Repository logo
 

Evaluating leafy green production in a Colorado rooftop agrivoltaic system

dc.contributor.authorVilla-Ignacio, Armando, author
dc.contributor.authorBousselot, Jennifer, advisor
dc.contributor.authorUchanski, Mark, committee member
dc.contributor.authorSampath, Walajabad, committee member
dc.date.accessioned2024-09-09T20:51:10Z
dc.date.available2024-09-09T20:51:10Z
dc.date.issued2024
dc.description.abstractCombining green roofs with solar modules can protect plants and produce energy in cities. Growing crops in this system is called rooftop agrivoltaics (RAV) and can complement current urban agriculture efforts. We evaluated a group of five leafy green crops (arugula, kale, lettuce, spinach, and Swiss chard) under different solar modules over two years at two locations. Data measurements were taken for fresh and dry weight (FW, DW) stomatal conductance (SC), plant size at harvest (PSH), and microclimate data. At the Colorado State University Foothills Campus, the treatments included a polycrystalline opaque silicon module, a cadmium telluride (CdTe) frameless opaque module, and a 40% semi-transparent CdTe module. At CSU Spur, there was an opaque module and a bifacial module. Both sites included a full sun control plot. At the Foothills campus, for of the five leafy greens produced higher FW and DW under the 40% semi-transparent modules compared to other treatments and the full sun control, except spinach. Most species also produced larger PSH under the PV module treatments compared to the full sun control. Leafy greens under the module treatments resulted in lower SC, however, lettuce and Swiss chard grown under the semi-transparent module treatment produced higher SC compared to all other treatments. At CSU Spur, plant responses were also species specific with arugula, kale, and lettuce yielding higher FW and DW in full sun. Most leafy greens resulted in lower SC, except for lettuce, which had a higher SC under solar module treatments. Spinach had no difference in FW but lower DW in the opaque treatment compared to the full sun control, and lower SC under both treatments. There was a lower FW between the bifacial treatment and the full sun control in Swiss chard. This research shows that incorporating photovoltaics on rooftop gardens influences the yield and stomatal conductance of select leafy green crops. While FW and DW mostly decreased under the deep shade treatments (opaque module, frameless module, and bifacial module) SC decreased, possibly due to less solar radiation on the leafy greens, reducing water use. Understanding the growth characteristics and growing environment of high value crops like leafy greens will increase understanding of what food crops are suitable for RAV systems.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierVillaIgnacio_colostate_0053N_18481.pdf
dc.identifier.urihttps://hdl.handle.net/10217/239144
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2020-
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectgreen roof
dc.subjectrooftop agrivoltaics
dc.subjectleafy greens
dc.subjectagrivoltaics
dc.titleEvaluating leafy green production in a Colorado rooftop agrivoltaic system
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineHorticulture & Landscape Architecture
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VillaIgnacio_colostate_0053N_18481.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format