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ABSTRACT 

 
 
 

SOCIAL-ECOLOGICAL MODELS FOR KNOWLEDGE CO-PRODUCTION AND LEARNING IN 

COLLABORATIVE ENVIRONMENTAL MANAGEMENT 

 
 

In a rapidly changing world, human communities struggle to address complex 

environmental problems that are multidimensional, without clear definitions or solutions, and that 

require collaboration among actors with potentially conflicting objectives.  Collaborative 

approaches to environmental management engage diverse actors who work together to produce 

shared understanding and novel solutions to these challenging problems.  Collaborative approaches 

encourage participants to learn from each other and reflect on that learning, which can improve 

their collective ability to cope with variability brought on by global environmental change. 

Modeling is increasingly used by academics and development practitioners to encourage and 

inform collaborative environmental management, yet there has been insufficient attention paid to 

how collaborative modeling processes interact with the social and cultural factors that shape 

environmental outcomes.  

This dissertation engages at the intersection of science and culture to examine the use of 

social-ecological models in the context of collaborative environmental management. First, I present 

a snapshot of current barriers and best practices in collaborative or transdisciplinary 

environmental work, using a global survey to inform a conceptual model of knowledge co-

production and learning. I then apply this conceptual model in a case study of a community-

managed Afroalpine grassland in the Ethiopian highlands known as Guassa, using a combination of 

cognitive, geospatial, and simulation modeling. Specifically, I bring together insights from local 

knowledge and remote sensing analyses to present a more holistic understanding of social and 
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biophysical change in this area and to situate the environmental consequences in relation to locally-

defined ecosystem services. I then use individual and small group mental modeling to compare how 

different types of people involved in managing Guassa conceptualize the key components of this 

social-ecological system. I describe a co-designed agent-based model of shrub encroachment into 

the Guassa grassland, using it to improve our understanding of the system and to explore potential 

management interventions.  I assess the learning experienced by participants in these mental 

modeling and agent-based modeling exercises to advance our understanding of the kinds of 

learning that occur throughout a collaborative modeling process.  This work informs the design and 

application of social-ecological models to contribute to more equitable and sustainable 

collaborative environmental management.  
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CHAPTER 1 

 INTRODUCING THE DISSERTATION 

 

1.1 Theoretical Foundations 

Global environmental change encompasses a wide range of human-driven activities that 

alter the structure and function of ecosystems (Turner et al. 2007). Changing lifestyles and 

technological advances around the world have increased demand for goods and services, leading 

humans to environmentally harmful activities such as burning fossil fuels, expanding agriculture to 

marginal lands, cutting forests, and polluting chemicals. Climate change (Parmesan and Yohe 2003), 

biological invasions (Vitousek et al. 1996ca), and unsustainable natural resource use (Persha et al. 

2011) are among the most pressing examples of global environmental change around the world. 

Understanding and responding to these changes is a central challenge for the management of 

sustainable ecosystems, with far-reaching consequences for human well-being (Lambin et al. 2001, 

Carpenter et al. 2009, Rockström et al. 2009, DeFries et al. 2012). 

Understanding global environmental change within integrated social-ecological systems is 

critical for developing effective responses due to the complexity of these systems (Ostrom 2007, 

Turner et al. 2007, Lambin & Meyfroidt 2010).  Social-ecological systems are complex, adaptive 

systems that often exhibit nonlinear dynamics, indirect effects and feedbacks, emergent properties, 

and heterogeneous links across space and time (Liu et al. 2007; Lambin & Meyfroidt 2010). These 

characteristics can cause unanticipated outcomes that make environmental management extremely 

difficult, particularly as decisions are often made in the context of limited data and high uncertainty 

(Polasky et al. 2011).   

As global environmental change continues to accelerate and intensify (Cleland et al. 2007, 

Steffen et al. 2011, Pepin et al. 2015), science and society are turning to transdisciplinary work 
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(TDW) to facilitate transitions to sustainability (Lang et al. 2012; Brandt et al. 2013).  In the context 

of environmental sustainability, TDW is a reflexive research approach that brings together actors 

from multiple academic fields and diverse sectors of society to engage in mutual learning, with the 

intent to collaboratively produce solutions to social-ecological problems (Klein et al. 2001; Lang et 

al. 2012; Jahn et al. 2012; Cundill et al. 2015).  From a theoretical perspective, TDW overlaps with a 

wide range of scientific domains, including participatory action research (Lewin 1948; Freire 

1970), citizen science (Bonney et al. 2014) or public participation in science (Shirk et al. 2012), and 

common pool or common property resources (Ostrom 1990; Agrawal 2001; Cox et al. 2010). A 

common theme throughout these bodies of literature is the idea that collaborative approaches, 

especially those that bridge science and society, can lead to improved solutions to the challenges of 

global environmental change (Knapp et al. 2019).  

Effective TDW draws on multiple types of knowledge to understand problems more 

holistically. Many times, the challenges facing social-ecological systems are multidimensional “wicked problems” that lack clear definitions or solutions (Rittel and Webber 1973; Chapin et al. 

2008). These problems are “wicked” not in an ethical sense, but due to their resistance to simple 

explanations or objective resolution.  Managing these complex systems and challenges increasingly 

requires collaboration among diverse teams with a range of knowledge types and worldviews so 

that the boundaries of the problem can be understood from multiple perspectives, and the scope of 

potential solutions can be expanded (Polasky et al. 2011; Tengö et al. 2014; Bernstein 2015; 

Hoffman et al. 2017). This diversity also contributes to the perceived credibility, salience, and 

legitimacy of TDW results (Cash et al. 2003; Cundill et al. 2015), which can empower participants to 

take ownership of TDW products and increase people’s ability to apply new knowledge and 
products to sustainability problems on the ground (Lang et al. 2012; Balvanera et al. 2017). 

However, it is not sufficient to bring diverse people together for effective TDW to occur – 

there must be collaboration and mutual learning among TDW participants, so that trusting 
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relationships and open channels of communication can develop (Dietz et al. 2003). These 

conditions support the development of adaptive capacity, which is critical for decision-making 

under the high uncertainty facing social-ecological systems (Kates et al. 2001; Fazey et al. 2014; 

Fujitani et al. 2017).  Social learning, which derives largely from theories of organizational 

management (Argyris & Schön 1978), is an increasingly useful concept for understanding how 

people learn within particular social and cultural contexts (Lave & Wenger 1991; Keen et al. 2005; 

Fernández-Giménez et al. 2019). Social learning has been shown to improve understanding of 

social-ecological systems (Walters & Holling 1990), to foster adaptation and collective action (Pahl-

Wostl et al. 2007), and to build trust among diverse individuals (Reed et al. 2010) – all of which 

contribute to improved TDW process and outcomes (Lang et al. 2012; Jahn et al. 2012; Cundill et al. 

2015). 

Modeling increasingly is used by academics and development experts to encourage 

collaboration and learning among resource users, policy makers, researchers, and conservation 

practitioners (Bousquet & Le Page 2004; Barnaud et al. 2008; Verburg et al. 2016; Voinov et al. 

2018).  This doctoral dissertation advances understanding of the benefits of cognitive, geospatial , 

and simulation modeling by examining the kinds of learning that occur when social-ecological 

models are used to support collaborative environmental decision making.    

1.2 Dissertation Structure 

The following dissertation is comprised of four main chapters, with an introduction and 

conclusion to frame the research. The main chapters were written to be stand-alone peer-reviewed 

journal articles, which introduces some repetition throughout.   

In Chapter 2, I present a seven-step conceptual model to guide learning and knowledge co-

production through environmental TDW. This model has similarities to other frameworks and 

guides present in the literature (Carew & Wickson 2010; Jahn et al. 2012; Lang et al. 2012; Brandt 
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et al. 2013; Mauser et al. 2013; Scholz & Steiner 2015b), though it distinguishes itself through the 

inclusion of very specific activities that are largely absent from  these other examples (but see Lang 

et al. 2012), and which provide practical guidance for best practices in environmental TDW that are 

inclusive of the diversity of people and places where it occurs. I used this conceptual model to guide 

the development of a survey, which I administered to scientists, practitioners, and stakeholders 

involved in environmental TDW projects worldwide.  Results from 168 responses inform the 

identification of 23 activities to include in a ‘toolbox’ of TDW best practices for overcoming barriers 

to effective collaboration and increasing the societal and scientific impacts of TDW projects.   

In Chapter 3, I describe a case study that illustrates the benefits of drawing on diverse 

knowledge to understand global environmental change, following the early exploratory steps in the 

conceptual model from Chapter 2.  I used a multiple-evidence based approach (Tengö et al. 2014) to 

investigate the causes and consequences of environmental change in a community-protected grassland known as “Guassa” and its surrounding landscape in the Ethiopian highlands, drawing on 

remote sensing and ethnographic approaches to explore the interaction of biophysical and social 

change, and to understand potential impacts for ecosystem service provisioning.  The knowledge 

co-production process revealed both complementary and contradictory findings across knowledge 

systems, which led to new system understanding.  

In Chapter 4, I present an iterative process of constructing and revising mental models of 

the same community-protected grassland in Ethiopia. I analyzed these mental models to 

understand how knowledge of this social-ecological system compares across the different groups 

involved in managing Guassa, and I assessed the kinds of social learning experienced by 

participants in the mental modeling process. Similarities across group mental models pointed to 

key drivers and sensitivities in the social-ecological system, Differences across mental models 

illustrated that system understanding and uncertainty varied according to the gender and 
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occupation of participants, demonstrating the need for diverse perspectives in a collaborative 

process (Paulus & Nijstad 2003; Bernstein 2015; Hoffman et al. 2017).   

In Chapter 5, I describe a process of collaboratively designing an agent-based model (ABM) 

of shrub encroachment in the Guassa area.  Collaborative ABM is an effective tool for exploring 

systems in a prospective rather than a purely predictive way (Anselme et al. 2010), which can aid 

environmental managers in formulating new ideas about how to anticipate and manage systems 

under future uncertainty.  This model enabled people involved in managing Guassa to explore the 

individual and combined effects, as well as the tradeoffs, of social and ecological factors controlling 

the spread of native shrubs, and to evaluate the efficiency of different management strategies to 

control their expansion.  Results from the modeling process contribute to our understanding of the 

level of model complexity that is most useful for learning and decision-making (Grimm et al. 2005; 

Le Page & Perrotton 2018). 

In Chapter 6, I synthesize my findings across chapters 2-5 and discuss the ability of social-

ecological systems models to support knowledge co-production and learning for collaborative 

environmental management.  This work provides new insights and information regarding the ways 

in which local and scientific knowledge can jointly improve the capacity of managers to understand 

and respond to global environmental change.   

1.3 Author Positionality 

The positionality of a researcher is influenced by their background, including their values, 

beliefs, and personal experiences with a topic.  This positionality in turn shapes what a researcher 

chooses to investigate, the approach and methods they select, their relationship to the people 

involved in the research, and their interpretation or framing of the research (Finlay 2002; 

Mauthner & Doucet 2003; Khagram et al. 2010).   
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Growing up next door to the last functioning dairy farm in the suburbs of Chicago gave me a 

deep appreciation for the value of public participation in conservation. The farm was repeatedly 

threatened by developers throughout my childhood, leading my parents to help form the organization Citizens Organized for Wagner’s Farm (C.O.W.S.). After years of meetings, protests, 

poetry contests, and several embarrassing stints as our mascot – Bart the Bull – I was thrilled to be 

part of the celebration when the Park District purchased the farm for conversion to an interactive 

museum on local farming history. This experience taught me the important lesson that tangible 

personal and community gains must be present if we want to catalyze public engagement and 

commitment to conservation. Without a doubt, this early passion for the protection of a natural and 

cultural resource has shaped my current work.  

Throughout my career in conservation, I have found the greatest personal and professional 

satisfaction working at the intersection of research and practice. As an undergraduate at the 

University of Illinois, I worked with the Forestry Extension office on several projects that opened 

my eyes to the difficulty we face in reconciling ecological and economic objectives in U.S. 

conservation. This motivated me to serve as an environmental education volunteer with the Peace 

Corps, where I could learn how other cultures perceive and address conservation challenges. My 

work in Kolda, one of the least developed regions in Senegal, revealed the power of working on 

community-identified problems with joint ecological and economic benefits – in this case, 

community gardens that used permaculture techniques to improve household food security and 

soil health, and to increase income generation. These experiences inspired a career dedicated to 

merging the goals of conservation and development in the U.S. and abroad. 

As a transdisciplinary conservation scientist, I do not perceive myself as an outside 

observer of some process, but rather as an integrated member of a research team composed of 

scientists and non-scientists seeking to understand and solve social-ecological problems.  My 

epistemological approach to this type of research is thus understandably eclectic. On the one hand, I 
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subscribe to a realist philosophy that says there is an objective world out there that is separate 

from me. I believe it is the same physical entity for all of us, and we can use empirical observations 

and measurements to produce new knowledge about the world to improve our management of the 

environment. On the other hand, I am also a constructivist that believes social-ecological systems 

exist as cognitive constructs in the minds of the people living in them. I believe we must pursue a 

more nuanced understanding of the internal states (i.e., attitudes, values, and beliefs) of people in 

order to design environmental management strategies that fit particular socio-cultural contexts.  I am a critical realist in the sense that I believe we cannot fully know any one “truth”, but only 
approximate truth under different contexts through the collection and analysis of data, both 

qualitative and quantitative. 

My objective as a conservation scientist is to improve the equitable and sustainable 

management of natural resources by studying the process of collaborative conservation. I believe 

that collaborative decision-making – when diverse groups of people work and learn together on an 

issue – can help us overcome significant social and cultural barriers in conservation by promoting 

trust and respect among people with sometimes very different worldviews. A guiding principle in 

my research is to do relevant and practical research that improves our ability to build effective 

teams that can support conservation science and practice.  The lengthy time I spent exploring and 

learning about the people and the environment of the Guassa area helped ensure my dissertation 

work fit the needs of this area. For example, one local farmer told me, “no one has asked us what we 
want them to research before.  We have many ideas – we know what needs to be researched.”  
Another farmer commented that he remembered me because “…you pay us when we participate. Other scientists don’t pay us when they ask us questions.” Because of my ethic of collaboration, I 

work to treat my partners with respect, generosity, and kindness.   

My positionality makes me particularly sensitive to issues of power within conservation 

teams, and I work to ensure that different perspectives are valued and respected in collaborative 
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processes – even when this contradicts my own research objectives. For example, the second 

modeling workshop of my dissertation started off with low motivation and low participation among 

local farmers. It emerged that there was another meeting organized at the same time as our 

workshop, and they were expected to attend both. I negotiated with them to reduce our workshop 

to a single day so that they could fulfill both obligations at least partially. This reduced the time I 

had to present and discuss the agent-based model in Chapter 5 with them, but it further 

strengthened our ability to communicate when things weren’t working for certain members of the 
team.  I believe this kind of transparency and power sharing is essential to effective collaborative 

conservation.  
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CHAPTER 2  

BARRIERS AND BEST PRACTICES IN ENVIRONMENTAL TRANSDISCIPLINARY WORK1 

 
 
 
2.1 Introduction 

As global environmental change increasingly threatens environmental systems and human 

well-being, science and society are turning to transdisciplinary work (TDW) to facilitate transitions 

to sustainability (Lang et al. 2012; Brandt et al. 2013).  In the context of environmental 

sustainability, TDW is characterized by a reflexive research approach that brings together actors 

from multiple academic fields and diverse sectors of society to engage in mutual learning with the 

intent to co-produce knowledge and solutions to social-ecological problems (Klein et al. 2001; Lang 

et al. 2012; Jahn et al. 2012; Cundill et al. 2015). Actor diversity is the foundation of TDW; scientists 

from multiple disciplines are needed (interdisciplinarity) as well as practitioners from different 

work sectors and/or stakeholders from diverse social worlds (Gibbons et al. 1994; Tress et al. 

2005; Lang et al. 2012; Cundill et al. 2015). Transdisciplinary work is reflexive in that it encourages 

actors to clarify values, assumptions, and understandings, and to think critically about how these 

impact the framing of the problem, the process of the research, and the communication and 

implementation of the results (Popa et al. 2015; Cockburn & Cundill 2018). Mutual learning, 

sometimes referred to as multiple-loop social learning (Keen et al. 2005; Fazey et al. 2014; 

Fernández-Giménez et al. 2019), is related to reflexivity as it requires TDW participants to 

collectively explore the limits of current knowledge, exchange and generate new knowledge, and 

understand how this knowledge is situated in a particular social and cultural context (Lave & 

 
1 This chapter will be submitted for publication along with co-authors Julia A. Klein, Robin Reid, Sandra 
Lavorel, Catherine Tucker, Karim Aly-Kasam, Aida Cuni-Sanchez, Kelly Hopping, Rob Marchant, Anne Nolin, 
Julia Sharp, Jessica P. R. Thorn, Tara Teel, Tsechoe Dorji, Gordon Grant, Greg Greenwood, Robert Huber, David 
Kreuer, Mohammed Mahdi, Berta Martin-Lopez, Martha Moreno, Aaron Russell, Mateja Smid, and Daniel 
Waiswa 
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Wenger 1991; Scholz & Marks 2001; Westberg & Polk 2016). Finally, TDW is problem-oriented, 

seeking solutions that advance scientific and societal objectives in parallel (Scholz & Steiner 2015a; 

Delorme et al. 2016).  

Each of these aspects is essential for a fully transdisciplinary approach, and together 

produce the benefits of TDW. Heterogeneity among TDW participants ensures that multiple 

perspectives are represented and the full complexity of both problems and solutions are realized 

(Bernstein 2015; Hoffman et al. 2017). This diversity also contributes to the perceived credibility, 

salience, and legitimacy of TDW results (Cash et al. 2003; Cundill et al. 2015), which can empower participants to take ownership of TDW products and increase people’s ability to apply new 
knowledge and products to sustainability problems on the ground (Lang et al. 2012; Balvanera et al. 

2017). Reflexivity in the TDW process can help reduce conflict arising from power asymmetries 

among TDW participants or from differences in values, preferences, and behaviors (Mobjörk 2010; 

Cundill et al. 2018). Reflexivity and mutual learning can also support the development of adaptive 

capacity in TDW participants (Fazey et al. 2014; Fujitani et al. 2017), which is critical for managing 

social-ecological systems in the face of high uncertainty, ambiguity, and risk (Kates et al. 2001). For 

example, participatory and formative evaluations that occur periodically throughout the TDW 

process allow participants to share perspectives, challenge dominant knowledge types, and flatten 

hierarchies that impede co-production and mutual learning (Fazey et al. 2014). When learning 

moves beyond cause and effect processes (single-loop learning) to expand system understanding or 

question underlying assumptions (double-loop learning) or change the institutions, norms, or 

beliefs guiding behavior (triple-loop learning), it can facilitate transitions to sustainability by 

motivating change towards adaptive strategies (Berkes & Jolly 2002) and building trusting 

relationships and systems thinking capacity among TDW participants (Pahl-Wostl & Hare 2004; 

Reed et al. 2010).  
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 Efforts to describe an ideal TDW process to achieve these potential benefits have produced 

a series of conceptual frameworks, models, and guides (Carew & Wickson 2010; Jahn et al. 2012; 

Lang et al. 2012; Brandt et al. 2013; Mauser et al. 2013; Scholz & Steiner 2015b). Yet, the need for 

evidence-based “best practices” in TDW remains unfulfilled (Tress 2003; Huber & Rigling 2014). 

Best practices are the methods and techniques that have been shown to produce optimal results for 

a given objective; the term arose from agricultural and animal husbandry literature in the 1800s 

(Malcolm 1805; Dickson 1824) and has permeated to other fields, including business administration (O’dell & Grayson 1998) and statistics (Osborne et al. 2008).  The pursuit of best 

practices in TDW implies that consistent approaches should be identified and widely adopted; yet, 

we recognize the need for flexibility and adaptation given the highly context-specific nature of 

TDW. We do not consider a one-size-fits all approach desirable or even feasible for TDW, but we 

believe the development of guiding principles can help ensure the quality and reproducibility of 

TDW and prevent the approach from becoming shallowly understood and applied (Jahn et al. 

2012). Standardization has been shown to streamline communication across diverse groups, 

allowing information to travel without losing its meaning (Star & Griesemer 1989; Steger et al. 

2018). However, when standards are enforced too inflexibly, conflict and miscommunication can 

occur (Turnhout 2009).  Therefore, efforts to create guidelines for TDW should focus on providing a ‘toolbox’ of best practices that can be selected by participants according to their needs and desires 
without being overly prescriptive.   

The purpose of this paper is to leverage the experiences and opinions of the international 

researcher and practitioner communities to better understand how TDW is applied in 

environmental projects and processes.  We seek to examine how different aspects of respondent 

diversity influence perceptions and preferences in the TDW process, which can help clarify why 

actor diversity has been shown to promote innovation in collaborative projects (Paulus & Nijstad 

2003), and how this actor diversity relates to the types of activities and desired outcomes observed 
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in TDW projects. Our research questions ask: How does the gender, geography, and positionality 

(i.e., researcher or non-researcher) of respondents influence their perceptions of TDW best 

practices and barriers to TDW success? What best practices and characteristics of TDW case studies 

are associated with desired outcomes such as perceived project success, policy impact, and 

learning?  We use these insights to refine a seven-step conceptual model to provide practical, 

evidence-based guidance for best practices in environmental TDW that are inclusive of the diversity 

of people and places where it occurs. 

2.1.1 A Conceptual Model for Co-Production and Learning Through TDW 

Drawing on peer-reviewed literature and personal experiences from the Mountain Sentinels 

Collaborative Network (mountainsentinels.org), we describe a conceptual model to guide learning 

and knowledge co-production through TDW (Figure 2.1).  This model has similarities to other 

frameworks and guides present in the literature (Carew & Wickson 2010; Jahn et al. 2012; Lang et 

al. 2012; Brandt et al. 2013; Mauser et al. 2013; Scholz & Steiner 2015b), though it distinguishes 

itself through the inclusion of very specific activities (Table 2.1) that are largely absent from these 

other examples (but see Lang et al. 2012), and which provide concrete and practical advice for 

future TDW efforts. The model also differs from previous synthesis efforts by removing the focus on distinct “scientific” and “societal” domains that come together in TDW (cf. Lang et al. 2012; Jahn et 

al. 2012; Cockburn & Cundill 2018).  We argue that a ‘left loop’ and ‘right loop’ approach to TDW 
(Jahn et al. 2012), which proposes a spectrum of TDW where some projects can be focused almost 

entirely on practical solutions while other projects can focus instead on scientific insights, 

propagates confusion over the role of non-researcher participants in TDW. There is evidence that 

some projects that only engage non-researcher participants on a superficial (‘informative’ or ‘consultative’) level still consider their approach transdisciplinary (Miller et al. 2008; Brandt et al. 

2013). The model presented here emphasizes that diverse actors are necessary throughout the 
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entire TDW process at a fully collaborative level, and that neither societal nor scientific needs 

should take precedence over the other. 

The general structure of this conceptual model mirrors the ‘TD Wheel’ (Carew & Wickson 

2010), a useful heuristic that emphasizes the cyclical and iterative nature of TDW as participants 

move through different phases of the process. We emphasize the need to draw on multiple 

knowledge systems and bring them into conversation with one another throughout the TDW 

process; in this regard, our model reflects the Intergovernmental Science-Policy Platform on 

Biodiversity and Ecosystem Services’ five-step process for conducting valuation studies for 

ecosystem services (Pascual et al. 2018) and the five core tasks for successful collaboration across 

diverse knowledge systems (Tengö et al. 2017). However, these previous models provide guidance 

to projects that are already in existence, whereas our model seeks to clarify that preliminary 

exploration of the system and partnership formation are integral parts of the TDW process and can 

sometimes be the most challenging aspects of TDW.  Common across all these models is the 

expectation of continuity over time – typically, a “finished” TDW project is ideally just the beginning 

of another turn of the TD wheel.  

 In our model, Step 1 is an introductory and exploratory phase where participants exchange 

knowledge about the history and context surrounding the place and problem being addressed, and 

when pre-existing and potential partnerships are considered. Collaborative projects may be 

initiated by researchers, practitioners, or concerned citizens/other stakeholders.  Step 1 is an exploratory phase similar to the ‘Phase 0’ described by Cockburn et al. (2016) or the ‘problem history’ phase of Enengel et al. (2012).  Step 2 involves a team-building process, where researchers, 

practitioners, and stakeholders co-design their partnership to ensure it addresses everyone’s 
concerns and interests.  Step 3 requires explicitly incorporating diverse perspectives and 

worldviews through the partners involved in the collaboration so that the project can benefit from 

multiple types of knowledge.  At Step 3, it is essential to evaluate the team composition and revisit 
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partnership formation, if necessary.  Step 4 is an iterative process of co-design, where partners 

develop the appropriate processes to achieve their desired outcomes.  Again, depending on the 

goals and outcomes identified it may be necessary to revisit partnership formation and design to 

ensure all relevant perspectives are included. Step 5 involves the co-production of both research 

and societally-relevant action, where partners conduct the co-designed research and analyze the 

results of different methods or activities.  If at this point it becomes clear that some project 

objectives will not be met by the methods or activities taken in Step 5, it may be necessary to revisit 

the co-design process or begin back at partnership formation and design.  Step 6 occurs when 

project outcomes and outputs are distributed and discussed outside of project partners, and when 

action is taken based on these results.  Step 7 requires partners to reflect on past experiences and 

prepare for the next set of co-learning and collaborative opportunities.   We present steps, and the 

activities we identified within them, in Table 2.1. 
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 Figure 2.1. A seven-step process for facilitating learning and knowledge co-production through a 
TDW process. Steps 2-4 correspond to ‘Phase A’, Step 5 corresponds to ‘Phase B’ and Steps 6 and 7 
correspond to ‘Phase C’ in other popular TDW conceptual models (Lang et al. 2012; Jahn et al. 2012; 
Cockburn & Cundill 2018). Step 1 relates to the proposed ‘Phase 0’ of Cockburn et al. (2016).  
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2.2 Methods 

2.2.1 Survey Design  

We used the seven-step conceptual model described above to guide the development of a 

survey (Appendix A). We began by screening respondents to ensure they conducted transdisciplinary research that fits our definition of: “sustained engagement between researchers 
(professional scientists or scholars) and practitioners (e.g., resource users, natural resource managers, policy makers)”. We then asked survey respondents to draw on their overall experience 

with TDW to rank the top three most important activities in each step, even if they had not 

personally used them in their work. These activities emerged from a review of the literature as well 

as the experiences of members of the Mountain Sentinels Collaborative Network. We asked 

respondents which of these seven steps they considered to be the most difficult to implement.  

We also asked respondents to rank the most significant barriers in TDW from a list of fifteen 

specific barriers synthesized from the literature and expert experience, which we then aggregated 

into nine general barriers during the analysis. We asked respondents whether they had any open-

ended recommendations for how to overcome these barriers.  We also asked respondents to select 

the three most important non-traditional skills and characteristics for successful TDW from a list of 

nine we had synthesized from the literature and personal experiences among our network.  We 

then asked respondents to identify their most successful TDW project, and to report which of the 42 

activities in our conceptual model they conducted during that project. We asked respondents to 

describe the context and outcomes of their most successful TDW project, including for example: how successful it was on a scale of 1 “not at all” – 10 “perfect, just as planned or better”, who 
initiated the project, how long they worked in the area before the project started, and how long it 

lasted.   Finally, we requested their response to a few questions about themselves (e.g., gender, 

research location, length of time conducting TDW). 
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2.2.2 Survey Administration 

We administered the survey to researchers, practitioners, and other stakeholders involved 

in environmental TDW projects worldwide.  The survey was offered in four languages: English, 

Spanish, French, and Chinese. The survey link was shared widely via targeted emails, list servs, and 

Twitter.  We sent two to three reminder emails to each list serv and email group to maximize 

responses and requested TDW project leaders encourage practitioner and other stakeholder 

partners to complete the survey. This research was reviewed and approved by Colorado State University’s Institutional Review Board (264-18H), and was conducted with free, prior and 

informed consent of all participants.  

2.2.3 Analysis 

We analyzed quantitative survey responses using common statistical tests such as chi-square or Fisher’s exact tests, t-tests, and ANOVA, as relevant for sample size and the mix of data types (categorical, ordinal, and continuous). When using Fisher’s exact tests for contingency tables 
greater than 2 x 2 variables, we approximated the p-value using Monte Carlo simulations with 10 

million replicates. When using ANOVA, we conducted post-hoc Tukey pairwise comparisons to 

understand which variables had significant relationships.  

For ranked activities and barriers, we first calculated a weighted mean, assigning a rank of “4” when the activity or barrier was not listed in the top three. We used these values to provide a 

single, weighted importance score for each activity and barrier (Dietsch et al. 2018). We then tested 

for differences in how respondents rank individual activities and barriers using Wilcoxon rank sum 

tests, again assigning a rank of “4” when the activity or barrier was not listed in the top three. All 
analyses were conducted in R (R Core Development Team 2019). We used a Bonferroni adjustment 

to correct for multiple comparisons, resulting in stricter thresholds for significance depending on 

the number of tests used for different combinations of variables (i.e., p-values < 0.05). All tests, 
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results, and adjusted significance thresholds can be found in Appendix B.  For textual responses, 

such as solutions to TDW barriers, we used in vivo coding (Corbin & Strauss 2015) and inductive 

thematic analysis to analyze the results (Boyatzis 1998). 

We considered each respondent’s most successful TDW project to be a case study in 
successful TDW.  We assessed case study success using three variables: stated project success (on a 

scale of 1 – 10), level of policy impact (none, low, medium, or high), and levels of participant 

learning (none, single and/or double loop, triple loop, or all three loops). Single-loop learning 

entails participants changing their ideas about what actions to take regarding the problem (Pahl-

Wostl 2009); double-loop learning involves participants realizing the problem was more complicated than they thought or expanding the way they think about the system (“systems 
thinking”, cf. Dyball et al. 2007; Keen & Mahanty 2006); and in triple-loop learning, participants 

change the institutions, norms, and beliefs surrounding the problem of interest (Keen et al. 2005; 

Fernández-Giménez et al. 2019).  

In our analyses, we consider respondents as researcher only (n=100) or non-researcher 

(n=34), women (n=68) or men (n=61), and internal (n=82) or external (n=50) to assess whether 

these groups differ on particular aspects of the TDW process.  Non-researchers include some 

researchers who also identify as practitioners or stakeholders. We regret that our sample size 

prevents including in our gender-based analysis the four respondents who identify as other than a 

woman or a man; however, they were included in the positionality and geographic analyses.  Respondents who are considered ‘internal’ conduct research on the same continent where they are 

primarily located and nowhere else (see Section 3.2). Chi-squared tests revealed no significant 

associations between respondent gender, geography, or positionality – for example, there are not 

significantly larger numbers of men researchers or internal women respondents.  
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We used three metrics to assess whether each activity from our conceptual model could be 

considered a best practice in TDW: their perceived importance across respondent types, the 

frequency with which they were applied in respondents’ most successful TDW projects, and their 
impact on project success, learning, and policy outcomes. 

2.3 Results 

The survey was available online from April 4 – October 22, 2018, and yielded 139 complete 

responses (many non-viable responses appeared bot-generated and did not make it past our initial 

screening question). An additional 29 responses were partially complete and used in our analysis 

where applicable (total n = 168). The number of responses per question varies as responses were 

voluntary throughout the survey.   

2.3.1 Respondent Demographics and Experience 

Of the 139 complete responses, respondents identified as women (n=68, 48.6%), men 

(n=61, 43.6%), and other (n=4, 2.9%). The majority of responses were in English (n = 117, 84.2%), 

followed by French (n=11), Spanish (n=9), and Chinese (n=2). Most respondents identified as 

researchers only (n=100, 71.9%), 17 identified as practitioners only (12.2%), and one identified as 

a stakeholder only. A group of 16 respondents (11.5%) identified as some combination of these 

three categories, and five respondents declined to respond to this question.  Our results revealed 

that offering the survey in a language other than English may have improved the response rate from 

non-researchers in non-English speaking countries, as a larger proportion of non-English 

respondents identified as practitioners (36%) compared to English respondents (19%).  

Generally, the number of projects each respondent has been involved in increases with the 

number of years they have spent conducting TDW. The majority of respondents conducted fewer 

than six projects in less than a decade of collaborative work (n=80, 56.7%). Yet, a substantial 

proportion of respondents seem committed to long-term, place-based research: 27 respondents 
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(19.1%) have been conducting environmental TDW research for over a decade, but have been 

involved in fewer than six projects.  

2.3.2 Geographic Patterns of Environmental TDW 

We received 132 responses with answers for both the continent where the respondent is 

primarily located and the continent(s) where they do the majority of their research. The largest 

group of respondents were located primarily in North America (n=59, 44.7%), and nearly all of 

them (n=51) conducted part of their research in North America (Figure 2.2a). The next largest 

group of respondents was based in Europe (n=39, 29.5%), and again most of them (n=33) 

conducted part of their research in Europe. All 18 Africa-based respondents conducted part of their 

research in Africa, as did all 11 respondents based in South America. Eight of the nine Asia-based 

respondents conducted part of their work in Asia, and one of the two Oceania-based respondents 

conducted their work in Oceania. No respondents were based in Central America. The two most 

frequent cross-continental links were Europeans working in Africa (n=15) and North Americans 

working in Asia (n=11) (Figure 2.2a).  

Respondents reported working on TDW projects in 70 countries around the world (Figure 

2.2b). Of the 135 respondents that answered this question, the largest proportion worked in the 

United States during their most successful research project (n=50, 37%). While it was most 

common for projects to occur in a single country (n=102, 75.6%), other projects ranged from two to 

52 countries (n=33, 24.4%). A notable subset of projects (n=19, 14.1%) took place across multiple 

continents. However, the majority of projects occurred on the same continent where the 

respondent was primarily located (n=83, 61.5%). Critical gaps in project locations are observed in 

North and West Africa, Central Asia, the Middle East, Eastern Europe, the Caribbean, and the Pacific 

Islands.  
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Figure 2.2. a) Circles are colored according to continent and reflect the number of internal linkages 
(i.e., when respondents worked on the same continent where they are primarily located). Lines are 
colored by the primary locations of respondents, signifying when those respondents work on 
another continent. The number of cross-continental links are given in white boxes. b) Number of 
most successful collaborative projects per country.  
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2.3.3 Skills and Characteristics for Successful Collaboration 

Respondents selected three of the nine most important skills or characteristics that enhance 

the success of environmental TDW endeavors, resulting in 474 total selections (Figure 2.3). Overall, 

the most frequently selected characteristic was flexibility (n=81, 17.8%), followed by mutual 

respect (n=77, 16.9%), collaborative spirit (n=72, 15.8%), humility (n=56, 12.3%), trust (n=53, 

11.6%), patience (n=43, 9.1%), persistence (n=30, 6.6%), interdisciplinary training (n=25, 5.5%), 

and generosity (n=19, 4.2%).   Researchers were more likely than non-researchers to consider 

flexibility an important characteristic for successful collaboration (p<0.01). 
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Figure 2.3. Respondents selected three out of the nine proposed skills or characteristics that 
enhance the success of environmental TDW endeavors, resulting in roughly three tiers of relative 
importance.  Researchers and non-researchers differ significantly in the way they value flexibility 
(**).  
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2.3.4 Barriers to Successful Collaboration 

Respondents (n=165) selected the top three most significant barriers to TDW, according to 

their knowledge and experience. All respondent types considered insufficient time and unequal 

power dynamics the two most important barriers (Figure 2.4). The least important barriers 

included disagreements over the approach taken, knowledge barriers (e.g., when certain 

participants rejected the validity of other forms of knowledge), the inability to take action based on 

results, and using the wrong method for the project purpose.  In the barriers of medium importance 

(ranks 3-5), clear groupings emerge among respondent types. Women, non-researchers, and 

internal respondents (Group 1) considered ineffective communication to be the third most 

important barrier, while men, researchers, and external respondents (Group 2) considered this the 

fifth most important barrier.  Group 2 also considered a lack of shared interests or motivation and 

insufficient funding to be more important barriers than ineffective communication. Men ranked 

knowledge barriers higher than women did.  Overall, it appears non-researchers and men were the 

respondent types that deviated from the other responses most frequently.  

A subset of respondents (n= 65) provided advice for overcoming these barriers. The most 

common themes presented by respondents involved time (n=23, 35.3%), shared goals (n=20, 

30.8%), communication (n=21, 32.3%), and strong leadership (n=21, 32.3%).  Roughly even 

proportions of respondent types provided advice for overcoming barriers (e.g., 46% of researchers 

and 41% of non-researchers). Recommendations differed slightly by respondent types, though due 

to the small sample sizes we hesitate to over-interpret these findings. There were more women 

than men recommending strong leadership (W=41%, M=17%) and communication (W=39%, 

M=17%). Larger proportions of external respondents also recommended strong leadership 

compared to internal respondents (E=50%, I=25%).  Finally, non-researchers appeared more likely 

than researchers to recommend finding common goals as a strategy for overcoming obstacles 

(NR=50%, R=26%).  
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TDW projects require time commitments from many people over many years, and 

respondents emphasized that they should not be rushed. Several respondents proposed that 

adjusting expectations from participants early on can help ensure people set aside enough time to 

contribute meaningfully to the collaboration and can facilitate the emergence of trusting 

relationships. Another key to overcoming TDW barriers is the establishment of shared goals early 

in the project. Respondents stressed these goals should be clearly articulated and revised to ensure 

all participants agree on them, which can help sustain motivation for the project over the long term.  

Constant and equitable communication was emphasized as a way to overcome many conflict-

related barriers like power asymmetry and historical injustices. Ensuring all participants’ voices are 
encouraged, heard, and respected can prevent miscommunication and reduce elite capture by 

certain groups. Respondents suggested that professional training or facilitation in conflict 

resolution is often beneficial for this kind of communication. Finally, strong leadership was a widely 

recognized theme in overcoming TDW barriers, involving organizing meetings, assigning roles and 

responsibilities, monitoring and ensuring people are held accountable for their contributions to the 

project. Strong leadership is in many ways the foundation that supports long-term, equitable, and 

actionable TDW projects.  
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Figure 2.4. Nine barriers to successful TDW are listed on the vertical axis, and their weighted 
importance score is given on the horizontal axis, with one being the most important barrier. Dots 
are colored according to respondent gender (women or men), geography (internal or external), and 
positionality (researcher and non-researcher). Groupings emerge in ranks 3 – 5 between women, 
non-researchers, and internal respondents (Group 1) and men, researchers, and external 
respondents (Group 2).  
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2.3.5 Perceived Importance of Activities 

We found good agreement across respondent types for the most important activities in all 

steps except for Steps 5 and 7 (Table C1, Appendix C).  All respondent types considered partnership 

formation and design (Step 2) to be the most difficult step in the TDW process, and there was good 

agreement regarding the most important activities in this step. All respondent types agreed that 

identifying shared interests (A.2.8) was the most important activity and identifying a diverse core 

leadership team (A.2.6) was the second most important activity.  With the exception of non-

researchers, all respondent types considered including individuals with experience (A.2.9) to be the 

third most important activity; non-researchers thought the identification of mutually appropriate 

spaces (A.2.7) was more important. While it was ranked relatively low across respondent types, 

men respondents considered conducting a smaller, preliminary project (A.2.2) more important 

than women respondents (p=0.01).   

Within the exploration stage (Step 1), the top three activities were connecting with 

individuals who are well-informed, helpful, or who have extensive networks (Activity 1.3), 

identifying the concerns of the different groups (A.1.6), and assessing the context, history, or on-

going initiatives surrounding the place or problem (A.1.1).  All respondent types agreed that 

expressing mutual respect (A.3.3) was the most important activity when drawing on multiple 

knowledge systems (Step 3), and that the second most important activity was trying to 

accommodate different processes for learning, understanding, and decision-making (A.3.5).  

Researchers considered sharing experiences with each other (A.3.4) significantly more important 

than non-researchers (p=0.01), who ranked it lowest. There was almost perfect agreement among 

respondent types on the importance of all four activities in co-designing research and action (Step 

4). The only difference was that most respondents considered collaboratively defining the issue 

(A.4.1) to be the most important activity, while women respondents considered collaboratively 

developing project goals (A.4.3) the most important. Finally, all respondent types agreed that 
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holding feedback workshops with decision-makers (A.6.6) was the most important activity in 

communicating and acting on relevant learning (Step 6), followed by communicating results to 

practitioners outside the immediate project (A.6.1) and discussing how to expand upon learning 

(A.6.5).   

We found inconsistent results across respondent types regarding the most important 

activities in the co-production of research and action (Step 5) and the co-development of future 

opportunities (Step 7). In Step 5, researcher, internal, and men respondents considered 

collaboratively developing outputs and outcomes (A.5.2) to be the most important activity; in fact, 

researchers considered this activity significantly more important than non-researchers (p<0.01).  

Instead, non-researchers and external respondents considered fostering capacity to conduct the 

methods (A.5.5) to be the most important activity, while women respondents considered 

collaboratively interpreting results (A.5.3) to be the most important – and they considered this 

significantly more important than did men (p<0.01).  In Step 7, most respondent types agreed that 

reflecting on strengths and weaknesses (A.7.4) was the most important activity; however, women 

respondents considered this significantly more important than did men (p<0.01) respondents. 

Rather, external respondents considered reflecting on the quality of outcomes and outputs (A.7.3) 

the most important activity; researchers also considered this a significantly more important activity 

than non-researchers (p<0.01). Men respondents considered reflecting on the usefulness of 

outcomes/outputs (A.7.5) to be the most important activity in Step 7, and they ranked it 

significantly higher than did women (p<0.01). While it was ranked relatively low across respondent 

types, non-researchers considered assessing participants’ learning (A.7.1) to be significantly more 
important than did researchers (p=0.02). 

2.3.6 Elements of Successful TDW Projects 
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Case studies (n=139) of respondents’ most successful TDW project occurred in 70 countries 

(Figure 2.2b), primarily in forest (n=42, 30.2%), mountain (n=36, 25.9%), urban (n=28, 20.1%), 

and/or grassland (n=24, 17.3%) systems.  Respondents generally worked in the study area for less 

than 3 years before beginning their most successful project (n=64, 46.0%), though it was also 

common to work in the area for 4-9 years (n=37, 26.6%) or over 10 years (n=30, 21.6%) before 

beginning the project.  Projects were initiated by either researchers (n=70, 50.4%), 

practitioners/stakeholders (n=46, 33.1%), or a mix of the two, and typically lasted less than three 

years (n= 81, 58.3%), with projects over 10 years uncommon (n=8, 5.8%). Aside from researchers, 

participants often came from government (n=88, 63.3%) and non-profits/NGOs (n=83, 59.7%), but 

farmers (n=57, 41.0%) were also common TDW collaborators. Most projects (n=96, 69.1%) 

produced at least one peer-reviewed publication, and feedback workshops with decision makers 

(n=82, 59.0%), maps (n=70, 50.4%), and news media products (n=64, 46.0%) were other frequent 

outputs. Most projects (n=86, 61.9%) used some form of qualitative or quantitative modeling.  

Perceived project success was generally high, with a mean of 7.25 (SD = 1.62) across all 

projects. Most projects also reported at least one type of participant learning (n=104, 74.8%) and 

medium (n=53, 38.1%) or high (n=20, 14.4%) policy impact.   Mean project success was marginally 

higher in projects where some level of learning occurred, and project success was significantly 

higher in projects with medium to high policy impact (Figure 2.5a). Specifically, there were 

significant differences between no or low policy impact and medium and high policy impact 

(p<0.01 for all comparisons). All projects jointly initiated by a mix of researchers, practitioners, 

and/or stakeholders had some level of policy impact, and projects initiated by practitioners and/or 

stakeholders had a larger proportion of high policy impact compared to projects initiated by 

researchers only (p=0.01, Figure 2.5b).  Notably, projects that produced policy briefs did not appear 

to achieve higher policy outcomes.   
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Figure 2.5. a) Perceived project success increases with perceived policy impact.  Stars indicate that 
projects with no and low level policy impacts had significantly lower project success compared to 
projects with medium and high policy impacts. B) Projects initiated by practitioners and/or 
stakeholders had the largest proportion of perceived high policy impact. 
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2.3.7 Activities of Successful TDW Projects 

 The activities most frequently conducted in respondents’ projects were often the same 
activities that respondents perceived to be important for successful TDW, but not always (Table C2, 

Appendix C). The three most important activities from Step 1 were also frequently implemented 

(75-76% of projects), including identifying group concerns (A.1.6), connecting with helpful 

individuals (A.1.3), and assessing the context of the place (A.1.1). The most important activity in 

Step 2 was identifying shared interests (A.2.8), which was also the only frequently implemented 

activity in that step (77% of projects). Meanwhile, the second most important activity in Step 2 

(identifying a core leadership team, A.2.6) was only implemented in 47% of projects.  Expressing 

mutual respect (A.3.3) was the most frequently implemented activity across all steps (83% of 

projects) and was also the most important activity in Step 3. Collaboratively defining the issue 

(A.4.1) was the most important activity in Step 4 and also the only frequently implemented activity 

in that step (78% of projects). Holding workshops with decision makers (A.6.6) was the most 

important and most frequently implemented activity in Step 6 (75% of projects). Interestingly, 

communicating results to the academic community was another frequently implemented activity in 

Step 6 (72% of projects) even though it received the lowest importance rank across all respondent 

types (Table C1, Appendix C).  In fact, communicating results to academic audiences occurred more 

often (72% of projects) than communicating results to practitioners (68%) and the public (57%). 

There was no agreement regarding the most important activities in Step 5 and Step 7, and none of 

these activities were frequently implemented across projects (35-68% of projects).  The 

implementation of activities sometimes differed according to respondent type. When forming and 

designing partnerships (Step 2), men were more likely than women to include researchers who are 

interdisciplinary (A.2.10, p<0.01). Unsurprisingly, researchers were more likely than non-

researchers to extend the results of their TDW project to academic audiences (A.6.2, p<0.01).  
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Some of the activities associated with high impact were among those considered important 

and frequently implemented. Collaboratively developing project goals (A.4.3) was associated with 

higher project success (p<0.01) and learning outcomes (p<0.01), and was also an important and 

frequently implemented activity. Reflecting on the quality (A.7.3) of outcomes and outputs were 

also associated with higher learning outcomes (p<0.00), and was one of the most frequently 

implemented activities in Step 7 (67% of projects). However, other activities with high impact were 

not considered very important and were not frequently implemented. Collaborative development of 

research questions (A.4.4) was associated with higher project success (p<0.01) but was 

implemented in only 54% of projects. Assessing participant learning (A.7.1) was associated with 

higher learning outcomes (p<0.00), yet was only conducted in 35% of projects.   Notably, none of 

the activities were associated with high policy impacts.  

2.3.8 Best Practices for Environmental TDW 

We identified 23 priority activities for environmental TDW using the three metrics 

described above – their perceived importance across respondent types, the frequency with which they were applied in respondents’ most successful TDW projects, and their impact on project 

success, learning, and policy outcomes (Table 2.1). We do not claim that the remaining 19 activities 

are not useful, but based on our survey we do not currently have sufficient evidence to call them 

best practices. In particular, ten activities stood out as meeting our criteria across multiple metrics, 

and we propose that projects with limited resources might target these activities when 

implementing the seven-step collaborative process. 
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Table 2.1. Of the 42 proposed activities in our conceptual model, 23 emerged as best practices in 
environmental TDW based on their perceived importance, frequency of use, and impact on project 
success, learning, and policy outcomes. The ten activities which met our criteria across multiple 
metrics are highlighted in bold. As none of our proposed activities resulted in high policy impact, 
we do not include this category in the table. 
  

 

 

Most 

Important

Most 

Frequent

Learning 

Impact

Project 

Success

ID Description

A.1.1  Assess the context, history, or on-going initiatives surrounding this place or problem X X

A.1.2  Attend meetings of the different groups involved

A.1.3 Connect with individuals who are well-informed, helpful, or who have extensive networks X X

A.1.4 Connect with stakeholders who are often marginalized

A.1.5 Identify activities to build credibility across participants

A.1.6 Identify concerns of the different groups involved X X

A.1.7 Learn a locally-spoken language 

A.2.1   Check the credentials or history of key participants 

A.2.2   Conduct a smaller, preliminary project 

A.2.3 Define the roles and duties of everyone involved

A.2.4 Engage face-to-face outside of project meetings 

A.2.5 Hold regular meetings with diverse participant groups

A.2.6 Identify a diverse core leadership team X

A.2.7 Identify mutually appropriate spaces for interactions X

A.2.8 Identify shared interests among participant groups X X

A.2.9 Include individuals with experience working with these participant groups or in this location X

A.2.10 Include researchers who are interdisciplinary 

A.3.1  Attend each other's meetings and events 

A.3.2  Explore how you will use different types of knowledge 

A.3.3 Express mutual respect for one another's knowledge, experiences, or worldviews X X

A.3.4 Share experiences with each other 

A.3.5 Try to accommodate different processes for learning, understanding, or decision-making X

A.4.1  Collaboratively define the specific issue(s) being addressed X X

A.4.2  Collaboratively develop data collection methods

A.4.3 Collaboratively develop project goals for both research and action X X X

A.4.4 Collaboratively develop research questions or hypotheses X

A.5.1  Collaboratively analyze data collected

A.5.2  Collaboratively develop outputs or outcomes X

A.5.3 Collaboratively interpret results X

A.5.4 Distribute responsibilities among participants

A.5.5 Foster capacity to conduct agreed upon methods X

A.6.1  Communicate results to practitioners outside the project X

A.6.2  Communicate results to the academic community  X

A.6.3 Communicate results to the broader public

A.6.4 Create a group of high-profile individuals with power to impact the issue of interest

A.6.5 Discuss how to expand upon learning from project X

A.6.6 Hold workshops or meetings to exchange feedback with decision makers X X

A.7.1  Assess participants' learning  X

A.7.2  Discuss opportunities for the next collaboration

A.7.3 Reflect on the quality of outcomes and outputs X X

A.7.4 Reflect on the strengths and weaknesses of the collaborative process X

A.7.5 Reflect on the usefulness of outcomes and outputs X

Activities
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2.4 Discussion  

 In this paper, we present a conceptual model to guide the implementation of environmental 

transdisciplinary work (TDW), providing suggested activities to conduct throughout a seven-step 

process. We used a survey with 168 respondents worldwide to evaluate the relative importance of 

these activities and the non-traditional skills and characteristics required to implement them 

successfully. We also explored the relative importance of barriers to successful TDW and offer 

suggestions for how to overcome them. Together with case studies of respondents’ most successful 
TDW projects, these results point to a toolbox of TDW best practices that can be used to overcome 

barriers and increase the societal and scientific impacts of TDW projects.  Our study highlights the 

benefits of diversity in TDW, supporting previous research into the importance of methodological 

diversity (Balvanera et al. 2017) as well as actor diversity (Hoffman et al. 2017).   

2.4.1 Balancing Diverse Perspectives through Careful Partnership Design and Formation 

Our conceptual model stresses the need to bring together diverse actors throughout the 

entire TDW process without prioritizing scientific or societal objectives over the other. Yet, survey 

respondents highlighted partnership formation and design as the most difficult step in the TDW 

process.  The effective functioning of diverse teams is a considerable challenge in environmental 

TDW, which requires trusting and respectful relationships (Dietz et al. 2003) and shared vision and 

goals among team members (Balvanera et al. 2017; Hoffmann et al. 2017).  Building trusting 

relationships is typically a time-intensive process (Enengel et al. 2012), requiring interpersonal 

skills and characteristics that are often not included in academic training (Wiek et al. 2011). Our 

results emphasize the importance of flexibility, mutual respect, and collaborative spirit, though 

non-researchers are more likely than researchers to consider collaborative spirit a key 

characteristic, and to consider Tier 2 characteristics (humility, trust, and patience) more important 

than flexibility (Figure 2.3). While our survey had considerably more researcher respondents, we 
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believe these differences highlight important rifts between scientific and societally-focused actors 

that must be considered in the formation of TDW teams. For example, one key aspect of 

collaborative spirit is the sharing of control and equal credit among participants, which is often 

difficult for academics who are used to the siloed and highly individualized structure of the 

university (Bernstein 2015). Indeed, very few TDW projects have yielded decision-making power 

and project control to non-researchers (Brandt et al. 2013). It is therefore understandable that non-

researchers might value collaborative spirit more than researchers. Our results indicate that the 

formation of a diverse core leadership team (A.2.6) that clearly defines the roles and 

responsibilities of each member (A.2.3) could be one of the most important and effective ways to 

create collaborative spirit on a team, which is supported by other observations in the literature 

(Lang et al. 2012; DeLorme et al. 2016; Hoffmann et al. 2017; Balvanera et al. 2017).  

Additionally, we stress the importance of the exploratory Step 1 in our conceptual model, 

which is largely absent from other conceptual models and guides for TDW (but see Cockburn et al. 

2016).  Other approaches typically begin with problem definition, skipping over what we believe is 

a necessary, somewhat amorphous period where individuals and groups learn about each other and 

the context of the social-ecological system. Step 1 can be a lengthy process, as seen from almost a 

quarter of survey respondents working in an area for a decade before initiating a TDW project. In 

our survey, identifying the concerns of different social groups (A.1.6) emerged as a best practice in 

Step 1, as was the identification of activities that build credibility among these groups (A.1.5). There 

are many ways to elicit this kind of information, including through methods in participatory action 

research such as transect walks and photo-voice (Chambers 1994; Catalani & Minkler 2010) and 

ethnographic approaches like participant observation and life histories (Atkinson et al. 2001).  Note 

that we do not consider detailed problem identification to occur until Step 4, so that a foundation of 

place-based understanding is established and diverse forms of knowledge have been brought to 

bear on the issue before it is collectively defined. Problem definition can be a laborious process, 
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especially when disagreements emerge across knowledge types and need to be more thoroughly 

examined (Klein et al. 2014; Steger et al. in press). In fact, one Swiss TDW project found that 

collaboratively defining the problem unexpectedly became the primary project result (Lang et al. 

2012).  This emphasis on preliminary stages of TDW is intended to ease the barriers to partnership 

formation and design so that a more equitable and sustainable TDW process can be achieved.  

2.4.2 Selecting TDW Activities to Overcome Barriers  

Our results indicate that while there are no universally appropriate activities for all TDW 

projects, there is general agreement as to the most significant barriers for successful TDW.  We 

draw on our survey results, conceptual model, and the broader TDW literature to present a set of 

recommendations for overcoming these barriers.   

Barrier 1: Insufficient Time  

 TDW is a time-consuming process, and our survey respondents repeatedly stressed that it 

cannot and should not be rushed. Most projects highlight the time required for building trusting 

relationships and effective partnerships as we described above, but the integration of research 

methods across diverse academic disciplines and social worlds is also not a quick process (Brandt 

et al. 2013, Hering et al. 2012). Yet, our survey results revealed that very few TDW projects 

continue for longer than a decade, which reflects other findings in collaborative research 

(Balvanera et al. 2017) and may be related to a lack of shared interests (Barrier 3) and insufficient funding (Barrier 5). Alternatively, this could be a reflection of another turn of the ‘TD wheel’ (Carew 

& Wickson 2010), where relatively short, individual TDW projects flow into one another over time.  

As TDW is still a relatively new approach in environmental sustainability research, many projects are still ‘learning by doing’ with the result that many participants may consider their time wasted if 

efforts lead to failures. We propose that the 24 best practices identified from our survey results 
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may help overcome this important barrier in TDW by helping new collaboratives target limited 

resources to activities with demonstrated evidence of success across TDW projects.  

Barrier 2: Power Asymmetries 

Power asymmetries are a widely acknowledged challenge in environmental TDW (Jahn et 

al. 2012; Mauser et al. 2013; Scholz and Steiner 2015a), as they can enable certain groups or 

individuals to achieve their objectives at the cost of others (Mobjörk 2010; Cundill et al. 2015). 

Some of the most important activities for overcoming power asymmetries are concentrated in Steps 

1-3 of our conceptual model, which stresses the development of diverse teams with good 

communication and mutual respect for all kinds of knowledge and experience. We also emphasize 

the importance of fostering capacity to conduct the agreed-upon methods (A.5.5), so that all team 

members have the tools to engage in the research if they choose and are not relegated to the 

sideline during critical parts of the collaborative process. Other projects suggest that leveraging the 

expertise of different leaders throughout the life cycle of a TDW project can help mitigate power 

imbalances (Cundill et al. 2015), while others emphasize the ability of internal researchers to 

understand and respond to complex power dynamics in their home region (Schmitt et al. 2010).  

Our conceptual model encourages on-going reflexivity in TDW participants, both as individuals and 

collectively, so that these power asymmetries can be identified and bridged through discussion and 

compromise (Fazey et al. 2014).  

Barrier 3: Lack of Shared Interests or Motivation 

 Participants in a TDW project must have shared interests and the ability to sustain their 

motivation over an often lengthy collaborative process (Eigenbrode et al. 2007; Lang et al. 2012). 

Again, we stress the importance of the early steps in our conceptual model, which include best 

practices like identifying the concerns of different groups (A.1.6) and identifying shared interests 

among team participants (A.2.8).  The development of a shared vision at the outset of a TDW 
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project has been shown to positively impact project outcomes (Pohl et al. 2015; Hoffmann et al. 

2017). Additionally, well-designed TDW outputs and outcomes can also motivate continued interest 

in a project, especially when they are collaboratively developed (A.5.2) and target a range of 

audiences and user groups (Kueffer et al. 2012). Reflecting on the quality (A.7.3) and usefulness 

(A.7.5) of these products at the end of a TDW project is also critical for inspiring learning, which can 

help leaders refine their approach for future iterations. Lessons from other TDW projects indicate 

that when participant interest exceeds leadership capacity, motivation for the project can falter 

(Lang et al. 2012). Therefore, it is important to clearly define participant expectations early in the 

project so that leaders have the ability to follow through on promised outcomes and outputs.   

Barrier 4: Ineffective Communication 

 Clear and effective communication becomes a top priority when groups of people with 

divergent backgrounds, experiences, and values are brought together.  In fact, some scholars have 

cautioned TDW to actively avoid the academic trend of highly specialized language and jargon 

(Tress 2003; Brandt et al. 2013). Primary barriers to communication were not emphasized in our 

survey results; for example, learning a new language (A.1.7) was considered the least important 

activity in Step 1 and engaging face-to-face outside of project meetings (A.2.4) was also considered 

a low priority activity. Rather, respondents emphasized the importance of equitable communication 

(e.g., making sure every voice is heard and respected) at regular intervals, which supports findings 

in the broader TDW literature (DeLorme et al. 2016). Professional facilitation appears to be one of 

the best ways to ensure that communication remains effective and equitable (Lang et al. 2012; 

Kragt et al. 2013; DeLorme et al. 2016).   

Barrier 5: Insufficient Funding  

Funding for research is highly competitive and often follows a 3-5 year cycle, which 

necessitates near-continuous grant writing to support on-going initiatives and detracts from the 
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actual implementation of research. This is true for conventional research as well as TDW, which has 

the added burden of requiring substantial time investments in relationship building and continuous 

collaboration throughout the project. Furthermore, funding agencies often require clear goals and 

outcomes to be defined at the beginning of a project, which contradicts the iterative and 

collaborative TDW process. We therefore join others (e.g., Balvanera et al. 2017) in calling for 

innovative funding opportunities for TDW, which we are beginning to see with large-scale 

initiatives like Future Earth and the Belmont Forum (Mauser et al. 2013; Suni et al. 2016). Lessons 

from the international Collaborative Adaptation Research Initiative in Africa and Asia (CARIAA) 

project suggest that smaller amounts of flexible funding are also important, as they enable TDW 

projects to adapt and evolve more quickly, facilitating more successful outcomes (Cundill et al. 

2019).  A significant concern for TDW is the funding of Step 1 exploratory efforts, which are often 

quite time consuming and yield few immediate products – but which are essential to long-term 

TDW success.  

Barrier 6: Disagreements over Approach 

Disagreement and conflicts among TDW participants are common (Lang et al. 2012; Cundill 

et al. 2019), and not always avoidable given the diversity of values, worldviews, and organizational 

structures involved (Jahn et al. 2012). Most TDW projects focus on mitigating conflict among 

participants, relying on strong leadership to anticipate and resolve disputes (Hoffmann et al. 2017).  

The most frequently employed activity in our survey was expressing mutual respect for one another’s knowledge, experiences, and worldviews (A.3.3). This respect for difference is a core 

tenet of TDW and may help avoid negative feelings despite occasional conflicts and disagreements 

throughout a project. In fact, there is some evidence that conflict is necessary for learning to occur; 

a disorienting dilemma (Pennington et al. 2013) or cognitive struggle (Bransford et al. 2006) can challenge TDW participants’ understandings and pave the way for meaningful learning (Fernández-

Giménez et al. 2019).   
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Barrier 7: Knowledge Barriers 

The integration or co-production of multiple types of knowledge is often a goal in TDW, yet 

it can be a significant challenge given the prevalence of power imbalances – particularly across 

scientific and indigenous or local knowledges (Bohensky & Maru 2011, Hering et al. 2012, Brandt et 

al. 2013, Tengö et al. 2014, Tengö et al. 2017). Knowledge integration has often resulted in attempts 

to scientifically validate other forms of knowledge (Agrawal 1995; Turnbull 2003), which 

disrespects the unique epistemology of traditional knowledge (Nadasdy 1999; Knapp et al. 2019).  

Knowledge co-production focuses more on the socio-cultural context of collaboration, encouraging 

equitable processes for generating holistic understanding of some issue (Armitage et al. 2011; 

Tengö et al. 2014).  Though all activities in Step 3 are helpful, our results stress that exploring how 

to use different kinds of knowledge (A.3.2) and working to accommodate different processes for 

learning and decision-making (A.3.5) are critical for overcoming knowledge barriers.  For people 

working outside their home region, we emphasize the importance of connecting diverse individuals 

with strong place-based understanding and experience working in the study area (A.1.3 and A.2.9). 

We also point readers to the USYS TdLab at ETH Zurich (tdlab.usys.ethz.ch), which provides a 

toolbox of methods designed to promote knowledge co-production. TDW is sometimes criticized for 

drawing on a broad and ill-defined set of methods for knowledge production (Brandt et al. 2013), 

but we believe this diversity is valuable and necessary given the highly context-specific nature of 

local knowledge (Berkes 2012). 

Barrier 8: Inability to Take Action 

There are times when it is not politically feasible to take action based on the results of a 

TDW process, despite participant intentions (Brandt et al. 2013). For example, a TDW project in 

northern Switzerland failed to implement their results because local collaborators did not have the 

political mandate to affect regional development plans (van Zeijl-Rozema & Martens 2011). This 

https://tdlab.usys.ethz.ch/toolbox.html
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barrier might be mitigated by careful partnership design that includes high profile individuals with 

the power to impact the issue of interest (A.6.4), though this did not emerge as a best practice in 

our survey results. Other findings show that policy makers on the periphery of projects, but who 

engage regularly with the core team, are more likely to use TDW results in their decision-making 

compared to policy makers to only see the final products (Crona & Parker 2011).   Additionally, our 

results indicate that certain groups in TDW may be more likely to experience this barrier, as women 

ranked it significantly more important than did men. Men were also more likely to report 

participating in TDW projects with high policy impact.  These results reflect broader trends in 

gender discrimination, as women are often excluded from leadership positions throughout the 

world. In U.S. conservation organizations, women are more likely to occupy junior positions (Taylor 

2015) and are routinely denied opportunities to participate in decision-making (Jones & Solomon 

2019).  We encourage environmental TDW participants to recognize and resolve these imbalances, 

particularly when communicating and acting on relevant learning (Step 6).  

Barrier 9: Wrong Methods for Project Purpose 

 Social-ecological systems are complex systems that exhibit nonlinear dynamics, indirect 

effects and feedbacks, emergent properties, and heterogeneous links across space and time (Liu et 

al. 2007; Lambin & Meyfroidt 2010). These interactions among social and biophysical processes can 

lead to unexpected outcomes (Ostrom 2007, Turner et al. 2007) that make environmental 

management extremely difficult, especially considering the rapid rate of global environmental 

change occurring in these systems around the world (Cleland et al. 2007; Pepin et al. 2015; Steffen 

et al. 2011). Our conceptual model highlights the iterative nature of the TDW collaborative process, 

suggesting places where participants may evaluate their progress toward goals and decide to 

return to earlier steps if necessary. Due to the complex and evolving nature of social-ecological 

systems, participants may find midway through a project that their methods no longer answer the 

questions they are asking, or no longer fit the needs of decision-makers.  We encourage an adaptive 
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approach to TDW, similar to collaborative adaptive management (Fernández-Giménez et al. 2019) 

or adaptive co-management (Plummer et al. 2012), where projects are subject to regular evaluation 

so that projects may alter their approach as needed to meet project goals.        

2.4.3 Increasing TDW Impact for Science and Society 

Environmental TDW seeks solutions for multidimensional “wicked” problems that threaten 

the structure and functioning of social-ecological systems (Kates & Parris 2003; Rockström et al. 

2009), and which require immediate action. Though small-scale TDW can also be highly impactful 

(Balvanera et al. 2017), policy change is needed to shift the behaviors of large organizations and 

institutions – particularly when addressing problems that cross region to global scales (Cundill et 

al. 2019). Yet significant social barriers exist between scientists and policy makers that prevent the 

use of scientific information in policy development and decision-making (Gano et al. 2007; Landry 

et al. 2003). Research shows that boundary organizations, which are formal institutions and 

organizations that work across the science-policy divide (Guston 2001), can overcome many of 

these barriers through the facilitation of stronger social networks (Crona & Parker 2011). 

Communities of practice, which are typically more informal groups of people with a shared interest 

or passion (Wenger et al. 2002), are another promising institution for increasing our understanding 

of social learning (Cundill et al. 2015). Greater attention to the role of formal and informal social 

networks like boundary organizations and communities of practice in TDW holds potential for 

increasing the impact of TDW projects.   

More research is also needed to understand the social relationships that facilitate higher 

TDW impact, including how information flows within and across social networks (Borgatti & Foster 

2003) and how people learn – both individually and as groups (Keen et al. 2005; Reed et al. 2010). 

Our survey responses indicate that TDW participants view projects as more successful when they 

perceive them to have medium to high policy impacts as compared to projects where participants 
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experience learning. This is perhaps not surprising, as policy impacts are tangible and so more 

easily observed and celebrated than learning outcomes. Yet, learning is an integral element of TDW 

that is severely under-researched in the context of environmental TDW (Armitage et al. 2008; Baird 

et al. 2014; Fernández-Giménez et al. 2019). In our survey, we attempted to assess the impact of 

different activities on different levels of multiple-loop social learning but found very few clear or 

statistically significant patterns. For example, we found that feedback workshops with decision-

makers were associated with higher learning outcomes for all types of learning, yet only a small 

proportion of projects assessed participant learning.  We encourage additional research into the 

conceptualization, measurement, and evaluation of social learning so that we can better understand 

the role of socially-embedded learning in TDW outcomes. 

While we support the pursuit of policy impacts from TDW projects, we urge TDW 

participants not to lose sight of the balance between academic and non-academic outcomes. For 

example, our survey results revealed that communicating results to academic audiences outside the 

immediate TDW project partners (A.6.2) was ranked as the least important activity in Step 6 across 

all respondent types, yet it was more frequently conducted than communicating results to other 

practitioners and stakeholders. Further, we found that projects with peer-reviewed publications 

were associated with higher perceived policy impacts than those without publications. Together 

these results indicate that communicating TDW results to academic audiences remains valuable for 

advancing both societal and scientific impact of TDW projects.  Though we appreciate that 

academics are increasingly recognizing the importance of science communication (Weingart et al. 

2016), we caution not to let the pendulum swing too far and reiterate that a balance between 

scientific and societal outcomes holds the greatest promise for the future of TDW. 
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2.4.4 Limitations of the survey 

Our survey results are not without limitations. For example, we did not find many 

differences between internal and external respondents, which may be due to our coarse geographic 

scale (projects on the same or different continent as respondents’ primary location). We were also 

unable to compare case studies of most successful projects based on funding, which might be 

related to their overall project success or outcomes.  We saw low response rates from practitioners 

and other stakeholders, which may be related to ‘research fatigue’ among these groups. In fact, one 
researcher responded that they would not be sending the survey to their practitioner partners 

because they were waiting for their response to another survey and did not want to overwhelm 

them. Other barriers to non-researcher responses may have been that we offered no paper option, 

and only administered the survey in four languages. Finally, our results are biased heavily towards 

respondents from North America and Europe, which may have overshadowed insights from more 

remote parts of the world.  We were particularly surprised at the lack of responses from Oceania 

and Central America, which implies our distribution was perhaps not as strong in those locations.   

2.5 Conclusions 

TDW has emerged as an important research paradigm in environmental sustainability, with 

benefits for both science and society. Our conceptual model seeks to expand upon existing models 

to encourage deep, place-based understanding as a foundation for effective TDW.  We present 23 

activities that can be considered TDW best practices for a wide range of social-ecological contexts, 

though some caution is needed due to the limitations of our survey responses. We demonstrate 

how these activities can help overcome the key barriers in environmental TDW, with additional 

lessons from the broader literature.  Further research is needed into the social aspects of TDW – 

specifically, social networks and social learning – so that we can better facilitate TDW that fosters 

transitions to sustainability.   
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CHAPTER 3  

KNOWLEDGE CO-PRODUCTION IMPROVES UNDERSTANDING OF ENVIRONMENTAL CHANGE IN 

THE ETHIOPIAN HIGHLANDS 2 

 
 

3.1 Introduction 

Responding to changes in the structure and functioning of landscapes is a central challenge 

for the management of sustainable ecosystems, with far-reaching consequences for human well-

being and local adaptation to global environmental change (Lambin et al. 2001; Carpenter et al. 

2009; Rockström et al. 2009; DeFries et al. 2012). Biological invasions (Vitousek et al. 1996), 

phenological shifts (Buitenwerf et al. 2015), and unsustainable natural resource use (Persha et al. 

2011) are among the most pressing drivers of change impacting ecosystems around the world. 

Understanding these changes within integrated social-ecological systems is critical for developing 

effective responses, as drivers, impacts, and feedbacks among social and biophysical processes can 

lead to unexpected outcomes (Ostrom 2007; Turner et al. 2007; Lambin & Meyfroidt 2010).   

As global environmental change continues to accelerate and intensify (Cleland et al. 2007; 

Steffen et al. 2011; Pepin et al. 2015), new approaches are required to build bottom-up 

understanding and place-based responses that connect across multiple knowledge systems and 

evidence streams (Tengö et al. 2014). Drawing on multiple knowledge systems (e.g., local or 

indigenous knowledge, different academic disciplines or work sectors) is increasingly necessary for 

improved understanding and management of adaptive social-ecological systems (McLain & Lee 

1996; Dietz et al. 2003; Folke 2004).  For example, Klein et al. (2014) demonstrate that local 

knowledge of climate change on the Tibetan Plateau contributed to scientific understanding of 

 
2 This chapter has been accepted for publication in Ecology and Society, with co-authors Girma Nigussie, Mike 

Alonzo,  Bikila Warkineh, Jamon Van Den Hoek, Mekbib Fekadu, Paul Evangelista, and Julia A. Klein 
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delayed summer onset and raised awareness of the link between increasing temperature and 

rangeland impacts among Tibetan pastoralists. The multiple benefits of these cross-knowledge 

collaborative approaches have been observed in other social-ecological contexts, including whale 

conservation (Huntington 2000; Fernández-Giménez et al. 2006); forest change (Chalmers & 

Fabricius 2007); sea ice change (Nichols et al. 2004; Laidler 2006); rangeland management 

(Fernández-Giménez 2000; Reed et al. 2013; Jamsranjav et al. 2019); and fish and wildlife 

monitoring (Moller et al. 2004; Prado et al. 2013). 

One key challenge when bringing multiple knowledge systems together is the critical need 

to address power dynamics. Knowledge integration has traditionally relied on scientific validation 

of other forms of knowledge (Agrawal 1995; Turnbull 2003), with the result that local knowledge 

has been overly simplified or ignored, and local communities divorced from their own knowledge 

and subsequent self-efficacy (Nadasdy 1999; Latulippe 2015). Knowledge co-production differs 

from knowledge integration in material and philosophical ways. It is typically an iterative, ongoing 

collaborative process that respects and acknowledges socio-cultural contexts, resulting in a more 

inclusive and equitable process for generating holistic understanding about an issue (Jasanoff 2004; 

Berkes et al. 2008; Armitage et al. 2011; Shirk et al. 2012). A multiple evidence based (MEB) 

approach (Tengö et al. 2014) is gaining attention as a particularly effective framework for 

knowledge co-production, as it emphasizes the importance of maintaining the internal validity of 

knowledge systems so that final products are salient, credible, and legitimate to the diverse 

stakeholders involved (Cash et al. 2003; Reid et al. 2006).  

Community-based conservation areas present particularly valuable case studies for 

knowledge co-production, as there are often a mix of formal and informal institutions that support 

working across multiple groups of people and their respective knowledge systems (Dudley 2008; 

Ruiz-Mallen & Corbera 2013). When considered as a multilevel commons problem, community-

based conservation areas can be simultaneously a local commons that produces ecosystem services 
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for local consumption and well-being, and a regional commons that supports cross-scale activities 

like ecotourism and economic development (Berkes 2007). As such, the land tenure and 

management institutions that control access to these areas are often necessarily complex and 

highly influential on conservation outcomes (Dietz et al. 2003; Persha et al. 2011). Examining 

landscape-scale environmental change over time in community-based conservation areas can 

enable clearer understanding of the interactions and feedbacks between biophysical and social 

drivers of change in these systems, and guide the development of actionable responses that are 

targeted to the particular strengths and vulnerabilities of that place.  

Remote sensing approaches offer tools for examining the causes and consequences of 

environmental change at a landscape scale, and recent advances have made these tools more 

accessible and more appropriate for addressing different kinds of problems. Historically, the high 

cost of satellite imagery and lengthy processing time limited applications to using two or three 

images to assess change over some period of time (Coppin et al. 2002; Kennedy et al. 2014). With 

the full and growing global archive of NASA/USGS Landsat imagery being made freely available in 

2008 (Woodcock et al. 2008), alongside the development of open-source algorithms for multi-date 

image compositing, automated cloud-masking (Zhu & Woodcock 2012) and surface reflection 

correction (Masek et al. 2006),  the spectral and spatial continuity between successive Landsat 

program satellites now more closely approximates a continuous representation of change (Wulder 

et al. 2019). These advancements enable a more direct engagement between remote sensing 

products and ethnographic narratives of change because the availability of cloud-free images no 

longer constrains the temporal and spatial bounds of the study.  

An MEB approach, where people with local knowledge and knowledge derived from remote 

sensing are equal partners in an iterative process of knowledge co-production, can lead to more 

consistent and high-quality results for both academic and non-academic participants (Robbins & 

Maddock 2000; Naidoo and Hill 2006; Isager & Broge 2007; Herrmann et al. 2014). Local 
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knowledge is increasingly viewed as necessary for remote sensing projects, particularly when 

validating and interpreting results (e.g., Smith et al. 2019), and is valued for its engagement at 

extremely fine spatial and temporal scales (Berkes 2007) and  ability to address high levels of 

complexity and multiple variables (Berkes & Berkes 2009). Thus, the spatial breadth of remote 

sensing coupled with the depth of local knowledge can support detailed system understanding at a 

landscape scale, and the MEB process can produce culturally appropriate and actionable results for 

sustainable ecosystem management and adaptation to environmental change (Isager & Broge 

2007).  

In this study, we use an MEB approach to investigate the causes and consequences of 

environmental change over five political and management periods, with the aim of producing a 

more holistic understanding of change in a community-protected grassland and its surrounding 

landscape in the Ethiopian highlands. We draw on multiple knowledge systems to describe the 

interaction of biophysical change (precipitation and vegetation) and social change (political and 

management institutions), and explore potential impacts for ecosystem service provisioning. The 

ecosystem services concept was developed to clarify how ecosystem structures and functions work 

to benefit human societies (Ehrlich & Erlich 1981), and thus ecosystem services are often described as “the benefits people obtain from ecosystems” (MEA 2005) or conversely as “nature’s benefits to people” (Diaz et al. 2015).  Work on ecosystem services valuation and integration into policy is 
often criticized for a lack of attention to local needs, values, and knowledge (Turnhout et al. 2012; Pandeya et al. 2016). Our work, which uses the terms “ecosystem services” and “benefits” 
interchangeably, presents a highly local case study of integrating diverse knowledge types to better 

understand and manage ecosystem services.  

We formalized results as maps and narratives that were edited and validated by community members, conservation managers, and local policy makers, resulting in tangible “boundary objects” 
for management (Star & Griesemer 1989; Steger et al. 2018). Boundary objects emerge from 
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collaborative processes and address a societal information need, and are characterized by their 

interpretive flexibility and ability to apply to both specific and general contexts (Star 2010). The 

boundary objects produced through this research effectively combined observations and products 

across multiple knowledge systems to lay a foundation for future knowledge co-production and 

application in this area. 

3.2 Methods 

3.2.1 Study Site 

The Guassa Community Conservation Area (Guassa) is located in the Menz Gera woreda 

(similar to a county or district) of the Amhara Region of Ethiopia (Figure 3.1). Ranging from 2,600 – 

3,560 m.a.s.l., this area is historically characterized by two rainy seasons known as the ‘belg’ (~Feb 
1 – April 30) and ‘kiremt’ (~July 1 – September 30).  However, recent research from 2007-2012 

indicates that rainfall patterns may be shifting, with more than half of the average annual 1650 mm 

(± 243 mm SD) of rainfall occurring in a unimodal peak in July and August (Fashing et al. 2014). 

During that same period, the average monthly temperature at Guassa was 11.0 ºC (± 1.2 SD) 

(Fashing et al. 2014). Guassa supports several endemic and threatened species, including the 

critically endangered Ethiopian wolf (Canis simensis) and charismatic gelada monkey 

(Theropithecus gelada) (Ashenafi et al. 2005). 

Guassa is named after the guassa grasses (Festuca spp.) that are valuable to the local 

communities for their use as thatch, rope, construction material, and forage. Guassa is 78 km2, and the nine communities (‘kebeles’, the smallest administrative unit in Ethiopia) that manage and use 

the area occupy another 370 km2 (Figure 3.1). These nine kebeles are the only communities in the 

region with ancestral and modern rights to Guassa, and therefore we focused our fieldwork in these 

areas. There are approximately 42,000 people living in these nine kebeles (CSA 2017), nearly all of 

whom belong to the Amhara ethnic group and the Ethiopian Orthodox Church.  Increasing food 
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insecurity in the area has resulted in roughly half the population relying on food aid programs 

(MGWA 2016). 

 

Figure 3.1. The identifying numbers, names, population, and administrative boundaries of the nine 
kebeles (in black) with ancestral rights to Guassa. These kebeles are all part of the Menz Gera 
woreda, and their numbered identifiers are used interchangeably with their local names (note: kebele 20, “Yedi”, is located in two separate areas). Guassa has no human population and is 
administered separately as a community conservation area.  

 

Guassa has undergone significant political and land management changes throughout its 

history, beginning with the overthrow of the Imperial regime of Emperor Haile Selassie (pre-1974), 

through a period of land reform during the military regime known as the Derg (1974 – 1991), a 

transitional period of mixed government and community management (1991 – 2003), followed by 

increased NGO leadership (2003 – 2012) and finally the current co-management regime (2012 – 

present) (Figure 3.2). These five political-management periods were identified as key drivers of 

environmental change in the area during preliminary fieldwork and literature reviews (Admassie 

2000; Ashenafi & Leader-Williams 2005) and we use them to structure our subsequent analysis.   



51 

 
Figure 3.2. A timeline of political and management change in Guassa. 

 

The community conservation area was managed for hundreds of years (c. 1600 – 1974) 

according to the locally unique and highly effective Qero system of communal management that 

restricted access to the grasses through 2-3 month open seasons every 3-5 years (Ashenafi & 

Leader-Williams 2005). That system was undermined when the Socialist military Derg regime took 

over, and the 1975 Agrarian Reform transferred land ownership to the state - propagating decades 

of confusion over responsibility for Guassa’s management (Admassie 2000; Ashenafi & Leader-

Williams 2005). Throughout the 17-year Derg regime, the Qero system was slowly eroded in favor 

of de facto open access use rights, which continued into the current political regime despite 

community efforts to re-establish their exclusive rights (Fischer et al. 2014).   

As a source of water and a refuge for wildlife, the Guassa area has been attracting increasing 

attention from tourists, the Ethiopian government, researchers, and international conservation 

organizations since about 2000 (Welch 2017).  Initially, NGOs were met with skepticism from the 

local kebeles, but this subsided with the development of an eco-tourism project that returned 

profits directly to the communities. Eventually a new co-management regime was established that 

restored daily management responsibilities to nine kebeles with ancestral rights to Guassa. 

International research interests in the area expanded to include long-term studies on the Guassa 

population of endemic gelada monkeys in 2006 (Fashing et al. 2014), and  Ethiopian and 

international researchers arrive to study new aspects of the system each year.  Exclusive use rights 
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to the area were formally restored to the kebeles by Amhara Regional Regulation No. 97 in 2012.   

Currently the management team is composed of five representatives from each of the nine kebeles (the “Guassa Committee”), of which ten form an executive committee (the “Tourism Board”), and 
about twenty other individuals spread across two government offices – one administrative office at 

the local county (‘woreda’) level, and the Guassa Conservation Office that is sponsored by the 

Amhara Regional State. They manage the area collaboratively, with final decision-making power in 

the hands of the Guassa Committee, which meets monthly on their own and quarterly with the 

government offices.  

3.2.2 Data Collection and Analysis 

3.2.2.1 Ethnographic Data  

We used semi-structured group interviews to identify the locally-defined land classes, their 

associated ecosystem services, and overarching perceptions of environmental change in this area 

over time. Semi-structured interviews are a conversational interview form that allows participants 

to influence the breadth and depth of topics covered (Clifford et al. 2003). We elected to conduct 

group interviews because they facilitated a rich, dynamic conversation among diverse members of a 

community (Arthur et al. 2012). Previous research has also shown that people in the Ethiopian 

highlands tend to state collective perceptions rather than personal experiences (Nyssen et al. 

2006), which strengthened our ability to make generalizations from the relatively small number of 

participants. We convened a series of group interviews in March 2017, one in each of the nine 

kebeles, and invited an equal number of men and women with knowledge of the conservation area 

to attend.  We reached out to kebele administrators and asked them to identify a diverse group of 

people with good understanding of the Guassa area and interest in participating in a 4-6 hour 

workshop. Ten men and ten women attended the first interview, and we determined that was too 

many for a productive conversation. We limited the remaining interviews to 10-12 people for a 
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total of 106 participants across nine kebeles, with equal gender representation.  The average age of 

participants was 42 years old, ranging from 18 – 88 years. 

In each group interview, we requested that participants discuss and describe the categories 

they use to think about and organize their land, both in the kebele lands and in the Guassa area. 

After establishing this list of land classes, we then asked how those land classes have been changing 

over the five political-management periods of Guassa.  For each land class, we requested that the group free list all the ecosystem services (translated as “benefits”) they receive from that land class, 
and a research assistant wrote them on a chalkboard. We then collectively grouped the ecosystem services into a smaller set of distinct services (e.g., “making tools” and “making bowls” were 
determined to be essentially the same service of “household items”). As a group, participants 

ranked the services in each land class to identify which were most important to their community. 

This entailed group discussions and voting to achieve consensus, which took no longer than two 

hours. Throughout the discussions, we facilitated participation to prevent certain individuals or 

groups from dominating the conversation.  Finally, participants were supplied with markers, blank 

paper, and high-resolution Google Earth images of their kebele and asked to identify the general 

distribution of these land classes following a standard “participatory mapping” protocol (Klain & 
Chan 2012; Luizza et al. 2016; Wakie et al. 2016). An example of the kebele-level maps produced is 

given in Appendix D (Figure D1). All participants were offered modest financial compensation for 

their time. 

We used the software package ANTHROPAC (Borgatti 1996) to analyze the ecosystem 

service data and calculate the relative importance of each service across the nine kebeles based on 

their ranked positions. The software calculates Smith’s salience value (S) from zero to one for each 
item in a list, considering both the frequency of the item across lists and its position within each of 

those lists (Borgatti 1996; Levine et al. 2017). Salience values closer to one indicate good 

agreement across the nine kebeles regarding the importance of a particular ecosystem service. This 
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research was reviewed and approved by Colorado State University’s Institutional Review Board 
(361-18H), and was conducted with free, prior and informed consent of all participants. 

3.2.2.2 Remote Sensing and Precipitation Data 

Following the group interviews, we conducted a supervised classification of Landsat 8 

optical imagery using a random forest classifier implemented in the randomForest package in R 

(Breiman 2001; R Core Development Team 2019). Random forest is a machine learning technique 

that uses bagging (i.e., random resampling with replacement) to average across large numbers of 

decision trees and thus produces more accurate classifications than single trees alone (Breiman 

2001; Rodriguez-Galiano et al. 2012). A random forest classifier provides flexibility by allowing for 

nonlinear relationships between predictor and response variables and is robust to missing 

predictor data and (multi)collinearity (De’ath & Fabricius 2000).  Random forest classifiers have 
been used in Ethiopia for a variety of objectives, including the identification of wetlands (Dubeau et 

al. 2017), mapping irrigated agriculture (Vogels et al. 2017), and predicting soil functional 

properties (Vagen et al. 2013).    

We used the land classes defined by participants in the interviews to conduct this 

supervised classification. We selected a cloud-free image taken on December 10, 2016 as it aligned 

most closely with the dates of the workshops and the most current high-resolution imagery 

available in Google Earth Pro. We collected 184 ground truth points immediately following the 

group interviews under the direction of participants, and used these ground truth points and the 

results of the group interview mapping exercises to guide the collection of 3,060 additional data 

points from Google Earth (where high-resolution imagery was available for December 2016 across 

the study area). A total of 27 environmental variables (Table 3.1) were used to predict the land 

classes: the seven bands from Landsat 8 comprising surface reflectance in the visible, near infrared 

and shortwave infrared spectral regions, three tasseled cap composites (Kauth & Thomas 1976) of 

those bands (brightness, greenness, wetness), fourteen metric images from remote-sensing based 
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phenological models (described below), as well as elevation, aspect, and slope variables derived 

from a 30m ASTER Global Digital Elevation Model (2009). See Appendix D for a map of training 

points (Figure D2).  Because there are no available aerial photographs or ground truth datasets for 

this area, we were not able to conduct a supervised classification for past time periods.    

 

Table 3.1. Description of 27 predictor variables used in the supervised classification. 

Variable Description 
aspect downslope direction 
elevation meters above sea level 
slope degree of tilt 
Band 1 Landsat 8 OLI coastal aerosol band  
Band 2 Landsat 8 OLI blue band 
Band 3 Landsat 8 OLI green band 
Band 4 Landsat 8 OLI red band 
Band 5 Landsat 8 OLI near infrared band 
Band 6 Landsat 8 OLI short-wave infrared band 1 
Band 7 Landsat 8 OLI short-wave infrared band 2 
wetness weighted linear combination of Landsat 8 OLI bands to produce a 

measure of soil or surface moisture 

greenness weighted linear combination of Landsat 8 OLI bands to produce a 
measure of photosynthetically-active vegetation 

brightness weighted linear combination of Landsat 8 OLI bands to produce an 
albedo-like measure of surface reflectance 

CoMgmt_DOY253 Spline interpolated NBR values during the Co-management period 
for the wet season (September 10) 

CoMgmt_DOY40 Spline interpolated NBR values during the Co-management period 
for the dry season (February 9) 

CoMgmt_NGO_DOY253 Difference of spline interpolated NBR values between the Co-
management and NGO periods for the wet season (September 10) 

CoMgmt_NGO_DOY40 Difference of spline interpolated NBR values between the Co-
management and NGO periods for the dry season (February 9) 

NGO_DOY253 Spline interpolated NBR values during the NGO period for the wet 
season (September 10) 

NGO_DOY40 Spline interpolated NBR values during the NGO period for the dry 
season (February 9) 

NGO_Trans_DOY253 Difference of spline interpolated NBR values between the NGO and 
Transitional periods for the wet season (September 10) 

NGO_Trans_DOY40 Difference of spline interpolated NBR values between the NGO and 
Transitional periods for the dry season (February 9) 



56 

Transition_DOY253 Spline interpolated NBR values during the Transitional period for 
the wet season (September 10) 

Transition_DOY40 Spline interpolated NBR values during the Transitional period for 
the dry season (February 9) 

Trans_Derg_DOY253 Difference of spline interpolated NBR values between the 
Transitional and Derg periods for the wet season (September 10) 

Trans_Derg_DOY40 Difference of spline interpolated NBR values between the 
Transitional and Derg periods for the dry season (February 9) 

Derg_DOY253 Spline interpolated NBR values during the Derg period for the wet 
season (September 10) 

Derg_DOY40 Spline interpolated NBR values during the Derg period for the dry 
season (February 9) 

 

We used spline interpolation to explore general changes in phenology and vegetation 

productivity in the area using all available Landsat data from 1985 to the present (n = 597 image 

dates). We performed standard cloud-masking on each image (Zhu & Woodcock 2012), and 

extracted Normalized Burn Ratio (NBR) values (Key & Benson 2006). NBR is similar to other 

vegetation indices like the more commonly employed Normalized Difference Vegetation Index 

(NDVI; Tucker 1979), except that it is calculated using the near-infrared and shortwave-infrared 

wavelengths, making it more resistant to atmospheric contamination. While NBR has traditionally 

been used to detect the magnitude and direction of vegetation change pre- and post-fire events 

(Key & Benson 2006), we found its resistance to atmospheric contamination and sensitivity to 

changes in both vegetation structure and moisture content to be useful in our cloudy study area. 

The image stack was divided temporally into four date ranges corresponding to the 

duration of each political-management period for which satellite data were available. This resulted 

in 70 images in the Derg period (44 with <50% cloud cover), 148 images in the Transition period 

(87 with <50% cloud cover), 147 images in the NGO period (86 with <50% cloud cover), and 232 in 

the Co-management period (135 with <50% cloud cover). The total number of cloud-free images 

for each pixel ranges from 31 – 454 with a mean of 322 images. A map is provided in the Appendix 

D to illustrate that the Guassa area and kebeles immediately adjacent (Ferkuta, Yedi, and Dergagne) 
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suffer from the highest cloud cover, yet still have 200-300 cloud-free images on average (Figure 

D3).  

To assess vegetation changes over these political-management periods, we used spline 

interpolation to model NBR values and estimate phenological curves at each pixel within each 

political-management period (Figure D4). Spline interpolation allows for estimation of vegetation 

index values at every day of year (DOY) regardless of the timing of image acquisition (Clinton et al. 

2010). This allowed us to select the best dates for comparison with local knowledge of the area 

rather than remaining restricted to the availability of particular satellite images. We derived maps 

of NBR values for wet (DOY 253, September 10) and dry (DOY 40, February 9) seasons for each 

period. We then subtracted maps of the earlier time period from the later time period to assess the 

magnitude and extent of changes in NBR, which we interpret as a measure of vegetation 

productivity. NBR can take values ranging from -1 to 1, though values between -0.5 and 0.5 are 

more common in Guassa. Therefore, using a conservative approach based on a histogram analysis, 

we consider a significant decline in vegetation to be values < -0.2, and a significant increase in 

vegetation to be > 0.2. Anything between -0.05 and 0.05 is considered to be negligible change. 

These outputs are analyzed individually as a measure of vegetation change, and served as inputs to 

the supervised classification described above.  

We employed another time series dataset to explore changes in precipitation for the study 

area over the same time period, which we then compared to the changes in vegetation and 

narratives of change from group interviews. We used the Climate Hazards group Infrared 

Precipitation with Stations data (CHIRPS; Funk et al. 2015), processed through the Climate Engine 

Application (climateengine.org), to look at past precipitation patterns over the study area, 

stretching from 1981 – 2018 (Figure D5). CHIRPS data integrates 0.05° resolution satellite imagery 

with available in-situ station data on precipitation to produce a gridded time series product that 

estimates precipitation every five days. We conducted a nonparametric Mann-Kendall test on the 
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total annual precipitation in the belg and kiremt rainy seasons to assess trends in precipitation 

patterns over the past 37 years. We then used another non-parametric test (Kruskall-Wallis) to 

determine whether significant differences in precipitation occurred across the historical periods of 

interest, again with attention to the short belg and long kiremt rainy seasons. Statistical tests were 

conducted in R (R Core Development Team 2019). For all of these statistical tests, we consider p ≤ 
0.05 to be statistically significant. 

3.2.2.3 Co-interpretation of Results 

In August 2018, 41 participants (12 women and 29 men) were invited to attend a workshop in 

the town of Mehal Meda. Participants were invited from the Guassa Committee and the Tourism 

Board (n=27, three from each community), the Guassa Conservation office (n=3), scientists and 

NGO workers (n= 6), and the local woreda administration office (n=5). The workshop sought to 

bring together results from the ethnographic and remote sensing analyses, and to request feedback 

to help scientists validate and interpret the results. A second workshop was held in February 2019 

to refine the results and analysis further, with mostly the same participants (n = 38). For example, 

we requested feedback on the accuracy of the supervised classification maps and vegetation change 

analyses, and whether they had ideas about the causes of the changes observed. We sought to 

ensure the remote sensing products were useful to local participants, so we incorporated 

suggestions like changing the colors used to represent different land classes and editing the 

location and extent of administrative boundaries.  

3.3 Results  

3.3.1 Locally-defined Land Classes and their Spatial Distributions 

Across the nine kebeles, participants identified ten land classes with local relevance, which 

we describe below. Using 27 environmental predictors (Table 3.1) and 3,244 training points, we 

conducted a supervised classification of these locally-defined land classes (Figure 3.3). We fit 5,000 

trees with a random forest classifier, using cross-validation to assess model performance. The 
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classifier had an overall accuracy of 87.1% and a kappa value of 0.85, indicating a high quality 

performance.  Across all land classes, the variables with the strongest influence on predictions (i.e., 

the largest mean decrease in accuracy) were elevation, wet season NBR values from the Co-

management period, dry season NBR values from the Derg period, and tasseled cap greenness. Yet, 

more nuanced patterns emerge at the level of individual land classes, where more densely 

vegetated classes (forest and shrublands) were better predicted by dry season NBR in the Derg and 

Co-management periods, while less densely vegetated classes (stone and grazing lands) were better 

predicted by wet season NBR values in the Co-management and Transitional periods. We present 

additional results in the Appendix D, including the confusion matrix (Table D1), a table of square 

kilometers per land class and percent area (Table D2), and a table of the relative importance of each 

predictor variable per land class (Table D5).   Below, we present the land classes and their relative 

distributions in decreasing order of land area.  

Farmland:  The main crops of this region are barley, wheat, and beans. Different crop 

cultivars are planted depending on the season. Weeding and harvesting are often done through 

communal ‘Debo’ groups, though farmland is privately owned. Farmland is the largest land class in 

the study area, occupying 161 km2 (36.1%) of the total land area, and between 29 – 59% of each kebele’s land area. Averaging user’s and producer’s accuracies (Alonzo et al. 2014) revealed that 

farmland had a classification error of 15.1%.  Tasseled cap greenness and dry season NBR values 

during the Co-management period were the best predictors of this land class.  

Shrublands:  Shrublands are composed of mainly short, dense species like asta (Erica 

arborea), amijah (Hypericum revolutum), and cheranfi (Euryops pinifolius) – all of which are 

economically valuable species, though people are no longer allowed to harvest them inside Guassa 

due to potential impacts to wildlife. Shrubland occupies 69 km2 (15.5%) of the total land area, and 

is found mostly in Guassa (21.8 km2) – though there are some concentrated areas primarily in 

Gragne, Kewula, and Yedi kebeles. Shrubland had the second largest error in classification (17%), 
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primarily due to its spectral similarity with native forest. Band 4, slope, and dry season NBR during 

the Derg period were the best predictors of this land class. 

 

Figure 3.3.  Classification of the study area using locally-defined land classes. 

Stone: This land class was described as a mix of exposed, rocky outcrops and the presence 

of large amounts of stone in the soil – to the point that it prevents using the land as farmland. While 

stone occupies a large amount of total land area (69 km2, 15.5%), it is largely concentrated inside 

the kebele lands (mostly in Gragne, Kewula, and Chare kebeles) and is quite limited inside Guassa 

(3.2 km2). Stone had the largest errors in classification (18.6%) and was often misclassified as 

farmland or bare land. Wet season NBR values from the Co-management period and tasseled cap 

greenness were the best predictors of this land class.  

Protected grasslands: Most of the land classes were used exactly as described by 

participants. However, when asking about the land classes within the Guassa area, people started 
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listing individual species names rather than broader types of vegetation cover. There was then a consolidation process that resulted in the “protected grassland” class, which is made up of multiple 
grass and forb species. This is the only land class that contains the guassa grasses. Due to persistent 

confusion over the Guassa border, some of the protected grasslands fall into the administrative 

areas of the kebeles. The protected grasslands occupy 45.5 km2 (58.2%) of Guassa, with scattered 

patches in the adjacent kebele lands. Protected grasslands had a low classification error (8.7%).  

Elevation and tasseled cap greenness were the best predictors of this land class.  

  Grazing lands: Grazing lands are communal lands, but are managed differently than the 

Guassa area as they do not have the same restrictions on access. One man explained that “if one 
man owns 50 sheep and another man owns one, the grazing area is still shared. But if he is 

enterprising enough, the man with one sheep can cut the grass and sell it to the rich man.”  Grazing 
lands are dominated by gaya grass (Andropogon abyssinicus). Grazing land occupies 39.7 km2 

(8.9%) of the total land area, and between 6.1 – 15.3% of each kebele’s land area. Grazing lands had 

a classification error of 13.6%, and were most frequently confused with bare land. Band 6, Band 5, 

and wet season NBR values from the Co-management and Transitional periods were the best 

predictors of this land class.  

Bare lands: Bare lands are characterized by the absence of vegetation on land that should be able to support vegetation; it was also described as “old” or “tired” land that has potential to 
recover. Bare land occupies 33 km2 (7.4%) of the total area, most of which is found in Gragne, 

Kewula, and Tesfomentier kebeles. Bare lands had a classification error of 15.8%.  Band 4, Band 3, 

and Band 2 were the best predictors of this land class.  

Native forest: Besides plantation forests, native forests are the only other type of forest in 

this area.  However, it was difficult for participants to explain the difference between native forest 

and shrublands - many of the same species occur in both land classes, but native forest contains 

larger plants with different use values. Some of the larger species that occur in both land classes are 
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kosso (Hagenia abyssinica), bisana (Croton macrostachyus), and juniper (Juniperus procera).  Native 

forest occupies 15.9 km2 (3.6%) of the total land area, and is concentrated in Kewula, Kuledeha, 

Yedi, and Dargegne kebeles. There was no detectable amount of native forest in Chare kebele. 

Native forest had a classification error of 14.7%. Dry season NBR values from the Derg period and 

Band 4 were the best predictors of this land class.  

Plantation forest: Plantation forests range in size depending on whether they were 

established as public erosion control projects or as private woodlots. There are two dominant 

plantation species in the area – eucalyptus (Eucalyptus globulus) and cypress (Cupressus lusitanica). 

Plantation forest occupies only 9.1 km2 (2%) of the total land area, which is distributed relatively 

evenly throughout the kebeles with a larger concentration in Guassa. Plantation forest had a low 

classification error (3.6%). Dry season NBR values from the Co-management and Derg periods and 

the difference in dry season NBR values between the NGO and Transitional periods were the best 

predictors of this land class.  

Water: Open water was only present in one location in the study area, a small reservoir 

between Gedenbo and Chare kebeles. The two training points we used for this reservoir were both 

correctly classified. Streams were too small to be captured by this classification. Band 3, band 4, and 

dry season NBR values from the Co-management period were the best predictors of this land class. 

Constructed areas: Constructed areas are the areas where humans live and construct their 

houses and other buildings. Constructed areas had such an initially high class error that we 

removed it from the model and digitized the four cities, 50 churches, 22 schools, and approximately 

380 villages by hand. The difficulty of accurately predicting constructed areas was partially due to 

the small size of individual homesteads, the brightness of tin roofs, and the presence of forest 

patches close to most residences – all of which led to confusion among constructed areas, farmland, 

plantation forest, stone, and bare land classes. Constructed areas and water reservoirs together 

comprise less than 1% of the landscape.   
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3.3.2 Ranked Preferences for Ecosystem Services by Land Class 

Participants ranked the importance of ecosystem services in each class except for bare land, 

which they perceived as having no ecosystem services, and constructed areas, which have so many 

benefits that they considered it unrealistic to name them all. Participants in the first group interview chose to list benefits of Guassa (“Guassa Area” in Figure 3.4) separately from those of the 

protected grasslands, and so we asked participants in subsequent interviews to continue with this distinction. For example, Guassa is a source for guassa grasses (“harvest guassa grass”, Figure 3.4), 

which then have their own set of associated ecosystem services (e.g., “roof thatch”). Salience values 
are used to rank ecosystem services across kebeles; values closer to one indicate good agreement 

across the nine kebeles regarding the importance of a particular ecosystem service. 

Of these nine classes, seven had perfect agreement across the kebeles regarding the most 

important ecosystem service for that class. These were crops (farmland), forage (grazing land), roof 

thatch (guassa grass), guassa grass provisioning (Guassa area), firewood (shrubland), house 

construction (stone), and house construction (plantation forest). There was nearly unanimous 

agreement that drinking water is the most important service from the water class. Native forest 

services were not as uniformly valued, with the top four ecosystem services sharing similar salience 

values: income, household items, firewood, and house construction. This was also the only land 

class with income as the most important benefit, perhaps reflecting the subsistence orientation of 

people in this region. Indeed, the majority of ecosystem services described by participants would be 

considered “provisioning services”, or products obtained directly from ecosystems, indicating the 
importance of these materials for the livelihoods of the participants.  
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Figure 3.4. Locally-defined land classes and their respective ecosystem services, ranked and 
aggregated across the nine kebeles. Colored squares indicate overlap of services with other land 
classes.  
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While there are several shared ecosystem services across the grazing land and protected 

grassland classes, clear distinctions arise under the particular socio-cultural and ecological context 

of this area.  One difference is due to the types of grass found in these grasslands. Grazing lands 

produce grasses that are valued mainly as forage, while guassa grasses are considered valuable 

primarily for non-forage uses. Grazing is only allowed in the grazing areas, as it has been banned 

inside Guassa since 2010.  Even before the ban, it was only allowed every 3–5 years or under 

conditions of severe drought (Ashenafi & Leader-Williams 2005). The strength and height of the 

guassa grass makes it particularly desirable for rope making and other local materials such as 

ponchos, which are not valuable uses for the gaya grasses found in the grazing lands. Five shared 

services exist across these classes: brick and wall plaster construction materials, fodder, income, 

roof thatch, and floor covering.  However, differences in the relative ranks of these shared 

ecosystem services further demonstrate the value of guassa grasses compared to other grass 

species. Roof thatch is unanimously considered the single most valuable service provided by the 

guassa grasses, and it is only the fourth most important for gaya grasses. Similarly, gaya grasses will 

be used for brick and wall plaster construction only when guassa grasses are unavailable. The 

relative position of income in these classes is illuminating because it indicates that people may tend 

to sell gaya grasses (S = 0.27) before using them for construction materials (S = 0.04).  Likewise, 

people may tend to sell guassa grasses (S = 0.44) before using them for fodder (S = 0.22). These 

differences in ecosystem services demonstrate a complementary relationship between the different 

types of grasslands in the area.  

There are noteworthy similarities and differences in the ecosystem services received from 

shrubland, native forest, and plantation forest classes that illustrate how these classes interact to 

support local livelihoods. All three classes provide six shared ecosystem services: firewood, 

household items, house construction materials, forage, soil protection, and shelter for wild animals. 

However, the relative importance of these benefits varies among the land classes. For example, the 
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most important benefit received from plantation forest is timber for house construction, while this 

is the ninth most important benefit from shrublands.  The second most highly valued benefit of 

shrublands is the shelter they provide for wild animals, while this is valued much less in native and 

plantation forests. The second most highly valued benefit from native forest is household items, 

while this is valued fifth for both plantation forest and shrublands. Despite having similar species 

compositions, there are no further similarities in services between shrublands and native forest. 

However, there are two additional shared services between shrublands and plantation forest and 

three additional shared services between plantation forest and native forest. Shrublands and 

plantation forest are both valued for bee-keeping (honey production) and for their beauty, whereas 

plantation forest and native forest are both valued for the income opportunities they bring and for 

their role in climate regulation and the perceived ability to attract rain. Shrublands have one unique 

service apart from native or plantation forest (broom construction). Plantation forest has four 

unique ecosystem services: fence construction, shade, charcoal production, and the ability to 

increase groundwater (though this last is restricted to cypress and not eucalyptus). Native forest 

has three unique ecosystem services: traditional medicine, local fruits, and the ability to improve 

soil fertility.  

3.3.3 Local Narratives of Change 

We constructed timelines of change for each of these land classes by looking for consistent 

patterns and narratives across the group interviews. When explanations diverged, we sought 

additional explanations and clarity during the co-interpretation workshops. We present the classes 

in order of decreasing consensus, first highlighting classes where participants reported similar 

perceptions of change. 

Bare lands: All participants agreed that bare land has been increasing in the kebele lands 

since the Derg period due to declines in soil fertility and precipitation, combined with intensive 
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grazing and increased soil erosion. However, bare land has been decreasing inside Guassa since the 

NGO period due to improved management activities and decreased human activity. 

Constructed areas: All participants agreed that human-constructed areas have been 

increasing since the Derg period due to an increasing local population (from births, not 

immigration). In addition to new villages and individual farmsteads, small cities are emerging in 

three communities nearest to Guassa as good farmland becomes increasingly scarce and as people 

in the area desire better access to urban resources and lifestyles.   

Grazing lands: All participants agreed that grazing land area has been decreasing since the 

Derg period due to conversion to farmland. During the Imperial period, the lands immediately west 

of Guassa were communal grazing lands, but are now predominantly farmland and constructed 

areas. Participants reported that large communal grazing lands are becoming less common, and 

farmers are increasingly setting aside marginal farmland to use as private grazing areas. Grazing 

near streams and rivers has also increased.  

Plantation forest: All participants agreed that plantation forests have been increasing since 

the Derg period. Plantations were rare during the Imperial period, and communities would travel 

100km for construction-quality timber. The Derg government planted large plantations early in the 

regime, primarily as a soil and water conservation strategy. By the fall of the Derg 17 years later, 

plantation forests were well established. Smaller community and private plantations have been 

increasing in number and extent since the Transition period, and most participants want this 

expansion to continue due to the variety of novel ecosystem services they bring to the region.  

Stone: All participants agreed that rocky areas have increased as soil erosion has exposed 

more stones, particularly since the Transition period.   

Protected grasslands: All participants agreed that both the quality and extent of the 

protected grasslands have varied in direct response to changes in management regimes over the 

last 40 years. During the Imperial period, access to the area was heavily regulated and the species 
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composition was less diverse as guassa grasses dominated. During the Derg and Transitional 

periods, the nine kebeles no longer had the legal right to exclude people from using the area. This 

resulted in a large increase in grazing as well as grass and firewood harvesting inside Guassa from 

people within and outside the nine kebeles. Some people from the kebeles nearest Guassa 

converted areas of Guassa to farmland. During the NGO period, as communities struggled to regain 

land tenure rights to Guassa, farmers who had moved into Guassa were evicted and grassland 

quality slowly improved. The area was last opened for the traditional grass harvest, grazing, and firewood collection for two months in 2006, followed by nine years of closure to “let the area 
recover” from heavy use in the 1980s and 90s. In 2010, people in charge of Guassa management 
decided to stop allowing grazing and firewood collection entirely. The area has since been opened 

exclusively for guassa grass harvest for a period of 10-15 days in the spring of 2015 and again in 

2018.  Overall, participants celebrated the re-greening of the Guassa area as an important 

conservation victory.  

Water: Most participants (eight kebeles) reported a decrease in the surface water quantity 

available on the landscape since the Derg period, as smaller, ephemeral streams are filling with 

sediment and limiting their ability to hand-irrigate nearby farmland. Some perceived the 

establishment of borehole wells to have made up for those losses. One kebele (Chare) reported 

increasing water due to the creation of a reservoir.   

Farmland: Some changes to farmland had good agreement among the participants. For 

example, people did not farm near Guassa during the Imperial period.  However, an increasing 

population coupled with villagization programs (i.e., the creation of new villages) during the Derg 

period (Ashenafi and Leader-Williams 2005) led to increased agricultural land use in areas close to 

Guassa. However, different narratives arise over changes in extent of farmland since the Transition 

period: most participants (seven kebeles) said farmland area is decreasing due to higher rates of 

erosion and loss of soil fertility, leading people to leave the land fallow, convert it to grazing land, 



69 

build houses on it, or plant eucalyptus plantations.  One kebele (Gedenbo) maintained that farmland 

area has not changed, while another kebele (Kewla) said farmland area is increasing as grazing 

lands are converted to row crops.  Despite these different narratives of change to farmland area, all 

kebeles were unified in the belief that farmland quality has declined since the Derg period, citing 

loss of soil fertility and a disappearing belg rainy season that stopped coming reliably in the early 1990s. One participant explained “we used to harvest twice a year, so the yields used to be higher…but the belg rains have reduced, and sometimes we only harvest once a year now.” Declines 
in soil fertility and precipitation have required various adaptations in farming practices, including 

increased fertilizer use, new irrigation infrastructures, and new preferred cultivars of wheat and 

barley.  

Native forest:. The majority of participants (seven kebeles) reported that native forest was 

common during the Imperial period, but that it has since declined in both quality and extent. 

Participants said much of the area that is now shrublands in the northern ravines used to be dense 

native forest, but intensive harvesting of larger species like kosso, bisana, and juniper over the past 

few decades has turned it into shrublands similar to those found within Guassa and along the 

eastern escarpment. One kebele (Dargegne) reported that native forest has increased in their 

region due to improved local conservation. Chare reported there was never any significant areas of 

native forest in their region, which was supported by our classification and vegetation analysis.  

Shrublands: Participants made a distinction between shrublands located in the kebele lands 

and those located inside Guassa. Four kebeles (Kewla, Gedenbo, Kuledeha, and Tesfomentir) 

reported that their kebele shrublands have been declining due to overuse by local people, including 

illegal charcoal producers from the nearby Yifat woreda.  Three kebeles (Ferkuta, Dergegne, and 

Yedi) reported that kebele shrublands have been increasing due to improved local conservation, 

and two kebeles (Chare and Gragne) reported there were never any significant areas of shrublands 

in their kebeles. However, all participants agreed that Guassa shrublands have been expanding 
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since the NGO period. One nuisance shrub in particular - nachillo (Helichrysum splendidum) - has 

been expanding rapidly, with no value for either people or wildlife.     

3.3.4 Vegetation Changes 

Results indicate that while there are differences in NBR change across wet and dry seasons 

in the same time period (Figure 3.5), general trends emerge that can be brought into conversation 

with the local narratives of change presented above to produce a more holistic understanding of 

change (Figure 3.6). Between the Derg and Transition period, NBR generally increased across the 

study area (11.8% dry season, 62% wet season). In fact, NBR decrease occurred over an extremely 

small area of the total landscape (1.8% dry season, 0.93% wet season). Guassa experienced NBR 

increase in 30.4% of its area in the dry season and 69.3% of its area in the wet season, which 

contradicted local narratives of increased resource use and extraction during this period.  NBR 

decrease was concentrated in Ferkuta (4.1% of kebele area) and Yedi (9.7% of kebele area) during 

the dry season.  

From the Transition to the NGO period, NBR generally decreased across the total landscape 

(8.2% dry season, 27.5% wet season). These decreases were widespread across the landscape in 

the wet season, but disproportionately impacted the ravines in Dargegne (12.7% of kebele area), 

Kewula (14.6% of kebele area), and Yedi (18.4% of kebele area) in the dry season. NBR increases 

were small across the entire landscape (2.3% dry season, 6.3% wet season) and located primarily 

in Gedenbo (11.5% of kebele area), Gragne (16.1% of kebele area), and Tesfomentir (15.2% of 

kebele area) in the wet season.  

From the NGO to the Co-management period, NBR generally decreased across the landscape 

(6.5% dry season, 10.1% wet season), though NBR increases were also widespread in the wet 

season (2.2% dry season, 10.6% wet season). NBR decreases were most pronounced in the 

southern ravines and in Guassa, which contradicted local narratives of conservation success during 
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this period.  NBR increases were concentrated mostly in Dargegne (19.8% of kebele area) and 

Gragne (18.4% of kebele area) in the wet season.   
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Figure 3.5. Normalized Burn Ratio change across four periods of political and management history.  
Column a) shows dry season change, while column b) shows wet season change. The first row 
shows change between the Transition period (1991 – 2003) and Derg period (1985 – 1991), the 
second row shows the NGO period (2003 – 2012) minus the Transition period, and the third row 
the Co-Management period (2012 – 2017) minus the NGO period. The fourth row shows the overall 
change across the entire Landsat record (Co-Management minus Derg). Note that wet season 
results in the first and second rows are being influenced by the scan-line corrector failure in 
Landsat 7, resulting in some striping patterns that are not a reflection of vegetation change on the 
landscape.  

 

Vegetation change across the entire time period (i.e., between Co-management and Derg 

periods) revealed particularly severe dry season NBR declines in the northern and southern ravines 

and in the southeastern parts of Guassa, Ferkuta, and Yedi. Overall change in the wet season 

showed general NBR increase in the kebele lands and patches of NBR decrease inside the Guassa 

area. Of the land classes, only water and plantation forest showed a significant change (NBR change 

+/- 0.2) across the study area. The mean NBR change across all plantation forest pixels was 0.2 in 

the dry season, though the increase was lower in Tesfomentier and higher in Guassa (Table D6). 

Water NBR values increased in Chare and Gedenbo due to the creation of the reservoir. Bare land 

NBR values increased in Gragne (i.e., bare land became more vegetated), while grazing land NBR 

values increased in Gedenbo. Farmland NBR values increased in all but Dergagne and Yedi. Native 

forest showed overall decrease in Gragne, Kewula, and Tesfomentier, and an overall increase in 

Ferkuta and Gedenbo (Table D6).  While Dergagne kebele reported native forest increase in the 

local narratives, we did not see this in the vegetation analysis.  

See Appendix D for a detailed breakdown of percent land area and direction of NBR change for 

each kebele and each time period, separated by wet season (Table D3) and dry season (Table D4), 

and a summary of overall mean NBR change values by land class (Table D6).  
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Figure 3. 6. Timeline of change across multiple data sources.  

 

3.3.5 Precipitation Changes 

The precipitation analysis supported local narratives of a delayed and disappearing belg rainy 

season (Figure 3.7). The Mann-Kendall tests revealed a significant decreasing trend in precipitation 

during the belg season (τ = -0.31, p = 0.01). However, there was no significant trend in either the total annual precipitation (τ = 0.09, p = 0.46) or the kiremt season precipitation (τ = 0.15, p = 0.20). 

The Kruskall-Wallis tests indicate a significant difference in belg precipitation values across the four periods of political and management change (χ2 = 8.13, p = 0.04). The average belg 
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precipitation during the Derg regime was 237mm, falling to 175mm (Transitional period), 165mm 

(NGO period), and finally 162mm (Co-management period). Again, no significant differences were 

detected across these political-management periods for the kiremt precipitation (χ2 = 4.21, p = 0.24) or total annual precipitation (χ2 = 1.79, p = 0.61).  

 

 
 

Figure 3.7. Trends in kiremt season (~July 1 – September 30), belg season (~Feb 1 – April 30), and 
total annual precipitation. Red lines indicate a lowess smoothing function applied across the entire 
time series. Vertical lines indicate the four periods of political and management change. Box plots 
illustrate differences in median and range of precipitation across those four periods. The star 
indicates a significantly higher belg season precipitation during the Derg period.  
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3.4 Discussion 

The iterative MEB process improved our project in multiple ways. First, local participants 

had time to reflect and become more comfortable with interpreting scientific products, and were 

offered the chance to refute or add nuance to the interpretation of remote sensing results. This 

produced a more holistic understanding of environmental change.  Second, feedback from local 

participants ensured final products were valid and relevant to their needs and objectives. While not 

every analysis was considered valid or relevant to every participant group, the process resulted in 

mutual benefits for both science and management. Third, the identification of uncertainties and 

contradictions across knowledge systems encouraged new learning. These differences point to 

productive areas of future research to enhance our understanding of the Guassa social-ecological 

system. Below, we elaborate on these three themes.  

3.4.1 Knowledge Co-production Yields Holistic Understanding of Change 

In our study, local knowledge provided a fine-grained perspective of place-based 

environmental change, offering the potential to extend interpretation of our remote sensing 

analysis back in time in the absence of other ground truth data (Herrmann et al. 2014; Eddy et al. 

2017). Similarly, the broad spatial scale of the remote sensing analysis enabled us to extend the 

situated local knowledge of a limited number of participants across the entire study area. The 

temporal continuity of local knowledge is one of the reasons it is so valuable for interpreting 

remote sensing time series (Verburg et al. 2011; Smith et al. 2019), yet temporal biases have been 

observed in other studies that should be recognized. For example, people tend to view the past 

move positively than the present (Hermann et al. 2014); emotional experiences tend to influence 

the way people describe those years (Daw 2010); and general trends are sometimes less noticeable 

compared to extreme events due to a “shifting baseline” (Pauly 1995; Eddy et al. 2017). Remote 
sensing also experiences biases, notably from sensor, solar, atmospheric, and topographic effects 

that require extensive pre-processing (Young et al. 2017) and the disconnect sometimes observed 
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between satellite-derived trends and the reality of ground conditions (Hermann et al. 2014; Eddy et 

al. 2017).   

Our analysis demonstrates the complementarity of these approaches, illustrating some 

ways they worked to overcome each other’s biases. For example, the remote sensing products were 
particularly effective for prompting participants to discuss what was happening around different 

dates of interest and how that might have impacted vegetation patterns on the landscape. This 

encouraged participants to move beyond their recollection of only high-profile, extreme events 

(Nazarea 2006; Daw 2010). For example, the rise and fall of the Derg regime were two extreme 

change points that were referred to repeatedly throughout the group interviews. By contrast, the 

vegetation change analysis instigated a new conversation about the ways in which NGO 

involvement unexpectedly triggered a brief episode of environmental degradation. It was during a 

local election in 2005, when one of the candidates ran on a platform telling everyone that “the white people stole your Guassa!” and that he would get it back for them if he was elected. Illegal grazing 
and harvesting increased during the months afterward because people believed the Guassa area 

had been sold to foreigners and this perceived land tenure insecurity led to unsustainable resource 

extraction. This recollection was prompted by the observed declines in NBR values during this 

period, which contradicted local narratives that said overall, Guassa was recovering (Figure 3.6). 

Stories like these, instigated by the remote sensing analysis, revealed the direct impact that Guassa’s protected status has on peoples’ behavior, reflecting the importance of secure land tenure 
throughout the highlands (Lanckriet et al. 2015).  

The iterative MEB process allowed us to reflect on our learning over time and build more 

nuanced understanding of change across these multiple knowledge systems.  In our first workshop, 

participants immediately attributed areas of vegetation decline to local behaviors related to 

changing land tenure and management (e.g., overgrazing or lack of soil conservation activities) 

rather than a result of biophysical differences across kebeles (e.g., precipitation or soil fertility). In 
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the second workshop, we introduced the precipitation analysis and multiple vegetation change 

maps across different days of the year in response to participant uncertainties regarding the impact 

of seasonal activities on NBR. Participants in the second workshop, who were almost entirely the 

same individuals, then proposed more nuanced explanations for how regional to global drivers of 

change were interacting with local behaviors to produce the patterns observed in the maps. For 

example, we noticed the kebeles closest to Guassa, and particularly Yedi kebele, seem to be 

experiencing the greatest vegetation losses over time. Participants explained that the kebeles 

closest to Guassa experience different precipitation patterns, which is supported by scientific 

observations of the rain shadow produced by orographic rainfall in the Ethiopian highlands (Dinku 

et al. 2011). The rain is therefore less abundant and less consistent in areas close to Guassa, causing 

farmers to rely more heavily on two growing seasons to accumulate enough crops to meet 

subsistence needs. The loss of the belg rainy season is thus causing a shift in farmer behavior across 

the study area; farmers farther from Guassa are more likely to shift to a single growing season, 

while farmers closest to Guassa are not willing to risk this change. These differences in perceived 

risk and behavior change were thought to have impacted the spatial patterns of NBR change 

observed at the kebele level (Figures 3.5 and 3.6).   

3.4.2 Mutual Benefits for Science and Management 

Our findings support the idea that projects that draw on a diversity of knowledge systems 

can produce new knowledge with high validity and utility across diverse participants (Laidler 2006; 

Armitage et al. 2011; Berkes 1999). For example, our MEB approach resulted in maps that 

contributed to the ability of Guassa area managers to understand and react to environmental 

change. Local knowledge further enabled us to contextualize this environmental change in terms of 

ecosystem services affected (Naidoo & Hill 2006). Anderson’s land cover classification is widely 
used by remote sensing analysts and considers stone and bare land to be part of the same land 

cover class (Anderson et al. 1976). However, local participants rejected merging these two classes 
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in the supervised classification due to the extreme differences in ecosystem services provided by 

them. Participants explained it was important to distinguish these classes spatially because bare 

land has much higher potential for reclamation than does stone, so identifying specific locations 

helped administrators target their conservation and restoration activities. In the workshops, local 

participants listed several benefits and uses for the supervised classification maps, including: to 

help delineate and agree on boundaries, to advertise for tourism, to identify bare lands for 

restoration projects, and to facilitate long-term planning. These maps characterized the landscape 

using land classes that were meaningful to local residents in terms of the ecosystem services they 

provided, which increased their perceived value.   

Tailoring the maps to local understandings of the landscape also produced unexpected and 

useful information for scientists. Grazing lands and protected grasslands were separated in the 

classification as a result of local knowledge about differences in species composition and land uses.  

An examination of the ecosystem services provided by these two types of grassland helped us 

identify potential differences in ecosystem function that may translate to broader implications for 

soil fertility and carbon storage. For example, the high value of guassa grass as a construction 

material indicates that it may be more recalcitrant, slower to decompose, and lead to more carbon 

accumulation in soil compared to grazing land grasses that are higher quality forage (DeDeyn et al. 

2008).  While the implications of these findings are beyond the scope of this paper, they were 

important results to discuss as a group because although the guassa grass is a cultural keystone 

species providing unique and valuable ecosystem services, very little is known about its ecological 

role in the conservation area.  

Our findings emphasize the importance of achieving a balance between internally valid 

observations, and observations that carry weight and meaning across knowledge systems (Tengö et 

al. 2014). From a scientific perspective, the NBR and CHIRPS change results were rigorous and 

helpful for triangulating our spatial and temporal observations of change.  However, these analyses 
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were not considered particularly useful by local participants, who viewed them as providing different perspectives on the same problem. “We told you this the last time you came,” they said to the researchers. “Your research keeps showing us the problem…we need research that shows us the solution.” Local participants felt that their descriptions of precipitation and vegetation change 
did not need to be confirmed by these additional sources, even though contradictions arose 

between the different types of knowledge.  These results point to the role of compromise in 

collaborative environmental research, indicating that all participants need not find the same value 

in all aspects of the project in order for successful knowledge co-production to occur. 

3.4.3 Uncertainty and Contradiction Encourage New Learning 

While the general results of our classification and vegetation change analysis reflect those of 

other studies in the Ethiopian highlands, for example the timing of vegetation declines and 

emergence of plantation forests (Jacob et al. 2016; de Mûelenaere et al. 2014), we also observe 

some differences with other studies conducted in the region.  Our precipitation change results 

indicate that the vegetation changes observed are likely not due to differences in precipitation 

across time periods, though the significantly higher belg precipitation during the Derg period may 

have influenced the increasing NBR values from the Derg to Transition periods to some degree. 

These results differ from other studies that show a strong relationship between precipitation 

variation across time periods and particularly woody vegetation cover (Annys et al. 2017).  One 

potential explanation for these differences is the relatively high mean annual precipitation of the 

Guassa area compared to other places in the highlands; vegetation in wetter areas does not always 

respond in direct and proportional ways to precipitation (Rishmawi et al. 2016) and woody 

vegetation in particular shows a saturating relationship with precipitation whereby maximum tree 

cover is observed at any level above 650 mm (Sankaran et al. 2005). To better quantify and explain 

these differences, future research should focus on a more nuanced analysis of antecedent rainfall 
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and attempt to de-couple the impacts of climate from other impacts to vegetation (Eddy et al. 

2017).  

Our findings revealed a need for greater attention to the spatial and temporal variability of 

environmental change across this seemingly homogeneous cultural landscape. Farmland, stone, and 

shrublands occupy the largest land areas in the region, yet farmland and shrublands also have some 

of the greatest inconsistencies among local narratives of change, while stone and shrublands have 

some of the highest classification errors (though still within acceptable error ranges). These 

inconsistencies and errors indicate there is a need for improved understanding of variability within 

these dominant land classes, as kebeles may be experiencing different changes to those classes 

across the landscape. On the other side of the spectrum, careful attention is also required for the 

land classes with the smallest land areas. Native and plantation forest occupy the smallest areas 

across the kebeles, yet provide the highest number of ecosystem services. Many of the ecosystem 

services found in native forest, plantation forest, and shrublands are overlapping, and that 

redundancy may act as a buffer against future environmental change (Raudsepp-Hearne et al. 

2010) for the most important ecosystem services. However, lesser valued services found 

exclusively in native forest are doubtlessly facing eradication given the high agreement across 

knowledge systems that this land class is rapidly declining in both area and quality (Figure 3.6). Our 

MEB approach thus enabled us to assist decision makers in understanding the need to assess how 

each kebele is differently impacted by on-going environmental, land use, and land tenure change.  

While our MEB approach revealed multiple complementary findings across knowledge 

systems, we also identified compelling areas of disagreement that point to areas for future research. 

The most pronounced contradiction between local narratives of change and the vegetation change 

analysis regarded the health of vegetation within Guassa. Local narratives focused on local grazing 

and firewood harvesting practices, maintaining that Guassa was experiencing a re-greening period 

after decades of unsustainable use caused by insecure land tenure.  However, the remote sensing 
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analysis revealed large areas of vegetation decline in Guassa since 2003 using NBR as an indicator 

of vegetation productivity and structure (Figure 3.6). Iterative conversations at the co-production 

workshops revealed that nachillo, a native shrub considered by locals to be a pest, had been 

expanding within the grasslands since about 1995. Given the differences in vegetation structure 

between the shrubs and grasses, we determined it was likely that this change in species 

composition was responsible for the moderate declines observed in NBR values. Specifically, we 

posit that shifts from satellite detection of primarily photosynthetic vegetation to woody shrubs 

with low leaf area could depress near infrared reflectance and increase shortwave infrared 

reflectance. Thus, these differences in spectral signatures led scientists to initially interpret the 

remote sensing results as contradictory to the re-greening trends observed by locals. The invasion 

of this shrub is considered a threat to the future sustainability of Guassa as it appears to be 

competing with the guassa grasses for habitat. Due to the potential impacts on ecosystem function 

and ecosystem services, we collectively agreed shrub encroachment was the most valuable issue to 

address next using our co-production process. This process of discovering new insights and ideas 

for future study is an integral part of knowledge co-production, which emphasizes the importance 

of investigating contradictions rather than concealing or overlooking them (Huntington et al. 2004; 

Moller et al. 2004; Gagnon & Berteaux 2009; Gearheard et al. 2010; Etienne 2013, Klein et al. 2014; 

Tengö et al. 2014). 

3.5 Conclusion 

In this paper, we present the results from a multiple evidence based (MEB) approach 

(Tengö et al. 2014) to knowledge co-production, which brought together insights from local and 

scientific knowledge using ethnographic and remote sensing methods. We produced a holistic 

understanding of environmental change in a community-protected grassland in the Ethiopian 

highlands, informing potential impacts on locally-defined land classes and their associated 

ecosystem services. Our results highlight how integrating local and scientific knowledge can reveal 
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gaps in system understanding, and how contradictory observations across knowledge systems can 

inspire new understanding and future research. Our project emphasizes the value of iterative 

approaches that allow local participants to more confidently inform remote sensing interpretations, 

and in turn allow scientists to clarify translations and interpretations so that local knowledge is 

accurately represented.  
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CHAPTER 4 

 MENTAL MODELS OF A SOCIAL-ECOLOGICAL SYSTEM ENCOURAGE LEARNING AMONG A 

DIVERSE MANAGEMENT TEAM3 

 

 

4.1 Introduction 

Social-ecological systems are complex, adaptive systems that often exhibit nonlinear 

dynamics, indirect effects and feedbacks, emergent properties, and heterogeneous links across 

space and time (Liu et al. 2007; Lambin & Meyfroidt 2010). These characteristics can cause 

unanticipated outcomes that make environmental management extremely difficult, especially 

considering the rapid rate of global environmental change occurring worldwide (Cleland et al. 

2007; Pepin et al., 2015; Steffen et al., 2011). Many times, the challenges facing social-ecological systems are multidimensional “wicked problems” that lack clear definitions or solutions (Rittel and 
Webber 1973; Chapin et al. 2008). Managing these complex systems and challenges increasingly 

requires collaboration among diverse teams with a range of knowledge types and worldviews so 

that the boundaries of the problem can be understood from multiple perspectives, and the scope of 

potential solutions can be expanded (Polasky et al. 2011; Tengö et al. 2014; Bernstein 2015; 

Hoffman et al. 2017). Diverse teams with trusting relationships and open channels of 

communication have been shown to have high adaptive capacity, which is critical for decision-

making under the high uncertainty facing social-ecological systems (Kates et al. 2001; Dietz et al. 

2003; Fazey et al. 2014; Fujitani et al. 2017). In practice however, the benefits of collaborative 

environmental management have proven difficult to achieve, and recent syntheses have shown this 

 
3 This research will be submitted for publication consideration along with co-authors Julia Klein, Shambel 
Alemu, Jake Marinkovich, Kflay Gebrehiwot, Sisay Wubie, and Bikila Warkineh Dullo 
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failure is often due to insufficient attention to the social and cultural factors that shape 

environmental outcomes (McCusker & Carr 2006; Beratan 2014). 

Social-ecological systems can be conceived as existing simultaneously as objects in the 

physical world (e.g., plants, rocks, people) and as cognitive constructs in the minds of the humans living there (Cronon 1996; Demeritt 2002). These cognitive constructs or “mental models” are internal representations of the external world that guide an individual’s thinking and behavior 
(Gentner & Stevens, 1983; Jones et al. 2011; Gray et al. 2014). Because an individual is inseparable 

from their cultural and social environment (Roberts 1964; D’Andrade 1981), mental models are 
shared within a broader culture or social group (Holland & Quinn 1987) and influence the 

formation of norms and institutions in that group (Halbrendt et al. 2014). Group mental models are 

comprised of culturally-derived ideas and practices (Fryberg & Markus 2007), and are partly a reflection of individuals’ lived experiences and partly the product of socially transmitted knowledge 
about how the world functions. Mental models are critical elements of collaborative environmental 

management because they shape our understanding of human-environment relationships, our 

perceptions of environmental problems, and our preferences for advocating certain decision 

options over others (Kempton et al. 1996; Jones et al. 2011; Moon et al. 2019). Differences in the 

mental models of people involved in managing social-ecological systems are neither good or bad, 

but may exacerbate barriers to effective communication and decision-making if they are not 

adequately understood and respected.  

Mental models, as a reflection of knowledge and culture, evolve and change over time in 

response to new information and interactions among people in social networks (Chi 2008; Reed et 

al. 2010; Moon et al. 2019).  Understanding this change, and how it impacts collaborative 

environmental management, requires better understanding of how people learn – both as 

individuals and in groups.  Social learning, which derives largely from theories of organizational 

management (Argyris & Schon 1978), is often defined as an iterative group process where learning 
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occurs at the level of the individual but is situated in a particular social and cultural context (Lave & 

Wenger 1991; Keen et al. 2005; Fernández-Giménez et al. 2019). This is the definition we use in this 

paper, which differs slightly from those who consider social learning to occur when change 

permeates throughout an entire society (Reed et al. 2010), or learning conducted by society at large 

(Friedman & Abonyi 1976; Woodhill 2002). Scholars largely agree that social learning is a 

normative and desirable outcome in environmental management (Armitage et al. 2008), though 

some have called for a more nuanced approach to particular types or elements of learning (Reed et 

al. 2010; Baird et al. 2014). Social learning has been shown to improve understanding of social-

ecological systems (Walters & Holling 1990), to foster adaptation and collective action (Pahl-Wostl 

et al. 2007), and to build trust among diverse individuals (Reed et al. 2010), all of which contribute 

to improved collaborative environmental management (Lang et al. 2012; Jahn et al. 2012; Cundill et 

al. 2015). 

Structured mental modeling exercises, where mental models are collectively described and 

discussed, can facilitate social learning (Özesmi & Özesmi, 2004; Gray et al. 2014). Sharing mental 

models can enhance communication among members of a social-ecological system management 

team by making visible (i.e., graphically representing or describing) the similarities and differences 

in system understanding, and thus enabling teams to overcome obstacles that can prevent the 

incorporation of diverse knowledge types (Reed et al. 2010; Biggs et al. 2011; Henly-Shepard et al. 

2015). Individual mental modeling exercises can promote more equitable collaborative processes 

by allowing participants to construct and reflect on their own knowledge of the system without 

certain individuals dominating (Reed 2008; Gray et al. 2014). However, small group mental 

modeling exercises have been shown to increase the likelihood of social learning, largely due to the 

detailed discussions that emerge from the process (Gray et al. 2014).   

In this paper, we describe an iterative process of constructing and revising mental models 

at both individual and small group levels over the course of a year. We present a case study of a 
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community-based conservation area in the Ethiopian highlands, with participants from four social 

groups involved in the community conservation area management. We conceptualize these groups 

on a gradient from local to scientific knowledge (women farmers, men farmers, local government 

workers, and scientists), based primarily on their occupation, level of formal education, and social 

networks.  The objectives of the research are to (1) understand how mental models of the social-

ecological system differ among these groups involved in management, and (2) assess the level of 

social learning experienced by participants in the mental modeling process, with the aim of 

contributing to more empirically-informed theories and methods for facilitating collaborative 

environmental management.  We anticipated that mental models would be more similar between 

groups with stronger local knowledge (women and men farmers) and between groups with more 

scientific or Western knowledge (government workers and scientists). Because our collaboration 

was relatively new, and the mental model exercises occurred over the course of only a single year, 

we expected only single- and double-loop (but not triple-loop) learning to occur. We describe these 

social learning loops below before presenting the detailed process and results of our study.    

4.1.1 Multiple-loop Social Learning 

Despite the integral role of learning in collaborative environmental management, confusion 

persists over how to conceptualize and measure social learning (Keen et al. 2005; Armitage et al. 

2008, Muro & Jeffrey 2008; Pahl-Wostl 2009; Crona & Parker 2012; Baird et al. 2014; Fernández-

Giménez et al. 2019). Social learning is often portrayed as a series of loops (single, double, and 

triple), but has alternatively been explained as different types of change (conceptual, relational, and 

normative) (Baird et al. 2014).  Efforts to connect these social learning paradigms have linked 

single-loop learning to conceptual change and triple-loop learning to normative change 

(Fernández-Giménez et al. 2019), while relational change remains difficult to place within the loop 

paradigm. To better integrate these multiple conceptualizations of social learning, we propose that 

the three loops of social learning are enabled or constrained by time and the strength of the 
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relationships among members of the social learning group (i.e., relational change) (Figure 4.1).  We 

outline three possible trajectories of social learning to clarify the theoretical impact of relationship 

strength on the speed of a social learning process. When projects target relationship building 

among learners, social learning may occur at an accelerated pace due to shared problem 

identification, mutual understanding and respect for each other’s worldviews, and the creation of 

both formal and informal relationships (Lang et al. 2012; Pohl et al. 2015; Hoffmann et al. 2017). 

However, when relationships suffer from mistrust or miscommunication, social learning may occur 

at a much slower pace as learners struggle to compromise or reach agreement (Tengö et al. 2014, 

Tengö et al. 2017).  

 

 

Figure 4.1. A conceptual model for understanding how the strength of relationships among learners 
can enable or constrain the speed of triple-loop social learning.  
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We suggest this integrated definition can bring about greater clarity regarding the 

conception and application of social learning for collaborative environmental management.  In our 

definition, single loop learning refers to learning that seeks to refine or incrementally improve upon 

an existing goal or institution (Pahl-Wostl 2009). Single loop learning may involve changing one’s 
ideas about the efficacy of particular actions (Armitage et al. 2008) or the direction and strength of 

cause-and-effect relationships (Fernández-Giménez et al. 2019), but it does not result in changes to 

the project goals or overall system organization. In Figure 4.1, single loop learning is portrayed as a 

relatively fast process, in part because it does not require as strong relationships among the social 

learning participants compared to double or triple loop learning.   Double-loop learning occurs 

when learners call into question the assumptions that underlie their understanding of the system or 

problem (Keen & Mahanty 2006). Double loop learning may involve changing one’s ideas about the 
boundaries of the problem (Pahl-Wostl 2009) or expanding the scope of the system and range of 

possible solutions. In this regard, double-loop learning is akin to “systems thinking” (Dyball et al. 
2007).  In Figure 4.1, we show that double-loop learning can take much longer to occur compared 

to single-loop learning because it requires mutual understanding and clear communication to be 

established among learners (Diduck et al. 2005).  Finally, triple-loop learning occurs when changes 

are made to the norms and institutions governing the project or broader system (King & Jiggins 

2002; Keen et al. 2005). Triple-loop learning may involve changing culturally-shared behaviors or 

socially-defined rules and structures. Some have likened triple-loop learning to a stage of “transformation” (Pahl-Wostl 2009), where power structures and regulatory frameworks are 

entirely replaced. Triple-loop learning is particularly desirable when seeking societal-scale 

transformations towards long-term adaptive strategies (Berkes & Jolly 2002).  In Figure 4.1, we 

illustrate that triple-loop learning requires substantial time and trusting relationships with clear 

channels of communication (Dietz et al. 2003).  
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4.2 Methods 

4.2.1 Study Area Description 

The Guassa Community Conservation Area (Guassa) is located in the Menz Gera woreda 

(similar to a county) of the Amhara Region of Ethiopia. Ranging from 2,600 – 3,560 meters above 

sea level, this 78 km2 area receives a mean annual precipitation of 1,650 mm.  Guassa supports 

many endemic and threatened species, including the critically endangered Ethiopian wolf (Canis 

simensis) and the gelada monkey (Theropithecus gelada) (Ashenafi et al. 2005). Guassa is named 

after the guassa grasses (Festuca macrophylla) that are valuable to the local communities for their 

use as thatch, rope, construction material, and forage. 

Guassa has undergone significant political and land management changes throughout its 

history (Steger et al. in review).  The area was managed for hundreds of years (c. 1600 – 1974) 

according to the Qero system of communal management that restricted access to the grasses 

through two to three month open seasons every three to five years (Ashenafi & Leader-Williams 

2005). The 1975 Agrarian Reform transferred land ownership to the state and community control 

over Guassa management declined over the following 17 years (Admassie 2000; Ashenafi & Leader-

Williams 2005). Community efforts to re-establish exclusive rights to the area were supported by 

international conservation efforts in the late 1990s, leading to a new co-management regime 

between local farmers and government agencies (Fischer et al. 2014). In 2012, exclusive use rights 

to the area were formally restored to the communities with ancestral rights by Amhara Regional 

Regulation No. 97.   Since about 2010, grazing and firewood collection have been banned inside 

Guassa due to perceived threats to sustainability and the endangered Ethiopian wolf.   

Currently the management team is composed of five representatives from each of the nine kebeles (the “Guassa Committee”), of which ten form an executive committee (the “Tourism Board”), and about twenty other individuals spread across two government offices – one 

administrative office at the local county (‘woreda’) level, and the Guassa Conservation Office that is 
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sponsored by the Amhara Regional State. They manage the area collaboratively, with final decision-

making power in the hands of the Guassa Committee, which meets monthly on their own and 

quarterly with the government offices. This diverse and relatively new co-management team makes 

Guassa a compelling case study for investigating the role of social learning and mental models in 

collaborative environmental management.  

4.2.2 An Iterative Process of Clarifying and Communicating Mental Models 

We chose an iterative structure for our mental modeling process because we wanted to give 

participants adequate time to reflect on their responses, think critically about the system, and 

become comfortable sharing their perspectives (Figure 4.2). This iterative approach is rare in the 

literature, despite its theorized benefits for social learning (Henly-Shepard et al. 2015). In August 

2018, we convened a workshop as part of an on-going effort to better align scientific research in 

Guassa with the needs of local communities and managers. Participants came from the Guassa 

Committee (n=27, three each from nine communities), the Guassa Conservation office (n=3), 

scientists (n= 6), and the local administration office (n=5). These 41 workshop participants (12 

women and 29 men) included the first, third, fifth, sixth and seventh co-authors. Together, 

workshop participants collaboratively identified a series of variables thought to impact the 

sustainability of the Guassa area, which was defined as a desired future with abundant guassa grass 

harvests, continued co-management, increased wildlife populations, and increased tourism. 

Workshop participants then ranked the variables in small groups to identify which variables they 

thought were the most influential on Guassa sustainability. We used the software package 

ANTHROPAC (Borgatti 1996) to analyze the variable ranking data and calculate Smith’s salience 
value (S) from zero to one for each variable, considering both the frequency of the variable across 

lists from each respondent and its position within each of those lists (Borgatti 1996; Levine et al. 

2017). Salience values closer to one indicate good agreement across the respondents regarding the 

relative influence that variable is thought to have on the future sustainability of the Guassa area. 
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 At a second workshop in February 2019, 38 participants were asked to help clarify the 

strength and direction of relationships between each variable. Of the original participants, one 

woman farmer and two government workers (one man and one woman) were unable to attend this 

second workshop. Participants were given a matrix with 25 variables listed across the first column 

and the first row, corresponding to the 19 variables identified in the first workshop plus six 

additional variables derived from their descriptions of valuable ecosystem services in the area 

(Steger et al. in press). We asked participants to fill in the relationship each variable has with the 

others. In each cell, participants described how the variable in that column header impacts the 

variable in each row (e.g., “If human population increases, what will happen to rainfall?”). There were six response options: “Strong Increase,” “Weak Increase,” “Strong Decrease,” “Weak Decrease,” “No Impact,” and “I don’t know”. Participants were given as much time as necessary to complete the 

matrix (ranging from one to two hours), with translators present if questions arose. A total of 35 

people completed their matrices.  

 After processing the responses, we included 30 responses in the development of 

aggregated, small group mental models. We excluded five responses because those participants did 

not appear to understand the exercise (e.g., they had the same answer for all relationships). We 

grouped respondents according to livelihood and gender, resulting in four primary groups: 

government workers (7 people), women farmers (7 people), men farmers (13 people), and 

scientists (3 people). One woman was present in the government worker group, and one in the 

scientist group. We transformed the categorical data into values on a scale of -1 to +1, where a 

strong relationship was +/-0.75, a weak relationship was +/-0.25, ‘No impact’ was 0, and ‘I don’t know’ was NA. We then calculated the mean and standard error for each variable relationship to 

identify where respondent groups had the highest and the lowest agreement. We considered a 

relationship to have high agreement when the 95% confidence interval did not include zero.  
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At a third workshop in August 2019, we asked 37 participants to review and revise the 

mental models created for their small group.  Of the original participants, one member of the 

conservation office, one scientist, and two government workers were unable to attend – resulting in 

a government worker group composed of all men. One woman farmer replaced another, and two 

Ethiopian scientists familiar with the area replaced their colleagues who could not attend. The aim 

was for small groups to discuss the uncertain relationships in the aggregated mental models, 

attempt to resolve their differences, and produce a single new matrix for the small group following 

their discussions. In addition to producing a group mental model with less uncertainty, these kinds 

of conversations have been shown to promote social learning (Gray et al. 2014; Henly-Shepard et al. 

2015) and provided participants an opportunity to better understand the reasoning behind the 

relationships each group identified. We divided the men farmers into two smaller groups (those 

living in communities near to Guassa and those living far from Guassa) to facilitate conversations 

with more equal participation from everyone involved. On the second day of this workshop, we 

came together as a large group to discuss the most significant differences among groups. During 

this final discussion, several groups started changing their responses to better align with one 

another. We do not present these changes here as the purpose of this conversation was to 

understand the reasoning behind their small group decisions and not to produce a single unified 

mental model for the entire management team.  
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Figure 4.2. The iterative process of eliciting, refining, and communicating mental models about the 
Guassa Community Conservation area. Community workshops were held in August 2018, February 
2019, and August 2019.  

 

 We digitized the five small group mental models in the online software Mental Modeler 

(mentalmodeler.org). Mental Modeler uses graph-theory based analysis (Gray et al. 2012) to 

quantify which variables have the most frequent influence on other variables in the system 

(outdegree centrality) and which variables are most frequently influenced by other variables 

(indegree centrality). We used these two metrics to compare across mental models, referring to 

variables with high outdegree centrality as “key drivers” in the system and variables with high indegree centrality as “key sensitivities” in the system. We ranked the variables in descending order 
of indegree and outdegree centrality to identify the key drivers and key sensitivities according to 

each group.  

4.2.3 Assessing Learning through Mental Modeling We assessed participants’ learning using interviews. Each non-scientist participant was 

interviewed briefly (approximately 15-20 minutes per person) after each workshop about what 

they learned from the modeling exercise and discussion, how they anticipate using the model in their management decisions, and whether their understanding of other participants’ perspectives 
changed throughout the workshop. Ethiopian scientists participating in the workshop (including 

the third, fifth, six, and seventh co-authors) conducted these interviews in Amharic. Interviews 
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were translated to English and transcribed. The first author used in vivo coding (Corbin and Strauss 

2015) and inductive thematic analysis to describe trends in the kinds of learning reported by 

participants (Boyatzis 1998). We compare how participants’ learning changed across the three 
workshops and discuss this learning in relation to our conceptualization of the three loops of social 

learning (Figure 4.1).  This research was reviewed and approved by Colorado State University’s 
Institutional Review Board (361-18H), and was conducted with free, prior and informed consent of 

all participants. Participants were modestly compensated for their time. 

4.3 Results 

4.3.1 Mental Models of Guassa by Individuals and Small Groups 

We present the variables that workshop participants collectively identified as influencing 

the sustainability of the Guassa area in Table 4.1. Results from the first workshop indicated that 

participants considered human population (S=0.92), rainfall (S=0.86), and community awareness 

(S=0.84) to be the most important variables (Table 4.1). However, results from the second 

workshop and subsequent aggregated small group models revealed a more nuanced interpretation 

of the system dynamics across participant groups. Of the 600 possible relationships between 

variables, female farmers agreed on only 120 of them (20%), male farmers agreed on 212 (35.3%), 

scientists agreed on 288 (48%), and government workers agreed on 332 (55.3%) – resulting in a 

more complicated mental model for government workers compared to the other groups. Male and 

female farmers also appeared more likely to agree on positive relationships (i.e., an increase of 

variable X causes an increase in variable Y) compared to negative ones (i.e., an increase of variable 

X causes a decrease in variable Y). Of the relationships with high agreement, 61.3% were positive 

for male farmers and 56.7% were positive for female farmers, whereas this bias was not observed 

in scientists and government workers as they had high agreement on an equal number of positive and negative relationships. Scientists were the only group to agree on a ‘No impact’ relationship 

(i.e.,  the absence of a relationship between variables), and they did this quite often (n=87, 14.5%).  
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Table 4.1. The 19 variables identified in workshop 1, representing variables with the highest 
perceived impact on the sustainability of Guassa. These variables were ranked to identify which are 
considered most influential. An additional six variables were added based on group interviews 
regarding the most important ecosystem services in the region (Steger et al. in review), but these 
were not included in the ranking and therefore do not have Salience values.  
 

Variable Description Salience 
Human population The number of people living around Guassa  0.92 
Rainfall Amount of precipitation in and around Guassa 0.86 
Community awareness The level of awareness community members have 

about the importance of protecting Guassa 
0.84 

Unemployment The number of people without land, livestock, or 
wage labor 

0.79 

Illegal users The number of people who cut guassa grass and 
shrubs outside the agreed-upon time 

0.67 

Livestock population The number of livestock belonging to the people 
living around Guassa 

0.65 

Political instability The degree of uncertainty about future actions the 
government might take 

0.57 

Temperature Temperature in and around Guassa 0.56 
Firewood consumption The amount of firewood used by households 0.55 
Uncoordinated protection The degree of independent actions taken by 

community members regarding Guassa 
0.54 

Agricultural expansion The expansion of agricultural lands into 
previously uncultivated areas 

0.49 

Invasive plants Plants (both native and exotic) that are rapidly 
expanding their range into previously unoccupied 
areas 

0.42 

Fire Wildfire in and around Guassa 0.41 
Deforestation Harvesting trees from native and plantation 

forests 
0.40 

Leadership The strength of local leadership  0.38 
Animal diseases The presence of animal diseases 0.36 
Plant diseases The presence of plant diseases 0.23 
Regime change A change in the ruling party or change in the 

structure of the national government 
0.17 

Research Scientists (Ethiopian and foreigners) conducting 
research in and around Guassa 

0.13 

Freshwater  The amount of freshwater originating from 
Guassa 

--- 

Guassa grass The amount of guassa grass occurring in Guassa --- 
Crops  The amount of crops produced by farmland --- 
Income Household income --- 
Wildlife population The number of wildlife living in and around 

Guassa 
--- 

Tourism  The number of non-residents visiting the area --- 
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The aggregated small group models provided insights into how each group thinks about the 

impacts of particular variables on the rest of the Guassa system (Table 4.2). Male farmers had the 

highest internal agreement around the impact of illegal users, political instability, and 

unemployment on other variables in the system, and they had the least agreement around the 

impact of invasive plants and plant diseases. Women farmers had the highest internal agreement 

around the impact of political instability and uncoordinated protection, and they had no agreement 

regarding the impact of wildlife populations. Scientists had the highest internal agreement about 

the impact of leadership and political instability, and they had low agreement about impacts of 

invasive plants and firewood consumption. Finally, government workers had the highest internal 

agreement regarding the impacts of illegal users, regime changes, and human population, and they 

had low agreement about the impact of livestock populations. All four groups had relatively high 

internal agreement about the impacts of political instability on other variables in the system, 

though it is worth noting that women farmers only agreed on 46% of these impacts while 

government workers agreed on 71% of them. Overall, women had the lowest internal agreement of 

all the groups when evaluating the aggregated group models, as their highest level of agreement 

was still less than half the number of potential impacts.  
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Table 4.2. Aggregated small groups differed in their agreement surrounding the impacts of 
particular variables on the rest of the system. The percent internal agreement is given for each 
group and each variable in the columns; highlighted cells indicate highest (blue) and lowest 
(orange) internal agreement for each group. 

Variable Salience 

Women 

Farmers 

(%) 

Government 

(%) 

Men 

Farmers 

(%) 

Scientists 

(%) 

human population 0.92 29 79 46 50 
rainfall 0.86 38 38 42 58 

community awareness 0.84 21 67 54 63 
unemployment 0.79 21 46 58 58 

illegal users 0.67 29 88 67 38 
livestock population 0.65 8 25 13 50 
political instability 0.57 46 71 58 67 

temperature 0.56 21 46 21 46 
firewood consumption 0.55 17 50 21 21 

uncoordinated protection 0.54 46 71 46 63 
agricultural expansion 0.49 13 38 21 42 

invasive plants 0.42 4 50 8 21 
fire 0.41 13 54 21 38 

deforestation 0.4 38 42 50 33 
leadership 0.38 8 38 38 88 

animal diseases 0.36 21 38 33 38 
plant diseases 0.23 25 46 8 33 
regime change 0.17 8 79 42 58 

research 0.13 4 71 33 58 
crops --- 33 50 38 33 

freshwater --- 4 75 38 38 
guassa grass --- 4 54 38 58 

income --- 25 50 29 54 
tourism --- 21 67 46 50 

wildlife population --- 0 54 17 46 
 

 

 During the third and final workshop, small groups were given the opportunity to discuss 

these areas of high and low agreement and prepare a single mental model for their group. After this 

small group discussion, scientists presented the least complicated mental model while government 

workers presented the most complicated model. Government workers and men farmers from both 

groups created models that showed relationships between almost every single variable in the 
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system (91 – 93% of the possible 600 relationships), while scientists only identified 48.7% of the 

possible relationships and women farmers identified 54.5%, illustrating either differences in how 

these groups think about the complexity of the system, or differences in how these groups respond 

to requests for information.  Specifically, scientists presented a model with 292 relationships (50% 

of them positive), women farmers presented a model with 327 relationships (62.1% positive), men 

farmers living far from Guassa presented a model with 547 relationships (49.0% positive), men 

farmers living near Guassa presented a model with 558 relationships (54.7% positive), and 

government workers presented a model with 560 relationships (49.5% positive).  As with the 

aggregated group models, we observed a tendency for women farmers and some men farmers 

(near Guassa) to identify larger proportions of positive relationships, focusing on how variables 

caused increases rather than decreases in other system components.  

Scientists also identified an additional 26 relationships that represented uncertainties in the system (i.e., by marking them “I don’t know”); they were most uncertain about the potential 
impacts of invasive plants and regime change on social variables like community awareness and 

uncoordinated protection (see Appendix E for the full list). Men farmers living near Guassa 

identified four uncertain relationships, while men farmers living far from Guassa identified 11 

uncertain relationships,  all targeted at the potential impacts of temperature and firewood 

consumption on other variables. Women farmers identified only two uncertain relationships, while 

government workers produced a final mental model with no uncertainties marked. 

When examining all the components and relationships, there appears to be an overall lack 

of agreement across groups regarding the key drivers and sensitivities in the Guassa system.  Only 

7.2% (n=9) of the shared driver rankings (Figure 4.3) and 12% (n=15) of the shared sensitivity 

rankings (Figure 4.4) showed overlap among small groups. Of these, government workers and men 

farmers near Guassa had the most frequent shared rankings (n=5), and women shared four 

rankings with each group of men farmers. There was greater variability across groups regarding 
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the drivers of the system compared to the sensitivities, indicating higher disagreement across 

groups when it comes to identifying key drivers.   Still, certain variables were ranked similarly 

enough across groups to indicate their general importance in the system; for example, most groups 

consistently ranked human population and unemployment as key drivers in the system, with 

relatively small standard deviations indicating high agreement as to the number of impacts they 

have on other system components. Groups universally ranked guassa grass as a mid-level driver, 

while all groups except men farmers living far from Guassa considered freshwater to be the 

weakest driver (Figure 4.3). Meanwhile, groups ranked income as one of the most sensitive 

components of the system, with a very small standard deviation indicating good agreement across 

groups. Groups considered illegal users a mid-level sensitivity, while they ranked invasive plants a 

consistently low-level sensitivity (Figure 4.4).   
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Figure 4.3. We define variables with the highest outdegree centrality as the strongest drivers of 
change in the Guassa system, as they most frequently impact other variables. Variables are 
presented in order of declining mean outdegree centrality, with the relative ranks of each small 
group given as colored circles. Mean and standard deviation outdegree centrality are given in 
parentheses next to the variable names. Solid black boxes indicate a variable that received the same 
rank across two or more small groups, while dashed black boxes indicate a variable that received 
similar ranks across three or more groups.  
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Figure 4.4. We define variables with the highest indegree centrality as the most sensitive 
components of the Guassa system, as they are most frequently impacted by other variables. 
Variables are presented in order of declining mean indegree centrality, with the relative ranks of 
each small group given as colored circles. Mean and standard deviation indegree centrality are 
given in parentheses next to the variable names. Solid black boxes indicate a variable that received 
the same rank across two or more small groups, while dashed black boxes indicate a variable that 
received similar ranks across three or more groups.  
 

 

When focusing only on the four strongest drivers and four most sensitive components 

(Figure 4.5), more consistent patterns emerge within and across groups. Women farmers identified 

human population as both the strongest driver and the most sensitive component in the Guassa 

system, highlighting the central role of humans in their worldview. Men living far from Guassa 

identified income as both the strongest driver and the most sensitive aspect of the system, while 

men living near to Guassa considered unemployment, another economic component, both a strong 

driver and a strong sensitivity. Both groups of men farmers considered crops a highly sensitive 

system component, and men living far from Guassa also considered crops a strong driver of the 
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system. Government workers identified research as the strongest driver of change in the Guassa 

system, while both groups of men farmers considered it a highly sensitive component of the system. 

Scientists and government workers identified wildlife populations as a highly sensitive component 

of the system.  

Overall, government workers and men living far from Guassa agreed on five out of nine key 

system components (55.6%), men farmer groups agreed on five out of eight (62.5%), and women 

agreed with men living near Guassa on four out of ten components (40%). Scientists had low 

agreement with all other groups, as their highest agreement was with women (25%) and 

government workers (23%). Women and government workers had the least agreement across 

groups, with income as the only shared key component between them (7%). Women farmers, 

scientists, and government workers had final models with unique key components that were not found in other groups’ mental models (Figure 4.5). Finally, women were the only group that 

retained all of the top four variables from the initial ranking exercise (Table 4.1) in their final 

mental model.   

All groups except women considered some aspect of government (i.e., political instability or 

regime change) a key driver of the system, and government workers considered both of these to be 

critically important.   All groups considered economics (i.e., income or unemployment) a key 

sensitivity. However, the relationships between these variables were not consistent across groups 

(Figure 4.5). Government workers and scientists viewed these as mutually negative relationships – 

they reported that an increase in income would cause a decrease in political instability or regime 

change, and an increase in political instability or regime change would likewise cause a decrease in 

income. Men farmers from both groups agreed with government workers and scientists that a 

regime change would cause a decrease in income. However, both groups of men farmers believed 

an increase in income would lead to higher likelihood of a regime change, which differs from how 

government workers and scientists thought about this relationship.   
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The large group discussion revealed some of the logic behind the decisions that small 

groups made and shed light on why relationships differed across groups. For example, women 

farmers and men farmers far from Guassa agreed that as human population increases, income also 

increases because there is more work available when there are more people around. The other 

groups felt that an increasing human population would decrease income because limited resources 

would have to be shared among more people, and the increased pressure on the Guassa area would 

result in lower income opportunities from it. Another key difference in understanding related to the 

influence of leadership on regime change. Scientists and government workers agreed that strong 

leadership would decrease the likelihood of regime change because people would be less likely to 

revolt when their needs are being met. Men and women farmers disagreed, saying that good 

leadership brings about increasingly democratic processes and equal power sharing so that regime 

change is more likely when there is good leadership. These descriptions reflect significantly 

different understandings of governance among participant groups and help clarify why conflicting 

relationships were reported between income/unemployment and political instability/regime 

change.  

   As the discussion continued, small groups became more likely to change their answers to 

reflect the opinions of the other groups. Women farmers often had the only dissenting opinion, and 

scientist facilitators halted the conversation when we realized the women were immediately 

changing their answers without offering a rationale for their original perspective. In our wrap-up 

session, we came together as a large group and collectively identified five variables that will require 

additional research: political instability, fire, plant disease, invasive plants, and temperature. 

Scientist facilitators asked whether other participants wanted to use the group mental models to 

evaluate potential scenarios of the future, but there was no interest.   
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Figure 4.5. Final group mental models for the five small groups showing only the strongest drivers  
(in grey) and most sensitive components (in white). Positive relationships are shown with green 
arrows, while negative relationships are shown with orange arrows. Uncertain relationships are 
marked with black arrows and a question mark, while unique key components are marked with a 
black star to indicate that other groups did not include that variable. 
  
 
 4.3.2 Learning Experienced by Workshop Participants 
 

Over the course of the three workshops, participant interview responses became 

increasingly more nuanced as the conceptual modeling exercises became more complex. There 

were 29 participants who completed all three post-workshop interviews, six participants with two 

interviews each, and two participants with only one interview each (total = 37 participants). In the 

first workshop, one of the common themes in participant responses was the importance of 

identifying threats to Guassa (n=20, 54.1%), often with additional insights into how this can assist in future planning. One farmer commented, “By ranking the variables, I learned that if we prioritize 
the problems early it can help our future preparedness.” However, some respondents took a more extreme interpretation, focusing on the need to “control all the threats to Guassa” rather than 
reflecting on the overall importance of identifying threats. The novelty and importance of long-term 

planning was another common theme in the first workshop (n=22, 59.5%). “We are used to planning for five years but not twenty,” remarked a conservation officer. By the third workshop, 
responses focused more on the complexity of the Guassa system (n=19, 51.4%). One farmer commented, “I learned that everything is connected, and that harming one aspect may cause unintended consequences.” Another farmer similarly exclaimed, “the guassa grasses are dependent on so many things!” These kinds of observations were complemented by a less ubiquitous theme, the idea that computers could ease the burden of this complex thinking. “Computers can make complex information very simple and understandable,” reported a farmer.   

In the third workshop, the most common theme across responses was the importance of discussion as the source of learning (n=18, 48.6%). “Discussion is always better for our 
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community,” reported a priest. The value of discussion for most participants was the opportunity to 
understand other people’s perspectives, without a need to find consensus. One woman reflected, “it is always better to see things and ideas in different ways.” However, a subset of respondents valued 
discussion for the opportunity to reach a consensus (n=4). One man explained, “Before the 
discussion, there were different ideas. After the discussion, we came to one idea. Discussion makes us change our ideas.” Participants frequently reported changing the way they thought about one another’s ideas and perceptions of the Guassa system, though it was usually a general statement 

without concrete examples.  One pre-conceived bias emerged from the responses of just a few 

government workers. At the first workshop, one conservation officer commented that he felt there 

were “gaps in understanding between government officials and the public.” Then, at the second 
workshop, a government worker commented that another man had “surprised me a lot, because he put forward constructive ideas even though he is a farmer.” These kinds of biases were not 

observed in interviews from the third workshop, which emphasized the differences in individual 

ideas and perspectives rather than group-level assumptions or stereotypes.  The value of the women’s participation in the workshop was a common theme in the women’s interviews, with nearly half the women (n=5, 45.5%) saying something about the 

importance of including women in these kinds of meetings. One woman in particular showed a clear 

escalation in this theme over time: at the first workshop, she remarked how happy she was that 

women had been included. In the second workshop, she stated there should be even more 

participation from women in Guassa research, and at the third meeting she confidently stated, “there must be women scouts.” These responses demonstrate growing within-group support for 

stronger women voices in Guassa management. However, none of the men participants made any 

remarks in their interviews regarding the importance of including women.  
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4.4 Discussion  

In this study, we iteratively constructed and revised mental models at both individual and small 

group levels over the course of a year. Participants were solicited from four social groups involved 

in managing a community conservation area in the north central Ethiopian highlands. We sought to 

understand how mental models of the Guassa social-ecological system differed among these 

management groups, and to assess what kinds of social learning occurred throughout the 

collaborative mental modeling process. We found some evidence that system understanding was 

more similar among groups with stronger local knowledge, though surprisingly we did not find 

many similarities between groups with more scientific or Western knowledge.  As expected from 

the short length of our process and relatively new collaborative relationships, we found evidence of 

single- and double-loop (but not triple-loop) learning.  We discuss these findings in greater detail 

below.  

4.4.1 Comparing Mental Models  

Enough similarities emerged across mental models to sketch a picture of the most 

important drivers and sensitivities in the Guassa system.  For all groups except women, government 

featured prominently as a driver of change in the system, mainly through political instability or 

regime change. This is likely related in part to the on-going civil unrest throughout Ethiopia, which 

began with protests over the Addis Ababa Integrated Development Master Plan in the spring of 

2014. Protests have continued to the present, escalating to include long-standing grievances over 

the marginalization of Oromo people within the current national government. Guassa has felt the 

impacts of this instability directly through the loss of tourism to the conservation area.  However, 

previous research into the history of environmental change in this area revealed the importance of 

secure land tenure for influencing people’s behavior towards the Guassa area (Steger et al. in 
press), indicating that governance has been a critical driver in this social-ecological system for 

decades before the current unrest.  
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Economic variables were the most common sensitivities in the system, reflecting a 

primarily subsistence economy that is only recently transitioning to market-based production. 

While more market-oriented variables like income and unemployment were widely important 

across groups, crops also featured prominently in the mental models of men farmers and 

government workers. The absence of livestock populations as a key component indicates that while 

most farms in this area operate as mixed crops-livestock systems (Tadesse 2009), the cultural 

tendency is to value crops as the primary subsistence product of the household.  Sheep breeding 

operations have been implemented as development projects in this region for decades due to the 

highly desirable characteristics of local Menz sheep breeds (Tadesse 2009; Gizaw et al. 2010). This 

may explain why livestock were not considered key components in mental models, as they may be 

considered a part of income-generating activities rather than an independent subsistence product.  

While the Guassa area traditionally operated as a key resource area for grazing during drought 

(Ashenafi & Leader-Williams 2005), the current management team does not intend to allow this use 

in the future. Many households are now turning towards household cattle fattening in the face of 

decreasing communal grazing areas (Steger et al. in press).  

Overall, these results provide some support for our expectation that groups with strong 

local knowledge will demonstrate similar system understanding, though it appears to be mediated 

by gender and occupation.  Regarding the final group mental models, the strongest overlap 

occurred between the groups of men farmers, and among men farmers and government workers, 

who all considered political regime change a key driver and crops a key sensitivity in the system. 

Yet, occupation also seemed to influence their selection of key components in a way that reflects 

their dominant interests and role in society, as government workers identified two governmental 

variables as key drivers while men farmers identified two economic variables as both key drivers 

and key sensitivities. Similarly, women farmers identified human population as both a key driver 

and a key sensitivity, which may reflect the highly domestic role of women in Ethiopian culture 
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(Fenster 1998; Coppock et al. 2011).  Insights from cognitive anthropology reveal that all the 

knowledge about a culture cannot be stored within a single brain, and in fact there is a division of 

labor in who knows what – certain social positions or experts will know more than others 

(D'Andrade 1981). Therefore, it stands to reason that mental models would vary even among 

groups that share a dominant culture depending on the everyday activities and values of the 

individual participants, as people will tend to focus on variables and processes that are of direct 

importance to them (Klein et al. 2014).  

Differences in mental models also revealed how groups perceived and valued the Guassa 

system. Scientists, government workers, and men farmers far from Guassa identified a roughly even 

split of positive and negative relationships in their final group models. However, women farmers 

and men farmers living near Guassa identified larger proportions of positive relationships. A similar 

result was seen in the aggregated small group models, with farmers of both genders agreeing on 

positive relationships more than negative ones. These findings may help explain why so many participants considered the “identification of threats” to be a key learning outcome from the first 
workshop, as it seems they were not used to thinking about negative relationships in this system.  

In panarchy theory (Gunderson & Holling 2002), positive feedbacks (‘amplifying’ feedbacks) are 
destabilizing processes that can drive systems across a threshold and into an alternative state, 

while negative feedbacks (‘dampening’ feedbacks) are stabilizing forces that reduce fluctuations 
and reinforce existing states (Scheffer & Carpenter 200; Nyström et al. 2012). When considered in 

this light, the mental models of farmers in the Guassa system emphasize positive relationships that, 

if they are reciprocated in positive feedback loops, are more likely to move the system into a new 

state, while the mental models of scientists and government workers describe a more balanced, 

stable state. These results may indicate that farmers are more sensitive than other management 

groups to the conditions that drive change in the Guassa system, though further research with 

larger numbers of participants is needed to evaluate this finding.  
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Another key difference in group mental models revolved around the level of complexity and 

the identification of uncertainty. Government workers and both groups of men farmers presented 

highly complicated mental models with nearly every relationship marked, while scientists and 

women farmers presented models with roughly half the possible relationships marked.  This could 

indicate a more nuanced understanding of the system among government workers and men 

farmers, as they identified relationships that women farmers and scientists did not think existed.  

However, scientists also expressed the highest number of uncertain relationships, more than twice 

as many as the next largest group (men living far from Guassa), while government workers 

identified no uncertain relationships.  Together, these results suggest that men in the Guassa area 

are less likely than women or outsiders to admit to a lack of understanding, regardless of their 

occupation or level of education. Interpreted in this light, the highly complicated models presented 

by government workers and men farmers may instead be an attempt to reinforce their positions as 

leaders in the area who can be counted on to provide all the answers. In this cultural context, it may 

be seen as a weakness or shortcoming in their masculinity to admit to a lack of knowledge or 

understanding, which is supported by observations of hegemonic masculinity in Ethiopian culture 

(Hussein 2005; Mjaaland 2018). However, additional interviews and ethnographic research are 

needed to clarify the source of these differences in the Guassa context.  

These findings emphasize the need for diverse perspectives in a collaborative process 

(Paulus & Nijstad 2003; Bernstein 2015; Hoffman et al. 2017), and together with the aggregated 

model results point to the complementarity of both individual and group-level mental modeling for 

nuanced system understanding. For example, the aggregated small group models illustrated wide 

disparities at the level of the individual. Even in the government group, which had the highest 

internal agreement, participants only agreed on the direction and intensity of roughly half the 

relationships in the system.  Therefore, although the group-level modeling process is more likely to 

encourage social learning (Gray et al. 2014; Henly-Shepard et al. 2015), we believe individual-level 
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modeling should be part of any mental modeling exercise as it can provide much-needed points of 

clarification when group models are hampered by socio-cultural barriers such as disagreement in a 

group discussion, or resistance in the identification of knowledge gaps or uncertainty.    

4.4.2 Social Learning Process and Outcomes 

Our study was strengthened by the iterative process that allowed individuals and small 

groups to reflect on their own understanding and share it with others. While this was an intensely 

time-consuming process, we find it has been quite valuable to explore and understand the diversity 

of knowledge and system understanding at the early stages of our collaborative research efforts. 

One advantage has been the increased communication among members of the management team. 

As a critical element of successful collaborative research (Dietz et al. 2003; Lang et al. 2012; Jahn et 

al. 2012), this communication and the increased mutual respect and understanding that emerged 

from it are promising indicators for future adaptive management of the Guassa area (Fazey et al. 

2014; Popa et al. 2015; Fujitani et al. 2017; Cockburn & Cundill 2018).  Our interview results, which 

describe how discussion enhances learning, underscore the “social” component of social learning, 
as participants valued the opportunity to compare and evaluate their individual and shared 

knowledge. Discussion also appears to facilitate the development of more trusting and open 

relationships, which is an under-appreciated enabling factor for social learning (Figure 4.1). In 

particular, the observed social divisions between men farmers and government workers stand out 

as an example of relationship building that occurred during this process. These groups had the 

most similar mental models, yet post-workshop interviews indicated that they did not recognize 

how much they had in common until discussions revealed their shared perspectives.  

A second advantage has been the identification of baseline mental models, which will enable 

us to monitor changes to mental models over time. Because mental models are a reflection of the 

particular culture in which they are created, and culture is dynamic, we expect mental models to 

change over time in reaction to both the collaborative research process and external events in the 
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socio-political and biophysical context (Chi 2008).  This study lays the foundation for semi-

quantitative evaluation and monitoring of changing mental models, which can contribute to 

theories of learning and best practices in collaborative environmental management (Armitage et al. 

2008; Lang et al. 2012; Steger et al., in prep). 

Our interview results suggest a few types of social learning were on-going throughout the 

workshops. Most participants reported some change to the way they were thinking about the 

Guassa system, which is an indication of single-loop or conceptual learning (Pahl-Wostl et al. 2009; 

Baird et al. 2014). For example, the large group discussion about how human population impacts 

household income caused some individuals to change their thinking about that cause and effect 

relationship. Women farmers and men farmers far from Guassa had considered this a positive 

relationship, but then wanted to change their answers to match scientists and government workers 

after the discussion. We did not make these changes to the final models because we wanted to 

acknowledge the validity of diverse perspectives rather than seeking out consensus at this early 

stage of our collaboration, especially given the more powerful positions of scientists and 

government workers in this context.  

  The theme of “identifying threats”, which was reported by over half of the first workshop’s 
participants, is another example of single-loop learning. In the space of a two-day workshop, 

participants were able to identify gaps in the way they were thinking about the Guassa system (i.e., not recognizing threats) and use other people’s ideas and perspectives to fill those gaps. The focus on “threats” may have arisen through issues with translation, as words like “variables” or “system components” did not retain their meaning when translated into Amharic and we used words like “threats” and “benefits” to help generate the list of important variables (Table 4.1). However, there 

was a clear tendency for participants to focus on threats rather than benefits, as evidenced by the 

kinds of variables included in the initial list and the interview results. When considered along with 

the bias towards positive relationships in farmers’ mental models, we conclude that farmers 
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experienced increase learning about potential threats to the Guassa area that they had not 

considered before this workshop.  

 We also found evidence of double-loop learning, as participants reported increasing the 

time-frame they use to think about Guassa planning and expanding their understanding of the 

complexity of the system – both aspects of improved “systems thinking” (Dyball et al. 2007).  Men 

farmers and government workers reported expanding their planning time frame more than women 

farmers, probably because women are not as integral to Guassa planning processes, as evidenced 

by the lack of women on the executive committee. Participants from all groups reported expanding 

the way they thought about the complexity of the system.  While we did not see clear evidence of 

triple-loop learning, the need for increasing women’s perspectives in management was vocalized by a subset of women participants. If women’s roles in Guassa management continue to grow, this may 

be an indication of a normative change just beginning to shift.  

4.5 Conclusion 

 There is a need for greater understanding of the social and cultural factors that influence 

outcomes in collaborative environmental management.  Mental modeling is an under-utilized 

approach for understanding how different people perceive social-ecological systems, which can 

improve system understanding as well as clarify the assumptions and values held by diverse groups 

of people involved in management.  Sharing mental models can also inspire social learning among 

diverse participants, though the people facilitating these processes need to be highly aware of 

power asymmetries among the people involved to prevent certain groups capturing the process for 

their own benefit. Iterative sharing of mental models can allow people to become more comfortable 

with the modeling process as well as the other participants, which can improve the quality of the 

models produced.   
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CHAPTER 5 

CO-DESIGNING AN AGENT-BASED MODEL OF SHRUB ENCROACHMENT IN AN AFROALPINE 

GRASSLAND 4 

 
 

5.1 Introduction 

Environmental managers today are challenged by anticipating future change and making 

decisions in the context of limited data and high uncertainty (Polasky et al. 2011). As social-

ecological systems continue to change rapidly, the future becomes increasingly uncertain due to the 

lack of a historical analog and the complex dynamics and feedbacks that cause unexpected 

outcomes in these systems (Ostrom 2007; Liu et al. 2007). In this context, attempts to analyze 

trade-offs in alternative management practices and decisions require tools that can interweave 

social and ecological components across diverse spatial and temporal scales (Zimmerer & Basset 

2003; Cumming et al. 2006; Rammer & Seidl 2015).  Spatially-explicit, grid-based simulation 

models (e.g., some agent-based models, or ABMs) can integrate interactions among agents (e.g., 

people or animals) with landscape-scale processes (e.g., water cycling or vegetation growth) so that 

emergent phenomena can be observed arising from their dynamics over time. This makes ABM 

effective at representing complex, social-ecological systems in intuitive ways (Janssen 2005; 

Barnaud et al. 2008). ABMs are also able to mix qualitative, threshold-based rules with quantitative 

data and mathematical equations (Li et al. 2018), making them particularly useful tools for 

exploring social-ecological problems when data are limited.   

An emerging generation of modelers seeks to co-design ABM with non-academic 

stakeholders so that the model has direct relevance for decision-making and management (Verburg 

et al. 2016; Voinov et al. 2018; Schluter et al. 2019).  This collaborative approach combines 

 
4 This research will be submitted for publication consideration along with co-authors Randall B. Boone, Julia A 

Klein, Paul Evangelista, Bikila Warkineh Dullo, and Shambel Alemu.  
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scientific and societal objectives to advance system understanding as well as collective learning 

among the diverse people involved in managing a system (Bousquet & LePage 2004; Barnaud et al. 

2008). Collaborative ABM is an effective tool for exploring systems in a prospective rather than a 

purely predictive way (Anselme et al. 2010), which can aid environmental managers in formulating 

new ideas about how to anticipate and manage systems under future uncertainty. By shifting 

adaptation planning from reactionary to forward-looking strategies, these collaborative modeling 

processes can foster complex and long-term thinking, social learning, and collective action (van 

Notten et al. 2003; Kok et al. 2006), thus improving the adaptive capacity of managers. 

Current debates in collaborative ABM revolve around the level of detail needed for a model 

to promote this kind of learning among participants. Some scholars insist that highly detailed 

models are required for decision support, as this allows realistic individual processes to be 

represented (Barthel et al. 2012) and enables stakeholders to understand how they reflect their 

everyday, lived experiences (Lange 2001). However, other scholars have demonstrated that highly 

realistic models can impede system exploration, leading participants to think in terms of barriers 

and preventing them from finding innovative solutions (Barnaud et al. 2013). Multiple modeling paradigms have highlighted the existence of what we are calling an “intermediate learning hypothesis,” whereby models are most useful for learning and decision-making when they are 

constructed to reflect intermediate levels of system complexity. Grimm et al. (2005) present this as the “Medawar zone”, while members of the Companion Modeling network have articulated it as a “KILT: Keep It a Learning Tool” approach (Le Page & Perrotton 2018).  Yet few recommendations 

exist to guide the construction of models at this level of complexity, potentially leading to 

inconsistent use of this design concept.  

In this paper, we describe the process of co-designing an agent-based model of shrub 

encroachment in a community-managed Afroalpine grassland (known as Guassa) in the highlands 

of Ethiopia. The purpose of this model is to enable people involved in managing Guassa to explore 
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the individual and combined effects, as well as tradeoffs, of social and ecological factors controlling 

the spread of these native shrubs, and to evaluate the efficiency of different strategies to control 

their expansion. Due to the scarcity of data from this site, parameter values are derived largely from 

the literature, remote sensing, and expert opinion from scientists and local managers. Therefore, 

while there is some level of realism in the landscape and parameterization, we do not intend to 

produce highly accurate predictions of the future of this area. Rather, we seek to explore potential 

futures and use these to facilitate discussion and planning among the diverse co-management team. 

We assess the learning experienced by participants in the co-design process to contribute to 

empirical measurements of learning in relation to model complexity.   

5.1.1 The Problem of Shrub Encroachment 

Shrub encroachment into grasslands has been observed over the last 100 years across the 

globe, resulting in increased density, cover, or biomass of woody plants and the displacement of 

grasses (Archer et al. 1995; Van Auken 2009; Eldridge et al. 2011; Sala & Maestre 2014; Myers-

Smith et al. 2015). Changes to ecosystem structure, function, and subsequent goods and services 

makes shrub encroachment an issue of critical concern, particularly for systems that are dependent 

on livestock production (Archer et al. 2017).  Shrub encroachment arises from complex, interacting 

factors such as changing resource availability (e.g., precipitation, soil nutrients, atmospheric CO2), 

growing conditions (e.g., microclimate changes, irradiation, topography), and disturbance (e.g., 

herbivory or the lack thereof, fire, and soil erosion), with the relative influence of these factors 

differing according to the particular location (Bestelmeyer et al. 2003, Sankaran et al. 2005, 

Fuhlendorf et al. 2008, Sankaran et al. 2008, D’odorico et al. 2012, Lehmann et al. 2014, Midgley & 

Bond 2015, Schweiger et al. 2015).  

While the causes and consequences of shrub encroachment have been examined thoroughly 

in the context of arid and semi-arid grasslands (Archer 1994, Knapp et al. 2008) and temperate 

mountain ecosystems like the European Alps (Anthelme et al. 2007, Anselme et al. 2010, Komac et 
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al. 2013) and the Tibetan Plateau (Klein et al. 2007; Hopping et al. 2018), little research has been 

done to understand how these factors play out in wet, tropical mountain systems like Afroalpine 

grasslands (Buytaert et al. 2011). In areas of high mean annual precipitation, shrub encroachment 

generally leads to increased primary production (Eldridge et al. 2011) and a competitive advantage 

for woody species in the absence of disturbance mechanisms through herbivory, fire, and soil 

characteristics (Sankaran et al. 2005). This is the opposite of drylands, which tend towards 

decreased productivity and diversity, and increased desertification (Lett & Knapp 2003, Reynolds 

et al. 2007). However, shrubs and grasses also tend to have similar rooting depths in wet systems 

due to their shallow water tables, which can mitigate competitive effects from shrub taproot 

development (Molinar et al. 2002; Rossatto et al. 2014).  Therefore, the continued existence of 

Afroalpine grasslands indicates some type of disturbance mechanism or below-ground control 

operates to prevent woody plant encroachment under these high precipitation conditions.  

Another potential difference for shrub encroachment in wet versus dry grasslands is the 

impact of increased atmospheric carbon dioxide (CO2). In drylands, grasses tend to use C4 

photosynthetic pathways, which are not directly affected by increased atmospheric CO2. This 

enables shrubs and trees with C3 photosynthetic pathways to outcompete them (Ehleringer et al. 

1997; Archer et al. 2017). Some scholars have theorized that increased atmospheric CO2 is not as 

significant a driver of shrub encroachment when grasses and shrubs both use C3 pathways 

(Buytaert et al. 2011; Archer et al. 2017) – which is the case in tropical mountain systems like the 

Afroalpine. Other scholars maintain that woody species like shrubs and trees require larger 

amounts of carbon to build their woody structure, and that demand can be met much more 

efficiently in conditions of elevated atmospheric CO2 (Drake et al. 1997; Ceulemans et al. 1995; 

Bond et al. 2003). Therefore, they propose that woody shrubs will have a competitive advantage 

under these conditions regardless of the presence of C3 or C4 grasses. Because elevated 

atmospheric CO2 has elicited a wide range of growth responses in the presence of other co-
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limitations (e.g., light, nutrients, temperature, reproductive strategies), other scholars urge a 

context-specific approach to understanding local impacts of elevated atmospheric CO2 (Körner 

2006).    

5.2 Methods 

5.2.1 Study Area Description  

The Guassa Community Conservation Area (Guassa) is 78 km2 and located within the Menz 

Gera woreda of the Amhara Region of Ethiopia. Ranging from 2,600 – 3,560 m.a.s.l., this area was historically characterized by two rainy seasons known as the ‘belg’ (~March 1 – May 30) and ‘kiremt’ (~July 1 – September 30), though that has been shifting to a largely unimodal pattern in 

recent years (Fashing et al. 2014).  Guassa supports many endemic and threatened species, 

including the critically endangered Ethiopian wolf (Canis simensis) and the gelada monkey 

(Theropithecus gelada) (Ashenafi et al. 2005). Guassa is named after the guassa grasses (Festuca 

macrophylla) that are valuable to the local communities for their use as thatch, rope, construction 

material, and forage.  In the last 20 years or so, local managers have observed the expansion of 

three shrub species: a cushion shrub (Helichrysum splendidum) and two evergreen shrubs (Erica 

arborea and Euryops pinifolius).  The Helichrysum shrubs are of greatest concern, as they have no 

perceived value for humans or wildlife, and are thought to compete directly with the guassa grasses 

as they are often found growing together.  

Similar to the European Alps (Anthelme et al. 2007; Anselme et al. 2010; Komac et al. 2013), 

grass-shrub interactions in the Ethiopian highlands have been regulated by a long history of human 

activities. Guassa has undergone significant political and land management changes throughout its 

history (Ashenafi & Leader-Williams 2005; Steger et al. in press).  The area was managed for 

hundreds of years (c. 1600 – 1974) according to the Qero system of communal management that 

restricted access to the grasses through short (two to three month) open seasons every three to 

seven years (Ashenafi & Leader-Williams 2005). The 1975 Agrarian Reform transferred land 
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ownership to the state and community efficacy over Guassa management declined over the 

following 17 years (Admassie 2000; Ashenafi & Leader-Williams 2005). Community efforts to re-

establish exclusive rights to the area were supported by international conservation efforts in the 

late 1990s, leading to a new co-management regime between local farmers and government 

agencies (Fischer et al. 2014). In 2012, exclusive use rights to the area were formally restored to the 

communities with ancestral rights by Amhara Regional Regulation No. 97.    

Since about 2010, grazing and firewood collection have been banned inside the Guassa area 

due to perceived threats to sustainability and the endangered Ethiopian wolf. While illegal grazing 

and harvesting continues to a degree, public opinion is largely against grazing livestock in the 

conservation area due to the degradation seen from 1975 – 2000.   Fire has never been used as a 

management tool in the Guassa area, and in fact it is considered a major threat to the sustainability 

of the area (Steger et al. in prep), which differs from other regions of Ethiopia (Jacobs & Schloeder 

2002).   Therefore, we do not include grazing or fire in our model as potential management options, 

though we suspect that shrub encroachment has been influenced by the combined effects of 

decreased grazing by large animals (cattle, sheep), increased grazing by small animals (rodents), 

and potentially other yet-unknown dynamics of resource competition. Impacts from changes to the 

microclimate (amelioration effects) may also exist, as studies of Helichrysum spp. and Festuca spp. 

in South Africa showed that Helichrysum positively impacts the growth of other species without 

benefiting Festuca as well, an indication of strong below-ground competition between the shrubs 

and grasses (Schweiger et al. 2015).  We remain uncertain as to the potential impacts of increasing 

atmospheric CO2, and encourage future research into this important issue as it could be having 

synergistic effects on shrub growth along with observed changes in disturbance regimes.  

5.2.2 Co-design Workshops and Proposed Management Strategies 

Local members of the Guassa management team identified shrub encroachment as a critical 

sustainability concern in the conservation area, following several years of collaborative learning 
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and problem identification.  In August 2019, we convened a workshop as part of this on-going effort 

to better align scientific research in Guassa with the needs of conservation area managers. 

Participants were invited from the Guassa Committee and the Tourism Board (n=28), the Guassa 

Conservation office (n=2), Ethiopian and American scientists (n= 4), and the local woreda 

administration office (n=3). There were more men (n=26) than women (n=11) present, and the 

average age of participants was 40 years. During the workshop, we presented an initial version of 

the model with the aim of refining it based on the needs of participants, and generating discussion 

and learning over its purpose and future application in Guassa.  As the model was co-designed to 

support management action, we assessed the kinds of learning experienced by participants at the 

workshop. Each non-scientist participant was interviewed briefly (approximately 15-20 minutes 

per person) after each workshop about what they learned from the modeling exercise and 

discussion, how they anticipate using the model in their management decisions, and whether their understanding of other participants’ perspectives changed throughout the workshop. Ethiopian 
scientists participating in the workshop conducted these interviews in Amharic. Interviews were 

translated to English and transcribed. The first author used in vivo coding (Corbin & Strauss 2008) 

and inductive thematic analysis to describe the kinds of learning reported by participants (Boyatzis 

1998). 

 We discussed several potential management options to test with the model with the goal of 

reducing Helichrysum shrubs and increasing guassa grass provisioning. Recent management has 

allowed harvesting guassa grasses in May every three years, though in the past they have waited as 

long as five to seven years between harvests.  In recent years, local people have pushed for more 

frequent harvesting. Therefore, we decided to test the impacts of harvesting every two, three, or 

four years. Scientists originally estimated that approximately 200 people would harvest guassa in 

this area of the conservation area, but we increased that number to 500 after conferring with 

workshop participants. Scientists also originally estimated that each person would not harvest 
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more than 360 kg of guassa grass each harvest (approximately 11 shekams in local measurement 

units). However, workshop participants described seeing people cut anywhere from 4-20 shekams 

in a single day, over multiple if not all the days in the 10-day harvest window. Workshop 

participants were unable to estimate the average total amount of guassa grass harvested per 

person, as there has never been a record kept.  Therefore, we used the model to determine a 

sustainable per person harvest limit for each climate regime in our scenarios to help inform 

management.  

We also discussed the need for mechanical removal of the Helichrysum shrubs, though 

removal of Erica and Euryops shrubs was not considered an urgent need by managers – the 

difference being that Helichrysum shrubs are considered a nuisance with no ecological or human 

value. Therefore, we aimed to use the model to estimate the intensity and frequency of shrub 

harvest that would produce the desired reduction (but not elimination) of Helichrysum shrubs.  

Local community members identified September as a good time of year to remove the shrubs, as 

the long rainy season will have loosened the soil by that time and seeds already dropped. Workshop 

participants suggested that people would be less motivated to participate in Helichrysum removal 

compared to guassa grass harvests, and would thus cut fewer shekams per person.  We tested the impact of each person’s effort in the shrub removal to find what level of removal per person is 
sufficient to produce the desired outcome, and examined the impacts to vegetation dynamics under 

different climate regimes. Though workshop participants did not feel it necessary to use the model 

to test Erica and Euryops removal, they did insist that these species be modeled separately rather than grouped into a “non-Helichrysum shrubs” category as they were in the original model.  

 

5.2.3 Model Description 

 The virtual world of the model consists of 95 x 95 cells, each 30m x 30m, which together 

represent an 812ha landscape (Figure 5.1). We use the agent-based modeling software Netlogo to 
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produce this model (Wilensky 1999).  One time step represented one week in the virtual world. The 

landscape was modeled after the area surrounding the Guassa lodge.  We used a supervised random 

forest classifier of a February 2019 Landsat image to produce a baseline distribution of the 

dominant vegetation types in this area, with an overall accuracy of 77.6% (see Appendix F for more 

information). The eight dominant vegetation types are: Erica shrubs (Erica arborea), Euryops 

shrubs (Euryops pinifolius), grassland/shrub mix (not including our target species), guassa grasses 

(Festuca macrophylla), Helichrysum shrubs (Helichrysum splendidum), forest (mainly Eucalyptus 

globulus and Cupressus lusitanica), stone, and wetlands (mainly Carex and Cyperus species). Forests, 

stone, and wetlands do not change in the virtual world; they do not spread and they are unable to 

be invaded. The grassland/shrub mix also does not spread, but it is able to be invaded by the four 

vegetation types that do: guassa grasses, Helichrysum shrubs, Erica shrubs, and Euryops shrubs. 

We initialize patches containing these four vegetation types so that each cell contains some biomass 

(kg/m2) of each type, following a random normal distribution. For example, cells dominated by 

Erica shrubs contain a mean of 0.5 kg Erica shrubs with a standard deviation of 0.2kg, with a mean 

and SD of 0.1kg for the three other species.  

 

 

 

Figure 5.1. Guassa grasses (bright green), Helichrysum shrubs (white), Erica shrubs (dark green), 
and Euryops shrubs (olive green) are the only dynamic plant communities in this model. Forest 
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(brown), stone (grey), and wetlands (blue) do not change. Other grasslands (sage green) do not 
grow or expand but are able to be invaded by the four dynamic communities.  
 

5.2.3.1 Precipitation Patterns 

 We used the Climate Hazards group Infrared Precipitation with Stations data (CHIRPS; 

Funk et al., 2015), processed through the Climate Engine Application (climateengine.org), to 

understand past precipitation patterns over Guassa, stretching from 1981 – 2018 (Figure 5.2). 

CHIRPS data integrates 0.05° resolution satellite imagery with available in-situ station data to 

produce a gridded time series product that estimates precipitation every day. In conjunction with 

these historical patterns, we use a published measurement of average annual precipitation from a 

private climate station in the Guassa area (Fashing et al. 2014). We drew on these data to identify 

realistic and stochastic patterns of precipitation for our future trends.  We estimate average annual 

precipitation for normal (1,600 mm ± SD 200 mm), wet (1,900 mm ± SD 200 mm) and dry (1,300 

mm ± SD 200 mm) climate regimes.  Annual precipitation in a year where the early season rains do not arrive (i.e., a “No Belg” climate regime) is about 24% lower than a normal year and changes are 

concentrated in the Belg rainy season of March - May. The dry, average, and wet trends follow the 

bi-modal seasonal distribution that is historically common throughout the Ethiopian highlands 

(Figure 5.2).  
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Figure 5.2. Box plot showing CHIRPS estimates of monthly precipitation for the Guassa area ranging 
from 1981 – 2018.  A) Nov – Feb receives 0.5% of the annual precipitation per week, B) March – 
May (Belg rains) receives 3% per week, C) June and October receive 1% per week, and D) July – 
September (Kiremt rains) receives 3.7% per week. In the No Belg scenario, B) March – May receives 
1% of the annual precipitation instead of 3%.  
 

5.2.3.2 Vegetation Growth  

We estimated carrying capacity for each of the four spreading vegetation types in our 

model. Data from 2008 provides an above ground biomass estimate for the Guassa area of 480.38 

g/m2 (no variance reported), with most plots dominated by herbaceous ground covers and guassa 

grass (Wodaj et al 2016). On Mount Kilimanjaro, 95% of Afroalpine biomass estimates for 

Helichrysum-tussock grass vegetation range between 220 – 1,040 g/m2, with a mean around 

630g/m2 (Ensslin et al. 2015).  Subalpine Erica shrubland has biomass estimates around 880g/m2 

from Mount Kilimanjaro, ranging from about 470 – 1290g/m2 (Ensslin et al. 2015). In South Africa, 

communal lands with mountain shrubland vegetation dominated by Euryops spp. and other woody 
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shrubs had  biomass ranging from 199g/m2 to 2,244 g/m2, but was typically around 600 g/m2 

(Anderson et al. 2010). Therefore, we use the maximum biomass estimates to define the carrying 

capacity for guassa grasses at 0.8 kg/m2, for Euryops shrubs and Helichrysum shrubs at 1 kg/m2, 

and for Erica shrubs at 1.2 kg/m2. Following Fryxell et al. (2005), we linked the carrying capacity of 

these vegetation types to precipitation using a coefficient (ψ). We divided each carrying capacity by 
the average weekly precipitation in the Guassa area (24.5 mm), yielding estimates of ψguassa grass = 0.0327,  ψHelichrysum shrubs = 0.0408, ψEuryops shrubs = 0.0408, and ψErica shrubs = 0.0490. In the stochastic simulations, ψ is multiplied by the weekly precipitation.  

We represent the growth of these four vegetation types through individual modified logistic 

growth equations. We assume weekly growth rates are at a maximum when vegetation biomass is 

low, as at the beginning of the rainy season or after a disturbance event (Parsons et al. 2001, Fryxell 

et al. 2005). Therefore, we include a factor that relates the growth rate to standing biomass and 

precipitation. We further assume that competition for resources influences both grass and shrub 

dynamics, and we modify the logistic growth equation to reflect that total biomass from all species restricts growth dynamics in each species equation (D’Odorico et al. 2012). For example, the 
growth of guassa grass can be represented: 𝑑𝐵𝑔𝑢𝑎𝑠𝑠𝑎𝑑𝑡 = 𝑟𝑚𝑎𝑥 × [𝐵𝑔𝑢𝑎𝑠𝑠𝑎 +ψ(𝑅)] × [1 − 𝐵𝑔𝑢𝑎𝑠𝑠𝑎 + 𝐵𝐻𝑒𝑙𝑖𝑐ℎ𝑟𝑦𝑠𝑢𝑚 + 𝐵𝐸𝑢𝑟𝑦𝑜𝑝𝑠 + 𝐵𝐸𝑟𝑖𝑐𝑎 +ψ(𝑅)2 × ψ(𝑅) ] 
Where B = dry weight biomass (per species), rmax = weekly growth rate (per species), and ψ (R) = 

carrying capacity multiplied by weekly rainfall.  This allows both the maximum rate of grass growth 

and the carrying capacity to rise and fall with rainfall patterns. Senescence occurs during the 10 

weeks following the end of the kiremt season rains. Each week, guassa grass biomass declines by 

8%, resulting in 20% biomass remaining in each cell at the start of the next belg rains. Following 

expert opinion and observation, we programmed Helichrysum shrubs to senesce at a rate of 4% per 
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week so that 60% of their biomass remains the following year, Euryops shrubs retain 80% of their 

biomass, and Erica shrubs retain 90% of their biomass in the following year. 

 Growth rate estimates were derived from MODIS Net Annual Primary Production (NAPP) 

product (MOD17A3H; Running & Zhao 2015, ORNL DAAC 2018). First, NAPP was converted from 

kg carbon (kgC) to biomass by dividing by 0.5 (0.67 kgC/m2 / 0.5 = 1.34 kg/m2). Based on gross 

primary productivity curves, maximum growth occurs during the kiremt rainy season, which 

contains 44.4% of the annual precipitation over a twelve week period. Given that precipitation is a 

well-established driver of plant growth in most biomes (O’Connor et al. 2001, Knapp et al. 2002), 
we assumed that the percent of NAPP during this period was roughly the same as the percent of 

annual precipitation, yielding a maximum per week growth rate of  0.444*1.34 kg/m2/12 weeks = 

0.0496 kg/m2/week. We then divided this maximum growth rate into sections for each vegetation 

type, assuming that guassa grasses and Helichrysum shrubs are able to grow faster than Euryops 

shrubs (Everson et al. 2009), which can grow faster than Erica shrubs (Wubie 2018). Due to the 

highly derivative nature of this parameterization, we tested a range of maximum growth rate 

estimates in a sensitivity analysis before conducting the management scenarios, and selected 

growth rates that produce biomass and distribution patterns that match local perspectives.  

5.2.3.3 Seed Production and Dispersal 

 In the model, seeds from the three shrub species are produced and stored in the seed bank 

of each cell, and germinate in the coming spring when the belg rains arrive. Seeds of guassa grasses 

germinate shortly after being shed in July-August, following evidence from observations of Festuca 

arundinacea and Festuca bromoides (Bartolome 1979; Grime et al. 1988; Thompson et al. 1997) and 

preliminary findings that guassa grass seeds are largely absent from the Guassa seed bank (Wubie 

2018).  Seed production for each vegetation type occurs as a proportion of the aboveground 

biomass present in each cell, following studies of reproductive allocation and effort (Reekie & 

Bazzaz 1987).  We took the average reproductive allocation (shoots, flowers, and seeds) of three 
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Festuca species in the literature: F. arundinacea (7.6%), F. gigantea (18.9%), and F. ovina (6.9%) 

(Wilson & Thompson 1989), to estimate that roughly 11% of standing guassa grass biomass is 

converted to seeds each year. Because reproductive allocation is generally lower in species with 

low relative growth rates (Bazzaz et al. 1987), we estimate shrub reproductive allocation will be 

closer to 8% for Euryops shrubs and 7% for Erica shrubs (Vosse et al. 2008). We selected 9% for 

Helichrysum because our sensitivity analysis revealed larger proportions caused guassa grasses to 

outcompete Helichrysum, which did not match local perceptions.  

Each seed that germinates contributes a small amount towards the total biomass (0.5 g).  

Maximum germination rates of Erica shrubs are 62% under ideal conditions in the laboratory 

(Mesléard & Lepart 1991), therefore, we assume an average 40% germination rate under field 

conditions. Published data on germination rates for Helichrysum shrubs, Euryops shrubs, and 

guassa grasses do not exist; therefore, we used estimates from other species in the same genera. 

Germination rates for the Mediterranean species H. stoechas range between 30-50% (Doussi & 

Thanos 1997) while South Africa H. foetidum (12%) and H. patulum (24%) have much lower rates 

(Brown et al. 2003). We thus assume an average 25% germination rate for Helichrysum shrubs. 

Germination rates for seeds from U.S. F. arundinacea were between 97-98% (Rampton & Ching 

1966); however, seeds from Canadian F. hallii had germination rates between 67 – 85% (Qiu et al. 

2010). We assume a conservative average of 80% germination rate for guassa grasses. Finally, we 

take the average of three species of Euryops from South Africa  - E. linearis (31%), E. speciosissimus 

(24%), E. virgineus (13%) (Brown et al. 2003), and assume a 23 % germination rate for Euryops 

shrubs in Guassa.  

Due to the absence of aerial dispersal structures (Molinier & Muller 1938), Erica seeds do 

not typically spread more than 14m from their source plant (Mesléard & Lepart 1991). Therefore, 

we assume 80% of the seeds produced will stay in the same 30m x 30m cell of the model, while 

20% will spread to neighboring cells equally. We assume the same distribution for guassa grass 
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seeds, some species of which have been shown to have highly restricted dispersal distances 

(Rabinowitz & Rapp 1981).  Helichrysum shrubs observed in South Africa have parachute-type 

seeds that are adapted for long distance dispersal by wind (Shiponeni 2003; Shiponeni & Milton 

2006). Helichrysum shrubs have been observed to dominate South African seed banks and become 

the first shrubs to colonize eroded or overgrazed land, largely due to the papery texture of the 

seeds and their relative unpalatability (Everson et al. 2009). Therefore, we assume 30% of the 

seeds produced will stay in the same cell of the model, while 70% will spread to neighboring cells 

equally. While we were unable to find Euryops seed dispersal observations, research from South 

Africa (Vosse et al. 2008) shows similar Euryops and Helichrysum seed densities in the soil 

seedbank. Based on this limited information, we assume 50% of the Euryops seeds produced will 

stay in the same cell of the model, while 50% will spread to neighboring cells.  

5.2.3.4 Dominant Vegetation Cover and Transitions 

 In week 39 of a simulation (late September), we calculate the biomass dominance in each 

cell with over 0.1 kg/m2 total biomass across the four spreading vegetation types. We selected this 

week because it falls after the majority of ecological functions are simulated in the model (seed 

production and spreading),  yet biomass is still high at the end of the main rainy season. We 

selected the 0.1 kg/m2 threshold to ensure we did not evaluate cells with only very small 

concentrations of the species of interest. We assume guassa grasses and Helichrysum shrubs need 

to occupy 40% of the total cell biomass to be considered dominant, while Erica and Euryops shrubs 

need to occupy 30% of the total cell biomass to be considered dominant. Because Erica and Euryops 

shrubs are larger, they can produce higher biomass values than guassa grass or Helichrysum shrubs 

in the same amount of space. Therefore, we consider a lower percent cover to be equivalent to the 

same amount of biomass.  
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Table 5.1. Parameter estimates with supporting literature.  

Parameter Description Estimate Citations 

precipitation annual 
precipitation 

average (1,600 mm ± 
SD 200 mm), wet (1,900 
mm ± SD 200 mm) and 
dry (1,300 mm ± SD 200 
mm)  

Fashing et al. 2014, 
Funk et al., 2015 

Carrying capacity Maximum 
carrying capacity 

0.8 kg/m2 (guassa 
grass); 1 kg/m2 
(Helichrysum and 
Euryops shrubs); 1.2 
kg/m2 (Erica shrubs) 

Wodaj et al 2016; 
Ensslin et al. 2015; 
Anderson et al. 2010 

growth rate Maximum weekly 
growth rate 

0.017 kg/m2/week 
(guassa grass and 
Helichrysum shrubs); 
0.01 kg/m2/week 
(Euryops shrubs); 0.007 
kg/m2/week (Erica 
shrubs) 

Running & Zhao 2015; 
ORNL DAAC 2018 

seed production Percent biomass 
allocation into 
seed production 

11% (guassa grass); 9% 
(Helichrysum shrubs); 8 
% (Euryops shrubs); 
7% (Erica shrubs) 

Wilson & Thompson 
1989; Bazzaz et al. 
1987; Vosse et al. 
2008 

seed bank Percent seed 
biomass that stays 
in current cell  

80% (guassa grass and 
Erica shrubs); 30% 
(Helichrysum shrubs); 
50% (Euryops shrubs) 

Rabinowitz &Rapp 
1981; Shiponeni 
2003; Shiponeni & 
Milton 2006; Everson 
et al. 2009; Molinier & 
Muller 1938; 
Mesléard & Lepart 
1991; Vosse et al. 
2008 

germination rate Percent of  seeds 
that germinate 
from the soil 
seedbank 

80% (guassa grass); 
40% (Erica shrubs); 
25% (Helichrysum 
shrubs); 23% (Euryops 
shrubs) 

Rampton & Ching 
1966; Qiu et al. 2010; 
Doussi & Thanos 
1997; Brown et al. 
2003; Molinier & 
Muller 1938; 
Mesléard & Lepart 
1991; Olano et al. 
2002 

senescence  Percent biomass 
that dies back 
each year by 
species 

80% (guassa grass); 
40% (Helichrysum 
shrubs); 20% (Euryops 
shrubs); 10% (Erica 
shrubs) 

Expert elicitation  
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5.3 Results  

We used a sensitivity analysis to refine our parameterization (Appendix F), and designed a 

set of scenarios based on our conversations with workshop participants.  Results from these 

scenarios are presented below in order of increasing complexity.  

5.3.1 Guassa Harvest Limits and Baseline Scenario 

We simulated 30 iterations of each scenario out to 30 years.  We combined insights from the 

co-design process with a sensitivity analysis to determine that the maximum sustainable harvest 

limit per person was ~270 kg each harvest for no belg climate, ~700 kg each harvest for dry 

climate, ~900 kg each harvest for average climate, and ~1100 kg each harvest for wet climate 

(Appendix F).  Increasing these limits by even 100-200 kg caused drastic declines in guassa grass 

biomass and distribution over just five to 15 years when harvesting every three years. These 

declines were more precipitous when harvests were more frequent (every two years), and less 

severe when harvests were less frequent (every four years).   

We constructed a baseline scenario where people continue to harvest guassa grasses every 

three years under an average climate regime, which reflects a common desired future for the 

Guassa area.  Under this baseline scenario, average total biomass for guassa grasses was 442 

kg/year (Table 5.2), and the grasses occupied about 7% of the total landscape. Each of the 500 

agents in our model ended up with an average of 7,024 kg of harvested guassa grass at the end of 

the 30 years, which equates to about 21,000 birr ($712 USD). Helichrysum shrubs had an average 

total biomass of 890 kg/year, and occupied 7% of the landscape at the end of the 30 year baseline 

scenario. Erica shrubs had an average total biomass of 1147 kg/year and occupied 21% of the 

landscape, while Euryops shrubs had an average total biomass of 1000 kg/year and occupied 9% of 

the landscape.  

 

5.3.2 Scenario 1: No Human Intervention 
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In the first scenario, we explored what would happen under different climate regimes if the 

guassa grass harvest was stopped for the next 30 years.  Compared to the baseline scenario, all 

species had higher biomass in the wet climate and lower biomass in the no belg climate (Table 5.2). 

Shrubs only performed better than the baseline under the wet climate. Under the dry climate, 

guassa grasses appeared to be the most resilient, as guassa biomass was about the same as the 

baseline while all shrub species had 20-22% lower biomass. In the average climate, guassa grasses 

had an average total biomass of 567 kg/year, an increase of 28% from the baseline scenario. 

Meanwhile, all shrub species declined slightly (2.3-2.8%) from the baseline scenario under average 

climate. When comparing across climates within scenario 1, we found that Erica and Euryops 

shrubs did not differ notably across the dry and no belg climate scenarios, but guassa grasses and 

Helichrysum shrubs had lower biomass in the no belg climate compared to the dry climate (Figure 

5.3). The lack of harvest did not impact the landscape distribution of any species under any climate 

(Table F3, Appendix F).  
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Figure 5.3. For scenario 1 (no guassa harvest), we summed the biomass across all cells in the 
landscape and calculated the average total biomass across the 30 iterations. While Erica and 
Euryops shrubs do not appear impacted by the lack of belg rains, both Helichrysum shrubs and 
guassa grasses declined in the no belg climate.  
 
 
Table 5.2. Percent change in average total biomass compared to the baseline scenario.  

 

 

5.3.3 Scenario 2: Changing Guassa Harvest Frequency 

In the second scenario, we explored how guassa grass harvests would impact vegetation 

dynamics if they were conducted more (every two years) or less (every four years) frequently than 

the baseline, and how this harvest frequency interacts with climate.  Compared to the baseline, all 

species’ biomass increased under a wet climate, though guassa performed better than the shrubs 

when harvesting occurred every four years, and worse than the shrubs when harvesting occurred 

every two years (Table 5.2). Under an average climate, harvesting more frequently reduced guassa 
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biomass by 7% and harvesting less frequently increased guassa biomass by 6%, while changes to 

the shrub species were minimal (Figure 5.4). We observed the same pattern under the dry climate, 

though all species had a 18-19% decrease in biomass overall in this climate.  The no belg scenario 

disproportionally impacted guassa grasses and Helichrysum shrubs, causing a 26-31% decrease in 

biomass for guassa and a 28% decrease for Helichrysum across all harvest frequencies, while Erica 

only decreased 19% and Euryops 22-23%. Under the no belg climate, harvesting more or less 

frequently did not significantly impact guassa biomass. Harvesting every three years resulted in 

roughly equal performance across species for both the dry and wet climates.   

 

Figure 5.4. Under an average climate regime, harvesting more frequently reduced average total 
guassa biomass by 7% and harvesting less frequently increased guassa biomass by 6%, while 
changes to the shrub species were minimaL (0-2%). 
 



134 

Harvesting more frequently resulted in higher per person economic benefits, while 

harvesting less frequently did not result in proportional declines in economic benefits (Figure 5.5). 

For example, harvesting every two years in a wet climate increased per person benefits by $271, 

while harvesting every four years decreased them by only $192 (i.e., a buffer of $79 dollars).  

Harvesting guassa every two years under a dry climate produced the same per person benefit as 

harvesting every three years in an average climate. However, there were ecological consequences 

for guassa grass distribution across the landscape when harvesting every two years, as guassa 

distribution decreased to 5% of the landscape and Helichrysum shrubs expanded to 9% of the 

landscape under dry, average, and wet climates (Figure 5.6, Table F3).  Meanwhile, harvesting less 

frequently did not increase guassa distributions across the landscape, indicating that the ecological 

benefits of harvesting less frequently may not outweigh the economic costs of a less frequent 

harvest.  

 

Figure 5.5. Per person economic benefits from guassa grass harvest, compared across climate and 
harvest frequency.   
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5.3.4 Scenario 3: Helichrysum Shrub Removal 

In the third scenario, we explored how the addition of Helichrysum shrub removal impacted 

vegetation dynamics. We found that Helichrysum shrubs are much more sensitive to removal 

compared to the guassa grasses; each person only needs to cut an average of 7-11 shekams (250-

350 kg) in any climate to observe drastic changes across the landscape. We maintained the baseline 

guassa harvest frequency of three years across all climates, using the maximum sustainable harvest 

we determined for each climate.  According to workshop participants, the ideal timing for cutting 

Helichrysum would be the same year that guassa grasses are harvested, because people would be 

less likely to illegally harvest guassa during Helichrysum cutting in this situation. We therefore 

tested a three-year Helichrysum removal cycle and found it caused an 8% increase in guassa grass 

biomass under an average climate compared to the baseline, but did not change average 

Helichrysum biomass. This three-year removal cycle reduced guassa biomass losses in the dry and 

no belg climates without also benefitting Helichrysum, and increased guassa biomass in the wet 

climate by an additional 10% compared to Scenario 2 (with no Helichrysum removal). However, the 

Helichrysum cutting appeared to release competitive control on Erica shrubs, which expanded to 

occupy 34-35% of the landscape – causing range contraction in the three other species of interest 

(Figure 5.6, Table F3).  Lengthening the removal cycle to four years mitigated the range contraction 

slightly, but many of the benefits to guassa biomass were lost. Increasing the removal cycle to two 

years had a similar impact on guassa biomass, but resulted in guassa occupying only 2% of the 

landscape at the end of the 30 year simulations (Figure 5.6).  
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Figure 5.6.  Guassa grasses (bright green), Helichrysum shrubs (white), Erica shrubs (dark green), 
and Euryops shrubs (olive green) forest (brown), stone (grey), and wetlands (blue) are shown across 
the modeled landscape. The baseline scenario had guassa grasses and Helichrysum shrubs each 
occupying 7% of the landscape. When harvesting increased to every two years, guassa grass 
distribution decreased to 5% of the landscape and Helichrysum shrubs expanded to 9% of the 
landscape under dry, average, and wet climate regimes. The addition of Helichrysum removal 
appeared to release competitive control on Erica shrubs, which expanded to occupy 34-35% of the 
landscape, causing range contraction in the three other species of interest.  
 

5.3.5 Learning from ABM Co-design 

The ABM itself was made more realistic as a result of the co-design workshops (see Section 

2.2), indicating there was some level of mutual learning occurring among workshop participants, 

including the scientist facilitators. The post-workshop interviews (n=33) encouraged participants 

to reflect on their learning and describe it.  The most common theme we found related to the way 

people saw the model helping them with planning and management of the Guassa area (n=23, 

70%), particularly how it could help control the spread of Helichrysum shrubs, known locally as ‘nachillo’ (n=10, 30%).  Only three people (9%) indicated that the model taught them something 
specific about the system, such as how harvesting impacts guassa grass growth, or how much each 

individual should be able to harvest at a time. Four others (12%) explained that the model helped 

them expand the way they were thinking about options for Guassa management. For example, one 

man said, “I learned it is possible to plan on the computer about the future of Guassa.” Other people 
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attributed learning to the model when it actually came from conversation around the model. For example, one woman “learned from the model that nachillo has to be removed” while another 
woman reported that she “learned it is possible to control and manage nachillo” – even though the 

initial model did not show any Helichrysum cutting, it merely inspired conversation about the need 

for cutting. Still others seemed to use the model to reinforce their existing understanding of system management. For example, one man said, “if we protect our guassa, we will always have green guassa.”  
Another common theme was how the model helped people see and understand the future 

(n=17, 51%). This theme occasionally overlapped with the planning and management theme, with one priest explaining “It is important to forecast into the future in order to control the Guassa area.” Others emphasized that they would share with people who could not attend the workshop how “it 
is possible to predict the future of Guassa,” even though the scientist facilitators repeatedly 
explained that the model was not a true prediction of the future. Four people (12%) seemed to 

understand this caveat well, as they described the need to put only very high quality information 

into the model to produce good results and see “different possibilities.”  
A large subset of people emphasized the ecological insights they gained from the model 

(n=15, 45%), such as the interactions between Helichrysum shrubs and guassa grass.  Though only 

a few people mentioned it in their interviews, there was much excitement in our group discussion 

when the scientists discussed guassa seed production. Most people had never seen guassa seeds 

before and did not know they existed, probably because the conservation area is always closed 

during the main rainy season.  Another subset of people valued the model for the way it displayed 

the different vegetation types in the conservation area (n=13, 39%), both their distribution and 

amount across the landscape.  This level of realism seemed important for making the model accessible to them; one man explained, “the model matches our understanding.”  
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5.4  Discussion 

We developed a spatially-explicit model of shrub-grassland dynamics in a community 

conservation area in the Ethiopian highlands, with parameters derived from remote sensing, 

literature review, and expert opinion. The purpose of this model was to enable people involved in 

managing Guassa to explore the individual and combined effects of social and ecological factors 

controlling the spread of these native shrubs, and to evaluate different strategies to control their 

expansion while maximizing the amount of guassa grass available for harvest. 

Our model results supported continuing current management of harvesting guassa grasses 

every three years, as this frequency appears to mitigate negative ecological impacts across climate 

types while retaining economic benefits for local communities. However, we stress the need for 

managers to be sensitive to climatic conditions, as our model identified significantly lower 

maximum harvest limits during the no belg climate in particular.  Our model admittedly treated 

climate in a simplified way, where each year followed the same seasonal pattern and general 

precipitation amount.  This discrete treatment of climatic conditions was helpful during this initial 

exploration as it allowed us to isolate the impacts of precipitation patterns in relation to harvest 

frequency and intensity.  A second version of the model that integrates periodic no belg, dry, and 

wet years into the average climate would create a more realistic model that could help managers 

identify consistent harvest amounts and frequencies.  

The removal of only Helichrysum shrubs in our model caused an unexpectedly rapid 

increase of Erica shrubs across the conservation area, and a decrease in the distribution of guassa 

grasses. However, guassa grass biomass increased despite this range constriction. These results 

indicate that managers should be cautious of even low-level Helichrysum removal, and should 

weigh the benefits and drawbacks of increasing guassa biomass while losing overall landscape 

cover as a possible unexpected outcome.  Unlike guassa grasses, we did not find that altering the 

amount of Helichrysum removed was needed to preserve desirable outcomes across climate types. 
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However, our current model has each person removing 90% of biomass in each cell they visit, 

which we would consider decreasing in further iterations of the model.   

Another possible management option to test with the model would be to allow harvesting of 

Erica shrubs, which are considered a highly desirable firewood species.  Firewood harvest was 

banned due to possible negative impacts to rodent populations, which account for more than 80% 

of the diet of the endangered Ethiopian wolf (Ashenafi et al. 2005). Research in the Guassa area 

showed that while total rodent populations were unaffected by firewood harvest, the proportion of wolves’ preferred prey species, the Abyssinian grass rat  (Arvicanthis abyssinicus), was lower where 

firewood harvesting occurred (Ashenafi et al. 2012).  However, the method of removal and shrub 

species are important to consider, as Euryops shrubs are often uprooted completely, leaving open 

areas that may be less desirable habitat for rodents (Ashenafi et al. 2012).  We propose that 

selective cutting of Erica shrubs in addition to Helichrysum shrubs may present a viable 

management option for controlling shrub expansion, which would likely not have such negative 

consequences for rodent populations and which would have additional economic benefits for local 

people.   

Because the model was designed as a decision support and learning tool, we selected to 

represent the vegetation dynamics at a landscape scale using a modified logistic growth curve 

rather than a highly detailed process-based model.  We feel this simplification is justified given that 

our focus has been to use the model as an exploratory rather than a predictive tool to shed light on 

how multiple interacting factors impact vegetation dynamics.  However, the co-design process 

resulted in a more realistic model than scientists originally intended, and workshop participants 

continuously sought quantifiable outcomes rather than qualitative or exploratory learning through 

the model.  Our inclusion of multiple shrub species is a novel aspect of the model that is not seen in 

most spatial shrub encroachment models (Komac et al. 2013; Cao et al. 2018), and which was due in 

large part to the co-design process, as workshop participants insisted on a certain level of realism in 



140 

the vegetation patterns seen in the model.  In fact, one of the most common types of learning 

experienced by workshop participants was an improved understanding of how these vegetation 

types are distributed across the landscape.  Yet, workshop participants were more interested in the 

model for its ability to provide quantitative answers such as the ideal amount of Helichrysum to cut, 

how much guassa grass could be harvested at what frequency, and what that meant for the amount 

of income generated for the community.  One local leader ended the co-design process with a very clear statement, “if you tell us how much Helichrysum to cut, we will cut it.” This statement 

reflected a high level of trust in the model and scientific process, despite the caveats and cautions 

presented by scientists throughout the co-design process.  Therefore, while this exploratory model 

has been helpful for scientists thinking about the system, we believe the next iteration of this model 

needs to be calibrated to locally-collected data to provide more accurate estimations and better 

meet the needs of local management.  

5.5  Conclusion 

Our results support the idea that collaboratively designed agent-based models can inspire 

learning among the people involved in managing a social-ecological system.  We intentionally 

attempted to design our model at an intermediate level of complexity, as this has been suggested as 

a way to maximize learning (Grimm et al. 2005; Le Page & Perrotton 2018).  However, participants 

in our co-design process urged increasingly realistic representations in the model, and did not find 

a qualitative, exploratory use of the model particularly helpful for achieving their management 

objectives.  Yet, the co-design process did encourage learning, particularly about the ecology and 

biogeography of the area, and illuminated the ability of people with local knowledge to improve 

scientific tools and outputs. Additionally, this process garnered support among the local 

management team for increased ecological data collection in the Guassa area, so that future 

iterations of this model can better meet management needs. 
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CHAPTER 6  

CONCLUSION  

 
 

 This dissertation advances our understanding of how social-ecological models can support 

knowledge co-production and learning in collaborative environmental management.  Key insights 

from a global survey emphasize the importance of mutual respect and power sharing among 

participants in a collaborative process, and evidence from an Ethiopian case study demonstrates 

the impact of different kinds of social-ecological models on knowledge co-production and learning 

in a particular socio-cultural context.   

 In Chapter 2, I presented a conceptual model to guide the implementation of environmental 

transdisciplinary work (TDW), which is gaining momentum as a research approach that brings 

together diverse teams to produce solutions to social-ecological problems. Survey results provided 

support for 24 activities that can be considered TDW best practices for a wide range of social-

ecological contexts, including things like identifying activities to build credibility across participants 

and fostering capacity to conduct the proposed methods. I demonstrated how these activities can 

help overcome the key barriers in environmental TDW, such as insufficient time and power 

dynamics, with additional lessons from the broader literature. Our results suggest that flexibility, 

mutual respect, and collaborative spirit are the most important skills and characteristics for 

successful TDW.  I hope these best practices will help people organizing future TDW projects to 

focus limited time and resources on activities with demonstrated effectiveness, though a grain of 

salt is needed as the survey respondents were largely academics from Western countries. I also 

hope that the conceptual model will impress upon TDW participants the value of deep, place-based 

understanding through an exploratory phase at the beginning of a project.   

In Chapter 3, I presented findings from my own implementation of an exploratory phase at 

the beginning of a TDW process in a community conservation area in the Ethiopian highlands 
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(Guassa).  I used a multiple evidence based (MEB) approach (Tengö et al. 2014) to knowledge co-

production, which brought together insights from local and scientific knowledge using 

ethnographic and remote sensing methods to produce a holistic understanding of environmental 

change and its impacts on ecosystem services. Results with high agreement across knowledge 

systems clarified and reinforced understanding of certain threats and changes to Guassa, such as 

the rapidly declining native forests, the disappearing belg rainy season, and the impact of insecure 

land tenure on natural resource extraction. Compelling areas of disagreement highlighted topics in 

need of further investigation, including increased attention to the spatial and temporal variability of 

change across a seemingly homogeneous cultural landscape, and the process of shrub 

encroachment into the protected grassland. These results highlight how integrating local and 

scientific knowledge can reveal gaps in system understanding, and how contradictory observations 

across knowledge systems can inspire new understanding and future research. Findings from this 

exploratory phase emphasize the value of an iterative approach that allows local participants to 

more confidently inform remote sensing interpretations, and in turn allow scientists to clarify 

translations and interpretations so that local knowledge is accurately represented.  

In Chapter 4, I presented an analysis of mental models held by four social groups involved in 

managing Guassa, which we iteratively constructed and revised over the course of a year. These 

mental models emphasized the primacy of governance (e.g., political instability, regime change) and economics (e.g., income, unemployment, crops) in peoples’ conception of the social-ecological 

system. I also assessed the learning experienced by participants in this collaborative modeling 

process, revealing that participants experienced both single- and double-loop social learning. For 

example, some people changed the timeline they used to think about the Guassa area (from 5 years 

to more like 20-30 years), and others formed a newfound appreciation for the number of factors 

influencing each other in the system. The collaborative modeling process also encouraged learning 

among the different social groups, which contributed to stronger and more trusting relationships. 
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This kind of iterative exploration of individual and group mental models is quite rare in the 

literature, and holds promise as a tool for promoting mutual respect and understanding in 

collaborative environmental management. 

  In Chapter 5, I presented the process of co-designing a spatially-explicit agent-based model 

of shrub encroachment into the Guassa area, which we identified in Chapter 3 as a critical 

sustainability concern. The model enabled people involved in managing Guassa to explore the 

individual and combined effects of social and ecological factors controlling the spread of these 

native shrubs, and to evaluate different strategies to control their expansion while maximizing the 

amount of guassa grass available for harvest. The model results suggested that cutting Helichrysum 

shrubs might have the unexpected and unintended consequence of removing competitive controls 

on other shrub species in the conservation area, thus reducing rather than improving the growth 

and distribution of the desirable guassa grasses. Though the model was intended as a prospective 

rather than predictive model, participants in the co-design process desired increasingly realistic 

representations of the system so that it could be used to answer specific management questions 

like how many kilos of Helichrysum shrubs to cut each year. I assessed the learning experienced by 

participants in this collaborative modeling process, revealing that the process enhanced learning 

about the ecology and biogeography of the area, and encouraged people to plan for and consider 

the future of the Guassa area. This process allowed Guassa managers to become more familiar with 

scientific tools like simulation models, and empowered them to suggest improvements to the model 

so that it would fit their needs.   

  Chapters 3-5 of this dissertation describe several years of collaborative research, which 

corresponds roughly to Steps 1-6 of the conceptual model in Chapter 2.  This process has been 

incredibly important for building strong, trusting relationships among the local farmers, 

government workers, conservation officers, and scientists (including myself) involved in 

management. As the issue of shrub encroachment rose to the foreground through this collaborative 
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process, we started writing grants to support another collaborative project that would investigate 

the ecological shrub-grass interactions in Guassa.  We secured funding to support another PhD 

student from Addis Ababa University, Shambel Alemu, to continue this important work and begin 

another TDW cycle.  In the co-design workshop from Chapter 5, we used half a day to discuss Shambel’s proposed research and what kinds of community support he needed, corresponding with 
Step 7 of the conceptual model. The core team for this next project will likely be much smaller in 

scope, more like 9-15 people instead of the 40+ involved in my dissertation fieldwork. However, we 

plan to continue large-group meetings at least once a year to discuss initial findings from Shambel’s 
work, and to refine the agent-based model based on the data he collects.  

 Moving forward, I urge future research on the social and cultural aspects of collaborative 

environmental management in different contexts around the world, and the way that different 

modeling paradigms enable or constrain these processes. Common pool resource theory tells us 

that the ecological characteristics of the system matter for how people use and make decisions 

about resources (Epstein et al. 2013), thus the way we choose to model ecological systems may also 

impact the socio-cultural processes involved in collaborative environmental management. 

However, the relationship between model design and management concepts like social learning, 

adaptive capacity, and collective action has not been well studied (Radinsky et al. 2017). Because 

long-term adaptive strategies are only thought to be sustainable when they move beyond the 

individual and permeate a broader culture or society (Berkes & Jolly 2002), it is critical to 

understand how modeling can facilitate or constrain social learning and the subsequent impacts on 

adaptive capacity and collective action. 
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APPENDICES 
 
 
 
 

APPENDIX A 
 
 

Survey: Collaborative Research for Environmental Sustainability 

 
 

 

Q1 This study aims to provide a global assessment of collaborative research practices related to 

environmental sustainability.  Results will be used to better understand the activities and 

outcomes associated with successful collaborative environmental research worldwide.       

 

Thank you for taking the time to contribute to our survey. Please remember that your responses 

are voluntary, and will remain confidential.  We estimate the survey will take 20 - 25 minutes to 

complete.  

 

If you have any questions about the research, please contact Cara Steger at 

Cara.Steger@Colostate.edu. If you have any questions about your rights as a volunteer in this 

research, please contact the CSU Institutional Review Board at: 

RICRO_IRB@mail.colostate.edu; (970) 491 - 1553.  

 

 

Q2: Screening Question 

 

In this study, we define collaborative research as sustained engagement between researchers 

(professional scientists or scholars) and practitioners (e.g., resource users, natural resource 

managers, policy makers). Do you have previous experience with collaborative research? 

o Yes  (1)  

o No  (2)  

 

 

 

Q9 The Mountain Sentinels Collaborative Network identified seven broad phases of 

collaborative research and practice, with specific activities within each phase. We ask that you 

draw on your overall experience with collaborative research to rank the activities within each 

section in order of importance for project success, even if you have not used them yourself.   
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Q10 1. Activities Involved in Exploration 

 

 

Please rank the top three activities in order of importance for successful collaborative research, 

where 1 =most important. 

______ Identify activities to build credibility across participants (researchers and practitioners)  

______ Identify concerns of the different groups involved  

______ Learn a locally-spoken language  

______ Connect with individuals who are well-informed, helpful, or who have extensive 

networks  

______ Connect with stakeholders who are often marginalized in this area (e.g., women, youth)  

______ Attend meetings of the different groups involved  

______ Assess the context, history, or on-going initiatives surrounding this place or problem  

______ Other  

______ Other  

 

 

 

Q11 2. Activities Involved in Partnership Formation and Design 

Please rank the top three activities in order of importance for successful collaborative research, 

where 1 =most important. 

______ Identify shared interests among participant groups  

______ Identify a core leadership team composed of individuals from each participant group  

______ Identify mutually appropriate spaces for interactions (e.g., village center, classrooms)  

______ Include researchers who are interdisciplinary (i.e., work across disciplines)  

______ Include individuals with experience working with these participant groups or in this 

 location  

______ Conduct a smaller, preliminary project  

______ Engage face-to-face outside of project-related meetings  (e.g., social events, ice breakers)  

______ Define the roles and duties of individuals and participant groups  

______ Hold regular meetings with diverse participant groups 

______ Check the credentials or history of key participants, formally or informally  

______ Other  

______ Other  
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Q12 3.  Activities Involved in Co-Designing Research and Practice 

Please rank the top three activities in order of importance for successful collaborative research, 

where 1 =most important. 

______ Collaboratively define the specific issue(s) being addressed  

______ Collaboratively develop project goals for both research and practice  

______ Collaboratively develop data collection methods  

______ Collaboratively develop research questions or hypotheses  

______ Other  

______ Other  

 

 

 

Q13 4. Activities Involved in Co-Producing Research and Practice 

Please rank the top three activities in order of importance for successful collaborative research, 

where 1 =most important. 

______ Foster capacity to conduct agreed upon methods (i.e., hold training sessions)  

______ Collaboratively analyze data collected (e.g., can be qualitative, assess trends)  

______ Collaboratively develop outputs or outcomes (e.g., maps, capacity building)  

______ Distribute responsibilities among participants  

______ Collaboratively interpret results (e.g., mutual review of data and analyses)  

______ Other  

______ Other  

 

 

 

Q14 5.  Activities Involved in Learning From Each Other   

Please rank the top three activities in order of importance for successful collaborative research, 

where 1 =most important. 

______ Attend each other's meetings and events  

______ Express mutual respect for one another's knowledge, experiences, or worldviews  

______ Share experiences with each other (e.g., participate in household tasks, go on field trips)  

______ Try to accommodate different processes for learning, understanding, or decision-making  

______ Explore how you will use different types of knowledge in the research and practice  

______ Other  

______ Other  

 

 

 



185 

Q15 6.  Activities Involved in Communicating and Acting on Relevant Learning 

Please rank the top three activities in order of importance for successful collaborative research, 

where 1 =most important. 

______ Hold workshops or meetings to exchange feedback with decision makers  

______ Discuss how to expand upon the learning from this research  

______ Create a group of high profile individuals with power to impact the issue of interest  

______ Communicate results to practitioners beyond the immediate project partners  

______ Communicate results to the broader public  

______ Communicate results to the academic community  

______ Other  

______ Other  

 

 

 

Q16 7. Activities Involved in Developing Future Collaborative Opportunities 

Please rank the top three activities in order of importance for successful collaborative research, 

where 1 =most important. 

______ Reflect on the strengths and weaknesses of the collaborative research process  

______ Discuss opportunities for the next collaborative experience  

______ Assess participants' learning  

______ Reflect on the quality of outcomes and outputs from the collaborative process  

______ Reflect on the usefulness of outcomes and outputs for practitioner groups  

______ Other  

______ Other  

 

 

 

Q17 In your opinion, what is the most difficult phase of collaborative research? 

o Exploration   

o Partnership Formation and Design   

o Co-Designing Research and Practice   

o Co-Producing Research with Practice    

o Learning From Each Other (on-going throughout project)   

o Communicating and Acting on Relevant Learning   

o Developing Future Collaborative Opportunities   
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Q18 Is there a phase missing from the process we propose? If so, what kinds of activities might 

be involved in that phase? 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

 

 

 

Q41 Below are some of the most common barriers encountered in collaborative research. Please 

rank the three most significant barriers to project success, where 1 = most important.  

______ Participants were not very interested in collaborative research  

______ Participants did not have enough time to contribute to collaborative research and practice  

______ Participants unable to agree on actions to take  

______ Participants were unable or unwilling to take action  

______ Language barriers led to miscommunication  

______ Lack of effective communication between participants (e.g., trouble with honesty or  

clarity)  

______ Power inequalities were present among participants  

______ Certain participants' goals, plans, outputs, or methods dominated over other groups  

______ Difficulty identifying shared interests among participants early on  

______ Difficulty building consensus on specific methods and protocols  

______ Difficulty finding practitioners willing to teach other partners about their culture  

______ Difficulty finding researchers willing to train less-experienced partners in scientific 

 analysis 

______ The methods carried out did not address the original questions  

______ The project lacked financial support to carry out the full collaborative process.  

______ Certain participants were not willing to explore other ways of knowing (e.g., natural  

scientist rejects validity of qualitative approach, or policy maker refuses to acknowledge 

 importance of cultural perspective)  

______ Other  

______ Other  

 

 

 

Q42 Do you have any recommendations for how to overcome the three most significant barriers 

you identified? 

________________________________________________________________ 
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________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

 

 

 

Q19  

Collaborative research requires skills that are not historically emphasized in academic training, 

and which may not be culturally shared by practitioners. Please select (by clicking) the 

three most important skills and characteristics for successful collaborative research.  ▢ Generosity   ▢ Flexibility   ▢ Humility  ▢ Patience   ▢ Collaborative spirit   ▢ Interdisciplinary training    ▢ Mutual respect   ▢ Persistence  ▢ Trust   ▢ Other  ________________________________________________ 
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Q20 Please think of your most successful collaborative research project. Describe briefly what it 

was about and why you consider it successful.  

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

 

 

 

Q21 On a scale from 1 - 10, how successful was this project?  

 

 

(1 = "not at all successful" and 10 = "perfect, just as planned or better") 
 0 1 2 3 4 5 6 7 8 9 10 

 

Your Most Successful Collaborative Research 

Project ()  

 

 

 

 

Q22 In what country or countries did your most successful collaborative research occur? 

________________________________________________________________ 

 

 

 

Q23  

Who initiated your most successful collaborative research project? (select all that apply) ▢ Researchers (professional scientists/scholars/academics)   ▢ Practitioners (e.g., environmental managers, policy makers, NGO workers, etc.)   ▢ Other Stakeholders (e.g., resource users, concerned citizens, etc.)   
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Q24 How long did you work in this area before beginning your most successful collaborative 

research project? 

________________________________________________________________ 

 

 

 

Q61 How long did your most successful collaborative research project last? 

________________________________________________________________ 

 

 

 

Q25 In what system(s) did your most successful collaborative research project occur? (select all 

that apply) ▢ Arctic or Antarctic zones   ▢ Coastal Areas   ▢ Deserts   ▢ Forests   ▢ Grasslands   ▢ Mountains   ▢ Oceans   ▢ Protected Areas   ▢ Urban or peri-urban Areas    ▢ Other (please describe): __________________________________________ 
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Q26 What kinds of people did you collaborate with on your most successful collaborative 

research project? (select all that apply) ▢ Farmers   ▢ Fishers   ▢ Government  ▢ Non-profit or NGO  ▢ Pastoralists or Ranchers   ▢ Private Industry (e.g., mining, timber, manufacturing)   ▢ Service Sector (e.g., trade, tourism)   ▢ Other   ________________________________________________ 

 

 

 



191 

Q27 What kinds of learning, if any, did participants experience throughout your most successful 

collaborative research project? Learning can be assessed formally or informally. (select all that 

apply) ▢ We did not assess participant learning in any way.   ▢ Participants changed their ideas about which actions to take regarding the 

problem.   ▢ Participants realized the problem was more complicated, or expanded how they 

thought about the problem.  ▢ Participants changed their understanding of how things are related to each other 

within the system of interest.   ▢ Participants reported different values motivated them over the course of the 

project.   ▢ Participants changed formal or informal norms, rules, or institutions for 

addressing the problem of interest.   ▢ Participants changed their religious or moral beliefs about the problem of interest.   

 

 

 

Q28 We are interested in understanding how models are used in collaborative research. Did you 

use qualitative and/or quantitative modeling in your most successful collaborative research 

project? (select all that apply) ▢ Qualitative modeling   ▢ Quantitative modeling   ▢ We did not use any modeling   ▢ I do not know what kinds of modeling approaches were used in the project   
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Display This Question: 

If We are interested in understanding how models are used in collaborative research. Did you use qua... = 

Quantitative modeling 

Or We are interested in understanding how models are used in collaborative research. Did you use qua... = 

Qualitative modeling 

 

Q29 Please describe the modeling approach briefly.  

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

 

 

 

Q30 Please refer to your most successful collaborative research problem when answering the 

questions below.  

 

 

 

Q31 1. Activities Involved in Exploration 
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Please select (by clicking) all the activities you conducted in your most successful collaborative 

research project.  ▢ Assess the context, history, and on-going initiatives surrounding this place or 

problem (e.g., through situation analysis, participatory mapping,  etc.)   ▢ Identify activities to build credibility across participant groups (i.e. researchers 

and practitioners)   ▢ Identify concerns of the different participant groups involved   ▢ Learn a locally-spoken language   ▢ Connect with individuals who are well-informed, helpful, or who have extensive 

networks   ▢ Connect with stakeholders who are often marginalized in this area (e.g. women, 

youth)   ▢ Attend meetings of the different participant groups involved   ▢ Other  ________________________________________________ ▢ Other  ________________________________________________ 
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Q32 2. Activities Involved in Partnership Formation and Design 

Please select all the activities you conducted in your most successful collaborative research 

project.  ▢ Identify shared interests between participant groups   ▢ Identify a core leadership team composed of individuals from each participant 

group   ▢ Identify mutually appropriate spaces for interactions (e.g., village center, 

classrooms)   ▢ Include researchers who are interdisciplinary (i.e., work across disciplines)   ▢ Include individuals who have experience working with these participant groups or 

in this location   ▢ Conduct a smaller, preliminary project   ▢ Engage face-to-face outside of project-related meetings  (e.g., social events, ice 

breakers)   ▢ Define the roles and duties of individuals and participant groups   ▢ Hold regular meetings with diverse participant groups   ▢ Check the credentials or history of all participants, formally or informally   ▢ Other   ________________________________________________ ▢ Other  ________________________________________________ 
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Q33 3.  Activities Involved in Co-Designing Research and Practice 

Please select all the activities you conducted in your most successful collaborative research 

project.  ▢ Collaboratively define the specific issue(s) being addressed   ▢ Collaboratively develop project goals for both research and practice   ▢ Collaboratively develop data collection methods   ▢ Collaboratively develop research questions or hypotheses   ▢ Other  ________________________________________________ ▢ Other   ________________________________________________ 

 

 

 

Q34 4. Activities Involved in Co-Producing Research and Practice 

Please select all the activities you conducted in your most successful collaborative research 

project.  ▢ Foster capacity to conduct agreed upon methods (i.e., hold training sesions)   ▢ Collaboratively analyze data collected (e.g., can be qualitative, assess trends)   ▢ Collaboratively develop outputs or outcomes (e.g., maps, manuscripts, capacity 

building)   ▢ Distribute responsibilities among participants   ▢ Collaboratively interpret results (e.g., mutual review of data and analyses)   ▢ Other  ________________________________________________ ▢ Other  ________________________________________________ 
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Q35 5.  Activities Involved in Learning From Each Other   

Please select all the activities you conducted in your most successful collaborative research 

project.  ▢ Attend each other's meetings and events   ▢ Express mutual respect for one another's knowledge, experiences, or worldviews   ▢ Share experiences with each other (e.g., participate in household tasks, go on field 

trips)   ▢ Try to accommodate different processes for learning, understanding, or decision-

making   ▢ Explore how you will use different types of knowledge in the research process   ▢ Other  ________________________________________________ ▢ Other  ________________________________________________ 
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Q36 6.  Activities Involved in Communicating and Acting on Relevant Learning 

Please select all the activities you conducted in your most successful collaborative research 

project.  ▢ Hold workshops or meetings to exchange feedback with decision makers   ▢ Discuss how to expand upon the learning from this research   ▢ Create a group of high profile individuals with power to impact the issue of 

interest   ▢ Communicate results to practitioners beyond the immediate project partners   ▢ Communicate results to the broader public   ▢ Communicate results to the academic community   ▢ Other  ________________________________________________ ▢ Other  ________________________________________________ 
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Q37 7. Activities Involved in Developing Future Collaborative Opportunities 

Please select all the activities you conducted in your most successful collaborative research 

project.  ▢ Reflect on the strengths and weaknesses of the collaborative research process   ▢ Discuss opportunities for the next collaborative experience   ▢ Assess participants' learning   ▢ Reflect on the quality of outcomes and outputs from the collaborative process  ▢ Reflect on the usefulness of outcomes and outputs for practitioners and 

stakeholders   ▢ Other  ________________________________________________ ▢ Other  ________________________________________________ 

 

 

 

Q38  

Please continue to refer to your most successful collaborative project when responding.  

 

 

This is the second to last page of questions - you're almost finished!  

 

 

 

Q39 How many of these outputs did you produce during the course of your most successful 

collaborative research project? 

 _______ Curriculum materials  

 _______ Feedback workshops  

 _______ Maps  

 _______ News media  

 _______ Peer-reviewed publications  

 _______ Policy briefs  

 _______ Radio programs  

 _______ Videos or films  

 _______ Other:  

 _______ Other:  
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Q40 To what extent did your most successful collaborative research project impact decision-

making and/or policy? 

o Not at all   

o Low Impact   

o Medium Impact   

o High Impact   

 

 

 

Q62  

Congratulations, you made it! This is the last page of the survey. 

 

 

 

Q3 Approximately how many collaborative research projects have you been involved in 

throughout your career? Please include attempted collaborative research projects that may not 

have been successful.  

o 1 - 3 projects   

o 4 - 6 projects   

o 7 - 9 projects   

o 10 + projects   
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Q4 For how many years have you been conducting collaborative research? 

o   <1 – 5 years  

o 6 - 10 years   

o 11 - 15 years   

o 16 - 20 years   

o 21 + years   

 

 

 

Q5 Where has most of your collaborative research occurred? (select all that apply) ▢ North America   ▢ South America   ▢ Central America   ▢ Europe   ▢ Africa   ▢ Asia   ▢ Oceania   
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Q6 How do you self-identify? (select all that apply) ▢ Researcher (professional scientist/scholar)   ▢ Practitioner (e.g., environmental manager, policy maker, NGO worker, etc.)   ▢ Other Stakeholder (e.g., resource user, concerned citizen, etc.)   

 

 

 

Q7 With which gender do you most identify? (Select all that apply) ▢ Male   ▢ Female   ▢ Non-binary   ▢ Transgender   ▢ Other (please define or prefer not to respond) _________________ 
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Q8 Where are you primarily based geographically? ▢ North America   ▢ South America   ▢ Central America   ▢ Europe   ▢ Africa   ▢ Asia   ▢ Oceania   

 

 

 

Q43 Is there anything else you would like to share about your collaborative research 

experiences?  

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

 

 

 

Q44 Would you allow us to follow up with you regarding your responses to this survey? If so, 

please include your name and email address here. (Please note that your name and contact 

information will be kept confidential within the research team.)  

________________________________________________________________ 
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APPENDIX B 
 

Table B.1. All chi-squared and Fisher’s exact tests of association conducted in Chapter 2.  
 

Pearson's Chi-squared test with Yates' continuity correction OR Fisher's Exact Test 

Test Predictor Response X-

squared 

df p-

value 

Adjusted 

significance 

level 

Chi-squared Gender Geography 0.611 1 0.434 0.017 

Chi-squared Gender Positionality 0.094 1 0.759   

Chi-squared Geography Positionality 1.864 1 0.172   

              

Chi-squared Geography Learning Outcomes 0.344 3 0.952 0.017 

Chi-squared Gender Learning Outcomes 0.183 3 0.980   

Fisher's Positionality Learning Outcomes ---   0.604   

              

Fisher's Geography Policy Outcomes ---   0.542 0.017 

Fisher's Gender Policy Outcomes ---   0.054   

Fisher's Positionality Policy Outcomes ---   0.439   

              

Fisher's ProjectInitiated Learning Outcomes ---   0.148 0.01 

Fisher's LengthPreProjec
t 

Learning Outcomes ---   0.520   

Fisher's LengthProject Learning Outcomes ---   0.520   

Fisher's ModelingType Learning Outcomes ---   0.118   

Chi-squared Modeling Learning Outcomes 7.193 3 0.066   

              

Fisher's ProjectInitiated Policy Outcomes ---   0.008 0.01 

Fisher's LengthPreProjec
t 

Policy Outcomes ---   0.642   

Fisher's LengthProject Policy Outcomes ---   0.024   

Fisher's Modeling Policy Outcomes ---   0.042   

Fisher's ModelingType Policy Outcomes ---   0.398   

              

Chi-squared Curriculum/NoC
urriculum 

Learning Outcomes 5.271 3 0.153 0.006 

Chi-squared Maps/NoMaps Learning Outcomes 0.064 3 0.996   

Chi-squared NewsBrief/NoN
ewsBrief 

Learning Outcomes 8.215 3 0.042   

Chi-squared PolicyBrief/NoP
olicyBrief 

Learning Outcomes 0.964 3 0.810   

Fisher's Workshop/NoW
orkshop 

Learning Outcomes ---   0.036   
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Fisher's Peer-
ReviewedPubs/

NoPeer-
ReviewedPubs 

Learning Outcomes ---   0.466   

Fisher's Radio/NoRadio Learning Outcomes ---   0.061   

Fisher's Video/NoVideo Learning Outcomes ---   0.077   

Fisher's OtherPubs/NoO
therPubs 

Learning Outcomes ---   0.479   

              

Fisher's Curriculum/NoC
urriculum 

Policy Outcomes ---   0.128 0.006 

Fisher's Workshop/NoW
orkshop 

Policy Outcomes ---   0.909   

Fisher's Maps/NoMaps Policy Outcomes ---   0.523   

Fisher's NewsBrief/NoN
ewsBrief 

Policy Outcomes ---   0.420   

Fisher's Peer-
ReviewedPubs/

NoPeer-
ReviewedPubs 

Policy Outcomes ---   0.018   

Fisher's PolicyBrief/NoP
olicyBrief 

Policy Outcomes ---   0.593   

Fisher's Radio/NoRadio Policy Outcomes ---   0.036   

Fisher's Video/NoVideo Policy Outcomes ---   0.861   

Fisher's OtherPubs/NoO
therPubs 

Policy Outcomes ---   0.878   

              

Chi-squared Farmer/NonFar
mer 

Learning Outcomes 6.181 3 0.103 0.007 

Chi-squared NGO/NonNGO Learning Outcomes 3.473 3 0.324   

Fisher's Fisher/NonFish
er 

Learning Outcomes ---   0.326   

Fisher's Government/No
nGovernment 

Learning Outcomes ---   0.165   

Fisher's Ranchers/NonR
anchers 

Learning Outcomes ---   0.396   

Fisher's PrivateSector/N
onPrivateSector 

Learning Outcomes ---   0.752   

Fisher's ServiceIndustry
/NonServiceInd

ustry 

Learning Outcomes ---   0.640   

              

Fisher's Farmer/NonFar
mer 

Policy Outcomes ---   0.707 0.007 

Fisher's Fisher/NonFish
er 

Policy Outcomes ---   0.079   
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Fisher's Government/No
nGovernment 

Policy Outcomes ---   0.038   

Fisher's NGO/NonNGO Policy Outcomes ---   0.157   

Fisher's Ranchers/NonR
anchers 

Policy Outcomes ---   0.077   

Fisher's PrivateSector/N
onPrivateSector 

Policy Outcomes ---   0.598   

Fisher's ServiceIndustry
/NonServiceInd

ustry 

Policy Outcomes ---   0.378   

              

Fisher's Arctic/NonArcti
c 

Learning Outcomes ---   0.260 0.004 

Fisher's Coasts/NonCoas
ts 

Learning Outcomes ---   0.375   

Fisher's Deserts/NonDes
erts 

Learning Outcomes ---   0.575   

Fisher's Forests/NonFor
ests 

Learning Outcomes ---   0.799   

Fisher's Grasslands/Non
Grasslands 

Learning Outcomes ---   0.560   

Fisher's Mountains/Non
Mountains 

Learning Outcomes ---   0.322   

Fisher's Oceans/NonOce
ans 

Learning Outcomes ---   0.852   

Fisher's ProtectedAreas/
NonProtectedAr

eas 

Learning Outcomes ---   0.306   

Fisher's Urban/NonUrba
n 

Learning Outcomes ---   0.649   

Fisher's Agriculture/Non
Agriculture 

Learning Outcomes ---   1.000   

Fisher's Savanna/NonSa
vanna 

Learning Outcomes ---   0.440   

Fisher's Aquatic/NonAq
uatic 

Learning Outcomes ---   0.028   

              

Fisher's Arctic/NonArcti
c 

Policy Outcomes ---   0.407 0.004 

Fisher's Coasts/NonCoas
ts 

Policy Outcomes ---   1.000   

Fisher's Deserts/NonDes
erts 

Policy Outcomes ---   0.245   

Fisher's Forests/NonFor
ests 

Policy Outcomes ---   0.396   

Fisher's Grasslands/Non
Grasslands 

Policy Outcomes ---   0.753   
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Fisher's Mountains/Non
Mountains 

Policy Outcomes ---   0.987   

Fisher's Oceans/NonOce
ans 

Policy Outcomes ---   0.328   

Fisher's ProtectedAreas/
NonProtectedAr

eas 

Policy Outcomes ---   0.515   

Fisher's Urban/NonUrba
n 

Policy Outcomes ---   0.165   

Fisher's Agriculture/Non
Agriculture 

Policy Outcomes ---   0.169   

Fisher's Savanna/NonSa
vanna 

Policy Outcomes ---   0.385   

Fisher's Aquatic/NonAq
uatic 

Policy Outcomes ---   0.391   

              

Chi-squared Positionality Flexibility/NoFlexibil
ity 

6.943 1 0.008 0.017 

Chi-squared Geography Flexibility/NoFlexibil
ity 

1.543 1 0.214   

Chi-squared Gender Flexibility/NoFlexibil
ity 

0.000 1 1.000   

              

Chi-squared Positionality Humility/NoHumility 1.312 1 0.252 0.017 

Chi-squared Geography Humility/NoHumility 0.134 1 0.714   

Chi-squared Gender Humility/NoHumility 0.470 1 0.493   

              

Chi-squared Positionality Patience/NoPatience 0.617 1 0.432 0.017 

Chi-squared Geography Patience/NoPatience 0.013 1 0.909   

Chi-squared Gender Patience/NoPatience 0.959 1 0.328   

              

Chi-squared Positionality CollaborativeSpirit/N
oCollaborativeSpirit 

3.830 1 0.050 0.017 

Chi-squared Geography CollaborativeSpirit/N
oCollaborativeSpirit 

0.148 1 0.700   

Chi-squared Gender CollaborativeSpirit/N
oCollaborativeSpirit 

0.000 1 1.000   

              

Chi-squared Geography Interdisciplinary/NoI
nterdisciplinary 

0.031 1 0.861 0.017 

Chi-squared Gender Interdisciplinary/NoI
nterdisciplinary 

0.074 1 0.786   

Fisher's Positionality Interdisciplinary/NoI
nterdisciplinary 

---   0.590   
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Chi-squared Positionality MutualRespect/NoM
utualRespect 

0.123 1 0.725 0.017 

Chi-squared Geography MutualRespect/NoM
utualRespect 

0.184 1 0.668   

Chi-squared Gender MutualRespect/NoM
utualRespect 

0.000 1 1.000   

              

Chi-squared Positionality Persistence/NoPersis
tence 

0.330 1 0.566 0.017 

Chi-squared Geography Persistence/NoPersis
tence 

0.010 1 0.919   

Chi-squared Gender Persistence/NoPersis
tence 

0.622 1 0.430   

              

Chi-squared Positionality Trust/NoTrust 0.175 1 0.676 0.017 

Chi-squared Geography Trust/NoTrust 2.290 1 0.130   

Chi-squared Gender Trust/NoTrust 0.789 1 0.374   

              

Fisher's Gender Generosity/NoGener
osity 

---   0.348 0.017 

Fisher's Geography Generosity/NoGener
osity 

---   1.000   

Fisher's Positionality Generosity/NoGener
osity 

---   0.730   

              

Fisher's A.1.1: Assess 
context 

Learning Outcomes ---   0.771 0.007 

Chi-squared A.1.2: Attend 
meetings 

Learning Outcomes 1.412 3 0.703   

Fisher's A.1.3: Connect 
with individuals 

Learning Outcomes ---   0.899   

Chi-squared A.1.4: Connect 
with 

marginalized 
stakeholders 

Learning Outcomes 7.311 3 0.063   

Chi-squared A.1.5: Identify 
activities 

Learning Outcomes 11.857 3 0.008   

Fisher's A.1.6: Identify 
concerns 

Learning Outcomes ---   0.031   

  A.1.7: Learn a 
language 

Learning Outcomes ---   0.749   

              

Fisher's A.1.1: Assess 
context 

Policy Outcomes ---   0.423 0.007 

Fisher's A.1.2: Attend 
meetings 

Policy Outcomes ---   0.448   
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Fisher's A.1.3: Connect 
with individuals 

Policy Outcomes ---   0.314   

Fisher's A.1.4: Connect 
with 

marginalized 
stakeholders 

Policy Outcomes ---   0.713   

Fisher's A.1.5: Identify 
activities 

Policy Outcomes ---   0.024   

Fisher's A.1.6: Identify 
concerns 

Policy Outcomes ---   0.575   

Fisher's A.1.7: Learn a 
language 

Policy Outcomes ---   0.278   

              

Fisher's A.2.1: Check 
credentials 

Learning Outcomes ---   0.224 0.005 

Fisher's A.2.2: Conduct 
smaller project 

Learning Outcomes ---   0.009   

Chi-squared A.2.3: Define 
roles 

Learning Outcomes 3.633 3 0.304   

Chi-squared A.2.4: Engage 
face-to-face 

Learning Outcomes 4.800 3 0.187   

Fisher's A.2.5: Hold 
meetings 

Learning Outcomes ---   0.013   

Chi-squared A.2.6: Identify 
core leadership 

team 

Learning Outcomes 5.926 3 0.115   

Chi-squared A.2.7: Identify 
spaces 

Learning Outcomes 4.374 3 0.224   

Fisher's A.2.8: Identify 
shared interests 

Learning Outcomes ---   0.654   

Chi-squared A.2.9: Include 
experienced 
individuals 

Learning Outcomes 2.944 3 0.400   

Fisher's A.2.10: Include 
interdisciplinary 

researchers 

Learning Outcomes     0.509   

              

Fisher's A.2.1: Check 
credentials 

Policy Outcomes ---   0.953 0.005 

Fisher's A.2.2: Conduct 
smaller project 

Policy Outcomes ---   0.702   

Fisher's A.2.3: Define 
roles 

Policy Outcomes ---   0.544   

Fisher's A.2.4: Engage 
face-to-face 

Policy Outcomes ---   0.181   

Fisher's A.2.5: Hold 
meetings 

Policy Outcomes ---   0.646   
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Fisher's A.2.6: Identify 
core leadership 

team 

Policy Outcomes ---   0.305   

Fisher's A.2.7: Identify 
spaces 

Policy Outcomes ---   1.000   

Fisher's A.2.8: Identify 
shared interests 

Policy Outcomes ---   0.060   

Fisher's A.2.9: Include 
experienced 
individuals 

Policy Outcomes ---   0.032   

Fisher's A.2.10: Include 
interdisciplinary 

researchers 

Policy Outcomes ---   0.850   

              

Chi-squared A.3.1: Attend 
each other's 

meetings 

Learning Outcomes 6.925 3 0.074 0.01 

Chi-squared A.3.2: Explore 
different 

knowledge 

Learning Outcomes 10.787 3 0.013   

Fisher's A.3.3: Express 
mutual respect 

Learning Outcomes ---   0.233   

Fisher's A.3.4: Share 
experiences 

Learning Outcomes ---   0.076   

Fisher's A.3.5: 
Accommodate 

learning 
processes 

Learning Outcomes ---   0.064   

              

Fisher's A.3.1: Attend 
each other's 

meetings 

Policy Outcomes ---   0.839 0.01 

Fisher's A.3.2: Explore 
different 

knowledge 

Policy Outcomes ---   0.886   

Fisher's A.3.3: Express 
mutual respect 

Policy Outcomes ---   0.166   

Fisher's A.3.4: Share 
experiences 

Policy Outcomes ---   0.079   

Fisher's A.3.5: 
Accommodate 

learning 
processes 

Policy Outcomes ---   0.255   

              

Fisher's A.4.1: Define 
issue 

Learning Outcomes ---   0.074 0.013 
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Chi-squared A.4.2: Develop 
data collection 

protocols 

Learning Outcomes 4.613 3 0.202   

Fisher's A.4.3: Develop 
project goals 

Learning Outcomes ---   0.009   

Chi-squared A.4.4: Develop 
research 
questions 

Learning Outcomes 3.175 3 0.366   

              

Fisher's A.4.1: Define 
issue 

Policy Outcomes ---   0.465 0.013 

Fisher's A.4.2: Develop 
data collection 

protocols 

Policy Outcomes ---   0.281   

Fisher's A.4.3: Develop 
project goals 

Policy Outcomes ---   0.156   

Fisher's A.4.4: Develop 
research 
questions 

Policy Outcomes ---   0.038   

              

Chi-squared A.5.1: Analyze 
data 

Learning Outcomes 1.253 3 0.740 0.01 

Fisher's A.5.2: Develop 
outputs/outcom

es 

Learning Outcomes ---   0.174   

Fisher's A.5.3: Interpret 
results 

Learning Outcomes ---   0.091   

Chi-squared A.5.4: Distribute 
responsibilities 

Learning Outcomes 0.720 3 0.869   

Chi-squared A.5.5: Foster 
capacity 

Learning Outcomes 11.198 3 0.011   

              

Fisher's A.5.1: Analyze 
data 

Policy Outcomes ---   0.068 0.01 

Fisher's A.5.2: Develop 
outputs/outcom

es 

Policy Outcomes ---   0.718   

Fisher's A.5.3: Interpret 
results 

Policy Outcomes ---   0.916   

Fisher's A.5.4: Distribute 
responsibilities 

Policy Outcomes ---   0.253   

Fisher's A.5.5: Foster 
capacity 

Policy Outcomes ---   0.939   

              

Chi-squared A.6.1: 
Communicate 

results to 
practitioners 

Learning Outcomes 2.837 3 0.418 0.008 
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Fisher's A.6.2: 
Communicate 

results to 
academics 

Learning Outcomes ---   0.925   

Chi-squared A.6.3: 
Communicate 

results to public 

Learning Outcomes 2.377 3 0.498   

Fisher's A.6.4: High 
profile group 

Learning Outcomes ---   0.009   

Chi-squared A.6.5: Discuss 
expanding 

learning 

Learning Outcomes 0.985 3 0.805   

Fisher's A.6.6: Hold 
workshops 

Learning Outcomes ---   0.140   

              

Fisher's A.6.1: 
Communicate 

results to 
practitioners 

Policy Outcomes ---   0.152 0.008 

Fisher's A.6.2: 
Communicate 

results to 
academics 

Policy Outcomes ---   0.813   

Fisher's A.6.3: 
Communicate 

results to public 

Policy Outcomes ---   0.626   

Fisher's A.6.4: High 
profile group 

Policy Outcomes ---   0.217   

Fisher's A.6.5: Discuss 
expanding 

learning 

Policy Outcomes ---   0.649   

Fisher's A.6.6: Hold 
workshops 

Policy Outcomes ---   0.573   

              

Fisher's A.7.1: Assess 
learning 

Learning Outcomes ---   0.000 0.01 

Chi-squared A.7.2: Discuss 
opportunities 

Learning Outcomes 2.486 3 0.478   

Chi-squared A.7.3: Reflect on 
quality 

Learning Outcomes 19.819 3 0.000   

Chi-squared A.7.4: Reflect on 
strengths/weak

nesses 

Learning Outcomes 7.254 3 0.064   

Fisher's A.7.5: Reflect on 
usefulness 

Learning Outcomes ---   0.187   

              

Fisher's A.7.1: Assess 
learning 

Policy Outcomes ---   0.538 0.01 
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Fisher's A.7.2: Discuss 
opportunities 

Policy Outcomes ---   0.102   

Fisher's A.7.3: Reflect on 
quality 

Policy Outcomes ---   0.301   

Fisher's A.7.4: Reflect on 
strengths/weak

nesses 

Policy Outcomes ---   0.430   

Fisher's A.7.5: Reflect on 
usefulness 

Policy Outcomes ---   0.771   

              

Fisher's Positionality A.1.1: Assess context ---   0.309 0.017 

Chi-squared Gender A.1.1: Assess context 0.000 1 1.000   

Chi-squared Geography A.1.1: Assess context 0.031 1 0.860   

              

Chi-squared Positionality A.1.2: Attend 
meetings 

0.197 1 0.657 0.017 

Chi-squared Gender A.1.2: Attend 
meetings 

3.413 1 0.065   

Chi-squared Geography A.1.2: Attend 
meetings 

2.549 1 0.110   

              

Chi-squared Positionality A.1.3: Connect with 
individuals 

0.000 1 0.998 0.017 

Chi-squared Gender A.1.3: Connect with 
individuals 

4.802 1 0.028   

Chi-squared Geography A.1.3: Connect with 
individuals 

0.068 1 0.794   

              

Chi-squared Positionality A.1.4: Connect with 
marginalized 
stakeholders 

0.000 1 1.000 0.017 

Chi-squared Gender A.1.4: Connect with 
marginalized 
stakeholders 

0.107 1 0.743   

Chi-squared Geography A.1.4: Connect with 
marginalized 
stakeholders 

0.985 1 0.321   

              

Chi-squared Positionality A.1.5: Identify 
activities 

1.943 1 0.163 0.017 

Chi-squared Gender A.1.5: Identify 
activities 

0.306 1 0.580   

Chi-squared Geography A.1.5: Identify 
activities 

0.013 1 0.909   
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Chi-squared Positionality A.1.6: Identify 
concerns 

0.273 1 0.601 0.017 

Chi-squared Gender A.1.6: Identify 
concerns 

0.212 1 0.645   

Chi-squared Geography A.1.6: Identify 
concerns 

0.386 1 0.535   

              

Fisher's Positionality A.1.7: Learn a 
language 

---   1.000 0.017 

Fisher's Gender A.1.7: Learn a 
language 

---   0.039   

Chi-squared Geography A.1.7: Learn a 
language 

3.853 1 0.050   

              

Chi-squared Positionality A.2.1: Check 
credentials 

4.832 1 0.028 0.017 

Chi-squared Gender A.2.1: Check 
credentials 

0.095 1 0.758   

Fisher's Geography A.2.1: Check 
credentials 

---   0.283   

              

Fisher's Positionality A.2.2: Conduct 
smaller project 

---   0.145 0.017 

Chi-squared Gender A.2.2: Conduct 
smaller project 

0.125 1 0.724   

Chi-squared Geography A.2.2: Conduct 
smaller project 

0.000 1 1.000   

              

Chi-squared Positionality A.2.3: Define roles 0.100 1 0.752 0.017 

Chi-squared Gender A.2.3: Define roles 2.714 1 0.099   

Chi-squared Geography A.2.3: Define roles 0.000 1 1.000   

              

Chi-squared Positionality A.2.4: Engage face-to-
face 

0.000 1 1.000 0.017 

Chi-squared Gender A.2.4: Engage face-to-
face 

5.506 1 0.019   

Chi-squared Geography A.2.4: Engage face-to-
face 

1.294 1 0.255   

              

Chi-squared Positionality A.2.5: Hold meetings 0.000 1 1.000 0.017 

Chi-squared Gender A.2.5: Hold meetings 0.018 1 0.894   

Chi-squared Geography A.2.5: Hold meetings 0.247 1 0.619   

              

Chi-squared Positionality A.2.6: Identify core 
leadership team 

0.140 1 0.708 0.017 
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Chi-squared Gender A.2.6: Identify core 
leadership team 

2.423 1 0.120   

Chi-squared Geography A.2.6: Identify core 
leadership team 

0.000 1 1.000   

              

Chi-squared Positionality A.2.7: Identify spaces 0.000 1 1.000 0.017 

Chi-squared Gender A.2.7: Identify spaces 1.107 1 0.293   

Chi-squared Geography A.2.7: Identify spaces 0.000 1 1.000   

              

Fisher's Positionality A.2.8: Identify shared 
interests 

---   0.215 0.017 

Chi-squared Gender A.2.8: Identify shared 
interests 

0.043 1 0.836   

Chi-squared Geography A.2.8: Identify shared 
interests 

3.095 1 0.079   

              

Chi-squared Positionality A.2.9: Include 
experienced 
individuals 

1.268 1 0.260 0.017 

Chi-squared Gender A.2.9: Include 
experienced 
individuals 

0.000 1 1.000   

Chi-squared Geography A.2.9: Include 
experienced 
individuals 

0.625 1 0.429   

              

Chi-squared Positionality A.2.10: Include 
interdisciplinary 

researchers 

1.323 1 0.250 0.017 

Chi-squared Gender A.2.10: Include 
interdisciplinary 

researchers 

6.045 1 0.014   

Chi-squared Geography A.2.10: Include 
interdisciplinary 

researchers 

1.011 1 0.315   

              

Chi-squared Positionality A.3.1: Attend each 
other's meetings 

2.104 1 0.147 0.017 

Chi-squared Gender A.3.1: Attend each 
other's meetings 

4.613 1 0.032   

Chi-squared Geography A.3.1: Attend each 
other's meetings 

1.279 1 0.258   

              

Chi-squared Positionality A.3.2: Explore 
different knowledge 

0.095 1 0.758 0.017 
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Chi-squared Gender A.3.2: Explore 
different knowledge 

0.143 1 0.705   

Chi-squared Geography A.3.2: Explore 
different knowledge 

1.294 1 0.255   

              

Chi-squared Positionality A.3.3: Express 
mutual respect 

0.127 1 0.722 0.017 

Chi-squared Gender A.3.3: Express 
mutual respect 

0.000 1 1.000   

Chi-squared Geography A.3.3: Express 
mutual respect 

1.400 1 0.237   

              

Chi-squared Positionality A.3.4: Share 
experiences 

1.268 1 0.260 0.017 

Chi-squared Gender A.3.4: Share 
experiences 

0.624 1 0.430   

Chi-squared Geography A.3.4: Share 
experiences 

0.000 1 1.000   

              

Chi-squared Positionality A.3.5: Accommodate 
learning processes 

0.000 1 0.985 0.017 

Chi-squared Gender A.3.5: Accommodate 
learning processes 

0.147 1 0.702   

Chi-squared Geography A.3.5: Accommodate 
learning processes 

0.119 1 0.730   

              

Chi-squared Positionality A.4.1: Define issue 0.015 1 0.903 0.017 

Chi-squared Gender A.4.1: Define issue 0.000 1 1.000   

Chi-squared Geography A.4.1: Define issue 0.258 1 0.612   

              

Chi-squared Positionality A.4.2: Develop data 
collection protocols 

0.006 1 0.936 0.017 

Chi-squared Gender A.4.2: Develop data 
collection protocols 

0.023 1 0.879   

Chi-squared Geography A.4.2: Develop data 
collection protocols 

0.235 1 0.628   

              

Chi-squared Positionality A.4.3: Develop 
project goals 

0.000 1 1.000 0.017 

Chi-squared Gender A.4.3: Develop 
project goals 

0.593 1 0.441   

Chi-squared Geography A.4.3: Develop 
project goals 

0.001 1 0.974   
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Chi-squared Positionality A.4.4: Develop 
research questions 

0.047 1 0.829 0.017 

Chi-squared Gender A.4.4: Develop 
research questions 

0.122 1 0.727   

Chi-squared Geography A.4.4: Develop 
research questions 

0.027 1 0.869   

              

Chi-squared Positionality A.5.1: Analyze data 2.397 1 0.122 0.017 

Chi-squared Gender A.5.1: Analyze data 0.005 1 0.944   

Chi-squared Geography A.5.1: Analyze data 0.580 1 0.446   

              

Chi-squared Positionality A.5.2: Develop 
outputs/outcomes 

0.017 1 0.897 0.017 

Chi-squared Gender A.5.2: Develop 
outputs/outcomes 

0.000 1 1.000   

Chi-squared Geography A.5.2: Develop 
outputs/outcomes 

0.000 1 0.986   

              

Chi-squared Positionality A.5.3: Interpret 
results 

0.827 1 0.363 0.017 

Chi-squared Gender A.5.3: Interpret 
results 

3.108 1 0.078   

Chi-squared Geography A.5.3: Interpret 
results 

0.137 1 0.712   

              

Chi-squared Positionality A.5.4: Distribute 
responsibilities 

3.160 1 0.075 0.017 

Chi-squared Gender A.5.4: Distribute 
responsibilities 

0.892 1 0.345   

Chi-squared Geography A.5.4: Distribute 
responsibilities 

0.014 1 0.907   

              

Chi-squared Positionality A.5.5: Foster capacity 0.000 1 1.000 0.017 

Chi-squared Gender A.5.5: Foster capacity 0.002 1 0.965   

Chi-squared Geography A.5.5: Foster capacity 1.869 1 0.172   

              

Chi-squared Positionality A.6.1: Communicate 
results to 

practitioners 

1.017 1 0.313 0.017 

Chi-squared Gender A.6.1: Communicate 
results to 

practitioners 

0.320 1 0.572   
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Chi-squared Geography A.6.1: Communicate 
results to 

practitioners 

0.000 1 1.000   

              

Chi-squared Positionality A.6.2: Communicate 
results to academics 

7.892 1 0.005 0.017 

Chi-squared Gender A.6.2: Communicate 
results to academics 

1.746 1 0.186   

Chi-squared Geography A.6.2: Communicate 
results to academics 

0.001 1 0.969   

              

Chi-squared Positionality A.6.3: Communicate 
results to public 

1.616 1 0.204 0.017 

Chi-squared Gender A.6.3: Communicate 
results to public 

0.026 1 0.873   

Chi-squared Geography A.6.3: Communicate 
results to public 

0.452 1 0.501   

              

Chi-squared Positionality A.6.4: High profile 
group 

0.000 1 1.000 0.017 

Chi-squared Gender A.6.4: High profile 
group 

0.193 1 0.660   

Chi-squared Geography A.6.4: High profile 
group 

0.000 1 1.000   

              

Chi-squared Positionality A.6.5: Discuss 
expanding learning 

0.000 1 1.000 0.017 

Chi-squared Gender A.6.5: Discuss 
expanding learning 

2.551 1 0.110   

Chi-squared Geography A.6.5: Discuss 
expanding learning 

0.065 1 0.800   

              

Chi-squared Positionality A.6.6: Hold 
workshops 

0.584 1 0.445 0.017 

Chi-squared Gender A.6.6: Hold 
workshops 

0.212 1 0.645   

Chi-squared Geography A.6.6: Hold 
workshops 

0.009 1 0.924   

              

Chi-squared Positionality A.7.1: Assess learning 0.000 1 1.000 0.017 

Chi-squared Gender A.7.1: Assess learning 0.909 1 0.340   

Chi-squared Geography A.7.1: Assess learning 0.446 1 0.504   

              

Chi-squared Positionality A.7.2: Discuss 
opportunities 

0.856 1 0.355 0.017 
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Chi-squared Gender A.7.2: Discuss 
opportunities 

0.004 1 0.947   

Chi-squared Geography A.7.2: Discuss 
opportunities 

0.000 1 1.000   

              

Chi-squared Positionality A.7.3: Reflect on 
quality 

0.621 1 0.431 0.017 

Chi-squared Gender A.7.3: Reflect on 
quality 

0.000 1 0.996   

Chi-squared Geography A.7.3: Reflect on 
quality 

0.568 1 0.451   

              

Chi-squared Positionality A.7.4: Reflect on 
strengths/weaknesse

s 

0.000 1 0.990 0.017 

Chi-squared Gender A.7.4: Reflect on 
strengths/weaknesse

s 

0.127 1 0.721   

Chi-squared Geography A.7.4: Reflect on 
strengths/weaknesse

s 

0.090 1 0.764   

              

Chi-squared Positionality A.7.5: Reflect on 
usefulness 

0.000 1 1.000 0.017 

Chi-squared Gender A.7.5: Reflect on 
usefulness 

1.257 1 0.262   

Chi-squared Geography A.7.5: Reflect on 
usefulness 

0.000 1 1.000   
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Table B.2. All Welch two sample t-tests and ANOVA tests conducted in Chapter 2.  
 

Test Predictor Response t df p-value Adjusted 

significance 

level 

T-test Gender Project Success 1.52 110.25 0.131 0.017 

T-test Geography Project Success -0.67 111.12 0.501   

T-test Positionality Project Success -0.21 43.77 0.838   

              

      df F value Pr(>F)   

ANOVA LengthProject Project Success 4.00 0.28 0.890 0.013 

ANOVA LengthPreProject Project Success 4.00 0.24 0.917   

ANOVA ProjectInitiated Project Success 2.00 0.52 0.595   

      t df p-value   

T-test Modeling Project Success -2.31 85.53 0.023   

              

T-test Farmer/NonFarmer Project Success 0.96 110.91 0.341 0.007 

T-test Fisher/NonFisher Project Success 1.22 18.12 0.239   

T-test Government/NonGov
ernment 

Project Success -0.31 87.81 0.754   

T-test NGO/NonNGO Project Success -0.38 112.81 0.707   

T-test Ranchers/NonRanche
rs 

Project Success -0.98 36.08 0.335   

T-test PrivateSector/NonPri
vateSector 

Project Success 0.07 41.38 0.941   

T-test ServiceIndustry/NonS
erviceIndustry 

Project Success -1.64 24.86 0.113   

              

T-test Arctic/NonArctic Project Success -0.47 7.60 0.649 0.004 

T-test Coasts/NonCoasts Project Success 0.09 14.63 0.933   

T-test Deserts/NonDeserts Project Success -1.51 9.02 0.164   

T-test Forests/NonForests Project Success -0.63 78.33 0.533   

T-test Grasslands/NonGrassl
ands 

Project Success -1.39 34.75 0.172   

T-test Mountains/NonMount
ains 

Project Success 0.02 54.27 0.984   

T-test Oceans/NonOceans Project Success -1.77 9.48 0.109   

T-test ProtectedAreas/NonP
rotectedAreas 

Project Success -0.14 24.23 0.889   
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T-test Urban/NonUrban Project Success -0.57 45.46 0.572   

T-test Agriculture/NonAgric
ulture 

Project Success 0.63 11.20 0.544   

T-test Savanna/NonSavanna Project Success -2.30 1.15 0.235   

T-test Aquatic/NonAquatic Project Success -0.40 6.06 0.702   

              

T-test Video/NoVideo Project Success -1.83 65.91 0.072 0.006 

T-test Workshops/NoWorks
hops 

Project Success -1.05 67.34 0.295   

T-test CurriculumMaterials/
NoCurriculum 
Materials 

Project Success 0.40 91.31 0.691   

T-test Maps/NoMaps Project Success -0.02 106.56 0.981   

T-test NewsBriefs/NoNewsB
riefs 

Project Success -0.91 118.66 0.367   

T-test Peer-
ReviewedPubs/NoPee
r-ReviewedPubs 

Project Success -0.20 38.18 0.844   

T-test PolicyBriefs/NoPolicy
Briefs 

Project Success 0.88 115.89 0.378   

T-test Radio/NoRadio Project Success -0.57 48.84 0.569   

              

T-test A.1.1: Assess context Project Success -0.61 46.27 0.546 0.007 

T-test A.1.2: Attend meetings Project Success 0.73 119.32 0.470   

T-test A.1.3: Connect with 
individuals 

Project Success -1.68 44.04 0.101   

T-test A.1.4: Connect with 
marginalized 
stakeholders 

Project Success -0.75 109.26 0.453   

T-test A.1.5: Identify 
activities 

Project Success -2.47 119.89 0.015   

T-test A.1.6: Identify 
concerns 

Project Success -1.46 40.17 0.152   

T-test A.1.7: Learn a 
language 

Project Success 0.05 30.35 0.963   

              

T-test A.2.1: Check 
credentials 

Project Success -1.62 18.42 0.122 0.005 
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T-test A.2.2: Conduct smaller 
project 

Project Success -0.73 64.50 0.469   

T-test A.2.3: Define roles Project Success -2.36 121.94 0.020   

T-test A.2.4: Engage face-to-
face 

Project Success 0.04 121.56 0.969   

T-test A.2.5: Hold meetings Project Success 0.32 102.99 0.753   

T-test A.2.6: Identify core 
leadership team 

Project Success -1.34 121.68 0.184   

T-test A.2.7: Identify spaces Project Success -0.66 117.24 0.512   

T-test A.2.8: Identify shared 
interests 

Project Success -0.49 38.43 0.627   

T-test A.2.9: Include 
experienced 
individuals 

Project Success -0.71 77.87 0.483   

T-test A.2.10: Include 
interdisciplinary 
researchers 

Project Success -0.93 102.45 0.356   

              

T-test A.3.1: Attend each 
other's meetings 

Project Success -0.36 120.90 0.719 0.01 

T-test A.3.2: Explore 
different knowledge 

Project Success -2.14 120.52 0.035   

T-test A.3.3: Express mutual 
respect 

Project Success -0.79 21.66 0.440   

T-test A.3.4: Share 
experiences 

Project Success -1.70 72.73 0.094   

T-test A.3.5: Accommodate 
learning processes 

Project Success -1.79 107.46 0.076   

              

T-test A.4.1: Define issue Project Success -0.31 36.31 0.759 0.013 

T-test A.4.2: Develop data 
collection protocols 

Project Success -1.05 114.81 0.298   

T-test A.4.3: Develop project 
goals 

Project Success -3.62 75.92 0.001   

T-test A.4.4: Develop 
research questions 

Project Success -3.54 108.68 0.001   

              

T-test A.5.1: Analyze data Project Success -1.01 118.41 0.316 0.01 
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T-test A.5.2: Develop 
outputs/outcomes 

Project Success -1.93 68.99 0.057   

T-test A.5.3: Interpret 
results 

Project Success -0.57 68.59 0.567   

T-test A.5.4: Distribute 
responsibilities 

Project Success -0.77 116.33 0.443   

T-test A.5.5: Foster capacity Project Success -1.00 120.13 0.320   

              

T-test A.6.1: Communicate 
results to 
practitioners 

Project Success -0.78 70.94 0.437 0.008 

T-test A.6.2: Communicate 
results to academics 

Project Success -0.47 49.18 0.640   

T-test A.6.3: Communicate 
results to public 

Project Success -1.17 115.56 0.244   

T-test A.6.4: High profile 
group 

Project Success -0.78 45.87 0.440   

T-test A.6.5: Discuss 
expanding learning 

Project Success -1.26 92.84 0.212   

T-test A.6.6: Hold workshops Project Success 0.97 57.86 0.339   

              

T-test A.7.1: Assess learning Project Success -0.29 91.92 0.775 0.01 

T-test A.7.2: Discuss 
opportunities 

Project Success -1.50 93.27 0.137   

T-test A.7.3: Reflect on 
quality 

Project Success -1.15 63.86 0.254   

T-test A.7.4: Reflect on 
strengths/weaknesses 

Project Success -1.34 88.09 0.182   

T-test A.7.5: Reflect on 
usefulness 

Project Success -1.07 50.72 0.290   
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Table B.3. All Wilcoxon rank sum tests conducted in Chapter 2.  
 

Wilcoxon Rank Sum Test w/ continuity correction 

Predictor Response W p-value Adjusted 

significance 

level 

Positionality Barrier_Time 1419 0.120 0.017 

Gender Barrier_Time 2209 0.495   

Geography Barrier_Time 2153 0.601   

          

Positionality Barrier_Money 1650.5 1.000 0.017 

Gender Barrier_Money 1944.5 0.593   

Geography Barrier_Money 1888 0.446   

          

Positionality Barrier_Power 1650 0.787 0.017 

Gender Barrier_Power 2209 0.501   

Geography Barrier_Power 2210.5 0.422   

          

Positionality Barrier_Communication 1804 0.519 0.017 

Gender Barrier_Communication 1828.5 0.164   

Geography Barrier_Communication 1972.5 0.659   

          

Positionality Barrier_Conflict 1863.5 0.253 0.017 

Gender Barrier_Conflict 1990.5 0.581   

Geography Barrier_Conflict 1871 0.253   

          

Positionality Barrier_SharedInterests 1609 0.595 0.017 

Gender Barrier_SharedInterests 2209 0.465   

Geography Barrier_SharedInterests 2206 0.401   

          

Positionality Barrier_NoAction 1624.5 0.536 0.017 

Gender Barrier_NoAction 1784.5 0.030   

Geography Barrier_NoAction 1920 0.340   

          

Positionality Barrier_WrongMethods 1686.5 0.897 0.017 

Gender Barrier_WrongMethods 2252 0.109   

Geography Barrier_WrongMethods 2108 0.602   

          

Positionality Barrier_Knowledge 1707 0.965 0.017 

Gender Barrier_Knowledge 2041.5 0.836   

Geography Barrier_Knowledge 1916 0.404   
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Positionality A.1.1: Assess context 2078 0.044 0.017 

Gender A.1.1: Assess context 1683.5 0.055   

Geography A.1.1: Assess context 2024 0.900   

          

Positionality A.1.2: Attend meetings 1577 0.363 0.017 

Gender A.1.2: Attend meetings 1911 0.273   

Geography A.1.2: Attend meetings 1903.5 0.316   

          

Positionality A.1.3: Connect with 
individuals 

1328 0.047 0.017 

Gender A.1.3: Connect with 
individuals 

2329 0.210   

Geography A.1.3: Connect with 
individuals 

1894.5 0.448   

          

Positionality A.1.4: Connect with 
marginalized 
stakeholders 

1780.5 0.588 0.017 

Gender A.1.4: Connect with 
marginalized 
stakeholders 

2005 0.665   

Geography A.1.4: Connect with 
marginalized 
stakeholders 

2292.5 0.134   

          

Positionality A.1.5: Identify activities 1691 0.962 0.017 

Gender A.1.5: Identify activities 2331.5 0.180   

Geography A.1.5: Identify activities 2101.5 0.793   

          

Positionality A.1.6: Identify concerns 1972 0.151 0.017 

Gender A.1.6: Identify concerns 1982.5 0.657   

Geography A.1.6: Identify concerns 2225.5 0.395   

          

Positionality A.1.7: Learn a language 1659 0.649 0.017 

Gender A.1.7: Learn a language 2187 0.229   

Geography A.1.7: Learn a language 1928 0.214   

          

Positionality A.2.1: Check credentials 1733 0.429 0.017 

Gender A.2.1: Check credentials 2043.5 0.352   

Geography A.2.1: Check credentials 2132 0.071   
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Positionality A.2.2: Conduct smaller 
project 

1744.5 0.740 0.017 

Gender A.2.2: Conduct smaller 
project 

2431 0.009   

Geography A.2.2: Conduct smaller 
project 

2077.5 0.848   

          

Positionality A.2.3: Define roles 1948 0.138 0.017 

Gender A.2.3: Define roles 1868.5 0.256   

Geography A.2.3: Define roles 2160 0.544   

          

Positionality A.2.4: Engage face-to-face 1637 0.626 0.017 

Gender A.2.4: Engage face-to-face 1912 0.261   

Geography A.2.4: Engage face-to-face 2204 0.275   

          

Positionality A.2.5: Hold meetings 1502 0.202 0.017 

Gender A.2.5: Hold meetings 2193 0.485   

Geography A.2.5: Hold meetings 1906 0.394   

          

Positionality A.2.6: Identify core 
leadership team 

1771 0.698 0.017 

Gender A.2.6: Identify core 
leadership team 

1795.5 0.158   

Geography A.2.6: Identify core 
leadership team 

2027 0.910   

          

Positionality A.2.7: Identify spaces 1673.5 0.818 0.017 

Gender A.2.7: Identify spaces 2272 0.113   

Geography A.2.7: Identify spaces 2059 0.947   

          

Positionality A.2.8: Identify shared 
interests 

2024.5 0.077 0.017 

Gender A.2.8: Identify shared 
interests 

2176 0.609   

Geography A.2.8: Identify shared 
interests 

2152.5 0.611   

          

Positionality A.2.9: Include experienced 
individuals 

1396 0.074 0.017 

Gender A.2.9: Include experienced 
individuals 

1792.5 0.129   

Geography A.2.9: Include experienced 
individuals 

1981 0.713   
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Positionality A.2.10: Include 
interdisciplinary 
researchers 

1653.5 0.760 0.017 

Gender A.2.10: Include 
interdisciplinary 
researchers 

1827.5 0.179   

Geography A.2.10: Include 
interdisciplinary 
researchers 

2301.5 0.157   

          

Positionality A.3.1: Attend each other's 
meetings 

1751 0.767 0.017 

Gender A.3.1: Attend each other's 
meetings 

2365.5 0.114   

Geography A.3.1: Attend each other's 
meetings 

1914 0.467   

          

Positionality A.3.2: Explore different 
knowledge 

1925 0.217 0.017 

Gender A.3.2: Explore different 
knowledge 

2101 0.893   

Geography A.3.2: Explore different 
knowledge 

1892 0.428   

          

Positionality A.3.3: Express mutual 
respect 

1729.5 0.870 0.017 

Gender A.3.3: Express mutual 
respect 

1707 0.057   

Geography A.3.3: Express mutual 
respect 

2099 0.801   

          

Positionality A.3.4: Share experiences 1240 0.013 0.017 

Gender A.3.4: Share experiences 1854 0.272   

Geography A.3.4: Share experiences 2116.5 0.742   

          

Positionality A.3.5: Accommodate 
learning processes 

1861 0.393 0.017 

Gender A.3.5: Accommodate 
learning processes 

2211 0.503   

Geography A.3.5: Accommodate 
learning processes 

2202 0.459   

          

Positionality A.4.1: Define issue 1718 0.922 0.017 

Gender A.4.1: Define issue 2129 0.779   
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Geography A.4.1: Define issue 2008.5 0.833   

          

Positionality A.4.2: Develop data 
collection protocols 

1866 0.321 0.017 

Gender A.4.2: Develop data 
collection protocols 

2012.5 0.735   

Geography A.4.2: Develop data 
collection protocols 

2115.5 0.724   

          

Positionality A.4.3: Develop project 
goals 

1772 0.696 0.017 

Gender A.4.3: Develop project 
goals 

1938 0.495   

Geography A.4.3: Develop project 
goals 

2176 0.530   

          

Positionality A.4.4: Develop research 
questions 

1437 0.155 0.017 

Gender A.4.4: Develop research 
questions 

1965.5 0.590   

Geography A.4.4: Develop research 
questions 

1822 0.257   

          

Positionality A.5.1: Analyze data 1929 0.192 0.017 

Gender A.5.1: Analyze data 2389.5 0.098   

Geography A.5.1: Analyze data 1856 0.314   

          

Positionality A.5.2: Develop 
outputs/outcomes 

1074.5 0.001 0.017 

Gender A.5.2: Develop 
outputs/outcomes 

2271 0.336   

Geography A.5.2: Develop 
outputs/outcomes 

1854 0.341   

          

Positionality A.5.3: Interpret results 1424 0.144 0.017 

Gender A.5.3: Interpret results 1539.5 0.009   

Geography A.5.3: Interpret results 1999.5 0.808   

          

Positionality A.5.4: Distribute 
responsibilities 

1946.5 0.176 0.017 

Gender A.5.4: Distribute 
responsibilities 

1903 0.384   

Geography A.5.4: Distribute 
responsibilities 

2318 0.177   
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Positionality A.5.5: Foster capacity 1902 0.276 0.017 

Gender A.5.5: Foster capacity 2094 0.923   

Geography A.5.5: Foster capacity 2273 0.270   

          

Positionality A.6.1: Communicate 
results to practitioners 

1371.5 0.080 0.017 

Gender A.6.1: Communicate 
results to practitioners 

1837 0.245   

Geography A.6.1: Communicate 
results to practitioners 

2025 0.904   

          

Positionality A.6.2: Communicate 
results to academics 

1705 0.975 0.017 

Gender A.6.2: Communicate 
results to academics 

2083.5 0.954   

Geography A.6.2: Communicate 
results to academics 

2097 0.766   

          

Positionality A.6.3: Communicate 
results to public 

1949 0.140 0.017 

Gender A.6.3: Communicate 
results to public 

2275 0.272   

Geography A.6.3: Communicate 
results to public 

2121.5 0.703   

          

Positionality A.6.4: High profile group 1619.5 0.628 0.017 

Gender A.6.4: High profile group 2131 0.753   

Geography A.6.4: High profile group 1826.5 0.211   

          

Positionality A.6.5: Discuss expanding 
learning 

1617.5 0.649 0.017 

Gender A.6.5: Discuss expanding 
learning 

1982.5 0.642   

Geography A.6.5: Discuss expanding 
learning 

2290.5 0.224   

          

Positionality A.6.6: Hold workshops 1654.5 0.808 0.017 

Gender A.6.6: Hold workshops 1874 0.322   

Geography A.6.6: Hold workshops 1781.5 0.187   

          

Positionality A.7.1: Assess learning 2090.5 0.015 0.017 
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Gender A.7.1: Assess learning 2006.5 0.697   

Geography A.7.1: Assess learning 2072 0.902   

          

Positionality A.7.2: Discuss 
opportunities 

1949 0.168 0.017 

Gender A.7.2: Discuss 
opportunities 

1957.5 0.552   

Geography A.7.2: Discuss 
opportunities 

1916 0.499   

          

Positionality A.7.3: Reflect on quality 1075 0.001 0.017 

Gender A.7.3: Reflect on quality 2310 0.247   

Geography A.7.3: Reflect on quality 2417 0.072   

          

Positionality A.7.4: Reflect on 
strengths/weaknesses 

1900 0.289 0.017 

Gender A.7.4: Reflect on 
strengths/weaknesses 

1392.5 0.001   

Geography A.7.4: Reflect on 
strengths/weaknesses 

1646.5 0.049   

          

Positionality A.7.5: Reflect on 
usefulness 

1479 0.243 0.017 

Gender A.7.5: Reflect on 
usefulness 

2707 0.002   

Geography A.7.5: Reflect on 
usefulness 

2145.5 0.645   
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APPENDIX C 
 
 

 
Table C1. We calculated the weighted mean for academics and non-academics, internal and external 
respondents, and women and men. We used these values to rank each activity in order of 
importance. We tested for significant differences in how each respondent type ranked individual 
activities using Wilcoxon rank sum tests; those activities are marked in bold (indicating p ≤ 0.05) 
and which group considered the activity more important (A = academic, NA = non-academic, I = 
internal, W=women, M=men).  
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Table C2. We tested for differences in whether respondent types were associated with the presence 
of individual activities conducted in their most successful TDW project; those activities are marked 
in bold (indicating p ≤ 0.017) and which group was more likely to conduct the activity (A = 
academic, NA = non-academic, E = external, W=women, M=men). Percent of total projects that 
conducted each activity is listed.  
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APPENDIX D 
 
 

 
 

 
 
Figure D1. Participatory map drawn by residents of kebele 15 (Gragne).  
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Figure D2. Map displaying the distribution of training points used for each land class in the random 
forest classifier.  
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Figure D3. The number of cloud-free images per pixel across the study area. 
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Figure D4. Spline interpolation results for four pixels in our study area showing changes across 
political and management periods in a) shrublands, b) plantation forest, c) grazing land, and d) 
protected grassland. For example, the blue line (Derg period) demonstrates the seasonal pattern of 
the vegetation prior to the establishment of a plantation forest, while the green, black, and red lines 
are showing the seasonal pattern of the plantation forest in subsequent periods, which is far less 
variable.  There are 70 images in the Derg period (44 with <50% cloud cover), 148 images in the 
Transition period (87 with <50% cloud cover), 147 images in the NGO period (86 with <50% cloud 
cover), and 232 in the Co-management period (135 with <50% cloud cover). 
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Figure D5. Total annual precipitation (from CHIRPS). Wet years (in blue, precip > 1300 mm) and dry years (in red, precip < 1000 mm) 
were fairly evenly distributed throughout the study period except for the NGO period. 
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Table D1. The confusion matrix for the supervised classification demonstrates the ability of the model 
to correctly classify a set of training points for each land class using a cross-validation approach. The 
kappa value for this classification was 0.85.  
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Table D2. Top panel shows square kilometers of each land class, separated according to kebele and 
the Guassa area. Bottom panel shows the percent of land area occupied by each land class for each 
kebele and the Guassa area.  
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Farmland 1.3 16.2 15.8 19.3 17.4 25.8 21.6 19.4 15 9.4

Stone 3.2 9.4 6.7 5.9 7.1 10.2 9.5 8.1 6.7 2.3

Shrubland 21.8 0.1 3.7 1.6 0.1 7.2 17.2 5.7 4.9 6.9

Bare Land 0 2.1 2.5 2 2.2 5 8.8 3.3 6.3 0.8
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Farmland 1.7% 52.2% 45.5% 54.4% 59.1% 48.1% 29.3% 43.7% 39.8% 33.5%

Stone 4.1% 30.3% 19.3% 16.6% 24.1% 19.0% 12.9% 18.2% 17.8% 8.2%

Shrubland 27.9% 0.3% 10.7% 4.5% 0.3% 13.4% 23.3% 12.8% 13.0% 24.6%

Bare Land 0.0% 6.8% 7.2% 5.6% 7.5% 9.3% 11.9% 7.4% 16.7% 2.8%

City 0.0% 0.0% 0.6% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4%

Water 0.0% 0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

Grazing 

Land

Native 

Forest

Plantation 

Forest

Protected 

Grassland

Grazing 

Land

Native 

Forest

Plantation 

Forest

Protected 

Grassland

1.5% 2.3% 1.1% 1.1% 1.4%

6.1% 6.3% 1.6% 11.0%

3.5% 1.3% 0.9% 3.1% 2.7%

2.2% 0.0% 6.9% 0.3% 0.0% 1.3%

7.3% 14.1% 10.1% 10.1% 15.3%

0.0% 0.2% 0.0% 2.8%

2.6% 7.7% 7.2% 11.5% 6.1%

58.2% 1.3% 1.7% 3.7% 0.0% 0.0%

0.8 1.7 0.5 0.4 0.4

4.5 2.8 0.6 3.1

2.7 0.4 0.3 1.1 0.8

1.7 0 2.4 0.1 0 0.7

3.9 10.4 4.5 3.8 4.3

0 0.1 0 0.8

2 2.4 2.5 4.1 1.8

45.5 0.4 0.6 1.3 0 0
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 Table D3. The percent of land area and direction of vegetation change (from NBR values) for each 
kebele and the Guassa area across each period of political and management history (wet season).  
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77.7% 81.6% 79.5% 74.0% 83.5% 83.7%

10.2% 15.3% 18.3% 9.3% 7.7% 7.6%
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Increase
2.9% 16.9% 19.8%

No 

Change
73.8% 80.5%

0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

70.3% 70.9% 61.9% 65.8% 72.6%

High 
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No 

Change
66.8% 63.7% 61.1% 59.9%

0.0% 0.0%
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0.4% 6.4% 1.7% 2.7% 11.5%

50.1%
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Table D4. The percent of land area and direction of vegetation change (from NBR values) for each 
kebele and the Guassa area across each period of political and management history (dry season).  
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Table D5. Relative variable importance (calculated by mean decrease in accuracy) for each predictor variable. Variables are presented in 
mean decreasing importance across all land classes. 

 

Variable Water

Plantation 

Forest

Grazing 

Land Farmland Stone

Bare 

Land

Shrublan

d

Native 

Forest Guassa

Mean 

Decrease 

Accuracy

elevation 8.5 55.2 42.2 65.5 36.0 45.6 52.1 64.2 138.5 158.7

CoMgmt_DOY253 12.5 43.6 53.4 61.4 134.9 38.4 34.9 25.5 52.3 130.8

Derg_DOY40 8.6 61.2 38.1 54.6 39.9 30.4 61.2 90.2 44.8 110.7

greenness 17.2 59.3 47.9 86.2 75.3 30.4 53.6 14.0 72.8 106.4

Band 4 21.6 49.6 46.8 56.5 53.9 90.4 78.5 64.3 69.5 94.5

Band 3 21.7 49.5 40.8 56.4 31.8 87.8 40.5 31.5 59.9 88.3

slope 8.8 26.3 44.4 47.6 28.5 15.2 67.1 28.8 29.3 87.9

Band 5 14.5 28.3 54.9 56.5 61.9 43.6 37.9 17.2 43.6 87.0

CoMgmt_DOY40 19.4 66.5 36.5 73.9 61.0 37.0 50.2 59.0 58.2 85.3

NGO_Trans_DOY253 -4.1 34.2 20.3 53.2 44.8 13.8 32.5 37.7 38.9 84.6

NGO_Trans_DOY40 -0.5 63.1 13.2 24.2 33.6 29.2 21.5 27.6 24.3 83.4

Band 6 12.9 44.4 64.9 53.3 42.6 32.1 50.4 37.6 60.3 83.2

NGO_DOY253 5.9 31.8 43.3 24.4 61.0 35.8 25.9 15.8 44.2 83.1

Trans_Derg_DOY40 2.2 58.4 12.9 17.2 37.6 15.3 22.1 45.9 25.1 83.0

Derg_DOY253 10.9 51.3 39.5 19.9 44.2 29.2 44.8 33.8 48.7 82.4

Transition_DOY253 4.5 34.7 48.9 31.8 52.6 24.5 25.8 15.0 54.1 80.1

Transition_DOY40 2.9 37.2 33.8 48.9 33.8 23.0 38.1 53.0 41.9 80.1

CoMgmt_NGO_DOY253 13.7 37.9 16.8 29.7 56.8 10.3 23.7 33.8 21.1 77.3

CoMgmt_NGO_DOY40 16.0 55.2 15.8 17.6 27.2 26.0 12.0 16.7 38.2 75.9

Trans_Derg_DOY253 -1.0 50.8 21.0 5.8 29.4 8.1 28.1 43.6 26.3 72.2

NGO_DOY40 6.3 43.6 30.0 48.8 38.2 29.4 34.0 58.6 36.4 72.0

Band 2 16.4 40.5 41.5 46.8 39.7 56.6 43.2 34.1 52.3 63.9

wetness 14.8 38.5 30.7 26.8 26.7 18.1 35.2 33.8 36.6 62.5

brightness 9.7 28.1 42.9 36.0 28.5 36.1 33.3 26.5 37.3 61.7

Band 1 12.5 33.9 27.0 36.8 22.7 45.3 26.9 24.0 43.1 56.1

Band 7 15.0 38.1 40.2 32.0 26.1 36.4 35.3 38.4 38.2 55.1

aspect -2.4 -1.7 6.0 4.1 1.5 9.0 13.1 7.9 14.1 20.1
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Table D6. Mean NBR change values from Derg to the Co-management period, by land class.  
 

 
 
 

Dry Season Bare Land Farmland

Grazing 

Land

Native 

Forest

Plantation 

Forest

Protected 

Grassland Shrubland Stone Water

Chare 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.4

Dergagne 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

Ferkuta 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0

Gedenbo 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.3

Gragne 0.0 0.0 0.0 -0.1 0.2 0.0 0.0 0.0

Guassa 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0

Kewula 0.0 0.0 0.0 -0.1 0.2 0.0 0.0 0.0

Kuledeha 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

Tesfomentier 0.0 0.0 0.0 -0.1 0.1 0.0 0.0 0.0

Yedi 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

Wet Season Bare Land Farmland

Grazing 

Land

Native 

Forest

Plantation 

Forest

Protected 

Grassland Shrubland Stone Water

Chare 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.2

Dergagne 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

Ferkuta 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0

Gedenbo 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.2

Gragne 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0

Guassa 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

Kewula 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0

Kuledeha 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0

Tesfomentier 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0

Yedi 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
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APPENDIX E 
 

Table E1. Key uncertainties identified by each group involved in the mental modeling process (i.e., relationships marked with “I don’t  know”).  
 
 

     
 
 

Scientists

The impact of … On …
human population invasive plants

rainfall plant diseases

rainfall animal diseases

unemployment human population

unemployment leadership

illegal users community awareness

illegal users leadership

temperature wildlife population

invasive plants community awareness

invasive plants uncoordinated protection

invasive plants agricultural expansion

invasive plants guassa grasses

fire uncoordinated protection

fire guassa grasses

deforestation income

regime change community awareness

regime change unemployment

regime change illegal users

regime change uncoordinated protection

regime change wildlife population

guassa grasses illegal users

guassa grasses plant diseases

wildlife population community awareness

wildlife population illegal users

wildlife population livestock population

tourism wildlife population

Women Farmers

The impact of … On …
fire community awareness

plant disease livestock population

Men Farmers (far from Guassa)

The impact of … On …
temperature political instability

temperature firewood consumption

temperature uncoordinated protection

temperature agricultural expansion

temperature deforestation

temperature leadership

temperature regime change

firewood consumption livestock population

firewood consumption leadership

firewood consumption regime change

firewood consumption research

Men Farmers (near Guassa)

The impact of … On …
animal disease freshwater

plant disease regime change

wildlife population deforestation

tourism wildlife population
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APPENDIX F 

 
 
 
Table F1. Confusion matrix for the supervised classification of the study area, resulting in an overall accuracy of 77.4% and kappa of 0.73.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Asta Cheranfi Mixed grassland Forest Guassa Helichrysum Stone Wetland Row Total User's accuracy

Asta 113 11 0 3 0 1 0 2 130 86.9%

Cheranfi 16 64 6 0 2 1 0 19 108 59.3%

Mixed grassland 2 3 43 0 0 0 5 11 64 67.2%

Forest 2 0 0 89 0 0 0 0 91 97.8%

Guassa 2 4 0 0 13 2 1 4 26 50.0%

Helichrysum 2 2 2 0 0 18 4 0 28 64.3%

Stone 2 1 4 0 0 3 79 0 89 88.8%

Wetland 1 13 7 0 1 1 1 64 88 72.7%

Column Total 140 98 62 92 16 26 90 100 624

Producer's accuracy 80.7% 65.3% 69.4% 96.7% 81.3% 69.2% 87.8% 64.0%
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Table F2. Variables listed according to decreasing impact on overall model accuracy, with mean decrease in accuracy given for each land 
cover class and variable combination. 

 
Asta Cheranfi Cheranfi_Grassland Forest Guassa Helichrysum Stone Wetland Mean Decrease 

Accuracy 
x-coordinate 37.13 34.65 38.39 68.93 21.75 12.42 26.03 38.25 85.61 
Band8 58.05 38.35 42.58 35.17 29.11 28.26 47.01 42.60 67.39 
elevation 20.01 25.12 21.19 5.20 16.12 8.81 37.16 23.70 54.52 
Band1 23.46 22.43 23.21 30.76 15.51 30.55 37.36 28.69 50.81 
greenness 25.22 7.15 22.12 12.04 14.68 15.24 19.56 17.11 44.26 
wetness 17.10 5.60 22.10 26.53 8.65 10.27 15.09 26.91 37.92 
Band5 24.35 -1.39 21.75 2.80 12.34 6.91 6.21 14.51 35.64 
Band6 22.67 5.72 30.11 16.71 5.21 12.26 14.28 32.30 33.47 
Band2 13.02 11.86 5.42 16.57 8.60 15.56 22.29 18.68 30.59 
Band4 19.69 10.83 19.11 17.29 8.93 10.13 19.34 20.37 29.33 
brightness 20.71 7.83 20.77 9.35 7.62 8.84 9.86 20.22 29.05 
topowet 14.77 13.32 1.83 2.63 1.61 1.48 6.77 21.13 28.40 
Band7 13.50 8.66 17.12 13.57 1.41 10.88 15.40 14.74 25.82 
Band9 12.31 11.50 7.56 5.74 7.19 3.73 13.66 8.42 25.74 
slope 14.54 2.87 -0.75 2.74 -2.91 2.71 10.15 23.73 25.39 
Band3 13.60 7.87 13.03 13.13 8.61 6.99 20.02 12.46 24.35 
aspect 10.84 13.37 2.33 12.45 5.93 7.07 1.82 6.78 21.92 
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Figure F1. Total annual precipitation (from CHIRPS) over just the Guassa conservation area.  
Average precipitation over all years is 1,280mm +/- 180mm. Therefore, we are considering 
anything over 1,500mm to be a wet year (shown in green), and anything under 1,100mm to be a 
dry year (shown in red).   
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Sensitivity Analysis 
 
 
 We used sensitivity analysis to refine our model parameterization. Our results revealed that 

growth rates were very sensitive – for example, an addition of only 0.001 kg/m2/week was enough 

to cause Erica to outcompete Euryops across the 30 years we simulated (Figure S1). Therefore, we 

selected a growth rate for Erica that was > 0.005 kg/m2/week as we consider this a more 

conservative estimation.  We also discovered that unless guassa grasses and Helichrysum shrubs 

had the same growth rate, guassa would expand over a much larger expanse of the landscape – 

which did not match local perceptions that in fact it was Helichrysum shrubs expanding (Figure S2). 

Therefore, we gave Helichrysum and guassa grasses the same growth rate of 0.017 kg/m2/week. 

 

          
 
Figure F2. On the left, Erica shrubs had a growth rate of 0.005 kg/m2/week. An increase to 0.006 
kg/m2/week (right) caused them to outcompete Euryops shrubs.  
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Figure F3. On the left, guassa had a growth rate of 0.019 kg/m2/week while Helichrysum had a 

growth rate of 0.01 kg/m2/week. Only when growth rates were equal (0.017 kg/m2/week) did we 

see them occupy equal proportions of the landscape (right). When Helichrysum shrubs had a higher 

growth rate, they had both higher biomass and higher expansion, but we did not think it was 

ecologically likely that shrubs would have a higher growth rate than grasses.  
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We also used sensitivity analysis to isolate which mechanism was likely driving Helichrysum 

expansion and competition with guassa grasses.  We set each parameter for Helichrysum to an 

extreme value and evaluated how this impacted both biomass and the number of cells where 

Helichrysum and guassa were dominant. We found that decreasing senescence rates even a small 

amount (from 60% biomass retained to 70% retained) caused a large increase in Helichrysum 

biomass over time but did not change the proportion of cells where Helichrysum was dominant 

(Figure S3). Changing the proportion of seeds that stay in the cell they are produced (i.e., reducing 

the number of seeds spread to other cells - from 70% to 20%) caused a slight increase in 

Helichrysum biomass but also did not impact the proportion of cells where Helichrysum was 

dominant (Figure S4). However, increasing the proportion of Helichrysum biomass devoted to seed 

production (from 9% to 14%) caused both a decline in biomass over time and a decrease in the 

proportion of cells where Helichrysum was dominant (Figure S5). Therefore, while all parameters 

appear to influence biomass, only seed production and growth rates appear to influence the spread 

of the shrubs to any significant degree, and we encourage further research into these two important 

components.  
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Figure F4.  Retaining larger amounts of the previous year’s biomass (70% instead of 60%) caused 
Helichrysum shrubs to outcompete Euryops shrubs in terms of average total biomass (left). 
However, there was no observed change to the proportion of cells where Helichrysum was 
dominant (right). 
 

     
 
 
Figure F5.  Retaining larger amounts of seeds in the same cell they are produced (80% instead of 
20%) caused Helichrysum shrubs to increase their total average biomass very slightly (left). 
However, there was no observed change to the proportion of cells where Helichrysum was 
dominant (right). 
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Figure F6.  Increasing the proportion of biomass devoted to seed production (from 9% to 14%) 
caused a slight decrease in total average biomass (left), and a similar decline in the proportion of 
cells where Helichrysum was dominant (right). 
 
 
  

We used the sensitivity analysis to determine the optimal harvest limit per person for the guassa 

grasses under each climate scenario. Workshop participants estimated a range of guassa harvest 

per person of 6 – 30 shekams (200 – 990 kg). We tested this range of harvest limits to see if we 

could discover an optimal harvest rate using the baseline conditions of harvesting every three 

years. For the average climate, we found that per person guassa harvests remained high through 

950 kg harvest limits (Figure S6). However, guassa biomass was unable to recover at this rate, 

leading to lower average biomass over time. Similarly, guassa range started to contract at a 950 kg 

harvest limit. Above this limit, declines dropped precipitously. We therefore selected 850 kg as the 

per person harvest limit for guassa grasses.  We used the same process to determine the optimal 

harvest rate under other climate conditions: 450 kg for the no belg climate, 650 kg for the dry 

climate, and 1050 kg for the wet climate.   
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Figure F7. Under an average climate, optimal harvest rates were 850 kg/person/harvest.  
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Table F3. Landscape distribution (percent of all cells) of all species across scenarios.  
 

 
 

  

Guassa Helichrysum Erica Euryops

Baseline Scenario 7% 7% 21% 9%

Scenario 1: No belg climate 7% 7% 21% 9%

Scenario 1: Dry climate 7% 7% 21% 9%

Scenario 1: Average climate 7% 7% 21% 9%

Scenario 1: Wet climate 7% 7% 21% 9%

Scenario 2: No belg climate, 2 year harvest cycle 7% 7% 21% 9%

Scenario 2: Dry climate, 2 year harvest cycle 5% 9% 21% 9%

Scenario 2: Average climate, 2 year harvest cycle 5% 9% 21% 9%

Scenario 2: Wet climate, 2 year harvest cycle 5% 9% 21% 9%

Scenario 2: No belg climate, 3 year harvest cycle 7% 7% 21% 9%

Scenario 2: Dry climate, 3 year harvest cycle 7% 7% 21% 9%

Scenario 2: Average climate, 3 year harvest cycle 7% 7% 21% 9%

Scenario 2: Wet climate, 3 year harvest cycle 7% 7% 21% 9%

Scenario 2: No belg climate, 4 year harvest cycle 7% 7% 21% 9%

Scenario 2: Dry climate, 4 year harvest cycle 7% 7% 21% 9%

Scenario 2: Average climate, 4 year harvest cycle 7% 7% 21% 9%

Scenario 2: Wet climate, 4 year harvest cycle 7% 7% 21% 9%

Scenario 3: No belg climate, 2 year removal cycle 2% 2% 36% 5%

Scenario 3: Dry climate, 2 year removal cycle 2% 2% 35% 7%

Scenario 3: Average climate, 2 year removal cycle 2% 2% 34% 7%

Scenario 3: Wet climate, 2 year removal cycle 2% 2% 34% 7%

Scenario 3: No belg climate, 3 year removal cycle 2% 2% 34% 5%

Scenario 3: Dry climate, 3 year removal cycle 2% 2% 35% 5%

Scenario 3: Average climate, 3 year removal cycle 3% 2% 34% 5%

Scenario 3: Wet climate, 3 year removal cycle 3% 2% 34% 5%

Scenario 3: No belg climate, 4 year removal cycle 3% 3% 32% 6%

Scenario 3: Dry climate, 4 year removal cycle 3% 3% 32% 7%

Scenario 3: Average climate, 4 year removal cycle 3% 3% 31% 8%

Scenario 3: Wet climate, 4 year removal cycle 3% 3% 31% 8%

Percent of Landscape Per Species
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Overview, Design concepts, and Details for Guassa-Helichrysum Model 

By: Cara Steger (Cara.Steger@gmail.com) 

 

Purpose 

The purpose of this model is to enable people involved in managing a community 

conservation area in the Ethiopian highlands to explore the individual and combined effects - as 

well as tradeoffs - of social and ecological factors controlling the spread of native shrubs 

(Helichrysum splendidum) in an Afro-alpine grassland. The model was created to facilitate 

participatory rural land use planning, and as a research tool for understanding how people learn 

through models. While there is some level of realism in the landscape and parameterization, we do 

not intend to produce highly accurate predictions of the future of this area. Rather, we seek to 

explore potential futures and use these to facilitate discussion among land use planners.   

State Variables and Scales 

The landscape is represented by 95 x 95 cells, each approximately 30m x 30m, which 

together represent an 812ha landscape. The eight dominant vegetation types are: Erica shrubs 

(Erica arborea), Euryops shrubs (Euryops pinifolius), grassland/shrub mix (not including our target 

species), guassa grasses (Festuca macrophylla), Helichrysum shrubs (Helichrysum splendidum), 

forest (mainly Eucalyptus globulus and Cupressus lusitanica), stone, and wetlands (mainly Carex and 

Cyperus species). Forests, stone, and wetlands do not change in the virtual world; they do not 

spread and they are unable to be invaded. The grassland/shrub mix also does not spread, but it is 

able to be invaded by the four vegetation types that do: guassa grasses, Helichrysum shrubs, Erica 

shrubs, and Euryops shrubs. We initialize patches containing these four vegetation types so that 

each cell contains some biomass (kg/m2) of each type, following a random normal distribution. For 

example, Erica shrubs are initialized with  0.5 kg/m2 of dry biomass (+/- 0.2 kg/m2), with 

0.1kg/m2 (+/- 0.1 kg/m2) of the other three species.   

mailto:Cara.Steger@gmail.com
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One time step represents one week in the virtual world. The landscape is modeled after the 

area surrounding the Guassa lodge in the Guassa Community Conservation Area.  The user selects 

which climate regime to explore in a given simulation: dry (1300 mm ± SD 200 mm), average(1600 

mm ± SD 200 mm), wet (1900 mm ± SD 200 mm), or no belg (absence of spring rains, 24% lower 

than average).  Local farmers are the only agent group in this model. Farmers harvest the guassa 

grasses according to a user-defined frequency and intensity. Farmers also remove the invasive 

Helichrysum shrubs, again using a user-defined frequency and intensity.   

Process Overview and Scheduling 

 With each tick, the model carries out the following operations:  

(1) Set annual rainfall. The annual rainfall is determined at the start of the year following the 

precipitation values observed using CHIRPS remote sensing products (Funk et al. 2015) and 

a private rain gauge in the conservation area (Fashing et al. 2014). 

(2) Distribute rainfall. Each week receives a proportion of the annual rainfall, again determined 

using the seasonal patterns observed in the CHIRPS data, as well as local observations. We 

introduce some variation across the cells, with each cell receiving 90-100% of the weekly 

rain portion.  

(3) Set carrying capacity. We use the maximum biomass estimates from the literature to define 

the carrying capacity for guassa grasses at 0.8 kg/m2, for Euryops shrubs and Helichrysum 

shrubs at 1 kg/m2, and for Erica shrubs at 1.2 kg/m2. Following Fryxell et al. (2005), we 

linked the carrying capacity of these vegetation types to precipitation using a coefficient (ψ). We divided each carrying capacity by the average weekly precipitation in the Guassa area (24.5 mm), yielding estimates of ψguassa grass = 0.0327,  ψHelichrysum shrubs = 0.0408, ψEuryops 

shrubs = 0.0408, and ψErica shrubs = 0.0490. In the stochastic simulations, ψ is multiplied by the 
weekly precipitation. 
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(4) Grow vegetation. We represent the growth of these four vegetation types through individual 

modified logistic growth equations. We assume weekly growth rates are at a maximum 

when vegetation biomass is low, as at the beginning of the rainy season or after a 

disturbance event (Parsons et al. 2001, Fryxell et al. 2005). Therefore, we include a factor 

that relates the growth rate to standing biomass and precipitation. We further assume that 

competition for resources influences both grass and shrub dynamics, and we modify the 

logistic growth equation to reflect that total biomass from all species restricts growth 

dynamics in each species equation (D’Odorico et al. 2012). For example, the growth of 

guassa grass can be represented: 𝑑𝐵𝑔𝑢𝑎𝑠𝑠𝑎𝑑𝑡 = 𝑟𝑚𝑎𝑥 × [𝐵𝑔𝑢𝑎𝑠𝑠𝑎 +ψ(𝑅)] × [1 − 𝐵𝑔𝑢𝑎𝑠𝑠𝑎 + 𝐵𝐻𝑒𝑙𝑖𝑐ℎ𝑟𝑦𝑠𝑢𝑚 + 𝐵𝐸𝑢𝑟𝑦𝑜𝑝𝑠 + 𝐵𝐸𝑟𝑖𝑐𝑎 +ψ(𝑅)2 × ψ(𝑅) ] 
Where B = dry weight biomass (per species), rmax = weekly growth rate (per species), and ψ 

(R) = carrying capacity multiplied by weekly rainfall.  This allows both the maximum rate of 

grass growth and the carrying capacity to rise and fall with rainfall patterns. 

 

Growth rate estimates were derived from MODIS Net Annual Primary Production 

(NAPP) product (MOD17A3H; Running and Zhao 2015, ORNL DAAC. 2018). First, NAPP was 

converted from kg Carbon (kgC) to biomass by dividing by 0.5 (0.67 kgC/m2 / 0.5 = 1.34 

kg/m2). Based on gross primary productivity curves, maximum growth occurs during the 

kiremt rainy season, which contains 44.4% of the precipitation over a twelve week period. 

Given that precipitation is a well-established driver of plant growth in most biomes (O’Connor et al. 2001, Knapp et al. 2002), we assumed that the percent of NAPP during this 
period was roughly the same as the percent of annual precipitation, yielding a maximum 

per week growth rate of  0.444*1.34 kg/m2/12 weeks = 0.0496 kg/m2/week. We then 

divided this maximum growth rate into sections for each vegetation type, assuming that 
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guassa grasses and Helichrysum shrubs are able to grow faster than Euryops shrubs 

(Everson et al. 2009), which can grow faster than Erica shrubs (Wubie 2018). Due to the 

highly derivative nature of this parameterization, we tested a range of maximum growth 

rate estimates in a sensitivity analysis before conducting the management scenarios, and 

selected growth rates that produce biomass and distribution patterns that match local 

perspectives.  

(5) Produce seeds. Erica seeds are produced in weeks 8-10 of the year, while the other three 

species produce seeds at the same time in weeks 30-32.  Seed production for each 

vegetation type occurs as a proportion of the aboveground biomass present in each cell, 

following studies of reproductive allocation and effort (Reekie and Bazzaz 1987).  We took 

the average reproductive allocation (shoots, flowers, and seeds) of three Festuca species in 

the literature – F. arundinacea (7.6%), F. gigantea (18.9%), and F. ovina (6.9%) (Wilson and 

Thompson 1989) to estimate that roughly 11% of standing guassa grass biomass is 

converted to seeds each year. Because reproductive allocation is generally lower in species 

with low relative growth rates (Bazzaz et al. 1987), we estimate shrub reproductive 

allocation will be closer to 8% for Euryops shrubs and 7% for Erica shrubs (Vosse et al. 

2008). We selected 9% for Helichrysum because our sensitivity analysis revealed larger 

proportions caused guassa grasses to outcompete Helichrysum, which did not match local 

perceptions.  

(6) Spread seeds. Seeds are spread shortly after production, in weeks 12-14 for Erica and 

weeks 34-36 for all other species.  Due to the absence of aerial dispersal structures 

(Molinier and Muller 1938), Erica seeds do not typically spread more than 14m from their 

source plant (Mesléard and Lepart 1991). Therefore, we assume 80% of the seeds produced 

will stay in the same cell of the model, while 20% will spread to neighboring cells equally. 

We assume the same distribution for guassa grass seeds, some species of which have been 
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shown to have highly restricted dispersal distances (Rabinowitz and Rapp 1981).  

Helichrysum shrubs observed in South Africa have parachute-type seeds that are adapted 

for long distance dispersal by wind (Shiponeni 2003, Shiponeni and Milton 2006). 

Helichrysum shrubs have been observed to dominate South African seed banks and become 

the first shrubs to colonize eroded or overgrazed land, largely due to the papery texture of 

the seeds and their relative unpalatability (Everson et al. 2009). Therefore, we assume 30% 

of the seeds produced will stay in the same cell of the model, while 70% will spread to 

neighboring cells equally. While we were unable to find Euryops seed dispersal 

observations, research from South Africa (Vosse et al. 2008) shows similar Euryops and 

Helichrysum seed densities in the soil seedbank. Based on this limited information, we 

assume 50% of the Euryops seeds produced will stay in the same cell of the model, while 

50% will spread to neighboring cells.  

(7) Sprout seeds. Erica seeds sprout the same year they are shed in the main rainy season. 

Seeds of guassa grasses germinate shortly after being shed in July-August, following 

evidence from observations of Festuca arundinacea and Festuca bromoides (Bartolome 

1979, Grime et al. 1988, Thompson et al. 1997) and preliminary findings that guassa grass 

seeds are largely absent from the Guassa seed bank (Wubie 2018).   Euryops and 

Helichrysum seeds sprout the following year in the early rainy season. Each seed that 

germinates contributes a small amount towards the total biomass (0.5 g).  Maximum 

germination rates of Erica shrubs are 62% under ideal conditions in the laboratory 

(Mesléard and Lepart 1991), therefore, we assume an average 40% germination rate under 

field conditions. Published data on germination rates for Helichrysum shrubs, Euryops 

shrubs, and guassa grasses do not exist; therefore, we used estimates from other species in 

the same genera. Germination rates for the Mediterranean species H. stoechas range 

between 30-50% (Doussi and Thanos 1997) while South Africa H. foetidum (12%) and H. 
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patulum (24%) have much lower rates (Brown et al 2003). We thus assume an average 25% 

germination rate for Helichrysum shrubs. Germination rates for seeds from U.S. F. 

arundinacea were between 97-98% (Rampton and Ching 1966); however, seeds from 

Canadian F. hallii had germination rates between 67 – 85% (Qiu et al. 2010). We assume a 

conservative average of 80% germination rate for guassa grasses. Finally, we take the 

average of three species of Euryops from South Africa  - E. linearis (31%), E. speciosissimus 

(24%), E. virgineus (13%) (Brown et al. 2003) – and assume a 23 % germination rate for 

Euryops shrubs in Guassa.  

(8) Vegetation senescence. Senescence occurs during the 10 weeks following the end of the 

kiremt season rains. Each week, guassa grass biomass declines by 8%, resulting in 20% 

biomass remaining in each cell at the start of the next belg rains. Helichrysum shrubs 

senesce at a rate of 4% per week so that 60% of their biomass remains the following year, 

Euryops shrubs retain 80% of their biomass, and Erica shrubs retain 90% of their biomass 

in the following year. 

(9) Transition vegetation cover. In week 39 (late September), we calculate the biomass 

dominance in each cell with over 0.1 kg/m2 total biomass across the four spreading 

vegetation types. We selected this week because it falls after the majority of ecological 

functions in the model (seed production and spreading),  yet biomass is still high at the tail 

end of the main rainy season. We selected the 0.1 kg/m2 threshold to ensure we did not 

evaluate cells with only very small concentrations of the species of interest. We assume 

guassa grasses and Helichrysum shrubs need to occupy 40% of the total cell biomass to be 

considered dominant, while Erica and Euryops shrubs need to occupy 30% of the total cell 

biomass to be considered dominant. Because Erica and Euryops shrubs are larger, they can 

produce higher biomass values than guassa grass or Helichrysum shrubs in the same 
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amount of space. Therefore, we consider a lower percent cover to be equivalent to the same 

amount of biomass. 

(10) Harvest guassa grass. During weeks 18 and 19, farmers are allowed into the Guassa area to 

cut the guassa grasses.  Each farmer moves to a patch with some amount of guassa biomass, 

and removes 90% of the biomass of that cell. The next week, farmers evaluate whether they 

are still below the per person limit, and if so they move to another cell and cut 90% of that cell’s biomass. 
(11) Cut Helichrysum shrubs. During weeks 37 and 38, farmers are allowed into the Guassa 

area to cut the Helichrysum shrubs.  Each farmer moves to a patch with some amount of 

shrub biomass, and removes 90% of the biomass of that cell. The next week, farmers 

evaluate whether they are still below the per person effort, and if so they move to another 

cell and cut 90% of that cell’s biomass. 
 

Table F4. Parameter estimates with supporting literature.  

Parameter Description Estimate Citations 
precipitation annual 

precipitation 
average (1600 mm ± SD 
200 mm), wet (1900 
mm ± SD 200 mm) and 
dry (1300 mm ± SD 200 
mm)  

Fashing et al. 2014, 
Funk et al., 2015 

Carrying capacity Maximum 
carrying capacity 

0.8 kg/m2 (guassa 
grass); 1 kg/m2 
(Helichrysum and 
Euryops shrubs); 1.2 
kg/m2 (Erica shrubs) 

Wodaj et al 2016; 
Ensslin et al. 2015; 
Anderson et al. 2010 

growth rate Maximum weekly 
growth rate 

0.017 kg/m2/week 
(guassa grass and 
Helichrysum shrubs); 
0.01 kg/m2/week 
(Euryops shrubs); 0.007 
kg/m2/week (Erica 
shrubs) 

Running and Zhao 
2015; ORNL DAAC 
2018 

seed production Percent biomass 
allocation into 
seed production 

11% (guassa grass); 9% 
(Helichrysum shrubs); 8 

Wilson and Thompson 
1989; Bazzaz et al. 
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% (Euryops shrubs); 
7% (Erica shrubs) 

1987; Vosse et al. 
2008 

seed bank Percent seed 
biomass that stays 
in current cell  

80% (guassa grass and 
Erica shrubs); 30% 
(Helichrysum shrubs); 
50% (Euryops shrubs) 

Rabinowitz and Rapp 
1981; Shiponeni 
2003; Shiponeni and 
Milton 2006; Everson 
et al. 2009; Molinier 
and Muller 1938; 
Mesléard and Lepart 
1991; Vosse et al. 
2008 

germination rate Percent of  seeds 
that germinate 
from the soil 
seedbank 

80% (guassa grass); 
40% (Erica shrubs); 
25% (Helichrysum 
shrubs); 23% (Euryops 
shrubs) 

Rampton and Ching 
1966; Qiu et al. 2010; 
Doussi and Thanos 
1997; Brown et al. 
2003; Molinier and 
Muller 1938; 
Mesléard and Lepart 
1991; Olano et al. 
2002 

senescence  Percent biomass 
that dies back 
each year by 
species 

80% (guassa grass); 
40% (Helichrysum 
shrubs); 20% (Euryops 
shrubs); 10% (Erica 
shrubs) 

Expert elicitation  

 

Design Concepts 

The ecological principles addressed by this model include the invasion of three shrub species into a 

grassland, and the potential effectiveness of introducing a new disturbance regime in the form of 

mechanical removal of shrubs.  

Emergence 

These basic principles of competition and shrub encroachment play out through the spread of 

vegetation patches at the landscape scale. Plant growth and spread are impacted by the growth and 

spread of other plant species, and also by the suppression/release from spatially and temporally 

stochastic grass and shrub removal. 
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Adaptation 

The farmers do not adapt in the model, but the management options tested with the model were 

designed to reflect real-world adaptation possibilities for Guassa management.  

Objectives and Prediction 

The agents within the model do not learn from their actions or the environment, and they are not 

able to predict. However, this model was built to facilitate learning in the real world.  

Agent-environment interaction and observation 

Agents do not interact with one another.  

Stochasticity 

Most of the variables in the model have some degree of stochasticity built into them, from the 

initialization of patch rainfall to the percent of seeds that germinate in each cell. Additionally, many 

of the variables in the model are controlled by changing values in the GUI, which can add some 

randomness to the simulations. 

Initialization and Input 

The initial vegetation distribution is derived from a supervised random forest classifier of a 

February 2019 Landsat image, with an overall accuracy of 77.6%.  This ASCII file is brought into the 

model at the beginning of the simulation so that the initial distribution of vegetation is the same 

each time. However, the amount of biomass initialized in each cell varies with each initialization.  


