Repository logo
 

Effect of mountain pine beetle kill on streamflow generation mechanisms

dc.contributor.authorWehner, Christine Elisabeth, author
dc.contributor.authorStednick, John D., advisor
dc.contributor.authorFassnacht, Steven R., committee member
dc.contributor.authorNiemann, Jeffrey, committee member
dc.date.accessioned2016-08-18T23:10:21Z
dc.date.available2016-08-18T23:10:21Z
dc.date.issued2016
dc.description.abstractThe mountain pine beetle (Dendroctonus ponderosae) is an endemic species to Colorado, but a recent epidemic resulted in the mortality of millions of acres of lodgepole pine forest in Colorado since 2002. This study examined the effect of the mountain pine beetle kill on streamflow generation mechanisms using different tracer methods. Eleven nested watersheds with varying level of beetle-killed forest area (47.1% to 97.4%) were chosen for study. Groundwater, surface water, and precipitation samples were taken and analyzed for stable isotope composition (2H and 18O), specific conductivity, and chloride concentrations. Four methods were employed to partition sources of streamflow, or streamflow generation mechanisms (SGM), in beetle-killed watersheds. Stable isotopes (2H and 18O) were used to determine mean fractional contribution of each source (groundwater, rain, and snow) to streamflow. Rain and snow contribution were negatively correlated with beetle-killed forest area (p=0.08 and p=0.35 respectively). Groundwater was positively correlated with increasing beetle-killed forest area (p=0.23). Specific conductivity and chloride were each used in a 2-component (groundwater and precipitation) hydrograph separation. Using specific conductivity, beetle kill was negatively correlated with average groundwater contribution (ρ = -0.13), but the result was not significant (p = 0.71). Using chloride, the results were correlated (ρ=0.19), but not significant (p = 0.58). Specific conductivity and chloride measurements were then coupled in a 3-component (groundwater, rain, and snow) end member mixing analysis (EMMA). Beetle-killed forest area and fractional groundwater contribution were positively correlated (ρ=0.26), but not significant (p = 0.43). Watershed characteristics were examined to determine potential metrics of groundwater contribution. Mean watershed elevation displayed a significant negative correlation with mean groundwater contribution (p = 0.08).
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierWehner_colostate_0053N_13748.pdf
dc.identifier.urihttp://hdl.handle.net/10217/176709
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectmountain pine beetle
dc.subjectwater
dc.subjectstreamflow generation mechanisms
dc.subjectColorado
dc.titleEffect of mountain pine beetle kill on streamflow generation mechanisms
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineEcosystem Science and Sustainability
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wehner_colostate_0053N_13748.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format