Repository logo
 

Social-ecological models for knowledge co-production and learning in collaborative environmental management

Date

2020

Authors

Steger, Cara Elizabeth, author
Klein, Julia A., advisor
Boone, Randall B., committee member
Evangelista, Paul, committee member
Fernández-Giménez, Maria, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

In a rapidly changing world, human communities struggle to address complex environmental problems that are multidimensional, without clear definitions or solutions, and that require collaboration among actors with potentially conflicting objectives. Collaborative approaches to environmental management engage diverse actors who work together to produce shared understanding and novel solutions to these challenging problems. Collaborative approaches encourage participants to learn from each other and reflect on that learning, which can improve their collective ability to cope with variability brought on by global environmental change. Modeling is increasingly used by academics and development practitioners to encourage and inform collaborative environmental management, yet there has been insufficient attention paid to how collaborative modeling processes interact with the social and cultural factors that shape environmental outcomes. This dissertation engages at the intersection of science and culture to examine the use of social-ecological models in the context of collaborative environmental management. First, I present a snapshot of current barriers and best practices in collaborative or transdisciplinary environmental work, using a global survey to inform a conceptual model of knowledge co-production and learning. I then apply this conceptual model in a case study of a community-managed Afroalpine grassland in the Ethiopian highlands known as Guassa, using a combination of cognitive, geospatial, and simulation modeling. Specifically, I bring together insights from local knowledge and remote sensing analyses to present a more holistic understanding of social and biophysical change in this area and to situate the environmental consequences in relation to locally-defined ecosystem services. I then use individual and small group mental modeling to compare how different types of people involved in managing Guassa conceptualize the key components of this social-ecological system. I describe a co-designed agent-based model of shrub encroachment into the Guassa grassland, using it to improve our understanding of the system and to explore potential management interventions. I assess the learning experienced by participants in these mental modeling and agent-based modeling exercises to advance our understanding of the kinds of learning that occur throughout a collaborative modeling process. This work informs the design and application of social-ecological models to contribute to more equitable and sustainable collaborative environmental management.

Description

Rights Access

Subject

Ethiopia
participatory modeling
transdisciplinary work
mental models
collaborative conservation
sustainability science

Citation

Associated Publications