Repository logo
 

A climatological study of snow covered areas in the western United States

dc.contributor.authorMoore, Cara, author
dc.contributor.authorKampf, Stephanie K., advisor
dc.contributor.authorFassnacht, Steven R., committee member
dc.contributor.authorSibold, Jason S., committee member
dc.date.accessioned2007-01-03T08:08:57Z
dc.date.available2007-01-03T08:08:57Z
dc.date.issued2012
dc.description.abstractSnow accumulation and timing of melt affect the availability of water resources for the Western United States. Climate warming can significantly impact the hydrology of this region by decreasing the amount of precipitation falling as snow and altering the timing of snowmelt and associated runoff. Therefore, it is essential to characterize how regional climatology affects snow accumulation and ablation and to identify areas that may be especially sensitive to climate warming. This can help resource managers plan appropriately for hydrologic changes. This study utilizes 11-year average (2000 - 2010) MODIS Snow Cover Area (SCA) and Land Surface Temperature (LST) data and annual PRISM precipitation to determine how elevation, slope orientation, latitude, and continentality influence regional characteristics of SCA and LST for early April, early May, early June, and early July in four focus regions: the Colorado Rockies, the Sierra Nevada, the Washington Cascades, and the Montana Rockies. Then, using monthly averages of the 11-year MODIS SCA for January to June, we examine the spatiotemporal evolution of the snowpack and LST throughout the Western U.S. We use threshold values of January to July 11-year average SCA to determine the duration of snow persistence and delineate zones of intermittent, transitional, persistent and seasonal snow. Within the transitional and persistent snow zones, we use 11-year average LST data for January-February-March (LSTJFM) to categorize five different snow sensitivity zones. Areas with the highest winter average land surface temperatures are assumed to be most sensitive to climate warming, whereas areas with the lowest land surface temperature are assumed to be least sensitive. Results show that snow cover tends to increase with increasing elevation, and the elevation of snow cover is lower in higher latitudes, maritime environments, and most western slopes. Land surface temperature tends to decrease with increasing elevation, increasing latitude, and tends to be colder on most western slope sites. The largest divergence between eastern and western slope SCA and LST characteristics is observed in the Sierra Nevada, while little divergence is observed in the Colorado Rockies. Snow cover in the Western U.S. is observed predominantly along two main axes: from north to south along the Cascades and the Sierra Nevada, and from northwest to southeast along the axis of the Rocky Mountain Cordillera. The snow line is lowest in the Washington Cascades and highest in the Colorado Rockies; between these two areas a northwest/southeast elevation gradient is observed. The warmest snow zones (warmest JFMLST) are at lower elevations of the Cascades/Sierra Nevada and in the southwest, whereas coolest snow zones (coldest JFMLST) are in the interior northern Rockies, mid to higher elevations of the Cascades, and the higher elevations of the Colorado Rockies and the Sierra Nevada. The warmest snow zones are likely to be most sensitive to climate warming, as these locations are vulnerable to shifting toward intermittent winter snow cover.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierMoore_colostate_0053N_11072.pdf
dc.identifierETDF2012500072ECSS
dc.identifier.urihttp://hdl.handle.net/10217/67318
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relationwwdl
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectMODIS
dc.subjectwestern
dc.subjectsnow
dc.subjectSCA
dc.subjectclimate change
dc.subjecthydrology
dc.titleA climatological study of snow covered areas in the western United States
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineEcosystem Science and Sustainability
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Moore_colostate_0053N_11072.pdf
Size:
6.86 MB
Format:
Adobe Portable Document Format
Description: