Repository logo
 

Study of mechanical and antimicrobial properties of biomimetic shark skin fabrics with different denticle size via 3D printing technology

Date

2022

Authors

Wen, Jiayi, author
Li, Yan Vivian, advisor
Chisholm, Sandra, committee member
Prawel, David, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

Previous studies have shown that biomimetic shark skin fabrics can reduce water drag and increase swimming speed. It was also known that the smaller the denticle was, the higher water drag reduction was. In nature, the size of the denticles on shark skin is between 100 μm and 500 μm. However, the minimum size of the 3D printed denticles on a biomimetic shark skin fabric previously reported was about 2mm, which was still much larger than the natural size. In this study, different sizes of denticles ranging from 0.65mm to 1.30mm were fabricated using a Form3 3D printer and Flexible80A resin, and the effect of denticle size on mechanical properties and antimicrobial properties of biomimetic shark skin fabric were evaluated for the applications in functional clothing. The results suggested that when the size of the denticle was decreased, the stiffness of the fabrics was increased. In the tensile testing, the tensile strength and the breaking elongation of the 3D printed fabric with 1.04mm denticles were largest in the tested fabrics, which was larger than those of some common fabric materials used in commercial swimwear, suggesting great potential of functional clothing applications. In addition, mechanical anisotropy was observed in the 3D printed fabrics, which is commonly seen in textile fabrics. In antimicrobial testing, the shark skin fabrics with 0.65mm and 1.04mm denticles were found to be less susceptible to bacterial attachment, suggesting good potential for functional clothing applications.

Description

2022 Summer.
Includes bibliographical references.

Rights Access

Embargo Expires: 08/22/2024

Subject

Citation

Associated Publications