Repository logo
 

Autonomous management of cost, performance, and resource uncertainty for migration of applications to infrastructure-as-a-service (IaaS) clouds

Date

2014

Authors

Lloyd, Wes J., author
Pallickara, Shrideep, advisor
Arabi, Mazdak, committee member
Bieman, James, committee member
David, Olaf, committee member
Massey, Daniel, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

Infrastructure-as-a-Service (IaaS) clouds abstract physical hardware to provide computing resources on demand as a software service. This abstraction leads to the simplistic view that computing resources are homogeneous and infinite scaling potential exists to easily resolve all performance challenges. Adoption of cloud computing, in practice however, presents many resource management challenges forcing practitioners to balance cost and performance tradeoffs to successfully migrate applications. These challenges can be broken down into three primary concerns that involve determining what, where, and when infrastructure should be provisioned. In this dissertation we address these challenges including: (1) performance variance from resource heterogeneity, virtualization overhead, and the plethora of vaguely defined resource types; (2) virtual machine (VM) placement, component composition, service isolation, provisioning variation, and resource contention for multitenancy; and (3) dynamic scaling and resource elasticity to alleviate performance bottlenecks. These resource management challenges are addressed through the development and evaluation of autonomous algorithms and methodologies that result in demonstrably better performance and lower monetary costs for application deployments to both public and private IaaS clouds. This dissertation makes three primary contributions to advance cloud infrastructure management for application hosting. First, it includes design of resource utilization models based on step-wise multiple linear regression and artificial neural networks that support prediction of better performing component compositions. The total number of possible compositions is governed by Bell's Number that results in a combinatorially explosive search space. Second, it includes algorithms to improve VM placements to mitigate resource heterogeneity and contention using a load-aware VM placement scheduler, and autonomous detection of under-performing VMs to spur replacement. Third, it describes a workload cost prediction methodology that harnesses regression models and heuristics to support determination of infrastructure alternatives that reduce hosting costs. Our methodology achieves infrastructure predictions with an average mean absolute error of only 0.3125 VMs for multiple workloads.

Description

Rights Access

Subject

cloud computing
performance modeling
infrastructure-as-a-service clouds

Citation

Associated Publications