Repository logo
 

Molecular genetics of glyphosate resistance in Palmer amaranth (Amaranthus palmeri L.)

dc.contributor.authorGaines, Todd A., author
dc.contributor.authorWestra, Philip, advisor
dc.contributor.authorLeach, Jan, advisor
dc.date.accessioned2024-03-13T19:53:47Z
dc.date.available2024-03-13T19:53:47Z
dc.date.issued2009
dc.description.abstractGlyphosate resistant Palmer amaranth populations were identified in Georgia in 2004. Studies were undertaken to characterize inheritance, the molecular basis of resistance, and the potential for gene transfer to related Amaranthus species. Dose response results support rejecting a monogenic inheritance hypothesis in favor of an alternative polygenic, additive inheritance model. Apomixis in genetic populations used for inheritance studies is probably occurring and makes interpretation of inheritance difficult. Glyphosate resistance in Palmer amaranth appears to be incompletely dominant and may be polygenic. No target site mutations known to confer resistance were identified in resistant alleles of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the target of glyphosate. Estimation of gene copy numbers of EPSPS relative to acetolactate synthase (ALS) in gDNA by quantitative PCR (qPCR) suggested that resistant plant genomes contain 64 to 128 times more copies of EPSPS than susceptible plants. qPCR on cDNA revealed that EPSPS was expressed approximately 35 times higher in resistant plants. Elevated EPSPS copy number is heritable and correlates with expression level and resistance in F2 populations. The molecular basis of resistance is likely due to increased production of EPSPS due to gene amplification. This is the first documented occurrence of EPSPS gene amplification in a weed population under glyphosate selection pressure. The risk of resistance gene transfer was measured with field studies and hand crosses with A. hybridus, A. retroflexus, A. powellii, A. spinosus, and A. tuberculatus. Glyphosate application (0.4 kg ha-1) was used to screen for resistant progeny from the crosses. Hybridization with A. spinosus occurred in both years of the field study and in hand crosses, with average frequency ranging from <0.01% to 1.4%. Hybrids with A. spinosus were either monoecious or dioecious. Monoecious plants produced seed through self-pollination, and the F2 progeny were segregating for resistance. Hybridization occurred in the 2007 field study with A. hybridus (<0.01%) and A. tuberculatus (0.08% and 0.19% for two accessions), all of the hybrid plants were dioecious, and none produced seed. The highest risk for glyphosate resistance gene transfer from A. palmeri is to A. spinosus.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierETDF_Gaines_2009_3374647.pdf
dc.identifier.urihttps://hdl.handle.net/10217/237745
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.rights.licensePer the terms of a contractual agreement, all use of this item is limited to the non-commercial use of Colorado State University and its authorized users.
dc.subjectAmaranthus palmeri
dc.subjectgene flow
dc.subjectglyphosate
dc.subjectherbicide resistance
dc.subjectPalmer amaranth
dc.subjectagronomy
dc.subjectgenetics
dc.subjectplant sciences
dc.titleMolecular genetics of glyphosate resistance in Palmer amaranth (Amaranthus palmeri L.)
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineBioagricultural Sciences and Pest Management
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ETDF_Gaines_2009_3374647.pdf
Size:
3.18 MB
Format:
Adobe Portable Document Format