Failure analysis and durability enhancement of polymeric heart valve leaflets
dc.contributor.author | Khair, Nipa, author | |
dc.contributor.author | James, Susan P., advisor | |
dc.contributor.author | Bailey, Travis S., advisor | |
dc.contributor.author | Li, Vivian, committee member | |
dc.contributor.author | McGilvray, Kirk, committee member | |
dc.date.accessioned | 2024-09-09T20:52:00Z | |
dc.date.available | 2026-08-16 | |
dc.date.issued | 2024 | |
dc.description.abstract | Rheumatic and calcified aortic heart valve disease is prevalent globally among all aged people, and the number is rapidly increasing. Clinically accepted, minimally invasive xenograft-based transcatheter aortic heart valve replacement (TAVR) shows limited durability (<10 years). Hyaluronic acid (HA) enhanced polyethylene polymeric TAVR shows excellent in vitro and in vivo anti-calcific, anti-thrombotic, and hydrodynamic performance, making it a suitable candidate for heart valve leaflets. The main problem, however, is during durability testing, cyclic impact loading causes premature failure in a consistent fashion related to TAVR assembly. This dissertation investigates leaflet premature failure mechanisms and provides two plausible solutions to upgrade heart valve durability without sacrificing performance. With regard to the failure mechanism, representative areas of retrieved failed leaflets are examined under electron microscopy and small angle x-ray scattering. The investigation finds abrasive wear, wear polishing, fine scratching, and imprints of the metal stent of the leaflet surface, indicating surface wearing from soft plastic rubbing against hard metal. A strong permanganate oxidizer etches away low-energy amorphous domain to unveil stable spherulitic structures of approximately 3 µm, bridging and tie molecular domains of pristine LLDPE. The oxidizer partially etches away polymeric buildups of failed leaflets only to reveal thinned-out and fractured spherulites beneath them, identifying the buildups as stress precursors. SAXS study reports local lamellar disruption further confirming the SEM results. Most. Notably, this is the first study that, to our knowledge, to directly image stable craze cross-tie microstructure that formed due to chain disentanglement from high amplitude cyclic stress. The SEM images validate previous theoretical and computational molecular dynamics models of cross-tie structure architecture. Therefore, leaflet premature failures are the compound effect of cyclic fatigue-initiated crazing and surface wear. Heart valve leaflet durability can be upgraded by controlling crazing and surface wearing. Both the crazing and surface wearing can be controlled by crosslinking of randomly folded amorphous chains. Because they are direct impacts of chain disentanglement under high amplitude cyclic stress. Crosslinked covalent bonds of polymer limit chain movements. LLDPE thin sheets are crosslinked at 50, 70, 100, and 150 kGy doses using 200 KeV (low energy) and 4 MeV (low energy) electron beams at room temperature in the air. Their effects are characterized by measuring gel content percentage, tensile testing, Differential Scanning Calorimetry (DSC), nanoindentation, and nano scratch test. Crosslinked LLDPE heart valve leaflet tested in in vitro flow loop and wear tester to determine valve performance and durability, respectively. Low energy electron beam (LEEB) forms 28% xylene insoluble gel whereas high energy electron beam (HEEB) forms 58 % gel at 100 kGy doses. LEEB does not affect mechanical properties, but HEEB significantly increases stiffness and yield strength. A slight reduction of melting temperature is found for LLDPE crosslinked by both of the energy sources. Nanomechanical tests show crosslinking improves hardness and coefficient of friction, an indication of improving surface wear resistance, which can explain durability improvement. Heart valve durability can also be improved by strengthening the leaflet with fiber reinforcement. A thin plastic sheet is assembled into a cylindrical form by welding two ends, which never fails. The weld at the commissure post is found to be mechanically stronger than the rest of the leaflet, which protected this region. Braided fibers are embedded on the leaflet regions of the commissure post perpendicular to the valve circumference, mimicking the weld but at a much higher strength. Leaflet durability skyrockets from a few million ISO 5840-2005 cycles to 73 million. The entire cardiac cycle of the heart valve with embedded fibers of varying angles, lengths, and numbers is simulated in Finite Element Analysis (FEA) to study their effects on leaflet maximum principal stress and leaflet opening dynamics. Horizontal fibers wrap the leaflet 360° to relax the leaflet completely during peak diastolic. However, the leaflet has a higher coaptation gap and delayed opening. The heart valve with embedded horizontal fibers is physically manufactured and tested in an in vitro flow loop and wear tester, which showed improved durability, but compromised hemodynamics. Finally, strategically crosslinked leaflet was simulated in FEA where leaflet regions of the commissure post and stent line are assigned with stiff crosslinked LLDPE material property, but the rest of the cusps undergo maximum bending are assigned with uncrosslinked LLDPE material property. Results show that strategically crosslinked leaflets open more easily than fully crosslinked leaflets. The final chapter discusses 3D shaped LLDPE leaflet bio enhancement process. Leaflets are 3D shaped in a vacuum thermoformer followed by the HA enhancement. Whole blood clotting resistance, platelet adhesion, activation, and cytotoxicity studies are conducted to determine at 10-4 µmol/mm2 ranged HA population density is required to achieve the best biocompatibility. Generally, water contact angle, Toluidine Blue O (TBO) elution assays, ATR-FTIR are used to determine overall HA presence on the leaflet. This study reports TBO staining and elution is the most effective and accurate measurement tool for determining HA population density. Fiber-reinforced LLDPE, and crosslinked LLDPE are HA-treated, and TBO staining predicts heavily populated HA surface density. | |
dc.format.medium | born digital | |
dc.format.medium | doctoral dissertations | |
dc.identifier | Khair_colostate_0053A_18037.pdf | |
dc.identifier.uri | https://hdl.handle.net/10217/239198 | |
dc.language | English | |
dc.language.iso | eng | |
dc.publisher | Colorado State University. Libraries | |
dc.relation.ispartof | 2020- | |
dc.rights | Copyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright. | |
dc.rights.access | Embargo expires: 08/16/2026. | |
dc.subject | crazing | |
dc.subject | FEA | |
dc.subject | TAVR | |
dc.subject | crosslinking | |
dc.subject | biomaterials | |
dc.subject | polymer | |
dc.title | Failure analysis and durability enhancement of polymeric heart valve leaflets | |
dc.type | Text | |
dcterms.embargo.expires | 2026-08-16 | |
dcterms.embargo.terms | 2026-08-16 | |
dcterms.rights.dpla | This Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). | |
thesis.degree.discipline | Advanced Materials Discovery | |
thesis.degree.grantor | Colorado State University | |
thesis.degree.level | Doctoral | |
thesis.degree.name | Doctor of Philosophy (Ph.D.) |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Khair_colostate_0053A_18037.pdf
- Size:
- 44.97 MB
- Format:
- Adobe Portable Document Format