Development, testing, and validation of a heat transfer model for bi-propellant liquid rocket engines
Date
2024
Journal Title
Journal ISSN
Volume Title
Abstract
Accurately modeling the heat transfer characteristics in a bi-propellant liquid rocket engine is a time and resource intensive process. The highly unpredictable and turbulent nature of the combustion requires complex modeling to predict the temperatures and fluid properties. These properties are required to evaluate material requirements and thermal performance. The primary objective of this project was to determine the effectiveness of an adaptable analytical heat transfer model implemented in MATLAB. The analytical model was pursued for the dramatic speed increase over numerical techniques such as computational fluid dynamics (CFD). The effectiveness of the model is determined by comparing results to CFD simulations as well as data obtained from testing. Strong correlations can be drawn with variations a low at 1\% between the CFD and analytical models. Three separate engines were analyzed to gauge the effectiveness of the analytical model across various engine and cooling configurations. A 10 N, 250 N and 2.9 kN thrust engines were developed. Extensive analysis was done on all engines using both the analytical model and CFD. These engines were designed with a wide range of cooling methods including radiative, ablative and regenerative cooling. A test stand previously only capable of testing hybrid rocket engines, was modified to allow for the testing of liquid bi-propellant rocket engines. The needed modifications included the addition of a fuel tank with mass measurement, venting and control valves, and fuel line sensing equipment. Upgrades were completed on the data acquisition system to incorporate additional sensors and controls. Further work was done to improve the safety of the test stand through redundancy and automation. These modifications culminated in two successful static fires of the 2.9 kN engine. The predicted temperatures of the 2.9 kN engine were compared to the test results from the static fires.