Repository logo
 

Dihydrotestosterone attenuates endotoxin, cytokine, and hypoxia-induced vascular inflammation

Date

2011

Authors

Osterlund, Kristen Leanne, author
Handa, Robert, advisor
Gonzales, Rayna, committee member
Amberg, Gregory, committee member
Garrity, Deborah, committee member
Tobet, Stuart, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

Vascular inflammation plays a key role in the etiology of cardiovascular disease, particularly stoke. Vascular inflammation is under the control of several transcription factors, including nuclear factor kappa B and hypoxia inducible factor-1 alpha (HIF-1α). Activation of these transcription factors can lead to the production of inflammatory mediators such as cyclooxygenase-2 (COX-2). COX-2 plays a role in vascular inflammation, cerebral ischemia-induced injury, and has been implicated as a source of reactive oxygen species (ROS). Inflammatory mediators, such as endotoxin or cellular breakdown products released following injury, are known to signal through the Toll-like receptor 4 (TLR4). TLR4 activation leads to NFκB activation and subsequent production of COX-2. Like COX-2, TLR4 has also been implicated in injury-induced oxidative stress and cerebral ischemia damage. Previous studies have demonstrated that gonadal steroid hormones can also modulate vascular inflammation. Both protective and detrimental effects of androgens on the cardiovascular system have been reported. Since the potent androgen receptor (AR) agonist dihydrotestosterone (DHT) can be converted to 3β-diol, an estrogen receptor (ER) β-selective agonist, I hypothesized that ERβ may mediate some of the protective effects of androgens, while the AR may mediate some of the detrimental effects. The overall goal of this dissertation was to determine the mechanisms by which androgens can influence the vascular inflammatory response under both physiological and pathophysiological conditions. The hypothesis to be tested was that DHT influences vascular inflammation under both physiological and pathophysiological conditions. In my first set of experiments, using Western blot, I found that DHT increases expression of the vascular inflammatory mediator COX-2 under physiological conditions in human coronary artery vascular smooth muscle (VSM) cells and human brain VSM cells. This effect of DHT was attenuated in the presence of the AR antagonist bicalutamide. This data indicates that the pro-inflammatory effect of DHT under normal physiological conditions is AR mediated. In my second set of experiments, I examined the effects of DHT on vascular inflammation under a variety of pathophysiological conditions. Surprisingly, I found that DHT decreased cytokine-induced COX-2 expression and oxidative stress, endotoxin-induced COX-2 and TLR4 expression in human VSM cells. Furthermore, DHT also decreased hypoxia induced HIF-1α and COX-2 expression in human brain VSM cells and rat pial arteries. Finally, I found that DHT decreased hypoxia with glucose deprivation (HGD)-induced HIF-1α, COX-2 and TLR4 expression in human brain VSM cells. DHT`s anti-inflammatory effects during cytokine or HGD-induced inflammation in human brain VSM cells were not blocked by the AR antagonist bicalutamide, indicating that they were not AR mediated. These results led me to my second hypothesis, that DHT's anti-inflammatory effects are ERβ-mediated. In my third set of experiments, I found that the DHT metabolite/ERβ selective agonist 3β-diol also decreased cytokine-induced COX-2 expression in human brain VSM cells. Furthermore, DHT's ability to reduce cytokine-induced COX-2 expression in human brain VSM cells was inhibited by the non-selective estrogen receptor antagonist ICI 182,780 and the selective ERβ antagonist PHTPP. The mRNAs for steroid metabolizing enzymes in the pathway necessary to convert DHT to 3β-diol were detected in human brain VSM cells, as were AR and ERβ mRNAs. Therefore, DHT appears to be protective against cerebrovascular inflammation via conversion to 3β-diol and subsequent activation of ERβ in human brain VSM cells. The results of these studies indicate that: 1) DHT increases COX-2 expression under unstimulated/physiological conditions via an AR-dependent mechanism. 2) DHT decreases cytokine-, endotoxin,-hypoxia, and HGD-induced COX-2 expression via an AR-independent mechanism. 3) DHT decreases cytokine-induced reactive oxygen species. 4) DHT decreases hypoxia-induced HIF-1α expression. 5) DHT decreases HIF-1α and TLR4 expression during HGD via an AR-independent mechanism. 6) DHT's effect to attenuate cytokine-induced COX-2 expression is ERβ-mediated.

Description

Rights Access

Subject

vascular smooth muscle
inflammation
ischemia
androgen
estrogen receptor beta

Citation

Associated Publications