Repository logo
 

Moving beyond the aggregated models: woody plant size influences on savanna function and dynamics

dc.contributor.authorSea, William Brian, author
dc.contributor.authorHanan, Niall P., advisor
dc.date.accessioned2024-03-13T20:27:57Z
dc.date.available2024-03-13T20:27:57Z
dc.date.issued2008
dc.description.abstractHistorically, models have played important roles in studying aspects of savannas, including tree-grass competition, fire, and plant-herbivore interactions. The models can be categorized as either (1) "aggregated" ones that neglect size structure but have the advantage of mathematical tractability or (2) complicated process-oriented ecosystem models incorporating mechanistic ecophysiology capturing greater ecological realism but constrained to simulation modeling. The aggregated class of models can be further separated into those focusing on resource utilization and tree-grass competition ("resource-based models") and those focusing on demographic impacts of disturbances by fire and herbivory ("demographic bottleneck models"). The resource and demographic models separately consider important aspects of savanna ecology, yet the two approaches have rarely been integrated, resulting in a significant gap in our understanding of savannas. For this study, I investigated the role of woody plant size in savanna ecology. Using extensive datasets along broad resource gradients of annual precipitation in southern Africa, I examined patterns of size-abundance for woody plants in relatively undisturbed savannas to see if relationships for savannas showed similar patterns to theoretical predictions for tropical forests. Contrary to assumptions and predictions made by aggregate savanna models, I found that the percentage of wood biomass subject to fire loss actually decreases in wetter savannas. Since resource limitation and "thinning" have been mentioned as potential factors in savannas, I investigated the suitability of self-thinning in savannas. I developed a simple theoretical model hypothesizing three potential impacts of tree-grass interactions on the self-thinning relationship. Results from the analyses, testing with field data, suggest that tree-grass competition is asymmetric with respect to tree size. For the formal modeling component of my dissertation, I developed a simple savanna model that integrates demographic bottleneck and resource-based approaches. The model is unique in that the woody carrying capacity has both resource and demographic constraints. Model simulations showed that modest amounts of variation in adult mortality during fires and size-asymmetric tree-grass competition lead to very different model outcomes. The work opens up an entirely new class of ecological models for savanna ecology: analytically tractable with enough size structure to capture realistic savanna vegetation-disturbance interactions.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierETDF_Sea_2008_3321311.pdf
dc.identifier.urihttps://hdl.handle.net/10217/237947
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.rights.licensePer the terms of a contractual agreement, all use of this item is limited to the non-commercial use of Colorado State University and its authorized users.
dc.subjectAfrica
dc.subjectfire
dc.subjectsavannas
dc.subjectwoody plants
dc.subjectecology
dc.titleMoving beyond the aggregated models: woody plant size influences on savanna function and dynamics
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineEcology
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ETDF_Sea_2008_3321311.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format