Show simple item record

dc.contributor.advisorLear, Kevin L.
dc.contributor.authorSafaisini, Rashid
dc.contributor.committeememberMarconi, Mario C.
dc.contributor.committeememberReising, Steven C.
dc.contributor.committeememberSites, James R.
dc.date.accessioned2007-01-03T05:50:12Z
dc.date.available2012-06-01T08:10:42Z
dc.date.issued2011
dc.description2011 Spring.
dc.descriptionIncludes bibliographical references.
dc.description.abstractIncreasing the modulation bandwidth and output power of vertical-cavity surface-emitting lasers (VCSELs) are of great importance in a variety of applications such as data communication systems. The high temperature generated in the active region of VCSELs is one of the main limiting factors in achieving high power and high speed operation. This work is focused on investigating the effects of thermal management on improving AC and DC properties of VCSELs and achieving higher thermal performance devices. Thermal heatsinking is obtained by surrounding the VCSEL mesas with high thermal conductivity materials such as copper and also using passive heatsinking by flip-chip bonding the laser dies on a GaAs heat spreader. The research includes fabricating and characterizing 980 nm bottom-emitting and 670 nm top-emitting oxide-confined VCSELs. This dissertation is divided into three main parts: high-power, high-speed 980 nm VCSEL arrays, low thermal resistance 670 nm VCSELs, and temperature dependent dynamics of 980 nm VCSELs. Experimental work performed on fabricating and characterizing 980 nm, bottom-emitting, oxide-confined VCSEL arrays and single elements is presented first. The result of DC and AC characterization confirms the effectiveness of Cu electroplating of mesas and flip-chip bonding in reducing VCSELs' thermal resistance to obtain lower operating temperatures. Uniformity of frequency response and operating wavelength across the arrays also motivates managing thermal issues and is an indication of uniform distribution of current and heat flux on the array. This research resulted in record VCSEL arrays with frequency response of approximately 8 GHz and operating CW power of 200 mW. These 28-element, 18µm aperture diameter arrays represent the highest power reported for a VCSEL or VCSEL array with greater than 1 GHz modulation bandwidth. The second part of this dissertation details the fabrication steps and DC characterization of visible, 670 nm, top-emitting, oxide-confined VCSELs. Since achieving high operating temperatures is one of the main challenges in realizing improved red VCSELs, the effect of mesa heatsinking on improving their DC behavior using copper electroplating of mesas is studied. Thermal modeling of the copper plated VCSELs also facilitates better understanding and analysis of the experimental results. A photomask and process flow were designed to fabricate VCSELs with a variety of mesa diameters and inner and outer plating sizes to investigate the major direction of heat flow in the VCSELs and decrease VCSEL thermal resistance and thus increase the output power. Although copper plating significantly reduces thermal resistance, it did not substantially increase maximum operating temperature of the red devices and also put the mesas under stress that might not be desired. This study led us to analyzing the effects of stress on the VCSEL mesas which is induced by the copper films. Finally, the temperature dependence of 980 nm VCSEL dynamics is investigated using noise spectra measurement. This analysis provides some useful insights in understanding how temperature alters VCSEL properties and how these properties can be improved. A VCSEL with 7 µm aperture diameter was fabricated from the same epitaxial material and followed the same processing steps as the VCSEL arrays. Relaxation oscillation frequencies and damping factors as functions of bias current and stage temperature were extracted. These results along with the VCSEL DC measurement were used to estimate the laser differential gain as a function of temperature. The differential gain was shown to be relatively temperature independent over a temperature range of 10 °C to 70 °C with an average value of approximately 12×10-16 cm2. This research led us to the conclusion that improving the output power at elevated temperatures should yield better frequency response in this case. The VCSEL output power reduction was observed to be the major cause of bandwidth reduction at elevated temperatures for the device under test. This work is the first report on the measurement of temperature dependence of VCSEL dynamics.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierSafaisini_colostate_0053A_10257.pdf
dc.identifier.urihttp://hdl.handle.net/10217/52126
dc.languageEnglish
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019 - CSU Theses and Dissertations
dc.rightsCopyright of the original work is retained by the author.
dc.subjecthigh power VCSELs
dc.subjectsemiconductor laser
dc.subjecthigh speed VCSELs
dc.titleImpact of thermal management on vertical-cavity surface-emitting laser (VCSEL) power and speed
dc.typeText
dcterms.rights.dplaThe copyright and related rights status of this Item has not been evaluated (https://rightsstatements.org/vocab/CNE/1.0/). Please refer to the organization that has made the Item available for more information.
thesis.degree.disciplineElectrical and Computer Engineering
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record