Repository logo
 

New Frank-Starling based contractility and ventricular stiffness indices: clinically applicable alternative to Emax

dc.contributor.authorTan, Haiming, author
dc.contributor.authorDasi, Lakshimi Prasad, advisor
dc.contributor.authorPopat, Ketul, committee member
dc.contributor.authorOrton, Chris, committee member
dc.date.accessioned2007-01-03T05:56:57Z
dc.date.available2007-01-03T05:56:57Z
dc.date.issued2013
dc.description.abstractHeart disease is the #1 cause of death in the United States with congestive heart failure (CHF) being a leading component. Load induced CHF, i.e. CHF in response to chronic pressure or volume overload, may be classified either as systolic failure or diastolic failure, depending on the failure mode of the pumping chamber. To assess the severity of systolic failure, there exist clinical indices that quantify chamber contractility, namely: ejection fraction, (dP/dt), Emax (related to the rate of pressure rise in the pumping chamber), and Emax (related to the time-dependent elastance property of the ventricle). Unfortunately, these indices are plagued with limitations due to inherent load dependence or difficulty in clinical implementation. Indices to assess severity of diastolic failure are also limited due to load dependence. The goal of this research is to present (1) a new framework that defines a new contractility index, Tmax, and ventricular compliance 'a', based on Frank-Starling concepts that can be easily applied to human catheterization data, and (2) discusses preliminary findings in patients at various stages of valve disease. A lumped parameter model of the pumping ventricle was constructed utilizing the basic principles of the Frank-Startling law. The systemic circulation was modeled as a three element windkessel block for the arterial and venous elements. Based on the Frank-Starling curve, the new contractility index, Tmax and ventricular compliance 'a' were defined. Simulations were conducted to validate the load independence of Tmax and a computed from a novel technique based on measurements corresponding to the iso-volumetric contraction phase. Recovered Tmax and 'a' depicted load independence and deviated only a few % points from their true values. The new technique was implemented to establish the baseline Tmax and 'a' in normal human subjects from a retrospective meta-data analysis of published cardiac catheterization data. In addition, Tmax and 'a' was quantified in 12 patients with a prognosis of a mix of systolic and diastolic ventricular failure. Statistical analysis showed that Tmax was significantly different between the normal subjects group and systolic failure group (p<0.019) which implies that a decrease in Tmax indeed predicts impending systolic dysfunction. Analysis of human data also shows that the ventricular compliance index 'a' is significantly different between the normal subjects and concentric hypertrophy (p < 0.001). This research has presented a novel technique to recover load independent measures of contractility and ventricular compliance from standard cardiac catheterization data.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierTan_colostate_0053N_11924.pdf
dc.identifier.urihttp://hdl.handle.net/10217/80320
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectcontractility
dc.subjectventricular stiffness
dc.subjectlumped parameter modelling
dc.subjectfrank-starling
dc.titleNew Frank-Starling based contractility and ventricular stiffness indices: clinically applicable alternative to Emax
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineBioengineering
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tan_colostate_0053N_11924.pdf
Size:
3.64 MB
Format:
Adobe Portable Document Format
Description: