Repository logo
 

Evaluation of salinity tolerance of pinto bean varieties

dc.contributor.authorPaul, Winie Sharsana, author
dc.contributor.authorDavis, Jessica G., advisor
dc.contributor.authorQian, Yaling, committee member
dc.contributor.authorAndales, Allan, committee member
dc.date.accessioned2024-09-09T20:51:06Z
dc.date.available2025-08-16
dc.date.issued2024
dc.description.abstractSalinity is an abiotic stress restricting agricultural crop production globally, primarily in arid and semi-arid areas. Saline soils are characterized by the accumulation of dissolved salts in the soil solution, which inhibits a plant's ability to absorb water and nutrients. Many crops are affected by high concentrations of salt in the soil. Dry edible pinto beans (Phaseolus vulgaris), very important in human nutrition around the world, are sensitive to salinity, and yield losses can occur in saline soils greater than 2 dS/m. The objective of this study was to assess the salinity tolerance of regular and slow darkening pinto bean varieties by evaluating the effect of different salt types on pinto bean germination, growth, and production. This project included three experiments: germination, greenhouse, and field studies. For the first two experiments, six varieties of pinto beans were evaluated: three slow-darkening pinto beans (Gleam, Mystic, Lumen) and three regular pinto beans (Othello, Cowboy, SV6139). In the germination experiment, treatments were arranged in a randomized complete block design with five replications, three saline solutions (NaCl, CaCl2, MgSO4.7H2O (MgSO4)), and control (distilled water) at 0.05 M, 0.1 M, and 0.15 M concentrations for each salt. For the greenhouse experiment, saline solutions with the same electrical conductivity (ECe) (dS/m), control (distilled water) and the six pinto bean varieties were organized in a Complete Random Design (CRD) with 10 replicates. The field experiment was an observational study where six pinto bean varieties: three slow-darkening pinto beans (Gleam, Mystic, Vibrant) and three regular pinto beans (Othello, Cowboy, SV6139) were planted in a field with a subsurface irrigation system to correlate yield to ECe for each variety. The results demonstrated that germination percentage, speed of germination and hypocotyl length decreased as the salt concentrations increased. Othello's vegetative and reproductive parameters were significantly higher compared to the other varieties in the greenhouse under the saline conditions. There was no significant correlation between yield and ECe in the field experiment. Results indicated that Othello's early maturity may have enabled it to perform better under salt stress conditions than the other tested varieties.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierPaul_colostate_0053N_18404.pdf
dc.identifier.urihttps://hdl.handle.net/10217/239117
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2020-
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.rights.accessEmbargo expires: 08/16/2025.
dc.subjectgermination
dc.subjectsalinity
dc.subjectyield
dc.subjectpulse crop
dc.subjectEC
dc.subjectsalt concentration
dc.titleEvaluation of salinity tolerance of pinto bean varieties
dc.typeText
dcterms.embargo.expires2025-08-16
dcterms.embargo.terms2025-08-16
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineSoil and Crop Sciences
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Paul_colostate_0053N_18404.pdf
Size:
639.37 KB
Format:
Adobe Portable Document Format