Repository logo
 

Assessing drought sensitivity across the shortgrass steppe biome

dc.contributor.authorHedberg, Sydney Leigh, author
dc.contributor.authorKnapp, Alan K., advisor
dc.contributor.authorDao, Phuong D., advisor
dc.contributor.authorMueller, Nathan, committee member
dc.date.accessioned2024-09-09T20:51:12Z
dc.date.available2024-09-09T20:51:12Z
dc.date.issued2024
dc.description.abstractNet primary productivity (NPP) of grassland ecosystems is dependent on many biotic and abiotic factors. However, water availability is generally considered the primary determinant of NPP, as well as being key for defining grassland community structure, and thus it is imperative to understand how grasslands respond to drought in a climate where droughts are expected to become more frequent and severe. There is a well-documented negative relationship, described by the Huxman-Smith model, between drought sensitivity and mean annual precipitation (MAP) at spatial scales that span multiple biomes. In other words, drier ecosystems are usually more sensitive to drought than more mesic ecosystems. While this cross-biome pattern has been independently confirmed with a variety of research approaches, there is limited research that has explored how patterns of drought sensitivity vary with MAP within a single biome where the dominant species do not vary. My goal was to determine if this negative relationship is evident within a regionally extensive grassland biome generally dominated by a single grass species (Bouteloua gracilis or blue gramma). I characterized the spatial pattern and relationship between drought sensitivity and MAP across the shortgrass steppe biome of the North American Great Plains using satellite-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) data (from 2000-2022) as proxies for vegetation productivity. Gridded annual precipitation data were obtained at a comparable spatial scale. I found a negative relationship between drought sensitivity and MAP within the shortgrass steppe biome, indicating that the Huxman-Smith model is also supported within a single biome. Thus, my results suggest that while changes in the dominant vegetation may contribute to the patterns observed between MAP and drought sensitivity at large spatial scales that include multiple biomes, gradients in MAP within a biome can also drive this negative relationship. As a result, directional changes in annual precipitation amounts have the potential to alter drought sensitivity directly, even if the dominant plant species do not change.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierHedberg_colostate_0053N_18528.pdf
dc.identifier.urihttps://hdl.handle.net/10217/239160
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2020-
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.titleAssessing drought sensitivity across the shortgrass steppe biome
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineEcology
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hedberg_colostate_0053N_18528.pdf
Size:
993.56 KB
Format:
Adobe Portable Document Format