in the TRMM or being proposed for the GPM. 

Secondly, we recommend additional work on wet hail attenuation correction algorithms 

for the CAS A IP1 or similar X-band radar networks. While the preliminary method 

developed here for the CAS A IP1/WSR-88D configuration is simple, the system 

engineering aspect between the very different two radar systems has not been addressed. 

In particular, we have not addressed systematically the potential errors caused by the 
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timing error and the spatial resolution difference while matching observations from the 

two systems. The understanding of the errors are important, especially for the study of 

heavy convection storms, whose evolution is rapid and spatial distribution can vary 

significantly within a resolution cell (especially for the WSR-88D with much poorer 

resolution). The study of the system engineering aspect of the problem can be invaluable 

because of the possibilities of studying wet hail attenuation nationwide in the U.S. These 

possibilities may be rendered by the dual-polarization upgrade of the WSR-88D network 

in a few years that will give nationwide coverage along with the anticipated increasing 

trend of using commercially-available Doppler, dual-polarization X-band radar systems 

in a network configuration for short range applications. 
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Appendix A: Derivation of the Hitschfeld and Bordan Method 

The intrinsic reflectivity Ze (in mm6m"3) is related to the apparent (or measured) 

reflectivity Zm (in mm m") through the specific attenuation A (in dBkm" ) as, 

Ze(r) = Zw(r)exp{0.46 p C ? ) ^ } (A.l) 

Assuming, 

A(r) = aZ:(r) (A.l) 

Eq. (A.l) can be rewritten as: 

Ze (r) = Zm (r) exp {0.46 ( aZb
e (s)ds) (A.3) 

Let 

x(r) = 0.461 aZb
e (s)ds (A.4) 
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Take the derivative of x(r) with respect to r, we have: 

^ = 0.46aZ>) 
dr 

(A.5) 

Ze(r) = 
1 dx(r) 

i 

0.46a dr 
(A.6) 

Substitute eqs. (A.6) and (A.4) into eq. (A.3), we have: 

( 1 dx(r) 

0.46a dr 
••Z„(r)exp{x(r)} (A.7) 

^ W A ^ 7 * 
exp{bx(r)} 

0A6aZ°m(r)dr (A.8) 

Let 

y(r) = exp{Z>x(r)} (A.9) 

we have: 

ax(r)= 
j ( r ) 6 

(A.10) 
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Substitute eqs. (A.9) and (A. 10) into eq. (A.8), we have: 

dy(rl = 0A6abZb
m (r)dr (A.l 1) 

yz(r) 

Eq. (A.l 1) can be solved through integration. Since: 

v(r)dy(r) 
= [0A6abZb

m(s)ds (A. 12) 

we have: 

1 1 
• + • 

yir) y(0) 
= ^0A6abZb

m(s)ds (A. 13) 

and: 

1 1 

y(r) exp(bx(r)) 

1 

exp{-0A6b^aZb(s)ds} (A. 14a) 

X0) 
1 (A. 14b) 
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Substitute eqs. (A. 14a) and (A. 14b) into eq. (A. 13), we have: 

- 0.466 [ aZb
e (s)ds = loge (1 - [ 0A6abZb

m (s)ds) (A. 15) 

Take derivatives on both sides of eq. (A. 15) with respect to r, we have: 

0 . 4 6 a * Z » = - ° - 4 6 ^ ( r ) (A.16) 
1 - ^0A6abZb

m(s)ds 

Finally we obtain the solution for Ze(r) as a function of Zm(r): 

I 

Ze{.r) = Zm{r)[\-QA6ab[zb
m(s)ds) " (A.17) 
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Appendix B: Derivation of Testud et al.'s Method 

Following Appendix A and change the integral intervals in the integral equation (A. 12) 

from [0,r] to [r,r,], we have: 

1 1 
• + • 

y(rt) y{r) 
= J10A6abZb

m(s)ds (B.l) 

From eqs. (A.14.a) and (A.2), we have: 

— = exp{-0.466 f A(s)ds) (B.2) 
(r) •" y( 

Eq. (B.l) can be expanded as: 

exp{-0.46Z> J[ A(s)ds} = exp{-0.466 J' A(s)ds} + J 0.46abZb
m (s)ds (B.3) 

Take logarithms and then differentiate with respect to r on both sides of (B.3), we have: 

A(r) = ^ ^ (B.4) 
exp{-0.466 [' A(s)ds} + [ 0A6abZb

m (s)ds 
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From eq. (A.l), we know: 

Z.fr) GxP{0A6fA(S)ds} = -^Y 
* Z (r 

(B.5) 

Substitute eq. (B.5) into eq. (B.4), we have: 

A{r) = 
aZb

m(r) 

\Zm(ri)j 
+ ^'0A6abZb

m(s)ds 

(B.6a) 

Zb
m(r)aZbM) 

Zb
m(rt) + aZb

e(ri)£0A6bZi(S)ds 
(B.6b) 

Z'MAfr) 
Zb

m(rt)+ A(rt)%0.46bZb
m(s)ds 

(B.6c) 

Assume: 

A(r) = aKd(r) (B.7) 

Integrate eq. (B.7) from ro to r„ we have: 

= f a — -ds 
•n> 2 ds 

=|K(i)-**('b)] 

(B.8a) 

(B.8b) 

(B.8c) 
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= |AO, p (^ , r 0 ) (B.8d) 

From eqs. (B.6c) and (B.8d), we have: 

f Zggw a ^ s w ) (B.9) 
JbZi(r i) + ^(r/)[

,0.466Zi(*>fc 

Let 

I(r,rl)=%0A6bZb
m(s)ds (B.10) 

The integrand in eq. (B.9) is the derivative of a logarithmic function which we can obtain 

as: 

.. . dl(l,ri) 
d r -1 r ii - i A(rt)—ir~ 
— — •logJz*(r) + ^(r)/( / , r . ) = - 2£ (B.lla) 
dl 1 0 . 4 6 * &elmK'J ^ . ^ " ' J J 0Mb z*(r.) + ̂ .)/(/,r.) V ' 

Al)^(/) 

Z:(r,) + Al ) / ( / , r , ) 
(B.llb) 
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Now the left side of eq. (B.9) can be integrated readily as: 

J° Z* (rt) + A(rt)f 0A6bZb
m(s)ds J° dl I ° - 4 6 * J 

(B.12a) 

= {^-loge[z>,)+ ^)/(/,^)]}|;; (B.12b) 

M l o g e [ z > , ) + ^(r iy(r / ,r /)]-log.[z»(r /)+ ArMw)} (B.12c) 
0.466 

0.466 
M z > l o g e Z , > ; ) - l o g e [ z > , ) + ^ y f o . 1 )} (B.12d) 

Substitute eq. (B.12d) into eq. (B.9), we have the solution for A(r) at r, as: 

At ^ - Z> jW{0-23f r«A<Mr, , r , )} - l} 

Substitute eq. (B.13) into (B.6c), we have the solution for A(r) at any r in the intervals of 

[r0, r,] as: 

Zb
m (r){exp{0.23baA<f>dv (r0, rt)} - 1 } 

A(r) = | p ' | (B.14) 
7(r0,r,) + {exp{0.23Z>«AOd;; (r0,r,.)} - 1 \l{r,r,) 
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Appendix C: Drop shape models used in this dissertation 

We used several drop shape models available in the literature, listed as follows: 

1. The mixed model using a linear model for large drops and Brandes et al. (2002) for 

small drops: 

- = 0.9951 + 0.02510£> - 0.03644D2 + 0.005303D3 - 0.0002492D4, if D < 1.75mm 
b 

- = (0.9535 +1.75/?) - J3D,if D > 1.75mm 
b 

(C.l) 

2. The Pruppacher and Beard (1970) model: 

- = 1.03-0.0621) (C.2) 
b 

3. The Beard and Chuang (1987) model: 

- = 1.0048 + 0.0057(—) - 2.628(—f + 3.682(—)3 -1.677(—)4 (C.3) 
b 10 10 10 10 
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4. The Andsager et al. (1999) model: 

1.0048 + 0.0057(—) -2.628(—)2 +3.682(—)3 -1.677(—)4,if D < \mm or D>4mm 1 " 10 10 10 10 

- = 1.012 -0.1445(—) -l.028(—)2,otherwise 
b VlO W 

(C.4) 

In eqs. (C.l)-(C4), parameter a is the minor axis of the spheroid raindrop, parameter b is 

the major axis, and parameter D is the equivalent volume diameter (see Fig. C.l). 

Figure C.l. A spheroid model of a raindrop. 
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