Tiled bit networks: sub-bit neural network compression through reuse of learnable binary vectors
dc.contributor.author | Gorbett, Matt, author | |
dc.contributor.author | Shirazi, Hossein, author | |
dc.contributor.author | Ray, Indrakshi, author | |
dc.contributor.author | ACM, publisher | |
dc.date.accessioned | 2024-11-11T19:34:34Z | |
dc.date.available | 2024-11-11T19:34:34Z | |
dc.date.issued | 2024-10-21 | |
dc.description.abstract | Binary Neural Networks (BNNs) enable efficient deep learning by saving on storage and computational costs. However, as the size of neural networks continues to grow, meeting computational requirements remains a challenge. In this work, we propose a new form of quantization to tile neural network layers with sequences of bits to achieve sub-bit compression of binary-weighted neural networks. The method learns binary vectors (i.e. tiles) to populate each layer of a model via aggregation and reshaping operations. During inference, the method reuses a single tile per layer to represent the full tensor. We employ the approach to both fully-connected and convolutional layers, which make up the breadth of space in most neural architectures. Empirically, the approach achieves near full-precision performance on a diverse range of architectures (CNNs, Transformers, MLPs) and tasks (classification, segmentation, and time series forecasting) with up to an 8x reduction in size compared to binary-weighted models. We provide two implementations for Tiled Bit Networks: 1) we deploy the model to a microcontroller to assess its feasibility in resource-constrained environments, and 2) a GPU-compatible inference kernel to facilitate the reuse of a single tile per layer in memory. | |
dc.format.medium | born digital | |
dc.format.medium | articles | |
dc.identifier.bibliographicCitation | Matt Gorbett, Hossein Shirazi, and Indrakshi Ray. 2024. Tiled Bit Networks: Sub-Bit Neural Network Compression Through Reuse of Learnable Binary Vectors. In Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (CIKM '24), October 21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3627673.3679603 | |
dc.identifier.doi | https://doi.org/10.1145/3627673.3679603 | |
dc.identifier.uri | https://hdl.handle.net/10217/239540 | |
dc.language | English | |
dc.language.iso | eng | |
dc.publisher | Colorado State University. Libraries | |
dc.relation.ispartof | Publications | |
dc.relation.ispartof | ACM DL Digital Library | |
dc.rights | ©Matt Gorbett, et al. ACM 2024. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in CIKM '24, https://dx.doi.org/10.1145/3627673.3679603. | |
dc.subject | neural network quantization | |
dc.subject | compression | |
dc.subject | efficiency | |
dc.subject | on-device machine learning | |
dc.subject | edge machine learning | |
dc.subject | IoT | |
dc.title | Tiled bit networks: sub-bit neural network compression through reuse of learnable binary vectors | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- FACF_ACMOA_3627673.3679603.pdf
- Size:
- 1.53 MB
- Format:
- Adobe Portable Document Format