Repository logo
 

TerraMAE: learning spatial-spectral representations from hyperspectral Earth observation data via adaptive masked autoencoders

dc.contributor.authorFaruk, Tanjim Bin, author
dc.contributor.authorMatin, Abdul, author
dc.contributor.authorPallickara, Shrideep, author
dc.contributor.authorPallickara, Sangmi Lee, author
dc.contributor.authorACM, publisher
dc.date.accessioned2025-12-22T19:09:10Z
dc.date.available2025-12-22T19:09:10Z
dc.date.issued2025-12-12
dc.description.abstractMasked Autoencoders struggle with hyperspectral satellite imagery containing 200+ spectral bands, as uniform masking across all channels obscures critical spatial-spectral relationships. We introduce TerraMAE, which employs an adaptive channel grouping strategy to organize bands into statistically coherent groups with independent masking. Together with a customized loss function, this data-driven grouping strategy enables TerraMAE to learn robust spatial-spectral representations from unlabeled HSI. Experiments demonstrate that TerraMAE significantly outperforms baseline Masked Autoencoder and supervised ResNet-50 on soil texture prediction, achieving 15.7% and 6.6% lower error, respectively.
dc.format.mediumborn digital
dc.format.mediumarticles
dc.identifier.bibliographicCitationTanjim Bin Faruk, Abdul Matin, Shrideep Pallickara, and Sangmi Lee Pallickara. 2025. TerraMAE: Learning Spatial-Spectral Representations from Hyperspectral Earth Observation Data via Adaptive Masked Autoencoders. In The 33rd ACM International Conference on Advances in Geographic Information Systems (SIGSPATIAL '25), November 3–6, 2025, Minneapolis, MN, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3748636.3762770
dc.identifier.doihttps://doi.org/10.1145/3748636.3762770
dc.identifier.urihttps://hdl.handle.net/10217/242550
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartofPublications
dc.relation.ispartofACM DL Digital Library
dc.rights.licenseThis work is licensed under a Creative Commons Attribution 4.0 International License.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjecthyperspectral satellite
dc.subjectgeo AI
dc.subjectmasked autoencoders
dc.subjectdeep learning
dc.subjectself-supervised learning
dc.subjectremote sensing
dc.titleTerraMAE: learning spatial-spectral representations from hyperspectral Earth observation data via adaptive masked autoencoders
dc.typeText
dc.typeImage

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FACF_ACMOA_3748636.3762770.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format

Collections