Repository logo
 

The effect of hop extract supplementation on gut microbiota and metabolic function in ovariectomized mice

dc.contributor.authorHamm, Alison Kay, author
dc.contributor.authorWeir, Tiffany L., advisor
dc.contributor.authorCox-York, Kimberly A., committee member
dc.contributor.authorBroeckling, Corey D., committee member
dc.contributor.authorAvens, John S., committee member
dc.contributor.authorBunning, Marisa L., committee member
dc.date.accessioned2018-01-17T16:45:29Z
dc.date.available2019-01-12T16:46:10Z
dc.date.issued2017
dc.description.abstractEstrogen decline with aging, or menopause, is associated with increased risk for cardiometabolic diseases primarily due to altered metabolism and weight gain. Standard treatment has traditionally been with 17β-estradiol (E2) prescription, although its use has declined over the last decade due to associated increase in breast and ovarian cancer risk. As a result, use of phytoestrogenic herbal supplements has increased, due to their perceived safety and effectiveness in treatment of menopausal side effects. The gut microbiota may also be important in terms of mitigating disease risk and hormone exposure during the menopause transition, as our gut microbiota are important modulators of local and systemic inflammation. Gut microbes also can metabolize hormones and dietary flavonoids, altering their bioactivity and bioavailability. In this study, we supplemented ovariectomized (OVX) or control sham-operated C57BL/6 mice, with oral E2, a flavonoid-rich extract from hops (Humulus lupulus), or placebo carrier oil, and observed differences in adiposity, inflammation, and gut bacteria composition. Hops extract (HE) did not protect against ovariectomy-associated weight gain or increased visceral adiposity, while E2-treated animals had similar body weights and fat depot sizes as Sham-operated animals. However, HE was protective against liver triglyceride accumulation, to levels similar to Sham control and OVX E2 groups. We found no evidence of OVX having a significant impact on the overall gut bacterial community structure in any of our treatment groups. We did find differences in abundance of two bacteria; Akkermansia muciniphila was lower with HE treatment in the Sham group, and Ruminococcus gnavus was higher with OVX compared to Sham control. Possible mechanisms of the interplay between gut bacteria, loss of estrogen, and hormone replacement will be discussed.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierHamm_colostate_0053A_14383.pdf
dc.identifier.urihttps://hdl.handle.net/10217/185624
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.titleThe effect of hop extract supplementation on gut microbiota and metabolic function in ovariectomized mice
dc.typeText
dcterms.embargo.expires2019-01-12
dcterms.embargo.terms2019-01-12
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineFood Science and Human Nutrition
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hamm_colostate_0053A_14383.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format
Description: