Repository logo
 

Mapping burn severity, pine beetle infestation, and their interaction at the High Park Fire

dc.contributor.authorStone, Brandon, author
dc.contributor.authorLefsky, Michael, advisor
dc.contributor.authorRocca, Monique, committee member
dc.contributor.authorLeisz, Stephen, committee member
dc.date.accessioned2015-08-28T14:36:04Z
dc.date.available2015-08-28T14:36:04Z
dc.date.issued2015
dc.description.abstractNorth America's western forests are experiencing wildfire and mountain pine beetle (MPB) disturbances that are unprecedented in the historic record, but it remains unclear whether and how MPB infestation influences post-infestation fire behavior. The 2012 High Park Fire burned in an area that’s estimated to have begun a MPB outbreak cycle within five years before the wildfire, resulting in a landscape in which disturbance interactions can be studied. A first step in studying these interactions is mapping regions of beetle infestation and post-fire disturbance. We implemented an approach for mapping beetle infestation and burn severity using as source data three 5 m resolution RapidEye satellite images (two pre-fire, one post-fire). A two-tiered methodology was developed to overcome the spatial limitations of many classification approaches through explicit analyses at both pixel and plot level. Major land cover classes were photo-interpreted at the plot-level and their spectral signature used to classify 5 m images. A new image was generated at 25 m resolution by tabulating the fraction of coincident 5 m pixels in each cover class. The original photo interpretation was then used to train a second classification using as its source image the new 25 m image. Maps were validated using k-fold analysis of the original photo interpretation, field data collected immediately post-fire, and publicly available classifications. To investigate the influence of pre-fire beetle infestation on burn severity within the High Park Fire, we fit a log-linear model of conditional independence to our thematic maps after controlling for forest cover class and slope aspect. Our analysis revealed a high co-occurrence of severe burning and beetle infestation within high elevation lodgepole pine stands, but did not find statistically significant evidence that infected stands were more likely to burn severely than similar uninfected stands. Through an inspection of the year-to-year changes in the class fraction signatures of pixels classified as MPB infestation, we were able to observe increases in infection extent and intensity in the year before the fire. The resulting maps will help to increase our understanding of the process that contributed to the High Park Fire, and we believe that the novel classification approach will allow for improved characterization of forest disturbances.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierStone_colostate_0053N_13244.pdf
dc.identifier.urihttp://hdl.handle.net/10217/167258
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectHigh Park Fire
dc.subjectRapidEye
dc.subjectwildfire
dc.subjectmountain pine beetle
dc.subjectclassification
dc.subjectremote sensing
dc.titleMapping burn severity, pine beetle infestation, and their interaction at the High Park Fire
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineEcology
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Stone_colostate_0053N_13244.pdf
Size:
3.41 MB
Format:
Adobe Portable Document Format