Research Data
Permanent URI for this collection
Browse
Browsing Research Data by Author "Good, Nicholas"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Dataset associated with "Aerosol Emissions from Wind Instruments: Effects of Performer Age, Sex, Sound Pressure Level, and Bell Covers"(Colorado State University. Libraries, 2022) Volckens, John; Good, Kristen M.; Goble, Dan; Good, Nicholas; Keller, Joshua P.; Keisling, Amy; L'Orange, Christian; Morton, Emily; Phillips, Rebecca; Tanner, KyAerosol emissions from wind instruments are a suspected route of transmission for airborne infectious diseases, such as SARS-CoV-2. We evaluated aerosol number emissions (from 0.25 – 35.15 m) from 81 volunteer performers of both sexes and varied age (12 to 63 years) while playing wind instruments (bassoon, clarinet, flute, French horn, oboe, piccolo, saxophone, trombone, trumpet, and tuba) or singing. Measured emissions spanned more than two orders of magnitude, ranging in rate from 8 to 1,400 particless-1, with brass instruments, on average, producing 191% (95% CI: 81-367%) more aerosol than woodwinds. Being male was associated with a 70% increase in emissions (vs. female; 95% CI: 9-166%). Each 1 dBA increase in sound pressure level was associated with a 28% increase (95% CI: 10-40%) in emissions from brass instruments; sound pressure level was not associated with woodwind emissions. Age was not a significant predictor of emissions. The use of bell covers reduced aerosol emissions from three brass instruments tested (trombone, tuba, and trumpet), with average reductions ranging from 53 to 73%, but not for the two woodwind instruments tested (oboe and clarinet). Results from this work can facilitate infectious disease risk management for the performing arts.Item Open Access Dataset associated with "Effects of fuel moisture content on emissions from a rocket-elbow cookstove"(Colorado State University. Libraries, 2019) van Zyl, Lizette; Tryner, Jessica; Bilsback, Kelsey; Good, Nicholas; Hecobian, Arsineh; Sullivan, Amy P.; Zhou, Yong; Peel, Jennifer; Volckens, JohnExposure to air pollution from solid-fuel cookstoves is a leading risk factor for premature death; however, the effect of fuel moisture content on air pollutant emissions from solid-fuel cookstoves remains poorly constrained. The objective of this work was to characterize emissions from a rocket-elbow cookstove burning wood at three different moisture levels (5%, 15%, and 25% on a dry mass basis). Emissions of CO2, carbon monoxide (CO), methane, formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, xylenes, fine particulate matter (PM2.5), elemental carbon (EC), and organic carbon (OC) were measured. Emission factors (EFs; g·MJdelivered-1) for all pollutants, except CO2 and EC, increased with increasing fuel moisture content: CO EFs increased by 84%, benzene EFs increased by 82%, PM2.5 EFs increased by 149%, and formaldehyde EFs increased by 216%. Both modified combustion efficiency and the temperature at the combustion chamber exit decreased with increasing fuel moisture, suggesting that the energy required to vaporize water in the fuel led to lower temperatures in the combustion chamber and lower gas-phase oxidation rates. These results illustrate that changes in fuel equilibrium moisture content could cause EFs for pollutants such as PM2.5 and formaldehyde to vary by a factor of two or more across different geographic regions.