Show simple item record

dc.contributor.advisorScalia, Joseph, IV
dc.contributor.advisorSale, Tom
dc.contributor.authorDeBiasi, Marina Ann
dc.contributor.committeememberSutton, Sally
dc.date.accessioned2022-01-07T11:28:32Z
dc.date.available2022-01-07T11:28:32Z
dc.date.issued2021
dc.description2021 Fall.
dc.descriptionIncludes bibliographical references.
dc.description.abstractThe objective of this study is to develop tools to prevent petroleum hydrocarbons trapped in non-tidal sediments from causing detrimental effects such as sheens. Oleophilic biobarriers (OBBs) provide a robust, low-cost solution for managing petroleum hydrocarbon contamination at groundwater-surface water interfaces in tidal zones but are untested in non-tidal zones. This study evaluates enhanced OBB remedies for petroleum hydrocarbon contamination in non-tidal zones by incorporating amendments within the OBB. The amended OBB is intended to serve as an engineered bioremediation tool to enhance microbial growth and degradation of petroleum hydrocarbons by supplying the system with a resource of electron donors and nutrients while simultaneously mitigating petroleum hydrocarbon releases to surface water. Complementary laboratory and field studies were conducted to test non-tidal OBBs (NOBBs) with six amendment types: (1) hematite (H), (2) greensand (GS), (3) greensand + hematite (GS+H), (4) gypsum (GYP), (5) hematite + greensand + gypsum (ALL), and (6) blank (B). The laboratory study was constructed as a series of chemostats using sediment and water samples from the field site. This study observed the productivity of petroleum hydrocarbon degradation through biweekly headwater extractions analyzing alkalinity, dissolved inorganic carbon (DIC), and pH as well as continuously monitored oxidation reduction potential (ORP). Results from these tests indicated that the GYP amendment was most effective in degrading petroleum hydrocarbons while the B and ALL amendments were least effective. However, all systems exhibited increased effluent DIC characteristic of enhanced petroleum hydrocarbon degradation. The field study was constructed as a series of OBB disks deployed atop petroleum hydrocarbon impacted sediments in a non-tidal setting. Results from the laboratory and field study illustrated abundant microbial growth after six months. The NOBBs with the top three highest numbers of microbial abundance were found in the field (F): F-GS+H, F-B, and F-GS. The overall results of both lab and field studies suggest that NOBBs, whether amended or not, provide effective media for petroleum hydrocarbon-degrading microorganisms. This study illustrates the promise of the non-tidal OBB as a bioreactive barrier for petroleum hydrocarbon impacted sediments. Further study is needed to evaluate the rate of petroleum hydrocarbon degradation in a non-tidal OBB relative to the rate of loading.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierDeBiasi_colostate_0053N_16850.pdf
dc.identifier.urihttps://hdl.handle.net/10217/234159
dc.languageEnglish
dc.publisherColorado State University. Libraries
dc.relation.ispartof2020- CSU Theses and Dissertations
dc.rightsCopyright of the original work is retained by the author.
dc.subjectbioreactive
dc.subjectcontaminant
dc.subjectsheen
dc.subjectbioremediation
dc.subjectbiodegradation
dc.subjectpetroleum hydrocarbon
dc.titleEnhancing oleophilic biobarriers for non-tidal sediments impacted with petroleum hydrocarbons
dc.typeText
dcterms.rights.dplaThe copyright and related rights status of this Item has not been evaluated (https://rightsstatements.org/vocab/CNE/1.0/). Please refer to the organization that has made the Item available for more information.
thesis.degree.disciplineCivil and Environmental Engineering
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record