Repository logo
 

Recreating peatland initiation conditions: methods for reclaiming peatlands in Alberta's oil sands region

dc.contributor.authorBorkenhagen, Andrea K., author
dc.contributor.authorCooper, David J., advisor
dc.contributor.authorPaschke, Mark, committee member
dc.contributor.authorButters, Greg, committee member
dc.date.accessioned2007-01-03T06:41:01Z
dc.date.available2015-06-30T05:57:00Z
dc.date.issued2014
dc.description.abstractNorthern Alberta's oil sands deposit is the largest in the world and mining operations remove vast areas of upland forests and peatland ecosystems. Reclaiming peatland ecosystems is challenging as it takes thousands of years to reestablish peat soils to pre-disturbance extents. Practical approaches that are easy to implement are required to reclaim the tens of thousands of peatland hectares that have been lost to mining activities. My research focuses on developing reclamation methods that recreate peatland initiation conditions on mineral soil and apply assisted succession techniques by introducing mosses, plants and woody cover. I evaluated the regenerative abilities of five common fen mosses introduced in a 1:10 mixture to clay loam mineral soil. To evaluate optimal hydrologic conditions for moss species establishment, I tested four water levels below the soil surface (0, -10, -20, and -30 cm). I recreated plant communities and microclimates similar to those found during peatland initiation to determine those that increased moss species establishment by comparing cover treatments of herbaceous plants, woody plants, and WoodStraw® (wood-strand) mulch. After two seasons of growth, fen mosses established and grew to an average of 20 percent cover on mineral soils. Total moss cover was not significantly different between 0cm and -30 cm water levels but species distribution was as depth to the water table was the most important factor influencing establishment. Drepanocladus aduncus was most common when the water level was 0 cm and Aulacomnium palustre was most common in the -30 cm water level. Tomentypnum nitens had five times greater cover than any other moss. Moss species cover and height was greatest under herbaceous plants and at 0 cm water level. Wood-strand mulch reduced the cover of salt that precipitated on the soil surface, which also increased as the water table deepened. Implications to peatland reclamation include selecting a mixture of mosses to adapt to chemical and hydrologic variations and planting herbaceous plants and or applying wood-strand mulch to improve moss establishment on mineral soil. Peatlands may take thousands of years to develop, but reclaiming a carbon-accumulating ecosystem and establishing the foundations for peatland succession is possible. The applications described here provide economical and practical strategies to reconstruct pre-existing peatland ecosystems in Alberta's oil sands region.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierBorkenhagen_colostate_0053N_12330.pdf
dc.identifier.urihttp://hdl.handle.net/10217/82582
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectmoss
dc.subjectoil sands
dc.subjectpeatland
dc.subjectAlberta
dc.subjectreclamation
dc.titleRecreating peatland initiation conditions: methods for reclaiming peatlands in Alberta's oil sands region
dc.typeText
dcterms.embargo.expires2015-06-30
dcterms.embargo.terms2015-06-30
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineEcology
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Borkenhagen_colostate_0053N_12330.pdf
Size:
887.34 KB
Format:
Adobe Portable Document Format
Description: